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Evolution of Individuality: A Case Study in the
Volvocine Green Algae

Erik R. Hanschen,∗†‡ Dinah R. Davison,∗† Zachariah I. Grochau-Wright,†
and Richard E. Michod†

While numerous criteria have been proposed in definitions of biological individuality, it is
not clear whether these criteria reflect the evolutionary processes that underlie transitions
in individuality. We consider the evolution of individuality during the transition from uni-
cellular to multicellular life. We assume that “individuality” (however it is defined) has
changed in the volvocine green algae lineage during the transition from single cells, to sim-
ple multicellular colonies with four to one hundred cells, to more complex multicellular
organisms with thousands of differentiated cells. We map traits associated with the various
proposed individuality criteria onto volvocine algae species thought to be similar to ances-
tral forms arising during this transition in individuality. We find that the fulfillment of
some criteria, such as genetic homogeneity and genetic uniqueness, do not change across
species, while traits underpinning other aspects of individuality, including degrees of inte-
gration, group-level fitness and adaptation, and group indivisibility, change dramatically.
We observe that different kinds of individuals likely exist at different levels of organization
(cell and group) in the same species of algae. Future research should focus on the causes
and consequences of variation in individuality.
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1 Introduction

All disciplines must define their basic units and core processes. In evolutionary biology, the core
process is natural selection and the basic unit of selection and adaptation is the individual. To
operationalize the theory of natural selection we must count individuals, as they are the bearers
of fitness. While canonical individuals have often been taken to be multicellular organisms
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( Jeuken 1952; Hull 1976, 1980; Tauber 1991; Pepper and Herron 2008), the hierarchy of life
(e.g., simple prokaryotic cells, eukaryotic cells, multicellular organisms, and eusocial groups)
shows that new kinds of individuals have evolved (Buss 1987; Maynard Smith 1988; Maynard
Smith and Szathmáry 1995; Michod and Roze 1997). A variety of criteria have been used
to define biological individuality. Some criteria rely on the presence/absence of a particular
property while others advocate an approach that reflects the process of natural selection. The
plethora of approaches to classifying individuality has resulted in confusion regarding how to
study individuality in a given taxon (Pepper and Herron 2008).

We investigate how the various criteria proposed for delineating individuality map onto a
well-studied case of the evolution of multicellular individuality in the volvocine green algae. We
assume that “individuality” (however it is defined) has changed in the volvocine algae lineage
from being a property of the cell to being a property of the multicellular group. We begin by
briefly presenting the various criteria for individuality and some of the issues that can arise in
applying them. We then use the volvocine green algae to examine which traits have changed
during the evolution of multicellularity and how these traits relate to and satisfy the various
criteria used to define individuality (Table 1). We find that the traits associated with some
criteria, such as genetic homogeneity and genetic uniqueness, probably do not change much
in this lineage, while others change dramatically, including degrees of integration, group-level
fitness and adaptation, and group indivisibility. We discuss how differences in the fulfillment
of these criteria between genera inform our understanding of individuality and the inherently
multi-level nature of the process of natural selection.

2 Individuality Criteria

2.1 Genetic homogeneity

Genetic homogeneity requires that parts within the individual have the same genotype. For a
multicellular organism, this can be achieved via a unicellular reproductive bottleneck (Weismann
1904; Simpson et al. 1957; Dawkins 1982; Crow 1988; Maynard Smith 1988; Grosberg and
Strathmann 1998). Genetic homogeneity inhibits the potential for lower-level competition via
the reduction of genetic variation amongst cells (Buss 1985, 1987). Issues with this definition
arise for example, when mutations occur during development in a multicellular organism. In
many plants, somatic mutations accumulate between cell lineages (Whitham and Slobodchikoff
1981). Somatic mutations have also been reported in fungi (Peabody et al. 2000; Stenlid 2000),
red algae (Santelices and Varela 1993; Meneses et al. 1999; Santelices et al. 1999), invertebrates
(Rinkevich and Weissman 1987; Barki et al. 2002; Sommerfeldt et al. 2003), and vertebrates
(De 2011).

2.2 Genetic uniqueness

Genetic uniqueness is the possession of a genotype different from that of other individuals and is
primarily conferred by sexual reproduction. The amount of genetic uniqueness created by sex will
depend on the mating system and degree of inbreeding. This definition clearly distinguishes an
individual from other individuals of the same species (Weismann 1904; Huxley 1912; Santelices
1999) and facilitates selection amongst colonies (Buss 1985). In this view, organisms or ramets
produced asexually from the same clone are not individuals, but instead represent the growth
or expansion of a single biological individual, the genet. This definition is difficult to relate to
facultatively sexual species (where two ramets may or may not be different individuals
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depending on which genet they belong to) (Huxley 1912; Janzen 1977). The example of genetic
heterogeneity accumulating through somatic mutations raises issues with this definition as well
(Stoner et al. 1999).

2.3 Reproductive division of labor

Another criterion is reproductive division of labor (Weismann 1885; Buss 1987), in which lower-
level units specialize on the basic fitness components of the group (Maynard Smith and Szath-
máry 1995; Michod 2005, 2006, 2007). Reproductive division of labor promotes cooperation
and inhibits conflict amongst lower-level entities. By specializing on survival or reproduction of
the group, lower-level units, such as cells, give up their own fitness were they to live outside of
the context of the group (Michod 2007). At the same time, fitness emerges at the group level
and a change in the Darwinian unit of fitness and adaptation from one level to another has oc-
curred. In the evolution of multicellularity, division of labor often takes the form of germ-soma
differentiation, in which cells specialize in either group survival or group reproduction. The
sequestration of a germ line also reduces the per-generation mutation rate (Simpson et al. 1957;
Buss 1987; Michod 1996), thereby reducing the potential for cell-level conflict. Due to the ubiq-
uity and importance of germ-soma division of labor (Simpson 2012), some multicellular groups
without this trait have been considered to lack individuality (Godfrey-Smith 2009). Reproduc-
tive division of labor simultaneously increases group-level fitness and decouples the group-level
fitness from the average of lower-level fitnesses (Michod 2006; Michod et al. 2006; Hanschen
et al. 2015). While the evolution of division of labor is an especially clear example of how fit-
ness decoupling may occur, it is not the only means. Any trait that is costly at the lower level
but beneficial at the group level enhances the fitness of the group at the expense of lower-level
fitness and may therefore contribute to fitness decoupling and the emergence of indivisibility of
the group. In addition, traits that evolve in the context of the group may no longer be optimal
were cells to leave the group (Shelton and Michod 2014). This context-dependent evolution
increases the fitness of the group and decreases the fitness of cells were they to leave the group.

2.4 Indivisibility

The Latin root of the word “individual” means indivisible (Table 1). Under this criterion, an
individual cannot be divided into smaller units that still maintain the properties of the whole
(Michod 1999, 2007). Indivisibility facilitates selection at the group level and inhibits lower-
level selection. Groups that are indivisible can be subjected to novel and different selection
pressures. If a group is divisible, lower-level units could leave the group and form lineages,
allowing for heritable variation in fitness and selection at the cell level. Fitness decoupling,
discussed above in regards to division of labor, also leads to indivisibility as cells cannot well
survive and reproduce outside of the group (Michod 2007). A group is indivisible if lower-level
units cannot leave the group, potentially because of a colony boundary. Indivisibility may also
arise when cells possess properties in the context of the group that would make them less fit
were they to leave the group (Shelton and Michod 2014).

2.5 Autonomy and physiological unity

Huxley (1932) considered individuality to be characterized by autonomy and physiological unity
(Table 1), which imply that the individual interacts as a whole with the external environment.
Integration of lower-level component parts is closely related to physiological unity (Sober and
Wilson 1994; Michod 2007). The definition of an individual as possessing physiological unity
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and integration is meant to reflect the interaction between parts of an individual, increasing the
likelihood that heritable variation in fitness will exist amongst groups and not the parts (Clarke
2013). This interaction among parts can be thought of as affecting the fitness of the whole.
Identifying specific traits and characters which constitute physiological unity and integration
can be challenging, especially as parts of an individual may demonstrate substantial internal
unity and integration themselves (Clarke 2010). For example, a cell of a multicellular organism
displays unity and integration between its sub-cellular component parts (Clarke 2010). Simi-
larly, the rapid and high level of coordination amongst European starlings doesn’t necessarily
make a murmuration an individual (Sterelny and Griffiths 1999).

