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Is domain-general memory updating ability predictive of calculation skills or are such

skills better predicted by the capacity for updating specifically numerical information?

Here, we used multidigit mental multiplication (MMM) as a measure for calculating

skill as this operation requires the accurate maintenance and updating of information

in addition to skills needed for arithmetic more generally. In Experiment 1, we found

that only individual differences with regard to a task updating numerical information

following addition (MUcalc) could predict the performance of MMM, perhaps owing to

common elements between the task and MMM. In Experiment 2, new updating tasks

were designed to clarify this: a spatial updating task with no numbers, a numerical task

with no calculation, and a word task. The results showed that both MUcalc and the

spatial task were able to predict the performance of MMM but only with the more difficult

problems, while other updating tasks did not predict performance. It is concluded that

relevant processes involved in updating the contents of working memory support mental

arithmetic in adults.

Keywords: multidigit mental multiplication, updating working memory, domain-general updating ability, domain-

specific updating ability, task difficulty

INTRODUCTION

Numerate societies demand that their members have numerical skills. Most previous studies
have focused on simple arithmetic problems to understand how cognitive factors influence
the acquisition of mathematical skills. For example, some of these studies have examined the
contribution of working memory to simple multiplication fact retrieval problems (e.g., Meyer
et al., 2010; Soltanlou et al., 2015). Cognitive neuropsychological studies have shown that left
parietal structures play an important role in simple calculation. In particular, the left angular
gyrus mediates the retrieval of multiplication facts from memory (Chochon et al., 1999; Lee, 2000;
Zamarian et al., 2009), whereas a frontal-parietal network is involved in more complex calculation
processes (Lucchelli and De Renzi, 1993; Grabner et al., 2009). These findings suggest that the
mechanisms for complex multiplication calculation processes involve both parietal and frontal
mechanisms. However, the contribution of working memory to complex multiplication calculation
requires additional investigation. In the present study, we focus on multidigit rather than single-
digit multiplication because it exemplifies a package of needed skills: understanding the number
system and the principles of arithmetic, memory for the retrieval of multiplication facts, procedures
for multiplying and adding, and the ability accurately to maintain and update information as
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needed by the task (e.g., Hunter, 1962; Baddeley and Hitch, 1977;
Ericsson and Charness, 1994; Logie et al., 1994; Ericsson and
Kintsch, 1995). Competence in this task can be seen as evidence
of the possession of important numerical skills.

Which cognitive factors promote the acquisition of calculation
skills? Two broad categories have been proposed. First, there
is the category of domain-general capacities that are held to
promote learning across a wide range of topics. These include
intelligence or general cognitive capacity (Kovas et al., 2007),
spatial ability (Geary et al., 2007), and working memory. Second,
domain-specific capacities in the domain of numbers are needed
(Butterworth, 1996, 2010; Iuculano et al., 2011).

The model of working memory (WM) proposed by Baddeley
and Hitch (1977) has multiple components, including a Central
Executive (CE), a Phonological Loop (PL), and a Visuo-Spatial
Sketchpad (VSSP). PL has been associated with solving single-
digit addition (Hecht, 2002), while the VSSP has been linked
with the encoding of visually presented problems (Logie et al.,
1994). The Central Executive (CE) system has been thought to
play a key role in aspects of calculation requiring the storage
and manipulation of intermediate results online by updating the
results of operations such as carrying and borrowing. In this
model, the CE was originally thought of as the system “to which
all the complex issues that did not seem to be [. . . ] specifically
related to the two subsystems were assigned” (Baddeley, 2003).
The basic idea of this model, then, is that calculation, along with
a wide range of other tasks, makes use of a complex domain-
general cognitive system.

Updating processes are intuitively plausible as the principal
locus of the WM contribution to calculation, since intermediate
results from operations such as carrying and borrowing are
required by mental computation, but where CE and PL can be
experimentally distinguished, it is CE that seems more critical
for calculation. For example, articulatory suppression, which
is expected to interfere with PL but not CE, did not affect
calculation; while random interval generation, thought to be the
responsibility of CE, did reduce arithmetical performance (De
Rammelaere et al., 2001). Furthermore, it has been found that
children with specific difficulties in arithmetic do not differ on
tasks that rely primarily on PL, such as immediate serial recall
(digit span), but do perform worse on tasks tapping CE (Siegel
and Ryan, 1989; McLean and Hitch, 1999). Further evidence
also indicates that children with mathematical difficulties have
a CE deficit connected to processing of numerical and visual
information (Andersson and Lyxell, 2007). On the other hand,
individual differences in PL have been associated with arithmetic
impairments (Gathercole et al., 2004). A recent fMRI study
also shows that the horizontal segment of the left intraparietal
sulcus (IPS) is involved in processing order information in verbal
WM, number order judgment, and alphabetical order judgment
(Attout et al., 2014).

The most convincing evidence relating WM to mathematical
achievement in children comes from longitudinal studies. Geary
et al. (2009) deployed the Working Memory Test Battery for
Children (Pickering and Gathercole, 2001) to measure CE,
PL, and VSSP separately, from kindergarten to third grade.
They found that different WM systems are able to discriminate

between different levels of mathematical impairments in
children, as well as different levels of mathematical proficiency.
Specifically, Geary and colleagues underline the importance of
the CE component for the ability of correctly retrieving simple
addition facts.

Similarly, in a longitudinal study by De Smedt et al. (2009a),
the CE was a unique predictor of both first- and second-
grade attainment in mathematics. They used two complex span
tasks, namely counting span (Case et al., 1982) and listening
span (Daneman and Carpenter, 1980), as measures of CE

function, instead of an updating task. Interestingly, there were
age-related differences in the role of components of WM,
such that the visuo-spatial sketchpad was a unique predictor

of first-grade, but not second-grade, mathematics attainment,
whereas the phonological loop emerged as a unique predictor
of second-grade, but not first-grade, mathematics achievement.
However, Soltanlou et al. (2015) found that the phonological

loop emerged as a predictor of third-grade multiplication
performance, whereas visuo-spatial WM was a predictor of
fourth-grade performance. Meyer et al. (2010) also showed

that CE and the phonological loop promote performance in
mathematical learning in early stages, whereas visuo-spatial WM
is more important in later stages. It seems that although CE or
updating ability in general plays an important role in predicting
math performance, more specific capacity may also mediate
performance.

Iuculano et al. (2011) found that the ability to update a CE
function differentiated typically from in 9-year olds with low
attainment scores on arithmetic. However, they found that it was
updating specifically numerical information that was predictive,
not updating equivalent non-numerical information. In the

present study, we would like to assess whether domain-general
memory updating ability or the capacity for updating specifically
numerical information is better able to predict calculating skills

in a multidigit multiplication task. Specifically, we want to test
this idea further in three main ways:

(1) Test whether individual differences in calculation ability
in adults still depends on updating WM. Here we use
multidigit mental multiplication because it requires accurate
maintenance and updating of information, as well as an
extensive package of skills needed for arithmetic more
generally, namely understanding the number system and
the principles of arithmetic, the memory of multiplication
facts and their retrieval, and procedures for multiplying and
adding.

(2) Iuculano et al. (2011) used two tasks. One required updating
numerical information: in this case, the 1, 2, or 3 largest
numbers from a spoken sequence. The other required
updating non-numerical size information: the 1, 2, or 3
largest animals in a spoken sequence. Here we will use tasks
that require updating different types of information. The
objective is to determine whether individual differences
in calculation ability depend on individual differences in
the ability to update in general, or, instead, the ability to
update a specific type of information. Here we test three
potentially separable updating processes: updating verbal
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information, updating numerical information, and updating
spatial information.

(3) We will assess whether the contribution of updating to
calculation ability is specific to more difficult, or to all
multidigit mental multiplication problems.

