
CORRECTION TO MCKELVEY AND PAGE, “PUBLIC AND

PRIVATE INFORMATION: AN EXPERIMENTAL STUDY OF

INFORMATION POOLING”

by Robin Hanson

The above mentioned article, McKelvey and Page (1990), errs in calculating the consequences of myopic-

rational responses to the payoffs used in the experiments it describes. This invalidates the article’s proof

that myopic responses are a non-myopic Bayes-Nash equilibrium. Thus we lack game-theoretical predictions

to compare with their experimental results.

In their article, McKelvey and Page note that

In previous experimental work, ... [researchers] investigated how individuals use public informa-

tion to augment their original private information, and whether in doing so, a rational expecta-

tions equilibrium is attained. ... [But either] the inference processes are complicated because of

the enormous number of potential interactions among the individuals, and the optimal inference

processes are not analyzed. ... [or] the inference process is analyzed but the working assumption

is not altogether satisfactory.

In contrast,

We compare the predictions of a [game-] theoretical model of a common knowledge inference

process with actual behavior. ... The experiment is designed so that, under certain behavioral

assumptions, truthful reporting of current private information is a Bayes-Nash equilibrium, and
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the equilibrium path leads to a common knowledge equilibrium, characterized by complete pooling

of information.

More specifically, they use a “lottery version of a [quadratic] proper scoring rule” so that “an individual’s

probability of winning a lottery is . . . maximized by [honest] reporting.” That is, they try to make honest

reports of posterior beliefs be optimal myopic responses, i.e., maximizing one-period payoffs.

Assuming honest reporting,

By direct calculation we find that for the experiment the refinement process terminates in three

periods (T = 3) and that at the beginning of the third period if all the players are fully rational

Bayesian, each has obtained the pooled information. Moreover, there is complete pooling by

the third period if the subjects are constrained to report in even hundredths as in the table of

Appendix A.

Finally, they show that, given the above results, myopic responses are a non-myopic equilibrium, reasoning

that

by departing from truthful reporting j might be able to change j’s information sets in [periods]

3, 4, 5, or 6. But in doing so j could only make things worse for j, since j’s information sets for

these rounds were already fully refined under truthful reporting.

There are two major errors in this analysis.1

First, McKelvey and Page’s quadratic proper scoring rule payoff table, Table A, has payoff values rounded

to only three significant digits, inducing several regions of linear payoffs. For example, the payoffs given for

the reports .02, .04, .06, .08 are all linear. For linear scoring rules and linear utilities (from lottery payoffs),

it is always optimal to report some end of the linear range. For example, if one’s posterior was .051, one’s

unique optimal (myopic) response would be .08, not the nearest possible (“honest”) report of .06.

Second, even if we assume subjects always (honestly) reported the nearest allowed posterior value, I find

that my exact computations disagree with McKelvey and Page’s “direct calculation” that honest reports

induce complete “pooling” after two announcements.
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Assuming that subjects honestly report to the nearest even hundredth (and round up when equa-

distant), and rounding announcements to the nearest hundredth (as McKelvey and Page apparently did),

allows me to reproduce McKelvey and Page’s Tables II and III, and the optimal reports in their Figure

1. I find that while in all states the forth and further announcements induce no information partition

changes, in some states the third announcement does change some information partitions. For exam-

ple, if the three subjects observe (0, 9, 10) successes out of ten then their sequence of rounded reports

is: (.02, .96, .98), (.92, .96, .96), (.92, .92, .96), (.96, .96, .96)

If “pooling” means all participants have an information partition identical to the partition which would

result from being directly told all private information, then I find that 8.24 per cent of the prior weight

is in states where pooling never occurs. If, however, “pooling” means only that the rounded reports of

all participants are identical to those they would make if they had been told all private information, then

pooling does occur in all states. However, in some states this kind of pooling only occurs after three, not

two, announcements.

McKelvey and Page’s proof that myopic responses are a Bayes-Nash equilibrium crucially depends on the

assumption that it is common knowledge at every period that in equilibrium pooling will occur by the third

period. Since for no state is this common knowledge in the first period, there may be incentives to deviate

from the proposed equilibrium. Thus we no longer know any Bayes-Nash equilibria to this game.

In conclusion, McKelvey and Page mistakenly calculated that myopic rational responses implies informa-

tion pooling after two announcements in all states, given the payoff table they employed in their experiment.

They mistook the consequences of both the rounding of their payoff values, and of their choice of a coarse

array of possible posterior reports.

Though McKelvey and Page observed clear differences between theory and experiment, they concluded

that a “rough approximation” of theory seems “borne out in the experimental evidence.” However, the errors

in their analysis imply that we no longer have a game theoretic prediction of behavior in this environment,

and so we cannot draw such conclusions.
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1 The paper also contains a clerical error. On page 1327, formulas like ρ(ω) = (.5)(.6y1+y2+y3)(.430−y1−y2−y3)

are missing the combinatorial term (10!10!10!)/(y1!y2!y2!(10 − y1)!(10 − y2)!(10 − y3)!).
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