2.6 Spatial and temporal boundaries

Other individuality criteria focus on the discrete and integrated nature of individuals (Table
1). Individuals have clear spatial and temporal boundaries and are localized in both time and
space (Hull 1976, 1980; Buss 1987; Mishler and Brandon 1987). The criterion of being spa-
tiotemporally localized emphasizes that selection acts upon discrete units (Hull 1976) and the
spatial/temporal organization of integrated parts which comprise that individual (Hull 1980).
Spatial/temporal boundaries increase the likelihood that heritable variation in fitness exists be-
tween groups, with selection acting on these autonomous groups (Clarke 2013).

2.7 Group-level adaptations

The presence of group-level adaptations is another criterion for individuality (Vrba 1984; Folse
and Roughgarden 2010; Shelton and Michod 2014).This criterion captures the expected out-
come of Darwinian evolution at the group level (Lewontin 1970). The criterion of group-
level adaptations specifically excludes cross-level byproducts, which occur when lower-level and
group-level traits covary resulting in apparent selection at the group level (Okasha 2006). Never-
theless, it remains a challenge to identify what is an adaptation at the group level (Clarke 2010).
Determining whether group properties are aggregative or emergent properties of cells and un-
derstanding the relationship between group-level traits and fitness at the cell and group levels
may help identify group-level adaptations (Damuth and Heisler 1988; Lloyd and Gould 1993;
Wimsatt 1997). Shelton and Michod (2014) have proposed testable predictions, based on an ex-
plicit mathematical model, which help to determine whether traits are group-level adaptations
including strong group-level fitness effects.

2.8 Multilevel selection

Finally, the criteria used to understand different paradigm cases of multilevel selection (so-called
MLS1 and MLS2 [Heisler and Damuth 1987; Damuth and Heisler 1988]) have been used to
understand whether individuality exists at the group or the lower level (Okasha 2006; Shelton
and Michod 2009). Do the groups themselves form lineages or are lineages just properties of
the units that make up the group? How is group fitness composed out of cell fitness? Is the
fitness of the group an average or aggregate property of the fitnesses of the cells comprising the
group or is group fitness a non-linear or even discontinuous function of cell properties? Okasha
(2006) argues the transition from MLS1 to MLS2 may be thought of as a defining property of
individuality at the group level. Initially group-level fitness is defined as the average of lower-
level fitness (MLS1) as in the trait-group model of Wilson (1975). As the groups become more
integrated, group lineages arise and selection transitions from MLS1 to MLS2 (Okasha 2006),
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and individuality emerges at the group level. In this view, once MLS2 is relevant, groups form
lineages and group fitness is a non-aggregative function of cell properties.

3 The Volvocine Green Algae

Multicellularity has evolved at least 25 times across the tree of life including in bacteria, ar-
chaea, and eukaryotes (Bonner 1998; Grosberg and Strathmann 2007). In the Chlorophyte
green algae, one finds the volvocine algae, a particularly tractable model system for studying the
evolution of multicellularity (Figure 1). First described by Antony van Leeuwenhoek (1700),
the volvocine green algae are an informal clade of approximately 90 species that includes uni-
cellular, undifferentiated multicellular, and differentiated multicellular species. The volvocine
algae include numerous phenotypes along this gradient of complexity, making them an ideal
model system for studying the evolution of multicellular individuality.

Figure 1: Micrographs of select volvocine genera (same order as in I.); A. Chlamydomonas (scale
bar, 10 µm), B.Tetrabaena (10 µm), C.Gonium (10 µm), D. Volvox ferrisii (50 µm), E. Pandorina
(25 µm), F.Eudorina (25 µm), G. Pleodorina (50 µm), H. Volvox carteri (50 µm). I. Phylogenetic
tree of select volvocine species.
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3.1 Overview of the volvocine green algae

The volvocine green algae (Figure 1) live in still bodies of freshwater such as puddles and ponds,
germinating from desiccation-resistant diploid spores as conditions allow (Pocock 1933a,b). In
permissive ecological conditions, volvocine algae germinate to form haploid colonies which re-
produce asexually. When ecological conditions deteriorate, including due to nitrogen depriva-
tion (Sager and Granick 1954; Kates and Jones 1964; Harris 2009) and heat shock (Kirk and
Kirk 1986; Kirk 1998), colonies sexually differentiate and produce desiccation-resistant diploid
spores ( Janet 1912). They are photosynthetic but negatively buoyant, and thus need to maintain
their position in the water column through flagellated motility. Motility plays a critical role
in their ecology; some species can perform daily migrations through the water column, pho-
tosynthesizing at the water’s surface during the day and migrating to the bottom of the pond,
presumably in search of phosphorus and other nutrients, at night (Sommer and Maciej Gliwicz
1986). Flagellar action also serves to mix the surrounding water to aid in the uptake of nutrients
and removal of waste products (Short et al. 2006; Solari et al. 2006a).

Species are globally distributed (Smith 1944; Coleman 2012) and range in size and com-
plexity from the unicellular Chlamydomonas reinhardtii to undifferentiated species of four (e.g.,
Tetrabaena socialis), eight (e.g., Gonium pectorale), sixteen (e.g., Pandorina morum), or thirty-two
cells (e.g., Eudorina elegans), to soma differentiated species (e.g., Pleodorina californica), to the
germ-soma differentiated Volvox carteri with thousands of cells (Figure 1). The cells of undif-
ferentiated species resemble Chlamydomonas, somatic cells in Pleodorina and Volvox resemble
small Chlamydomonas cells, and germ cells in Volvox resemble Chlamydomonas but are much
larger and not flagellated (Figure 1). These extant species, with diverse levels of complexity
are hypothesized to be similar to ancestors during the evolutionary transition from unicellular
to multicellular individuals. The volvocine algae do not have a multicellular ancestor and have
evolved undifferentiated multicellularity once (Herron and Michod 2008; Leliaert et al. 2012).
Their relatively recent radiation, approximately 200 million years ago, facilitates the identifica-
tion of genetic and phenotypic changes associated with the evolution of multicellularity (Kirk
2005; Herron et al. 2009; Prochnik et al. 2010; Hanschen et al. 2016).

3.2 Individuality criteria applied to the volvocine algae

We now discuss how the previously introduced individuality criteria are satisfied throughout
the volvocine algae. Regarding genetic homogeneity, mutations may arise in cell lineages dur-
ing development, but given the relatively small number of rounds of cell division (approximately
twelve in the case of Volvox carteri) compared to other multicellular taxa such as plants or an-
imals, colony-level genetic homogeneity is probably high throughout this lineage. Still the
opportunity for within colony variation and genetic conflict should correlate with the number
of rounds of cell division and colony size (Table 1). All things being equal, genetic homogeneity
(and hence individuality) should decrease with colony size. Regarding genetic uniqueness, all
volvocine algae are facultatively sexual, so barring mutation, asexual clones arising in a lineage
from a single germinated spore are not genetically unique. The degree of genetic uniqueness
for colonies derived from different germinated spores will depend on the mating system, ef-
fective population size, and degree of inbreeding. Unfortunately, little is known about these
factors in the volvocine algae. Regarding spatial/temporal boundaries, except for differences in
how the colony wall is formed in these species (Kirk 2005), the volvocine algae have similar
spatial/temporal boundaries, suggesting this criterion remains relatively constant in this lineage
(Table 1). However, as discussed below, the elaboration of the colony wall may have implica-
tions for the indivisibility criterion and whether cells can leave the group.
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We turn to the remaining criteria (physiological unity and integration, indivisibility, group-
level adaptations, division of labor, and MLS2) and will discuss them one genus at a time. We
have selected genera to represent observed variation in traits that appear most relevant to the
evolution of individuality. Other genera exist but, with the exception of Astrephomene (which
has cellular differentiation but not inversion [Iyengar and Desikachary 1981; Nozaki 1983]),
they do not display different or unique combinations of the traits we discuss here. We present
these genera in order of increasing body size, though some of the traits we discuss here have
evolved multiple times in the volvocine green algae (Herron and Michod 2008). Based on the
reconstructed evolutionary history in Herron and Michod (2008), it is hypothesized that many
of these genera are similar to ancestral populations, as least with respect to the major traits
related to the evolution of multicellularity as identified by Kirk (2005).