EXPERIMENT 1

In this experiment, we assessed the contribution to multidigit
mental multiplication (MMM) ability of three different memory
abilities, measured as follows: one involved numbers and
updating memory as the result of simple addition and
subtraction; another required memory for letters but no
updating; and the third required memory of spatial locations
but no updating. These three complex WM tasks are taken from
the battery developed by Lewandowsky et al. (2010). This design
allows us to assess both the domain-general WM factor and also
the domain-specific factors contributed by each of the processing
tasks, namely numbers, verbal material processing, and spatial
memory.

Materials and Methods
Participants
There were 48 participants in the study. The average age was 24,
the standard deviation was 3.23; half were males and half females.
Most were students at the National Chengchi University, Taiwan.
The study was approved by the Regional Ethics Committee
at National Taiwan University. All participants gave informed
consent before taking part in the experiment. The data of only
47 subjects were included in the analysis; one participant was
excluded for his accuracy rate in the mental multiplication task,
which was below average by three standard deviations.

Experimental Procedure
There were four tasks in this experiment: a multidigit mental
multiplication task, the dependent measure, and three working
memory tasks. Half of the participants performed these tasks
in the following sequence: multidigit mental multiplication task
followed by three working memory tasks. The other half was
given the reversed sequence: the three working memory tasks
followed by the multidigit mental multiplication task.

Multidigit Mental Multiplication Task (MMM)

Stimuli
There were four types of problems used in the experiment. They
were: 2 digits multiplied by 1 digit (2×1), 3 digits multiplied
by 1 digit (3×1), 4 digits multiplied by 1 digit (4×1), and 2
digits multiplied by 2 digits (2×2). Examples for each type of
multiplication problems were: 2 digits multiplied by 1 digit (35
× 4), 3 digits multiplied by 1 digit (356×4), 4 digits multiplied by
1 digit (3567×4), and 2 digits multiplied by 2 digits (35×67).

According to cognitive load theory (Chandler and Sweller,
1991; Tuovinen and Sweller, 1999), the presence of too many
elements for a human to process in visual or verbal working
memory can cause overloading. We hypothesized that, if a
multiplication problem requires additional steps to be calculated,
WM loading may increase, which results in impaired calculating

performance. For example, in the problem “43x2 = ?” presented
in an elementary school math class, a teacher would teach you
to multiply the digits in the ones column first, then to multiply
the digits in tens, and so on as the digits increase. In the simplest
situation, where there is no number to be carried, problems of
the type “2 digits multiplied by 1 digit” (2×1) include two steps:
multiply the ones and then the tens by the one digit. The type “3
digits multiplied by 1 digit” (3×1) includes three steps, namely
multiply the ones, tens, and hundreds by one digit.

In the current study, we initially defined the problem difficulty
by the number of the calculating steps. We selected four types
of multiplication problems, namely type 2×1, 3×1, 4×1, and
2×2. Types 2×1, 3×1, and 4×1, respectively, include at least
two, three, or four calculation steps. Type 2×2 includes the steps
of multiplying the ones and tens by the first digit, and then
multiplying the ones and tens by the second digit. Finally, it is
necessary to sum them. Five steps at least are required.

There were 80 trials in the task. The trials consisted of
four types of multiplication problems and 20 trials for each
condition. Twenty trials of each type of problem were randomly
selected from a multiplication problems pool (see Appendix 1 in
Supplementary Material) for each participant. The digits forming
the multiplication problems in this task were restricted to the
digits 2–9. Both 1 and 0 were excluded in multiplicands and
multipliers. The digit 5 was excluded in multipliers. The digits
used in the multiplicands and multipliers were constrained to
numbers without repeated digits.

Procedure of task
At the beginning of each trial, one multiplication problem (2x1,
3x1, 4x1, or 2x2) was displayed at the center of the screen.
Participants were required to calculate it mentally, and use the
number pad (showing the digits 0–9) to enter the answer as
quickly and as correctly as possible. There was no time limit
set for making responses. The participant’s answer appeared on
the screen after entering. After sending the answer, by pressing
the enter button, they could press the enter button again to go
on to next trial. A screen with the sentence “return detected”
in the center for 2 s appeared between each trial (See Figure 1).
A total of 80 trials was presented in random sequence, and
the participants had one short break not to exceed 1min after
completing each set of 20 trials, until the end of this task. In this
task, we collected accuracy and reaction time (RT) as dependent
variables from participants.

Memory Tasks
We adapted the working memory tasks from the battery
developed by Lewandowsky et al. (2010), as follows (See
Figure 2).

Calculation updating task (MUcalc)
In each trial of this task, 3–5 rectangular frames were
simultaneously shown on the screen. During the study period,
a single digit appeared in a frame (e.g., 7 or 8) for 1 s. The
participants had to remember the digit for that particular frame.
During the updating period, an arithmetic operation (e.g., −4
or +1) showed in a particular frame. Participants had 1.3 s to
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FIGURE 1 | Experimental procedure (e.g., the 3×1 and 2×2 problem

types showing in center of screen) for the multidigit mental

multiplication(MMM) task.

remember the updated result at that moment in that frame (e.g.,
8+1 = 9). The number of updating operations varied from two
to six in each trial. This updating process continued until a
questionmark “?” appeared in a frame. This was the recall period,
in which participants were required to enter the memorized
updated results into each frame. Thus, what the participants had
to do in this memory-updating task was to update and remember
the last result computed for each frame. There was no limitation
on response time, but the answer could not be changed after being
entered. After entering all digits, the next trial began. Before the
test trials, the participants did two practice trials to familiarize
themselves with the task. There were 15 experimental trials in the
task (See Figure 2A). We collected task accuracy as a dependent
measure.

Letter memory task (Mletter)
The structure of this task is based on the “reading span task”
(Daneman and Carpenter, 1980). Here, participants had to
update their memory with a sequence of letters in the context
of judging whether a sentence presented on a computer screen
made sense. In the beginning of a trial, a cross at the center of
screen was shown for 1.5 s. Then a sentence was presented for up
to 5 s, for participants to make a judgment. Thereafter, a letter
appeared on the screen for 1 s, for participants to memorize.
This sequence was repeated three to seven times for each trial.
At the end of a trial, participants had to recall the letters in
the presented order when a question mark “?” appeared on the
screen. The response time for recall was unlimited, but the answer
could not be changed after being entered. After entering all
letters, the next trial proceeded. Before the test trials, participants
did three practice trials to familiarize themselves with the task
(See Figure 2B). This task comprised 15 trials. Notice that this
task does not directly involve updating. Rather, the task requires
adding to memory rather than modifying elements already in it.
The accuracy we collected from task was the dependent measure.

Spatial memory task (Mspace)
Here, the participants saw a grid of cells (10×10) on the screen.
For each trial, a cross at the center of screen was shown for
1 s, and then a black dot was shown in a cell for 900ms. Dots
were shown in different locations of cells in the grid during the
experiment. The participants were asked to remember the relative
location of the cells in which the dots appeared on each trial (2–6
dots). After all dots had been displayed, “End—Please reproduce
the dot pattern” was shown on the screen. The participants could
replace the pattern of dots in an empty grid on the screen by
using the mouse to click on the location of cells. The participants
could delete a dot by clicking on it again. The answer would
be considered correct if the spatial relations between the dots
were reproduced correctly. The response time for recall was
unlimited; after recalling the number and relative position of dots
in that trial, a “Next” word button appeared on the screen. The
participants could click on this “Next” button when they were
satisfied with their response. There were two practice trials before
the test trials; the task comprised 30 trials (See Figure 2C). Notice
that this task does not directly involve updating. The participant
simply had to remember the location of the dots. That is, the
task requires adding to memory rather than modifying elements
already in it. Similarly to the last two memory tasks, the accuracy
of the task was the dependent measure.

Results
Correlations between Multidigit Mental Multiplication

Performance (MMM) and the Memory Tasks
Our main purpose was to investigate how updating working
memory contributes to multidigit mental multiplication
(MMM); thus it was decided to perform a correlation test at the
beginning.

In order to meet the normality assumption of the Pearson
correlation test, we examined the data distributions of all
tasks. The data were arcsine-transformed if the distribution
of any tasks failed to reach normality. Finally, the data from
three updating tasks (MUcalc, Mletter, Mspace) were arcsine-
transformed according to the Shapiro-Wilk criterion (owing to
our N = 47 < 50). Finally, we used both the original accuracy
and the RT of MMM and arcsine-transformed accuracies of
three updating WM to perform the Pearson correlation test (See
Table 1 and Figure 3).

Zero-order individual correlations between tasks in the study
after Bonferroni correction are presented in Table 1. The results
showed that MUcalc was highly correlated with MMM in terms
of accuracy and RT. The accuracy of MUcalc was highly and
positively correlated with the accuracy of MMM (r = 0.615;
95% confidence interval: 0.379–0.852; p = 0.000004), and was
negatively correlated with RT of MMM (r = −0.544; 95%
confidence interval:−0.796 to−0.292; p = 0.000076). Therefore,
better MUcalc means faster and more accurate MMM. However,
the accuracy of neither Mletter nor Mspace was significantly
correlated with any indices of MMM after the Bonferroni
correction. In addition, with regard to working memory tasks,
the tasks MUcalc and Mletter were correlated with each other
(r = 0.574; 95% confidence interval: 0.328–0.819; p = 0.000025;
See Table 1).
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FIGURE 2 | The experimental procedures for the three working memory tasks in Experiment 1: (A) MUcalc: calculation updating task, (B) Mletter:

letter memory task, and (C) Mspace: spatial memory task.

FIGURE 3 | Correlation plots for Experiment 1. Correlations are respectively as depicted: (A) between arcsine-accuracy of MUcalc and original accuracy of MMM,

(B) between arcsine-accuracy of Mletter and original accuracy of MMM, (C) between arcsine-accuracy of Mspace and original accuracy of MMM, (D) between

arcsine-accuracy of MUcalc and original RT of MMM, (E) between arcsine-accuracy of Mletter and original RT of MMM, and (F) between arcsine-accuracy of Mspace

and original RT of MMM.

Multiple regression analysis further confirmed the
relationship between tasks of working memory and those
of MMM. We used three updating working memory tasks
(arcsine scores) to predict the original accuracy and RT of
MMM. On accuracy, only MUcalc (Beta = 0.755, p < 0.001)
significantly [F(3, 43) = 10.596, p < 0.001] predicted and

accounted for 38.5% of the variance on MMM performance
(adjusted R2 = 0.385, standard error of the estimate = 0.076).
On RT, the MUcalc (Beta = −0.566, p = 0.001) significantly
[F(3, 43) = 6.218, p = 0.001] predicted and accounted for 25.4%
of the variance on MMM performance (adjusted R2 = 0.254,
standard error of the estimate= 7.103).
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TABLE 1 | Experiment 1. Correlations between original accuracies and

RTs of multidigit mental multiplication (MMM) task with the arcsine

accuracies of three memory tasks (MUcalc, Mletter, and Mspace).

N = 47 Multidigit mental Working memory tasks

multiplication task

Accuracy RT MUcalc Mletter Mspace

MULTIDIGIT MENTAL MULTIPLICATION TASK

Accuracy 1 −0.462** 0.615*** 0.178 0.194

RT 1 −0.544*** −0.267 −0.192

MEMORY TASKS

MUcalc 1 0.574*** 0.247

Mletter 1 0.092

Mspace 1

For correlation between accuracy and RT of multidigit mental multiplication (MMM) task:

** p < 0.01.

For correlations between original accuracy and RT of multidigit mental multiplication

(MMM) task and the arcsine-accuracies of three memory tasks, p levels that are significant

after Bonferroni correction for multiple comparisons: ***p < 0.000167 (0.001/6).

For correlations between the arcsine-accuracies of three memory tasks, p levels that are

significant after Bonferroni correction for multiple comparisons: ***p < 0.00033 (0.001/3).

MMM, Item Difficulty, and Memory Updating
To examine how participants with different MMM accuracies
performed on different problem types, we used the total MMM
score (the average score of all types: 2×1, 3×1, 4×1, and 2×2)
as each participant’s performance index, and divided total 47
participants into three performance groups according to this
index. The low performance group had 15 participants (M =

0.665, SD = 0.060), the medium had 16 (M = 0.784, SD = 0.025),
and the high had 16 (M = 0.877, SD = 0.038). The mean and
standard error for each condition is showed in Table 2.

A 3 multiplication performance groups (a between variable
with three levels: low, medium, high)× 4 problem types (a within
variable with four levels: 2×1, 3×1, 4×1, 2×2) two-way mixed
ANOVA revealed that both group performance and problem type
achieved significant main effects, F(2, 44) = 93.980, F(3, 132) =

112.285, both ps < 0.001, η2
p = 0.810 and 0.718 respectively. In

group performance, the high scoring group did better on MMM
than the medium and low score groups, and the medium score
group did better than the low score group (all ps ≤ 0.001). In
problem types, the participants had the best accuracy percentages
in 2x1 problems, but the worst in 2x2 problems (all ps ≤ 0.001).
That is, the easier the problem type, the higher the accuracy.
This was consistent with our prediction that performance would
decline as the number of calculation steps increased.

A significant interaction, F(6, 132) = 7.061, p < 0.001,
η2
p = 0.243 showed that, in problems of the types 2x1 and 3x1,

participants of the medium score group performed as well as
the high score group, and both groups performed better than
the low score group (all ps ≤ 0.025). However, when calculating
type 4x1 and 2x2 problems, significant discrimination revealed
that the high score group still did the best, followed by the
medium group, and the last was, as expected, the low score group
(all ps ≤ 0.011). Therefore, differences in MMM performance
were revealed by the different problem types. High-performing
students could do well at all types of the MMM problems. As

for medium performance students, the interaction showed that
they did equally well in both type 2x1 (M = 0.925, SD = 0.058)
and 3x1 (M = 0.878, SD = 0.071) problems, but worsened
significantly when calculating 4x1 (M = 0.725, SD = 0.075) and
2×2 (M = 0.606, SD = 0.115) problems. Type 4x1 problemsmay
be a critical boundary for our university student samples.

We also carried out a one-way between-subject ANOVA to
confirm whether the three groups would differ on the updating
WM tasks. As expected, in the MUcalc task [F(2, 44) = 10.315,
p < 0.001, η2

p = 0.305], the result showed that participants
who were in the high or mediummultiplication group performed
better than participants who were in the low multiplication
group (ps ≤ 0.007). No significant main effects were revealed
in both Mletter and Mspace tasks. Notice that all the WM
tasks were performed to a similar level. Here are the means
standard errors of accuracy in MUcalc, Mletter, andMspace were
0.842 (0.022), 0.847 (0.016), and 0.882 (0.009), respectively (See
Table 2).

Discussion of Experiment 1
Overall, MMM and the memory tasks showed good ranges of
individual differences. MUcalc was correlated with Mletter (r =

0.574) but not Mspace, suggesting that both MUcalc and Mletter
may draw upon a common set of cognitive resources, but Mspace
appears to share little of the common resources with these
two tasks. However, each task still drew upon some different
cognitive resources for representing different stimulus content
and processes.