3.2.1 Chlamydomonas

Unicellular Chlamydomonas reinhardtii (Figure 1) forms multicellular clusters under certain con-
ditions. One form of multicellular clusters, non-motile palmelloid clusters, are thought to form
through the adhesion of daughter cells via an extracellular matrix or by failure of daughter cells
to hatch out of the mother cell wall (Harris 2009; Khona et al. 2016). These clusters typically
include 2, 4, 8, or 16 cells. Palmelloid clusters can facultatively form as a result of treatment
inhibiting daughter cell hatching (e.g., calcium deprivation, chelating agents, high salt concen-
trations) and treatment resulting in cell wall aberrations (Iwasa and Murakami 1968; Nakamura
et al. 1975, 1978; Harris 2009; Khona et al. 2016). More recently, multicellular clusters of
Chlamydomonas have been used to investigate ecological and evolutionary questions. Of course,
caution must be taken when using laboratory experiments to inform how selection operates on
Chlamydomonas in nature. Lurling and Beekman (2006) demonstrated how palmelloid clusters
facultatively form as a result of rotifer predator presence. These palmelloid clusters varied from 2
to 10+ cells and appeared to form as a result of adhesion of daughter cells via an extracellular ma-
trix. Becks et al. (2010) used a Brachionus rotifer predator, palmelloid Chlamydomonas (evolved
through six months of exposure to Brachionus), and unicellular Chlamydomonas to investigate
community dynamics. Palmelloid clusters varied in size from 2 to 140+ cells held together by a
thin extracellular matrix. Cells in these palmelloid clusters had a significant reduction in growth
rate and a significant increase in predator survivorship, suggesting a trade-off between survival
and reproduction when cells are in a palmelloid cluster. Ratcliff et al. (2013) experimentally
evolved obligate multicellular Chlamydomonas clusters using centrifugation to select on cluster
size. Evolved multicellular Chlamydomonas clusters contained over 100 cells descended from
a single cell. Clusters were held together through secretion of an extracellular matrix (Ratcliff
et al. 2013). Sathe and Durand (2015) used a Euglenoid predator (Peranema trichophorum) to
demonstrate Chlamydomonas can aggregate (in contrast to forming clusters through daughter
cells failing to leave the mother wall) in clusters of 10–100,000 cells. Using Chlamydomonas
reinhardtii, C. moewusii, and C. debaryana, the formation of multi-species aggregations of ap-
proximately 100 cells was observed.

Multicellular Chlamydomonas clusters have clear spatial boundaries, but as cells are able to
leave palmelloid clusters (Khona et al. 2016) we do not consider them indivisible. Cell clusters
may form via aggregation between separate genetic strains, suggesting Chlamydomonas clusters
are not always genetically homogenous (Sathe and Durand 2015); however, in the other studies
discussed above, the clusters are considered to be clonally formed and genetically homogenous.
Germ-soma division of labor is not present. The case of palmelloid clusters illustrates the chal-
lenges involved in distinguishing the level of selection leading to increased physiological unity
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and the presence of true group adaptations (see Clarke 2010, 2013). In our opinion, there are no
clear examples of physiological unity or group-level adaptations in palmelloid clusters, although
secretion of extracellular matrix upon which cluster formation is based is a potential candidate.
Alternatively, the secretion of extracellular matrix may be a cell-level adaptation which increases
the inclusive fitness of secreting cells. Shelton and Michod (2014) analyzed a model of sim-
ple clusters of genetically identical cells as a way to understand when group-level adaptations
emerge. The conditions under which group adaptations emerge depend on how strongly group
membership affects life history variables such as mortality and growth. While the beneficial
effect of group membership on lowering predation rates is consistent with group adaptations
being present in Chlamydomonas palmelloid clusters (Shelton and Michod 2014), it is not suf-
ficient to clearly demonstrate their presence. The example of palmelloid Chlamydomonas serves
as a null comparison for the undifferentiated colonial species in which group-level adaptation
and integration are clearly present.

3.2.2 Tetrabaena

One of the simplest and smallest colonial volvocine algae, Tetrabaena socialis, consists of four
undifferentiated Chlamydomonas-like cells (Figure 1, [ Janet 1912]). During reproduction, each
cell in a Tetrabaena colony undergoes two rounds of cell division, producing a four-celled colony.
These cells are attached through cytoplasmic bridges which result from incomplete cytokinesis
(Arakaki et al. 2013); these bridges likely serve to keep the cells in the group. Integration is
enhanced by the existence of rotational asymmetry in the arrangement and rotation of basal
bodies (Table 1). These basal bodies connect flagella to the cell wall, allowing for flagellar beat-
ing. Rotational asymmetry is unique and universal (in all species where it has been studied)
to colonial/multicellular species (Kirk 2005; Arakaki et al. 2013), suggesting that this rotation
plays an important role in colonial motility and thus may be considered a group-level adaptation.
Finally, the ability to reproduce a four-celled colony (in contrast to a single Chlamydomonas-like
cell that can grow and divide many more times) indicates that the number of cells in a colony
is genetically modulated in Tetrabaena (Kirk 2005; Arakaki et al. 2013), again, demonstrating
the presence of group-level adaptations (Shelton and Michod 2014). However, Tetrabaena does
not fulfill other criteria of individuality such as germ-soma division of labor (Table 1) and indi-
visibility. Tetrabaena colonies break apart during conditions of stress (Harper 1912; Starr 1955)
and so the group is divisible in the sense that cells are not completely committed to group liv-
ing. However, basal body rotation may negatively affect swimming ability outside the context
of the group; thus, Tetrabaena has a degree of indivisibility in the sense that it has group level
adaptations that may reduce cell fitness outside of the context of a group.

Turning to the MLS criteria, we find that lineages exist at the group level, but may also
exist at the cell level when cells leave the group. To understand how group fitness relates to cell
fitness and cell properties, we consider each component of fitness (reproduction and survival).
In Tetrabaena, as all cells produce a single daughter colony, the fecundity of the group is the
sum of cell fecundity. Survival of the group is more complicated and difficult to relate to cell
properties. Components of survivorship, such as predation resistance (Boraas et al. 1998), swim-
ming speed (Solari et al. 2006b), and flagellar mixing of the environment (Solari et al. 2006a),
may be aggregative properties of cells and may depend on group properties such as cell num-
ber. For example, flagellar force of the group (important for both swimming and mixing of the
surrounding microenvironment) could be construed to be an aggregative property generated by
cells. Likewise, group size (important for predation resistance) is likely an aggregative function
of cell size but requires reproducing the number of cells in the group, which is a group trait. This
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group trait likely depends on cell traits such as cell growth rate and cell size at which mitotic
divisions commence. Ecologically, the predation resistance of the group could be a step func-
tion of cell number (Boraas et al. 1998; Kirk 1998), if the size of the group is above a certain
threshold, groups could have high survival, while if the size of the group is below the thresh-
old, the group may have little survivorship. Solitary cells, likely below any size threshold (Kirk
1998), might have little or no survivorship. Thus, the survival of the group (and consequently
fitness, the product of survival and reproduction) may not be the average of cell-level fitnesses
(Okasha 2006; Shelton and Michod 2009). Increased swimming speed and flagellar mixing of
the environment (Solari et al. 2006a,b) also have complex relationships to group survivorship,
and may not affect group survivorship until larger colony sizes evolve. Since group-level fitness
is sensitive to changes in cell number and organization, group-level fitness is likely emergent
(Wimsatt 1997).

In Table 1, we assume that survivorship starts out aggregative and depends on few colony
traits. As colonies get larger and more morphologically complex, survivorship is less likely to be
an aggregative property of cell properties; simultaneously, the number of group traits affecting
survivorship increases. When group traits are no longer aggregative functions of cell traits we
refer to them as emergent in Table 1.