Our immediate objective was to assess which of the tasks,
if any, tapped competences that contributed to MMM. MUcalc
was significantly correlated with MMM accuracy (r = 0.615)
and speed (r = -0.544). But neither Mletter nor Mspace were
significantly correlated with MMM accuracy and speed. Further
ANOVA analysis showed that participants with different MMM
performance did show different accuracies in each problem type.
For example, in the easier type 2×1 and 3×1 problems, medium
and high scoring group participants performed at the same level
(Medium group: M2x1 = 0.925 and M3x1 = 0.878; High group:
M2x1 = 0.963 and M 3x1 = 0.919), but the medium score
participants were significantly worse than the high score group in
calculating type 4x1 problems (Medium group:M = 0.725; High
group: M = 0.850). That is, type 4x1 was harder for medium
performance participants in our student sample. For the low
score group participants, their performances became worse as the
calculating steps of problem type increased; the mean range was
from 0.863 (type 2×1) to 0.403 (type 2×2), whereas the mean
range was from 0.963 (type 2×1) to 0.778 (type 2×2) for high
scoring participants.

MUcalc, unlike Mletter and Mspace, involves both
numbers and calculation, albeit simple single-digit addition
and subtraction, and it may have been the case that the observed
relationships with MMM were due to these common elements
rather than to a number-specific updating process. In MUcalc,
elements to be remembered were required to be changed as a
result of addition or subtraction: that is, the updating altered
elements held in memory. By contrast, Mletter and Mspace
involved updating only by adding to memory rather than
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TABLE 2 | Experiment 1. The means and standard errors (SEs) of multidigit mental multiplication (MMM) accuracies arranged by four types of problems

and those of working memory accuracies arranged by three types of tasks in different MMM performance groups.

N = 47 Types of multidigit mental multiplication tasks Types of working memory tasks

Accuracy 2x1 3x1 4x1 2x2 MUcalc Mletter Mspace

TOTAL

Mean 0.917 0.861 0.727 0.596 0.842 0.847 0.882

SE 0.009 0.011 0.016 0.016 0.022 0.016 0.009

HIGH PERFORMANCE GROUP

Mean 0.963 0.919 0.850 0.778 0.924 0.861 0.881

SE 0.016 0.019 0.027 0.028 0.020 0.027 0.016

MEDIUM PERFORMANCE GROUP

Mean 0.925 0.878 0.725 0.606 0.871 0.864 0.894

SE 0.016 0.019 0.027 0.028 0.030 0.026 0.010

LOW PERFORMANCE GROUP

Mean 0.863 0.787 0.607 0.403 0.725 0.814 0.870

SE 0.016 0.019 0.028 0.029 0.043 0.029 0.019

modifying elements already in it. Therefore, we designed three
new tasks for Experiment 2, in which there was updating that
required altering memorized elements. The elements of two of
these tasks did not involve numbers, while those of one did.
Further, we wished to see whether it was the mere presence
of numbers or the requirement to carry out calculations on
numbers that predicted MMM success.

EXPERIMENT 2

In order to clarify whether the significant correlations between
MUcalc and both the accuracy and RT of multidigit mental
multiplication (MMM) stems from the mere presence of
numbers or the requirement to carry out calculations on
numbers, three modified memory updating tasks were developed
for Experiment 2.

(1) A spatial memory-updating task (MUSpace) requires
participants to update the location of a dot moving
clockwise or counterclockwise. No numbers or arithmetic
calculations are involved in the spatial memory-updating
task.

(2) A numerical memory-updating task (MUNumber) requires
participants to update and remember the larger number of
two numbers, with no arithmetic calculation involved.

(3) A word memory-updating task (MUWord) requires
participants to update and remember the smaller animal
denoted by two animal words (similar to a task used in
Iuculano et al., 2011). For example, in their task, participants
were asked to remember the three smallest animals “pelican
( ), tortoise ( ), and chicken ( )” from an animal
list presenting six items “giraffe ( ), pelican ( ),
tortoise ( ), tiger ( ), chicken ( ), dolphin ( ).”

By comparing the correlations between different memory
updating tasks and MMM, we expected to be able to clarify
whether the significant correlation between original MUcalc and
MMM are due to updating domain-specific information, or to

domain-general updating capacity. In theMMM task, we selected
only two problem types from Experiment 1: type 2×1 and type
4×1. The former was generally easy for all groups of college
students, who performed at a level of at least 91.8% accuracy.
The 4x1 type was more difficult, as was shown by medium
level students in Experiment 1. In type 2x1 and 3x1 problems,
medium level students calculated as well as high-level students.
By choosing type 2x1 and type 4x1 problems, it was possible to
assess the effects of the MMM difficulty in relation to updating
capacity.

Materials and Methods
Participants
Fifty-eight participants completed all the tasks. Most of them
were students at National Chengchi University, Taiwan. The
study was approved by the Regional Ethics Committee at
National Taiwan University. All participants gave informed
consent before taking part in the experiment. Five of them
were excluded from further analyses because of low performance
on at least one task (below average by more than 3
standard deviations); 53 subjects (17 males and 36 females;
average age: 21.72, SD = 2.78) were thus analyzed in this
study.

Multidigit Mental Multiplication (MMM) Task
The MMM task in this experiment was similar to the MMM task
used in Experiment 1, but with only two problem types from
Experiment 1 (2×1 and 4×1), comprising 50 questions of each
type, thus making 100 questions in total. Fifty questions of each
type of problems were randomly selected from a multiplication
problems pool (see Appendix 2 in Supplementary Material) for
each participant. The questions were pseudo-randomly assigned
into four blocks. Participants were instructed to take a short
rest (around 1min) if needed between blocks. In each trial, a
fixation with 2 or 4 s was followed by a multiplication question
displayed in the center of the screen. Participants were instructed
to answer correctly as soon as possible, and were told that the
time limit of each question was 50 s. We used a different response

Frontiers in Psychology | www.frontiersin.org 7 February 2016 | Volume 7 | Article 72

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Han et al. Memory Updating and Mental Arithmetic

procedure for this task from that used in Experiment 1 to
double check the results in Experiment 1. Instead of entering the
answers directly with number keys, participants were instructed
to complete each question by pressing only four buttons in the
current task, namely, “1,” “2,” “3,” and “4.” The function of button
“1” was to increase numbers, button “2” was to decrease numbers,
button “3” shifted places, and button “4” output the answer. For
example, a question was displayed as “24 × 3 = 00”; since the
answer is 72 in this example, and the order to respond was always
from left to right (i.e., from tens to units), participants had to
press the button “1” seven times (or the button“2” three times)
to adjust the first number from 0 to 7. After the adjustment
of tens was completed, participants pressed the button “3” to
change the place from tens to units, and then adjust the units by
pressing the button “1” twice (or the button “2” eight times). Last,
participants pressed the button “4” to indicate that the question
was answered (the place being adjusted was displayed with a gray
background so that participants could easily tell which place they
were modifying). The questions remained on the screen until
participants gave an answer or the time was up. If an answer was
given in time, the string “Answer confirmed” would display for 2 s
on the screen before the fixation of next trial began; otherwise, a
string “Too slow” would appear instead, to remind participants to
answer questions within the time limit. In the MMM task, we still
collected accuracy and RT as dependent measures. The RT was
defined by the interval from the onset of stimulus to participant’s
first key press response.

Memory Updating Task
Three new modified memory-updating tasks were developed
to explore the role of number memory: a spatial memory
updating task (MUSpace), a numerical memory updating task
(MUNumber), and a word memory updating task (MUWord)
(See Figure 4). There were 15 trials in each task.

MUcalc
This was exactly the same task as in Experiment 1: participants
were instructed to remember the digit in each rectangular frame,
do the arithmetic asked for, and give the final result of each
rectangular frame separately at the end of each trial. The accuracy
of MUcalc task was still the dependent measure.