3.2.3 Gonium

Gonium pectorale is a small colonial species in the Goniaceae family consisting of a plate of 4–
32 Chlamydomonas-like cells (Figure 1). Like Tetrabaena, Gonium develops from a unicellular
bottleneck without division of labor; all cells reproduce with no differential investment at the
cell level in group survival or reproduction (Table 1). However, Gonium has several traits which
satisfy individuality criteria not satisfied in Tetrabaena. First, development in Gonium includes
inversion. A Gonium embryo is initially shaped like a shallow bowl, with the flagella pointed
in towards the center of the bowl. During development, the colony inverts, reversing the cur-
vature of the colony, so that flagella point outward (Stein 1965). Second, Gonium has a center-
peripheral axis in which cells differ in their flagellar orientation (Gerisch 1959). Third, Gonium
shares many genomic modifications with germ-soma differentiated Volvox including expanded
cyclin D genes (genes which regulate the cell cycle) and structural modifications to retinoblas-
toma (RB), a cell cycle regulation gene (Hanschen et al. 2016). Given that the modifications to
RB cause cell colonies to form and that similar expansions of cyclin D genes exist in other mul-
ticellular taxa, these changes are likely group-level adaptations (Hanschen et al. 2016). As with
Tetrabaena, Gonium colonies break apart into smaller units composed of one or more cells in
times of stress (Harper 1912). These smaller units can survive and reproduce (personal observa-
tion), raising the question as to whetherGonium colonies lack indivisibility. As with Tetrabaena,
the fecundity of the group is the sum of the fecundity of the cells, while the survivorship of the
group may or may not be an additive property of cell survivorship traits. Lineages typically exist
at the group-level except when cells leave the group (Table 1).

3.2.4 Pandorina

Pandorina morum (Figure 1) consists of 8–16 cells and repeats many of the points already made,
except Pandorina is spherical and has a novel trait potentially relevant to individuality not found
in Tetrabaena or Gonium: a multilayer colony boundary. As far as we are aware (and we have
tried growing them under stress), there are no reports of Pandorina (or any larger volvocine
species) dissociating into single cells under stress. Pandorina appears to be committed to group
living as cells do not leave the group (Table 1), which is likely the consequence of a multilayer
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colony wall (Fulton 1978; Kirk 2005). This more complex colony wall is shared with larger
species, which are also committed to group living.

3.2.5 Eudorina

Species of the genus Eudorina form spherical colonies of 32 to 64 cells (Figure 1) that are similar
to Pandorina and repeat many of the points made so far with the exception that Eudorina has
an expanded extracellular matrix (ECM) (Conrad 1913; Goldstein 1964; Kirk 2005) made of
glycoproteins secreted by the cells (Hallmann 2006). The ECM is composed largely of secreted
glycoproteins whose production likely imposes a metabolic cost on the cells, which secrete the
ECM (Sumper and Hallmann 1998). This cost is likely overcome by key group-level benefits
which may include protection against the external environment (Gerhart and Kirschner 1997)
and nutrient storage (Bell 1985; Koufopanou and Bell 1993). The ECM is a shared resource
that each cell contributes to, providing an environment in which cheaters, which benefit from
the ECM but do not directly contribute to it, could flourish (Herron and Michod 2008). The
ECM is a group-level adaptation that likely imposes costs at the level of the individual cell.

3.2.6 Pleodorina

The genus Pleodorina forms spherical colonies with 32–128 cells (Figure 1), and meets many of
the same criteria as Eudorina, with the important novelty that 20–50% of these cells are termi-
nally differentiated, non-reproductive, somatic cells located in the anterior hemisphere (Shaw
1894; Nozaki et al. 2006). These somatic cells indicate division of labor involving reproductive
altruism is present in Pleodorina (Table 1). The rest of the cells in the colony areChlamydomonas-
like, general-purpose, flagellated cells contributing to both survival (flagellar action) and repro-
duction. Only the somatic cells are specialized in these species, which are specialized in survival
and give up reproduction. The fitness costs of reproductive altruism incurred by somatic cells are
compensated for by greater group-level benefits that are brought about by specialized somatic
cells such as increased colony motility (Solari et al. 2006b). Cellular differentiation results in
differences in cell-level fecundity, some cells do not reproduce at all and have zero fecundity.
This means that group-level fitness is clearly not the average of cell-level fitnesses; thus group-
level fitness is strongly decoupled from cell-level fitness (Table 1). The colony is indivisible in
the sense that, if a colony were broken up, the somatic cells could not produce offspring.

3.2.7 Volvox

Volvox is a polyphyletic genus and member species fulfill nearly all the individuality criteria
discussed (Table 1). Volvox is indivisible and has complete germ-soma division of labor. For
example, Volvox carteri contains approximately 12 reproductive germ cells, which do not develop
flagella, and approximately 2,000 somatic cells, which cannot reproduce but instead specialize
in motility via flagellar action. Therefore both somatic and germ cells are specialized in either
group-level survival or group-level reproduction. Volvox species have clear group-level adapta-
tions such as greatly expanded ECM (Powers 1908; Starr 1969, 1970); greater than 99% of the
volume of a Volvox colony is cell-secreted ECM (Hallmann 2003). Some species of Volvox have
50,000 cells and a corresponding increase in number of rounds of cell division, and hence, more
opportunities for mutations to arise. Volvox species are therefore predicted to be marginally less
genetically homogeneous than smaller species, all other factors being equal.

Volvox species display similar phenotypic characteristics with one key difference: the timing
of reproductive cell flagellar loss. In the group of Volvoxwhich includes Volvox ferrisii (represent-
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ing an independent evolution of the Volvox body plan from Volvox carteri; (Figure 1, [Herron
et al. 2010]), reproductive cells are not specialized as they retain their flagella early in develop-
ment (Pocock 1933b; Isaka et al. 2012). Could these Volvox species be considered to be less
integrated than Volvox carteri because they do not have specialized germ cells? On the other
hand, species such as V. ferrisii maintain cytoplasmic bridges between reproductive and somatic
cells throughout their life cycle (Smith 1944; Isaka et al. 2012). Conversely, cytoplasmic bridges
in V. carteri are broken down at the end of embryogenesis (Kirk 1998). While the function of
these cytoplasmic bridges is unknown, they may serve to transport nutrients and waste or facili-
tate intercellular communication. If so, it could be argued that V. ferrisii is more integrated than
V. carteri (Godfrey-Smith 2011). If traits such as the maintenance of cytoplasmic bridges or
flagella in reproductive cells affect integration, or could be considered group-level adaptations,
they affect the level of individuality in Volvox species. However, the differences of flagellar loss
in reproductive cells and cytoplasmic bridges may be negligible compared to the morphological
similarities they share.

4 Discussion

4.1 Summary of individuality in the volvocine algae

Our review of how various criteria for individuality relate to the volvocine algae shows that
criteria differ in how they are fulfilled across genera that are thought to span the divide between
unicellular and multicellular individuals. Some criteria, such as genetic uniqueness and genetic
homogeneity, do not appear to change substantially in the extent to which they are satisfied from
Chlamydomonas palmelloid clusters to Volvox. For other criteria, such as physiological unity and
the presence of group-level adaptations, there is a gradient across genera in the extent to which
the criteria are satisfied. Traits fulfilling group-level adaptations and physiological unity and
integration criteria appear to change concurrently across the volvocine algae, as most of the traits
that are possible group-level adaptations also promote physiological unity and integration. In
contrast, the traits fulfilling other criteria do not change concurrently; for example, the pattern of
gradual change in the traits underlying physiological unity and integration is very different from
the step-like evolution in division of labor. Criteria such as indivisibility, MLS2, and division
of labor are satisfied at different times and stages during the evolution of multicellularity in the
volvocine green algae. These three criteria critically inform how selection likely acts at different
levels in the different genera and so it may be expected that their underlying traits would change
as the unit of selection changes levels. Indivisibility and division of labor reduce the potential
for cell-level conflict and selection while MLS2 reflects how selection operates at both levels in
the process of reducing the capacity for selection at the lower level, and enhancing selection at
the higher level.

Based on the differences in how selection likely acts in different volvocine genera, we identify
three types of volvocine multicellular individuals: Tetrabaena and Gonium, where selection can
act on both cells and colonies; Pandorina andEudorina, where selection acts on colonies that lack
the mechanisms seen in other taxa that promote cell-level cooperation and inhibit the potential
for cell-level conflict; and Pleodorina and Volvox, where selection clearly operates at the colony
level and mechanisms which reduce the potential for cell-level conflict exist. The notion of
multiple kinds of multicellular individuals is not novel (Santelices 1999) but our approach to
delineating different types of individuality is.

Many definitions of individuality focus upon traits which reduce the possibility of within-
group conflict and selection at the lower level (Maynard Smith and Szathmáry 1995; Michod
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1999; Gardner and Grafen 2009). Our analysis acknowledges the context-dependency and
plasticity of individuality. For example, under certain conditions, Gonium multicellular groups
reproduce as Darwinian individuals. Yet, when environmental conditions change, the group-
level individual dies and selection operates on cell-level organisms. This represents a temporary
shift from MLS2 (group lineages) to MLS1 (cell lineages). When conditions change again,
these cells form multicellular organisms and selection again operates at the level of the group
(MLS2). As reflected by the changes in Darwinian properties at different levels in different
conditions, the levels at which selection acts can change temporally. Moreover, fitness interests
between levels may not be aligned. If an organism lacks mechanisms to sufficiently suppress
lower-level conflict, selection acting at one level may interfere with selection acting at another
level. Alternatively, fitness interests across levels could be aligned. For example, imagine a
mutation which increases the strength of flagella, thus increasing swimming speed and both
cell-level and group-level fitness.

4.2 A multidimensional perspective on individuality

The level of attention in the literature dedicated to the concept of individuality is born out of
necessity—in order to measure fitness and changing frequencies, researchers need to count in-
dividuals. To this end, many researchers have proposed a single criteria whose fulfillment is
purportedly both necessary and sufficient for individuality (but see Santelices 1999; Pepper and
Herron 2008; Clarke 2011, 2013), implying that individuality is a dichotomy and individuals
are considered equivalent so long as the required criterion is present. Consistent with this in-
terpretation, individuality is often thought to be present at a single hierarchical level at a time
(Dawkins 1982; Maynard Smith 1988; Michod 1999; Gardner and Grafen 2009). Other re-
searchers argue that individuality is not a dichotomy and that there are multiple different kinds
of non-equivalent individuals based on variation in genetic uniqueness, genetic homogeneity,
and autonomy/physiological unity (Santelices 1999). Queller and Strassmann (2009) compared
species based on qualitative differences in the extent of cooperation and conflict, and suggested
that continuous variation in individuality exists. Clarke (2013) proposed that definitions of in-
dividuality should not be mechanism-specific but should instead reflect both the suppression of
selection acting at the lower level and the enhancement of selection acting at the group level,
also suggesting group-level individuality may exist in degrees, the extent to which selection can
act on group-level units.

A dichotomous formulation of individuality, in which individuality is only present at a sin-
gle level and all multicellular individuals are conceptually equivalent, is not supported by our
analysis and ignores the possibility of different kinds of individuals co-occurring in the same
species. The presence of genetic homogeneity in Chlamydomonas clusters depends on the details
of cluster formation. Similarly, the temporal variability of cell lineage formation in species such
as Tetrabaena and Gonium and the environmentally determined, intermittent occurrence of sex-
ual reproduction in all volvocine species demonstrates that the level and kind of individuality
can change across time and space and can be dependent on the environmental context.

The context-dependency of individuality is not restricted to the volvocine algae. For in-
stance, black spruce (Picea mariana) reproduce both sexually from seeds and asexually via clonal
propagation (Legere and Payette 1981). On flat terrain at low elevations, sexual reproduction
prevails and every ramet represents a unique genet. However, on subalpine slopes asexual re-
production is more common, and ramets do not represent a unique genet (Viktora et al. 2011).
In this case, selection is likely operating both between genets and between ramets. Both ramet
and genet are individuals, the genets composed of ramets, and individuality depends on envi-

 open access - ptpbio.org

http://ptpbio.org


hanschen, davison, et al.: evolution of individuality 14

ronmental context. Similarly, when cancer develops within a canonical multicellular organism,
selection is occurring between multicellular organisms but also within a multicellular organism,
between cell lineages (Aktipis et al. 2015). Individuality resides at both the level of cell lineages
and the multicellular organism, though only when mutation causes cancerous cell lineages to
arise. Lastly, in the example of somatic mutation accumulation along a tree branch, genetic
variation between branches could result in increased fruit production (increased reproduction)
on one branch, beneficial at both the lower (branch) and higher (tree) levels (Whitham and
Slobodchikoff 1981; Pineda-Krch and Lehtilä 2004). In this example, both the tree and tree
branches are considered to be simultaneous Darwinian individuals.

While individuality is often assumed to be constant across members of a given species, the
context-dependency of individuality should be considered and the evolutionary consequences
investigated. We suggest researchers embrace a multidimensional approach based on multiple
individuality criteria to determine the kinds of individuality present in their system and how
selection may be affected. This approach may provide insight into individuality in taxa of inter-
est, as well as how evolution is subsequently impacted. Our approach has utilized a multiplicity
of individuality criteria. Mechanistic, trait-based definitions of individuality were critical to in-
form phenomenological, selection-based definitions of individuality, providing insight to how
selection might be acting in the volvocine algae. This multidimensional approach to individu-
ality, composed of trait-based definitions, selection-based definitions, and ecological context,
may be informative in future research, particularly in the context of comparative studies.

This multidimensional approach may be fruitful when applied to the evolution of individu-
ality during the evolution of multicellularity in other lineages or other evolutionary transitions
such as the evolution of eukaryotes or eusociality. This would entail determining which indi-
viduality criteria participating taxa fulfill, as was carried out here with the volvocine algae. As
appropriate, the ecological context affecting individuality needs to be taken into account. This
mapping can then allow researchers to ask questions about individuality, macroevolutionary
trends and patterns, and the capacity to respond to selection. This approach may be fruitful
for understanding how different kinds of individuals across the tree of life differ in their evolu-
tionary dynamics, how independent evolutions of one kind of individuality are similar, and how
transitions between different levels of individuality are similar.

5 Conclusions

Our approach in this paper is to understand individuality by examining how traits that have
changed during the evolution of multicellularity in the volvocine green algae relate to the var-
ious individuality criteria proposed in the literature. We find that the evolution of multicellu-
lar individuality from unicellular ancestors in the volvocine green algae likely involves minor
changes in genetic homogeneity, genetic uniqueness, and spatial/temporal boundaries. While
necessary for the initiation of group-level selection and evolution, these criteria do not appear to
change substantially in the extent they are satisfied during the evolution of individuality in this
lineage. Other individuality criteria, including division of labor, indivisibility, and the presence
of multilevel selection, vary dramatically in how they are fulfilled. Examining these criteria in
the context of ecology suggests three kinds of multicellular individuals: uncommitted multicel-
lular individuals (Tetrabaena and Gonium), committed multicellular individuals (Pandorina and
Eudorina), and committed, differentiated multicellular individuals (Pleodorina and Volvox). We
suggest that a multidimensional approach to individuality in which researchers consider mul-
tiple criteria simultaneously may provide greater evolutionary insight via a more nuanced view
that may better reflect the process of natural selection.
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Although the evolution of individuality is often thought of as a singular and dichotomous
event, the volvocine algae show that multicellular organisms can differ in which aspects of indi-
viduality they exhibit and multiple criteria may be fulfilled at the same time. The evolutionary
implications of interspecific variation in how criteria are satisfied for individuality are unclear;
fulfilling some but not all criteria may have consequences yet to be appreciated. Does a certain
kind of individuality inhibit or enhance subsequent evolutionary change or speciation rates, al-
low for greater reversibility, lower degrees of adaptation, or lower complexity of the organisms
involved? What selection pressures lead to the various kinds of individuals in this lineage? These
questions remain unanswered and future research should focus on the causes and consequences
of variation in individuality.

Acknowledgments

The authors would like to thankMaureenO’Malley, Judie Bronstein, Patrick J. Ferris, Brad J. S. C.Olson,
and anonymous reviewers for their helpful comments and discussion. We gratefully acknowledge the
support of the National Aeronautics and Space Administration (NNX13AH41G), the National Institute
of Health (GM084905), the National Science Foundation (MCB-1412395 and PHY11-25915) and the
Gordon and Betty Moore Foundation (Award Num. 2919).