MUSpace
This task was modified from the MUcalc task, but used dots
and clockwise/counter-clock wise marks instead of digits and
addition/subtraction. In each trial, 3–5 rectangular frames were
shown on the screen (just as in MUcalc). During the study
period, one dot appeared in a frame, and the dot was in one
of four possible locations, i.e., left, right, top, or bottom, of
the frame, for 1 s. Participants had to remember the location
of the dot in a particular frame. During the updating period,
a directional mark, either clockwise or counterclockwise, was
shown in a particular frame for 1.3 s. On the occurrence of a
clockwise mark in the frame, participants had to update the dot
location from its previous location in their memory to a location
90 degree clockwise: for example, from “top” to “right.” If the
counterclockwise mark was shown, participants were to mentally

move the dot location counterclockwise, for example, from “top”
to “left.” The number of updating operations varied from 2 to 6
times in a trial (the same as in MUcalc). This process continued
until a question mark “?” appeared in the frame. This was the
recall period, when participants had to enter the memorized
updated results into each frame by using the number pad. The
number “8” on the number pad represents the “top location,” “6”
on the number pad represents the “right location,” “2” represents
“low,” and “4” represents the “left location.” In addition, the order
for the results were pseudorandomized (participants were not
always given answers from left to right or from right to left). Thus,
what participants had to do in this spatial memory-updating task
was to update and remember the last location of the dot in each
frame. There was no time limit for the response, but the answer
could not be changed after responding. After entering all digits,
the next trial proceeded. Before the test trials, the participants did
two practice trials to familiarize themselves with the task. There
were 15 trials in this task (See Figure 4B). The accuracy of the
task was the dependent measure.

MUNumber
This task was also modified from the MUcalc task, but
participants were required to remember the updated digits
without doing arithmetic. The number of rectangular frames and
the operations were the same as the tasks described above. During
the study period, two digits appeared side by side at the same time
on a frame for 1 s, e.g., 7 and 2. Participants had to remember
the larger digit in a particular frame (7, in this example). During
the updating period, another two digits were displayed (e.g., 3
and 8) in a particular frame. Participants had to update the larger
digit showing on the most recent frame (8, in this example). This
process continued until a question mark “?” appeared in that
frame. In this recall period, participants had to enter memorized
updated results into each frame with a pseudorandomized order.
Thus, what the participants had to do in this numerical memory-
updating task was to update and remember the last result for each
frame. No time limit was given for the response, but the answer
could not be changed after responding. After entering all digits,
the next trial proceeded. The number of test trials and the practice
trials were the same as other tasks (See Figure 4C). The accuracy
of the task was the dependent measure.

MUWord
This task was similar to the MUNumber task, but participants
were required to remember updated characters representing
animals. The number of rectangular frames and the operations
were the same as the tasks described above. During the study
period, two animal names appeared side by side at the same
time in a frame, e.g., (cat) and (dog), for 1 s. Participants
had to remember the smaller animal denoted by the word in
a particular frame (cat in this example). During the updating
period, another two animal words were displayed, e.g., (mouse)
and (rabbit), for a particular frame. Participants had to update
the smaller animal shown in the most recent frame. This process
continued until a question mark “?” appeared on that frame.
Participants were instructed to enter the updated results they
memorized for each frame with a pseudorandomized order by
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FIGURE 4 | The experimental procedures of original calculation updating task, MUcalc, and three modified memory updating tasks in Experiment 2:

(A) the original memory updating task (MUcalc), (B) the spatial updating task (MUSpace), (C) the numerical updating task (MUNumber), and (D) the

word updating task (MUWord).

pressing response keys (the responding keys for each animal were
A, S, D, F, G, H, J, K, and L respectively, and the keys and the
corresponding animal characters were always displayed as pairs
on the screen in this recall stage). Thus, what the participants
had to do in this word memory-updating task was to update
and remember the last result for each frame. No time limit was
given for the response, but the answer could not be changed after
responding. After entering all the words, next trial proceeded.
The number of test trials and the practice trials were the same
as the other tasks (See Figure 4D). Accuracy was collected as
dependent variable.

The order of the nine animal characters used in the task, from
small to large, were (mouse), (rabbit), (cat), (dog),

(pig), (deer), (lion), (bear), and (elephant). This
size order was ranked by the other 12 participants in advance.
Horse ( ), ox ( ), and sheep ( ) were discarded in this
pre-test as participants were confused about their size rankings.
This size ranking was given to the participants attending the
experiment before the MUWord task began, and the task only

began after participants confirmed that they fully understood and
remembered the ranking.

Results
Correlations between Multidigit Mental Multiplication

Performance (MMM) and Memory Updating Ability
Again, for investigating the correlation between MMM and
memory updating ability, we tested the normality of each task
according to Kolomogorov–Smirnov (owing to N = 53 > 50),
and transformed the non-normal distribution data by arcsine-
transformation. However, the three updating tasks were
approximately normal, though not completely. The p values
were: MUcalc (p < 0.001), MUNumber (p = 0.035), and
MUWord (p = 0.048). We reported the correlation between the
four arcsine-accuracy of MU tasks and both the arcsine-accuracy
and original RT of MMM, as seen in Table 3 and Figure 5.

In this experiment, the arcsine-accuracy of MMM correlated
with both MUcalc (r = 0.458; 95% confidence interval: 0.208–
0.708; p = 0.000571) and MUSpace (r = 0.472; 95% confidence
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TABLE 3 | Experiment 2. Correlations between both arcsine-accuracies

and original RT of multidigit mental multiplication (MMM) tasks and

arcsine-accuracies of four MU tasks (MUcalc, MUSpace, MUNumber, and

MUWord).

N = 53 Memory updating tasks

MUcalc MUSpace MUNumber MUWord

MULTIDIGIT MENTAL MULTIPLICATION TASKS

Accuracy

All 0.458* 0.472** 0.172 0.334

2x1 0.189 0.304 0.022 0.062

4x1 0.499** 0.422* 0.238 0.402

RT

All −0.115 0.005 −0.136 −0.136

2x1 −0.235 −0.090 −0.078 −0.150

4x1 −0.067 0.036 −0.144 −0.120

MEMORY UPDATING TASKS

MUcalc 1 0.432** 0.199 0.389*

MUSpace 1 0.346 0.364*

MUNumber 1 0.470*

MUWord 1

All p levels that are significant after Bonferroni correction for multiple comparisons are

marked as follows:

For correlations between both the arcsine-accuracies and original RT of multidigit mental

multiplication (MMM) tasks and the arcsine-accuracies of four MU tasks:

*p < 0.002083(0.05/24); **p < 0.000416 (0.01/24).

For correlations between arcsine-accuracies of four MU tasks:

*p < 0.00833(0.05/6); **p < 0.00167(0.01/6).

interval: 0.224–0.720; p = 0.000359) after Bonferroni correction,
especially with difficult type 4x1 (MUcalc: r = 0.499; 95%
confidence interval: 0.256–0.743; p = 0.000142; MUSpace:
r = 0.422; 95% confidence interval: 0.168–0.677; p = 0.001632),
whereas the RT of MMM did not correlate with any MU tasks.
Accuracy of the MUNumber task, which involved comparing
digits but with no calculation, was not significantly correlated
with the performance of MMM task. MUNumber was also not
significantly correlated with either MUcalc or MUSpace (See
Table 3). This is reasonable, given that MUNumber was not
correlated with MMM.