Literature cited

Aktipis, C. A., A. M. Boddy, G. Jansen, U. Hibner, M. E. Hochberg, C. C. Maley, and G. S. Wilkin-
son. 2015. “Cancer Across the Tree of Life: Cooperation and Cheating in Multicellularity.” Phi-
los. Trans. R. Soc. B Biol. Sci. 370: 20140219–20140219.

Arakaki, Y., H. Kawai-Toyooka, Y. Hamamura, T. Higashiyama, A. Noga, M. Hirono, B. J. S. C. Ol-
son, and H. Nozaki. 2013. “The Simplest Integrated Multicellular Organism Unveiled.” PLoS
One 8: e81641.

Barki, Y., D. Gateño, D. Graur, and B. Rinkevich. 2002. “Soft-Coral Natural Chimerism: A Window
in Ontogeny Allows the Creation of Entities Comprised of Incongruous Parts.” Mar. Ecol. Prog.
Ser. 231: 91–99.

Becks, L., S. P. Ellner, L. E. Jones, and N. G. Hairston. 2010. “Reduction of Adaptive Genetic Diver-
sity Radically Alters Eco-Evolutionary Community Dynamics.” Ecol. Lett. 13: 989–97.

Bell, G. 1985. “The Origin and Evolution of Germ Cells as Illustrated by the Volvocales.” In The Ori-
gin and Evolution of Sex, edited by H. O. Halvorson and A. Monroy, 221–256. New York: Alan
R. Liss.

Bonner, J. T. 1998. “The Origins of Multicellularity.” Integr. Biol. Issues, News, Rev. 1: 27–36.
Boraas, M. E., D. B. Seale, and J. E. Boxhorn. 1998. “Phagotrophy by a Flagellate Selects for Colo-

nial Prey: A Possible Origin of Multicellularity.” Evol. Ecol. 12: 153–164.
Buss, L. W. 1987. The Evolution of Individuality. Princeton, NJ: Princeton University Press.
Buss, L. W. 1985. “The Uniqueness of the Individual Revisited.” In Population Biology and Evolution

of Clonal Organisms, edited by J. B. Jackson, L. W. Buss, and R. E. Cook. New Haven, CT: Yale
University Press.

Clarke, E. 2013. “The Multiple Realizability of Biological Individuals.” J. Philos. 110: 413–435.
Clarke, E. 2010. “The Problem of Biological Individuality.” Biol. Theory 5: 312–325.
Coleman, A. W. 2012. “A Comparative Analysis of the Volvocaceae (Chlorophyta).” J. Phycol. 48:

491–513.
 open access - ptpbio.org

http://ptpbio.org


hanschen, davison, et al.: evolution of individuality 16

Conrad, W. 1913. “Observations Sur Eudorina Elegans Ehrenberg.” Rec. Inst. Leo Errera 9: 321–343.
Crow, J. F. 1988. “The Importance of Recombination.” Pp. 56–73 in The Evolution of Sex: An Exam-

ination of Current Ideas. Edited by R. E. Michod and B. R. Levins. Sunderland, MA: Sinauer
Associates.

Damuth, J., and I. L. Heisler. 1988. “Alternative Formulations of Multilevel Selection.” Biol. Philos. 3:
407–430.

Dawkins, R. 1982. The Extended Phenotype. Oxford: Oxford University Press.
De, S. 2011. “Somatic Mosaicism in Healthy Human Tissues.” Trends Genet. 27: 217–223.
Folse, H. J., and J. Roughgarden. 2010. “What Is an Individual Organism? A Multilevel Selection

Perspective.” Q. Rev. Biol. 85: 447–472.
Fulton, A. B. 1978. “Colonial Development in Pandorina morum: II. Colony Morphogenesis and For-

mation of the Extracellular Matrix.” Dev. Biol. 251: 236–251.
Gardner, A., and A. Grafen. 2009. “Capturing the Superorganism: A Formal Theory of Group Adap-

tation.” J. Evol. Biol. 22: 659–671.
Gerhart, J., and M. Kirschner. 1997. Cells, Embryos, and Evolution: Toward a Cellular and Developmen-

tal Understanding of Phenotypic Variation and Evolutionary Adaptability. Malden, MA: Blackwell
Science.

Gerisch, G. 1959. “Die Zelldifferenzierung bei Pleodorina Californica Shaw und Die Organisation
Der Phytomonadinenkolonien.” Arch. Für Protistenkd 104: 292–358.

Godfrey-Smith, P. 2011. “Darwinian Population and Transitions in Individuality.” In TheMajor Tran-
sitions in Evolution Revisited. Edited by B. Calcott and K. Sterelny, 65–82. Cambridge, MA:
MIT Press.

Godfrey-Smith, P. 2009. Darwinian Populations and Natural Selection. Oxford: Oxford University
Press.

Goldstein, M. 1964. “Speciation and Mating Behavior in Eudorina.” J. Protozool. 11: 317–344.
Grosberg, R. K., and R. R. Strathmann. 1998. “One Cell, Two Cell, Red Cell, Blue Cell: The Persis-

tence of a Unicellular Stage in Multicellular Life Histories.” Trends Ecol. Evol. 13: 112–116.
Grosberg, R. K., and R. R. Strathmann. 2007. “The Evolution of Multicellularity: A Minor Major

Transition?” Annu. Rev. Ecol. Evol. Syst. 38: 621–654.
Hallmann, A. 2003. “Extracellular Matrix and Sex-Inducing Pheromone in Volvox.” Int. Rev. Cytol.

227: 131–182.
Hallmann, A. 2006. “The Pherophorins: Common, Versatile Building Blocks in the Evolution of Ex-

tracellular Matrix Architecture in Volvocales.” Plant J. 45: 292–307.
Hanschen, E. R., T. N. Marriage, P. J. Ferris, T. Hamaji, A. Toyoda, A. Fujiyama, R. Neme, H.

Noguchi, Y. Minakuchi, M. Suzuki, H. Kawai-Toyooka, D. R. Smith, V. Luria, A. Karger, M.
W. Kirschner, H. Sparks, J. Anderson, R. Bakaric, P. M. Durand, R. E. Michod, H. Nozaki, and
B. J. S. C. Olson. 2016. “The Gonium pectorale Genome Demostrates Co-Option of Cell Cycle
Regulation During the Evolution of Multicellularity.” Nat. Commun. 7: 11370.

Hanschen, E. R., D. E. Shelton, and R. E. Michod. 2015. “Evolutionary Transitions in Individuality
and Recent Models in Multicellularity.” In Evolutionary Transitions to Multicellular Life: Principles
and Mechanisms. Edited by A. M. Nedelcu and I. Ruiz-Trillo, 165–188. Dordrecht, Netherlands:
Springer.

Harper, R. A. 1912. “The Structure and Development of the Colony in Gonium.” Trans. Am. Microsc.
Soc. 31: 65–83.

 open access - ptpbio.org

http://ptpbio.org


hanschen, davison, et al.: evolution of individuality 17

Harris, E. H. 2009. The Chlamydomonas Sourcebook. Volume 1. Second edition. Elsevier.
Heisler, I. L., and J. Damuth. 1987. “A Method for Analyzing Selection in Hierarchically Structured

Populations.” Am. Nat. 132: 582–602.
Herron, M. D., A. G. Desnitskiy, and R. E. Michod. 2010. “Evolution of Developmental Programs in

Volvox (Chlorophyta).” J. Phycol. 46: 316–324.
Herron, M. D., J. D. Hackett, F. O. Aylward, and R. E. Michod. 2009. “Triassic Origin and Early

Radiation of Multicellular Volvocine Algae.” Proc. Natl. Acad. Sci. USA 106: 3254–3258.
Herron, M. D., and R. E. Michod. 2008. “Evolution of Complexity in the Volvocine Algae: Transi-

tions in Individuality Through Darwin’s Eye.” Evolution 62: 436–451.
Hull, D. 1980. “Individuality and Selection.” Annu. Rev. Ecol. Syst. 11: 311–332.
Hull, D. L. 1976. “Are Species Really Individuals?” Syst. Zool. 25: 174.
Huxley, J. S. 1932. “Problems of Relative Growth.” London: Methuen and Co.
Huxley, J. S. 1912. The Individual in the Animal Kingdom. Cambridge University Press, Cambridge,

UK.
Isaka, N., H. Kawai-Toyooka, R. Matsuzaki, T. Nakada, and H. Nozaki. 2012. “Description of Two

New Monoecious Species of Volvox Sect. Volvox (Volvocaceae, Chlorophyceae), Based on Com-
parative Morphology and Molecular Phylogeny of Cultured Material.” J. Phycol. 48: 759–767.