In addition, MUNumber and MUWord were correlated
with each other (r = 0.470; 95% confidence interval: 0.222–
0.718; p = 0.000381), which may result from similar task
design and the memory updating process (See Table 3). Multiple
regression analysis further confirmed the relationship between
memory updating andMMM.We used the four arcsine-accuracy
measures of MU tasks to predict the arcsine-accuracy of MMM.
The result showed that both MUSpace (Beta = 0.323, p = 0.025)
and MUcalc (Beta = 0.277, p = 0.051) significantly predicted
MMM accuracy [F(4, 48) = 5.509, p = 0.001] and accounted for
25.8% of the variance (adjusted R2 = 0.258, standard error of the
estimate=0.135).

MMM, Item Difficulty, and Memory Updating
The means and standard deviations of original accuracy of
the four working memory updating tasks, MUcalc, MUSpace,
MUNumber, and MUWord, were 0.926 (0.065), 0.735 (0.126),

0.918 (0.088), and 0.792 (0.155) respectively. One-way repeated
measures ANOVA showed the significant difference between
tasks [F(3, 156) = 55.260, p < 0.001, η

2
p = 0.515]. The

performances of MUcalc and MUNumber were significantly
better than that of MUSpace and MUWord (both ps < 0.001).

Again, in order to examine the different MMM accuracies
that participants showed in different problem types, we used
the total MMM score (the average score of type 2x1 and 4x1)
as each participant’s performance index, and divided them into
three similar performance groups. The low performance group
had 18 participants (M = 0.742, SD = 0.075), the medium
18 (M = 0.859, SD = 0.013), and the high 17 (M = 0.920,
SD = 0.025). The mean and standard error for each condition
is seen in Table 4.

A 3 multiplication performance groups (a between variable
with three levels: low, medium, high) × 2 problem types
(a within variable with two levels: 2x1, 4x1), two-way mixed
ANOVA revealed that group performance, problem type, and
their interactions showed significant effects, F(2, 50) = 65.814,
F(1, 50) = 92.059, and F(2, 50) = 9.411 respectively, all

ps < 0.001, η
0pt
2 p = 0.725, 0.648, and 0.273 respectively. In

group performance, the high scoring group still performed better
on MMM than medium and low score groups, and the medium
score group performed better than the low score group (all
ps = 0.001). In problem types, as in Experiment 1, participants
showed better accuracy in the type 2x1 problems than in the
type 4x1 problems. In the interactions, low performance group
participants got worse performance as the problem difficulty
increased. Under type 2x1 condition, the p-value between low
and medium group was 0.011, whereas the p-value was lower
than 0.001 between these two groups under type 4x1 condition.
Obviously, for low scoring participants, their performance
diminished greatly as the difficulty of MMM increased.

We again performed a one way between-subject ANOVA to
examine whether participants with different MMM performance
differed in accuracy on the 4 MU tasks. The results showed that
on both MUcalc and MUSpace tasks [F(2, 50) = 4.744 and 5.681,
p = 0.013 and 0.006, η

2
p = 0.0159 and 0.185 respectively],

participants who were in the high performance group in the
MMM task also performed better than participants who were
in the low performance group (both ps = 0.017). In MUWord,
although it was not correlated with MMM, there was shown a
significant main effect of group [F(2, 50) = 3.751, p = 0.030,

η
0pt
2 p = 0.130]. The Bonferroni comparisons showed that

participants who were in the medium score group in the MMM
task performed better than participants who were in the low score
group (p = 0.035). There was no difference between the groups
on the MUNumber task.

Discussion of Experiment 2
The results of Experiment 2 revealed that both MUSpace
and MUcalc were the best predictors for the accuracy of
the multidigit mental multiplication task (MMM), not only
correlated with MMM, but also with harder (higher load)
type 4x1 problems. No numbers or arithmetic calculations are
involved in the spatial memory-updating task. On the other
hand, the numerical memory-updating task, MUNumber, which
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FIGURE 5 | Correlation plots for accuracies in Experiment 2. Correlations are respectively as depicted: (A) between arcsine-accuracy of MUcalc and

arcsine-accuracy of MMM, (B) between arcsine-accuracy of MUSpace and arcsine-accuracy of MMM, (C) between arcsine-accuracy of MUNumber and

arcsine-accuracy of MMM, (D) between arcsine-accuracy of MUWord and arcsine-accuracy of MMM.

TABLE 4 | Experiment 2. The means and standard errors (SEs) of multidigit mental multiplication (MMM) accuracies arranged by two types of problems,

and those of memory updating accuracies arranged by four types of tasks in different multiplication performance groups.

N = 53 Types of multidigit mental multiplication tasks Types of memory updating tasks

Accuracy 2x1 4x1 MUcalc MUSpace MUNumber MUWord

TOTAL

Mean 0.914 0.767 0.926 0.735 0.918 0.792

SE 0.007 0.012 0.009 0.017 0.012 0.021

HIGH PERFORMANCE GROUP

Mean 0.963 0.876 0.955 0.775 0.918 0.816

SE 0.013 0.021 0.008 0.027 0.026 0.040

MEDIUM PERFORMANCE GROUP

Mean 0.916 0.802 0.933 0.772 0.939 0.845

SE 0.013 0.021 0.016 0.024 0.011 0.019

LOW PERFORMANCE GROUP

Mean 0.861 0.622 0.893 0.660 0.898 0.716

SE 0.013 0.021 0.017 0.032 0.024 0.042

involved numbers but neither arithmetic nor spatial operations,
showed no significant correlation with MMM problems in this
experiment. The results suggested that significant correlations
between MUcalc and the accuracy of MMM observed in
Experiment 1 were due to updating involved in the calculation
process rather than the mere involvement of numbers1.

1We note that in Experiment 1, the distribution of MUcalc was normal, whereas

it turned out to be non-normal (negatively skewed) in Experiment 2, even after

arcsine-transformation. This was also the case for MUNumber and MUWord.

After arcsine transformation, the distributions were only approximately normal.

We speculated that a similar task design (for MUNumber and MUWord, or for

In addition, the RT of MMM was not correlated with any of
the MU tasks, contrary to our findings in Experiment 1. It was
possible that participants’ RTs in Experiment 2 were influenced

MUcalc and MUSpace) in Experiment 2 may yield a learning effect, which led

participants to become familiar with those tasks quickly and to easily get better

scores in some tasks. For instance, the accuracy rate for MUcalc in Experiment 1

was about 84.2%, and in Experiment 2 it increased to almost 92.6%. Another reason

for observing negative skewed distributions in tasks may be that participants who

participated in multiplication experiment may regard them as competent for such

tasks. If they mistrusted their math ability or hated math at the beginning, they

would not have participated in this study. Furthermore, the MUcalc or other MU

tasks may be too easy for college students.
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by means entering responses using only four response buttons,
which may not reveal the “real” reaction time precisely2 .

GENERAL DISCUSSION

These updating tasks clearly show that the processes involved
in updating the contents of working memory are critical
to multidigit mental multiplication (MMM) in adults. In
Experiment 2, we replicated the findings in Experiment 1,
showing that memory updating involves calculation, MUcalc,
predicted performance on the more difficult MMM items (type
4x1), which requires more steps (load) to calculate.

On the other hand, the numerical memory-updating task,
which involved numbers but not calculation, was not correlated
with performance in MMM problems. This contrasts with
Iuculano et al. (2011), who found that individual differences
in arithmetic ability was indeed related to updating numbers
in a task that required successive comparison of numerical
magnitudes (as in MUNumber) but not calculation. However,
there are important differences between their study and ours.
Their dependent arithmetical ability task was performance on the
achievement subscale of the Dyscalculia Screener (Butterworth,
2003) which measured accuracy and speed of single-digit
addition in terms of norms for an age-group. Moreover, they
tested children aged eight- to nine-years old, whereas we tested
college students with a mean age of 24 years. It is possible that
the contribution of different components or aspects of WM
depend on the stage of arithmetical development (as was found
by De Smedt et al., 2009b; Meyer et al., 2010; Soltanlou et al.,
2015). So, for example, for the children in the Iuculano et al.
study, being good at remembering numbers is important for
fluent calculation, and individual differences in this ability will
therefore play a part in differentiating calculation ability. In

2We carried out a 2 key press style (a between variable with two levels: experiment

1 and 2) × 2 problem types (a within variable with two levels: 2x1and 4x1) mixed

ANOVA on original accuracy and RT respectively. In accuracy, the main effect

was only significant for problem types [F(1, 98) = 170.984, p < 0.001, η
0pt
2 p =

0.636]. Participants performed better in type 2×1 (M = 0.915, SD = 0.070) than

in type 4×1 (M = 0.748, SD = 0.141) problems. Neither the key press style, nor

the interaction between key press style and problem type reached significant, all

p s = 0.118, which indicated that the way of different key press procedures did

not influence participants’ accuracy performance. In RT, there was a significant

main effect for problem types [F(1, 98) = 274.623, p < 0.001, η2
p = 0.737], which

indicated that answering type 2×1 (M = 6.205, SD = 0.201) problem was faster

than answering type 4x1 (M = 17.989, SD = 0.837) problems. Furthermore, both

the key press style and their interaction reached significant [F(1, 98) = 49.331 and

78.061, both p s = 0.001, η
2
p = 0.335 and 0.443 respectively], which suggested

the way of different key press procedures influenced participants’ RT performance.

The significant main effect for key press style showed that the way of entering

exact numbers in Experiment 1 (M = 15.568 s, SD = 12.076) took longer than

the way of using only four buttons to increase or decrease answers in Experiment

2 (M = 8.626 s, SD = 4.522). In the significant interaction, although there was

no RT difference between the way of entering answers for type 2x1 problem in

Experiment 1 and 2, the significant difference was revealed between entering type

4x1 problem in Experiment 1 and 2, p < 0.001. Answering 4x1 problem by entering

exact numbers in Experiment 1 was significantly longer than by pressing only four

buttons to reach answers in Experiment 2. Notice that, although RT was faster

by pressing only four buttons to reach answer, the RT in Experiment 2 was not

correlated with any workingmemory tasks like those in Experiment 1. It is possible

that the participants started pressing the response key without a clear answer in

their minds in the Experiment 2, especially when the problems were difficult.

our study, MUNumber was strongly correlated with MUWord,
suggesting that numbers were being maintained and updated
in their phonological form rather than in a form relevant to
calculation. Another possible difference is that the percentage
correct in MUNumber in our study is quite high. The reason we
did not find a correlation between MUNumber and MMM may
be the ceiling effect. This possibility could be tested in the future.

By contrast, the spatial updating task (MUSpace) also
correlates quite well with difficultMMM. This suggests that many
or most of the participants used a visual or spatial representation
that formulates calculations of MMM. This result is consistent
with findings that there is a shift from verbal WM toward visuo-
spatial WM prediction for multiplication with age. Meyer et al.
(2010) found that the central executive and phonological loop
components in WM facilitated arithmetic performance during
the early stages; however, visuo-spatial WM was more important
during later stages. Recently, Soltanlou et al. (2015) also found
that multiplication performance correlated with verbal WM
in grade 3 but with visuo-spatial WM in grade 4. However,
in their study, they focus on simple multiplication problems
with multiplicative fact retrieval. In our studies, we focused
on multidigit multiplication, which involves other mechanisms
than mere multiplication fact retrieval. Participants needed
to combine retrieval and procedural operation continuously
and efficiently. Under the circumstances, the ability accurately
to maintain and update information plays a more important
role in MMM tasks. However, the role of the visual or
spatial representation in MMM will need to be tested by
further experimentation. Notice that the spatial short-term
memory task in Experiment 1, Mspace, did not require
updating, but simply remembering the location of a series of
dots, while MUSpace required changing, that is, updating, a
remembered location. The Mspace task did not correlate with
MMM.

Previous findings suggest that updating is strongly correlated
to mathematical performance (e.g., Andersson, 2008; De Smedt
et al., 2009b; Van der Ven et al., 2012; Friso-van den Bos et al.,
2013; Cragg and Gilmore, 2014). However, whether domain-
general memory updating ability or the capacity for updating
specific information is better able to predict mathematical
performance is still a controversial issue. In our study, updating
appeared to be a common factor relating complex span tasks
together: that is, those that were not involved in this process
tended not to correlate with MMM performance, whether it
involved numbers or not. However, findings from the present
study suggest that the relationship between working memory
and arithmetic is more complex than previously postulated.
Firstly, both the performance ofMUcalc andMUSpace correlated
with difficult multiplication problems only, but not with easy
problems. This indicates that, on one hand, updating memory
in these two tasks is particularly relevant for more difficult
calculations involving maintenance and updating intermediate
numerical results. On the other hand, implies a different memory
updating process in MUcalc and MUSpace from MUNumber
and MUWord. All the MU tasks required participants to: (1)
remember the original information, (2) receive and process the
new information, and then (3) replace the original information
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by the new one. However, the second step in MUcalc and
MUSpace was slightly different fromMUNumber andMUWord.
In the first two tasks, the original information (digit for MUcalc
and location for MUSpace) was transferred to the new one by
calculation (addition or subtraction for MUcalc, and clockwise
turn or counter-clockwise turn for 90◦ forMUSpace). In contrast,
the process in both MUNumber and MUWord was simple
comparison (remember larger or smaller one for numerical size
or animal size) but not calculation.

Secondly, number updating with calculation (MUcalc) is
highly correlated with MMM performance, but word updating
(MUWord) is not. This, in turn, suggests a degree of domain-
specificity in the updating process, though not in the way
originally envisaged by Butterworth (1996) and Iuculano et al.
(2011). These studies assumed that the mere presence of
numbers in the memory task was critical, while here we found
that carrying out arithmetic operations on numbers was what
mattered. One may argue that since both the performance
of MUcalc and MUSpace were correlated with MMM, the
memory updating involved in these two tasks is a domain-general
ability. However, although we did find a similar pattern for the
correlations between these two updating tasks and the MMM
performance, the calculation behind these two tasks could be
still different from each other. For example, in the MUSpace
task, participants were possibly using a visuo-spatial strategy,
a kind of “mental blackboard,” maintaining and manipulating
critical information while performing MMM. Evidence shows

that the performances of abacus users who have high accuracy
and fast speed in mental calculation depend on improved spatial
updating ability (Tanaka et al., 2012). However, this requires
further investigation.

In summary, our study clearly shows that the processes
involved in updating the contents of working memory are
critically important to multidigit mental multiplication in adults.
However, in order to fully understand the relationship between
memory updating and mental arithmetic, we should further
investigate the interaction between different memory updating
and mathematical tasks for different ages.

ACKNOWLEDGMENTS

This work was supported by grants (NSC 99-2511-S-004-001-
MY3 and NSC 102-2511-S-004-001) from the National Science
Council of Taiwan. We thank Dr. Roi Cohen Kadosh for his
constructive recommendation on the design of Experiment 2.We
would like to thank Professor Brian Butterworth for his help and
advice in the preparation of this paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2016.00072

REFERENCES

Andersson, U. (2008). Working memory as a predictor of written arithmetical

skills in children: the importance of central executive functions. Br. J. Educ.

Psychol. 78, 181–203. doi: 10.1348/000709907X209854

Andersson, U., and Lyxell, B. (2007). Working memory deficit in children with

mathematical difficulties: a general or specific deficit? J. Exp. Child. Psychol. 96,

197–228. doi: 10.1016/j.jecp.2006.10.001

Attout, L., Fias, W., Salmon, E., andMajerus, S. (2014). Common neural substrates

for ordinal representation in short-term memory, numerical and alphabetical

cognition. PLoS ONE 9:e92049. doi: 10.1371/journal.pone.0092049

Baddeley, A. (2003). Working memory: looking back and looking forward. Nat.