Iwasa, K., and S. Murakami. 1968. “Palmelloid Formation of Chlamydomonas I. Palmelloid Induc-
tion by Organic Acids.” Physiol. Plant. 21: 1224–1233.

Iyengar, M. O. P., and T. V. Desikachary. 1981. Volvocales. New Dehli: Indian Council of Agricultural
Research.

Janet, C. 1912. Le Volvox. Limoges, France: Imprimerie-Librairie Ducourtieux Et Gout.
Janzen, D. H. 1977. “What Are Dandelions and Aphids?” Am. Nat. 111: 586.
Jeuken, M. 1952. “The Concept ‘Individual’ in Biology.” Acta Biotheor. 10: 57–86.
Kates, J. R., and R. F. Jones. 1964. “The Control of Gametic Differentiation in Liquid Cultures of

Chlamydomonas.” J. Cell. Comp. Physiol. 63: 157–164.
Khona, D. K., S. M. Shirolikar, K. K. Gawde, E. Hom, M. A. Deodhar, and J. S. D’Souza. 2016.

“Characterization of Salt Stress-Induced Palmelloids in the Green Alga, Chlamydomonas rein-
hardtii.” Algal Res. 16: 434–448.

Kirk, D. L. 2005. “A Twelve-Step Program for Evolving Multicellularity and a Division of Labor.”
BioEssays 27: 299–310.

Kirk, D. L. 1998. Volvox: Molecular-Genetic Origins of Multicellularity and Cellular Differentiation.
Cambridge: Cambridge University Press.

Kirk, D. L., and M. M. Kirk. 1986. “Heat Shock Elicits Production of Sexual Inducer in Volvox.”
Science 231: 51–54.

Koufopanou, V., and G. Bell. 1993. “Soma and Germ: An Experimental Approach Using Volvox.”
Proc. R. Soc. London B Biol. Sci. 254: 107–113.

Legere, A., and S. Payette. 1981. “Ecology of a Black Spruce (Picea mariana) Clonal Population in the
Hemiarctic Zone, Northern Quebec: Population Dynamics and Spatial Development.” Artic Alp.
Res. 13: 261–276.

Leliaert, F., D. R. Smith, H. Moreau, M. D. Herron, H. Verbruggen, C. F. Delwiche, and O. De
Clerck. 2012. “Phylogeny and Molecular Evolution of the Green Algae.” CRC. Crit. Rev. Plant
Sci. 31: 1–46.

 open access - ptpbio.org

http://ptpbio.org


hanschen, davison, et al.: evolution of individuality 18

Lewontin, R. C. 1970. “The Units of Selection.” Annu. Rev. Ecol. Syst. 1: 1–18.
Lloyd, E., and S. J. Gould. 1993. “Species Selection on Variability.” Proc. Natl. Acad. Sci. USA 90:

595–599.
Lurling, M., and W. Beekman. 2006. “Palmelloids Formation in Chlamydomonas reinhardtii: Defence

Against Rotifer Predators?” Ann. Limnol.-Int. J. Limnol. 42: 65–72.
Maynard Smith, J. 1988. “Evolutionary Progress and the Levels of Selection.” In Evolutionary Progress.

Edited by M. Nitecki. Chicago: University of Chicago Press.
Maynard Smith, J., and E. Szathmáry. 1995. TheMajor Transitions in Evolution. Oxford: Oxford Uni-

versity Press.
Meneses, I., B. Santelices, and P. Sanchez. 1999. “Growth-Related Intraclonal Genetic Changes in

Gracilaria chilensis (Gracilariales: Rhodophyta).” Mar. Biol. 135: 391–397.
Michod, R. E. 1996. “Cooperation and Conflict in the Evolution of Individuality. II. Conflict Media-

tion.” Proc. Biol. Sci. 263: 813–822.
Michod, R. E. 1999. Darwinian Dynamics, Evolutionary Transitions in Fitness and Individuality.

Princeton, NJ: Princeton University Press.
Michod, R. E. 2007. “Evolution of Individuality During the Transition From Unicellular to Multicel-

lular Life.” Proc. Natl. Acad. Sci. USA 104: 8613–8618.
Michod, R. E. 2005. “On the Transfer of Fitness From the Cell to the Multicellular Organism.” Biol.

Philos. 20: 967–987.
Michod, R. E. 2006. “The Group Covariance Effect and Fitness Trade-Offs During Evolutionary

Transitions in Individuality.” Proc. Natl. Acad. Sci. USA 103: 9113–9117.
Michod, R. E., and D. Roze. 1997. “Transitions in Individuality.” Proc. R. Soc. London B, Biol. Sci.

264: 853–857.
Michod, R. E., Y. Viossat, C. A. Solari, M. Hurand, and A. M. Nedelcu. 2006. “Life-History Evolu-

tion and the Origin of Multicellularity.” J. Theor. Biol. 239: 257–272.
Mishler, B. D., and R. N. Brandon. 1987. “Individuality, Pluralism, and the Phylogenetic Species

Concept.” Biol. Philos. 2: 397–414.
Nakamura, K., D. F. Bray, and E. B. Wagenaar. 1978. “Ultrastructure of a Palmelloid-Forming Strain

of Chlamydomonas eugametos.” Can. J. Bot. 56: 2348–2356.
Nakamura, K., D. F. Bray, and E. B. Wagenaar. 1975. “Ultrastructure of Chlamydomonas eugametos

Palmelloids Induced by Chloroplatinic Acid Treatment.” J. Bacteriol. 121: 338–343.
Nozaki, H. 1983. “Morphology and Taxonomy of Two Species of Astrephomene in Japan.” Japanese J.

Phycol. 58: 345–352.
Nozaki, H., F. D. Ott, and A. W. Coleman. 2006. “Morphology, Molecular Phylogeny and Taxonomy

of Two New Species of Pleodorina (Volvoceae, Chlorophyceae).” J. Phycol. 42: 1072–1080.
Okasha, S. 2006. Evolution and the Levels of Selection. Oxford: Clarendon Press.
Peabody, R. B., D. C. Peabody, and K. M. Sicard. 2000. “A Genetic Mosaic in the Fruiting Stage of

Armillaria gallica.” Fungal Genet. Biol. 29: 72–80.
Pepper, J. W., and M. D. Herron. 2008. “Does Biology Need an Organism Concept?” Biol.

Rev. Camb. Philos. Soc. 83: 621–7.
Pineda-Krch, M., and K. Lehtilä. 2004. “Costs and Benefits of Genetic Heterogeneity Within Organ-

isms.” J. Evol. Biol. 17: 1167–1177.

 open access - ptpbio.org

http://ptpbio.org


hanschen, davison, et al.: evolution of individuality 19

Pocock, M. A. 1933a. “Volvox and Associated Algae From Kimberley.” Ann. South African Museum
16: 473–522.

Pocock, M. A. 1933b. “Volvox in South Africa.” Ann. South African Museum 16: 523–658.
Powers, J. 1908. “Further Studies in Volvox, With Descriptions of Three New Species.” Trans. Am.

Microsc. Soc. 28: 141–175.
Prochnik, S. E., J. Umen, A. M. Nedelcu, A. Hallmann, S. M. Miller, I. Nishii, P. J. Ferris, A. Kuo,

T. Mitros, L. K. Fritz-Laylin, U. Hellsten, J. Chapman, O. Simakov, S. A. Rensing, A. Terry,
J. Pangilinan, v. Kapitonov, J. Jurka, A. Salamov, H. Shapiro, J. Schmutz, J. Grimwood, E.
Lindquist, S. Lucas, I. V. Grigoriev, R. Schmitt, D. L. Kirk, and D. S. Rokhsar. 2010. “Ge-
nomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri.” Science
329: 223–6.

Queller, D. C., and J. E. Strassmann. 2009. “Beyond Society: The Evolution of Organismality.” Philos.
Trans. R. Soc. London Ser. B, Biol. Sci. 364: 3143–3155.

Ratcliff, W. C., M. D. Herron, K. Howell, J. T. Pentz, F. Rosenzweig, and M. Travisano. 2013. “Ex-
perimental Evolution of an Alternating Uni- and Multicellular Life Cycle in Chlamydomonas rein-
hardtii.” Nat. Commun. 4: 2742.

Rinkevich, B., and I. L. Weissman. 1987. “A Long-Term Study on Fused Subclones in the Ascidian
Botryllus schlosseri: The Resorption Phenomenon (Protochordata: Tunicata).” J. Zool. 213: 717–
733.

Sager, R., and S. Granick. 1954. “Nutritional Control of Sexuality in Chlamydomonas reinhardtii.” J.
Gen. Physiol. 37: 729–742.

Santelices, B. 1999. “How Many Kinds of Individual Are There?” Trends Ecol. Evol. 14: 152–155.
Santelices, B., J. A. Correa, D. Aedo, V. Flores, M. Hormazábal, and P. Sánchez. 1999. “Convergent

Biological Processes in Coalescing Rhodophyta.” J. Phycol. 35: 1127–1149.
Santelices, B., and D. Varela. 1993. “Intra-Clonal Variation in Red Seaweed Gracilaria chilensis.” Mar.

Biol. 552: 543–552.
Sathe, S., and P. M. Durand. 2015. “Cellular Aggregation in Chlamydomonas (Chlorophyceae) Is

Chimaeric and Depends on Traits Like Cell Size and Motility.” Eur. J. Phycol. 262: 1–10.
Shaw, W. R. 1894. “Pleodorina, a New Genus of the Volvocineæ.” Bot. Gaz. 19: 279–283.
Shelton, D. E., and R. E. Michod. 2014. “Group Selection and Group Adaptation During a Major

Evolutionary Transition: Insights From the Evolution of Multicellularity in the Volvocine Algae.”
Biol. Theory 9: 452–469.

Shelton, D. E., and R. E. Michod. 2009. “Philosophical Foundations for the Hierarchy of Life.” Biol.
Philos. 25: 391–403.

Short, M. B., C. A. Solari, S. Ganguly, T. R. Powers, J. O. Kessler, and R. E. Goldstein. 2006. “Flows
Driven by Flagella of Multicellular Organisms Enhance Long-Range Molecular Transport.” Proc.
Natl. Acad. Sci. USA 103: 8315–8319.

Simpson, C. 2012. “The Evolutionary History of Division of Labour.” Proc. R. Soc. B Biol. Sci. 279:
116–121.

Simpson, G. G., C. S. Pittendrigh, and L. H. Tiffany. 1957. Life: An Introduction to Biology. New
York: Harcourt, Brace, and Co.

Smith, G. M. 1944. “A Comparative Study of the Species of Volvox.” Trans. Am. Microsc. Soc. 63:
265–310.

 open access - ptpbio.org

http://ptpbio.org


hanschen, davison, et al.: evolution of individuality 20

Sober, E., and D. S. Wilson. 1994. “A Critical Review of Philosophical Work on the Units of Selec-
tion Problem.” Philos. Sci. 61: 534–555.

Solari, C. A., S. Ganguly, J. O. Kessler, R. E. Michod, and R. E. Goldstein. 2006a. “Multicellularity
and the Functional Interdependence of Motility and Molecular Transport.” Proc. Natl. Acad. Sci.
USA 103: 1353–1358.

Solari, C. A., J. O. Kessler, and R. E. Michod. 2006b. “A Hydrodynamics Approach to the Evolution
of Multicellularity: Flagellar Motility and Germ-Soma Differentiation in Volvocalean Green
Algae.” Am. Nat. 167: 537–554.

Sommer, U., and Z. Maciej Gliwicz. 1986. “Long Range Vertical Migration of Volvox in Tropical
Lake Cahora Bassa (Mozambique).” Limnol. Oceanogr. 31: 650–653.

Sommerfeldt, A. D., J. D. D. Bishop, and C. A. Wood. 2003. “Intraclonal Genetic Variation: Ecolog-
ical and Evolutionary Aspects.” Biol. J. Linn. Soc. 79: 183–192.

Starr, R. C. 1970. “Control of Differentiation in Volvox.” Dev. Biol. Suppl. 4: 59–100.
Starr, R. C. 1955. “Sexuality in Gonium sociale (Dujardin) Warming.” J. Tennessee Acad. Sci. 30: 90–93.
Starr, R. C. 1969. “Structure, Reproduction and Differentiation in Volvox carteri f. nagariensis iyengar,

Strains HK9 & 10.” Arch. Für Protistenkd. 111: 204–222.
Stein, J. R. 1965. “On Cytoplasmic Strands in Gonium pectorale (Volvocales).” J. Phycol. 1: 1–5.
Stenlid, J. 2000. “Variation With and Without Sex in Mycorrhizal Fungi.” Oikos 90: 609–611.
Sterelny, K., and P. E. Griffiths. 1999. Sex and Death: An Introduction to Philosophy of Biology. Chicago:

University of Chicago Press.
Stoner, D. S., B. Rinkevich, and I. L. Weissman. 1999. “Heritable Germ and Somatic Cell Lineage

Competitions in Chimeric Colonial Protochordates.” Proc. Natl. Acad. Sci. USA 96: 9148–9153.
Sumper, M., and A. Hallmann. 1998. “Biochemistry of the Extracellular Matrix of Volvox.” Int.

Rev. Cytol. 180: 51–85.
Tauber, A. I. 1991. Organism and the Origins of Self. Dordrecht, Netherlands: Kluwer Academic Pub-

lishers.
van Leeuwenhoek, A. 1700. “Part of a Letter From Mr Antony van Leeuwenhoek, Concerning the

Worms in Sheeps Livers, Gnats, and Animalcula in the Excrements of Frogs.” Philos. Trans. R.
Soc. London 22: 509–518.

Viktora, M., R. A. Savidge, and O. P. Rajora. 2011. “Clonal and Nonclonal Genetic Structure of Sub-
arctic Black Spruce (Picea mariana) Populations in Yukon Territory.” Botany 89: 133–140.

Vrba, E. S. 1984. “What Is Species Selection?” Syst. Zool. 33: 318–328.
Weismann, A. 1885. “The Continuity of the Germ-Plasm as the Foundation of a Theory of Heredity.”

Essays Upon Hered. Kindred Biol. Probl. 1: 163–254.
Weismann, A. 1904. The Evolution Theory. Volume 1. London: Edward Arnold.
Whitham, T. G., and C. N. Slobodchikoff. 1981. “Evolution by Individuals, Plant-Herbivore Inter-

actions, and Mosaics of Genetic Variability: The Adaptive Significance of Somatic Mutations in
Plants.” Oecologia 49: 287–292.

Wilson, D. S. 1975. “A Theory of Group Selection.” Proc. Natl. Acad. Sci. USA 72: 143–146.
Wimsatt, W. C. 1997. “Aggregativity: Reductive Heuristics for Finding Emergence.” In Proceedings of

the 1996 Biennial Meetings of the Philosophy of Science Association. Part II: Symposia Papers. Philoso-
phy of Science 64 (supplement).

 open access - ptpbio.org

http://ptpbio.org


hanschen, davison, et al.: evolution of individuality 21

© 2017 Author(s)
This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International license, which permits anyone to download, copy, dis-
tribute, or display the full text without asking for permission, provided that the creator(s) are given full
credit, no derivative works are created, and the work is not used for commercial purposes.

ISSN 2475-3025

 open access - ptpbio.org

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://ptpbio.org

	Introduction
	Individuality Criteria
	Genetic homogeneity
	Genetic uniqueness
	Reproductive division of labor
	Indivisibility
	Autonomy and physiological unity
	Spatial and temporal boundaries
	Group-level adaptations
	Multilevel selection

	The Volvocine Green Algae
	Overview of the volvocine green algae
	Individuality criteria applied to the volvocine algae
	Chlamydomonas
	Tetrabaena
	Gonium
	Pandorina
	Eudorina
	Pleodorina
	Volvox


	Discussion
	Summary of individuality in the volvocine algae
	A multidimensional perspective on individuality

	Conclusions