Rev. Neurosci. 4, 829–839. doi: 10.1038/nrn1201

Baddeley, A. D. and Hitch, G. (1977). Commentary on ‘working memory.’ in

HumanMemory: Basic Processes, ed G. Bower (NewYork, NY: Academic Press),

191–197.

Butterworth, B. (1996). Short term memory impairment and arithmetical ability.

Q. J. Exp. Psychol. A 49, 251–262. doi: 10.1080/713755603

Butterworth, B. (2003). Dyscalculia Screener. London: nferNelson Pub.

Butterworth, B. (2010). Foundational numerical capacities and the origins of

dyscalculia. Trends. Cogn. Sci. 14, 534–541. doi: 10.1016/j.tics.2010.09.007

Case, R., Kurland, D. M., and Goldberg, J. (1982). Operational efficiency and the

growth of short-term memory span. J. Exp. Child. Psychol. 33, 386–404. doi:

10.1016/0022-0965(82)90054-6

Chandler, P., and Sweller, J. (1991). Cognitive load theory and the format of

instruction. Cogn. Instruct. 8, 293–332. doi: 10.1207/s1532690xci0804_2

Chochon, F., Cohen, L., Van De Moortele, P., and Dehaene, S. (1999).

Differential contributions of the left and right inferior parietal lobules to

number processing. J. Cogn. Neurosci. 11, 617–630. doi: 10.1162/089892999

563689

Cragg, L., and Gilmore, C. (2014). Skills underlying mathematics: the role of

executive function in the development of mathematics proficiency. Trends

Neurosci. Educ. 3, 63–68. doi: 10.1016/j.tine.2013.12.001

Daneman, M., and Carpenter, P. A. (1980). Individual differences in working

memory and reading. J. Verb. Learn. Verb. Beh. 19, 450–466. doi:

10.1016/S0022-5371(80)90312-6

De Rammelaere, S., Stuyven, E., and Vandierendonck, A. (2001). Verifying

simple arithmetic sums and products: are the phonological loop and the

central executive involved? Mem. Cogn. 29, 267–273. doi: 10.3758/bf031

94920

De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., and Ghesquière,

P. (2009a). Working memory and individual differences in mathematics

achievement: a longitudinal study from first grade to second grade. J. Exp.

Child. Psychol. 103, 186–201. doi: 10.1016/j.jecp.2009.01.004

De Smedt, B., Verschaffel, L., and Ghesquière, P. (2009b). The predictive

value of numerical magnitude comparison for individual differences in

mathematics achievement. J. Exp. Child. Psychol. 103, 469–479. doi:

10.1016/j.jecp.2009.01.010

Ericsson, K. A., and Charness, N. (1994). Expert performance: its structure and

acquisition. Am. Psychol. 49, 725. doi: 10.1037/0003-066X.49.8.725

Ericsson, K. A., and Kintsch,W. (1995). Long-termworkingmemory. Psychol. Rev.

102:211. doi: 10.1037/0033-295X.102.2.211

Friso-van den Bos, I., van der Ven, S. H., Kroesbergen, E. H., and van

Luit, J. E. (2013). Working memory and mathematics in primary school

children: a meta-analysis. Educ. Res. Rev. 10, 29–44. doi: 10.1016/j.edurev.2013.

05.003

Gathercole, S. E., Pickering, S. J., Knight, C., and Stegmann, Z. (2004). Working

memory skills and educational attainment: evidence from national curriculum

assessments at 7 and 14 years of age. Appl. Cogn. Psych. 18, 1–16. doi:

10.1002/acp.934

Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., and Nugent,

L. (2009). First-grade predictors of mathematical learning disability: a latent

class trajectory analysis. Cogn. Dev. 24, 411–429. doi: 10.1016/j.cogdev.2009.

10.001

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., and Numtee, C.

(2007). Cognitive mechanisms underlying achievement deficits in children

Frontiers in Psychology | www.frontiersin.org 13 February 2016 | Volume 7 | Article 72

http://journal.frontiersin.org/article/10.3389/fpsyg.2016.00072
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Han et al. Memory Updating and Mental Arithmetic

with mathematical learning disability. Child Dev. 78, 1343–1359. doi:

10.1111/j.1467-8624.2007.01069.x

Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., and Neuper,

C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval

of arithmetic facts during problem solving. Neuropsychologia 47, 604–608. doi:

10.1016/j.neuropsychologia.2008.10.013

Hecht, S. A. (2002). Counting on working memory in simple arithmetic

when counting is used for problem solving. Mem. Cogn. 30, 447–455. doi:

10.3758/BF03194945

Hunter, I. M. (1962). An exceptional talent for calculative thinking. Br. J. Psychol.

53, 243–258. doi: 10.1111/j.2044-8295.1962.tb00831.x

Iuculano, T., Moro, R., and Butterworth, B. (2011). Updating Working Memory

and arithmetical attainment in school. Learn. Individ. Differ. 21, 655–661. doi:

16/j.lindif.2010.12.002

Kovas, Y., Haworth, C., Dale, P., and Plomin, R. (2007). The genetic and

environmental origins of learning abilities and disabilities in the early school

years.Monogr. Soc. Res. Child. Dev. 72, 1–156. Available online at: http://www.

jstor.org/stable/30163178

Lee, K. M. (2000). Cortical areas differentially involved in multiplication and

subtraction: a functional magnetic resonance imaging study and correlation

with a case of selective acalculia. Ann. Neurol. 48, 657–661. doi: 10.1002/1531-

8249(200010)48:4<657::AID-ANA13>3.0.CO;2-K

Lewandowsky, S., Oberauer, K., Yang, L.-X., and Ecker, U. K. (2010). A working

memory test battery for MATLAB. Behav. Res. Meth. 42, 571–585. doi:

10.3758/BRM.42.2.571

Logie, R. H., Gilhooly, K. J., and Wynn, V. (1994). Counting on working

memory in arithmetic problem solving. Mem. Cogn. 22, 395–410. doi:

10.3758/BF03200866

Lucchelli, F., and De Renzi, E. (1993). Primary dyscalculia after a medial frontal

lesion of the left hemisphere. J. Neurol. Neurosur. Psychiatry 56, 304–307. doi:

10.1136/jnnp.56.3.304

McLean, J. F., and Hitch, G. J. (1999). Working memory impairments in children

with specific arithmetical difficulties. J. Exp. Child. Psychol. 74, 240–260. doi:

10.1006/jecp.1999.2516

Meyer, M., Salimpoor, V., Wu, S., Geary, D., and Menon, V. (2010). Differential

contribution of specific working memory components to mathematics

achievement in 2nd and 3rd graders. Learn. Individ. Differ. 20, 101–109. doi:

10.1016/j.lindif.2009.08.004

Pickering, S., and Gathercole, S. E. (2001). Working Memory test Battery for

Children (WMTB-C). London: Psychological Corporation Europe.

Siegel, L. S., and Ryan, E. B. (1989). The development of working memory in

normally achieving and subtypes of learning disabled children. Child Dev. 60,

973–980. doi: 10.2307/1131037

Soltanlou, M., Pixner, S., and Nuerk, H.-C. (2015). Contribution of working

memory in multiplication fact network in children may shift from verbal

to visuo-spatial: a longitudinal investigation. Front. Psychol. 6:e1062. doi:

10.3389/fpsyg.2015.01062

Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N.,

et al. (2012). Abacus in the brain: a longitudinal functional MRI study of a

skilled abacus user with a right hemispheric lesion. Front. Psychol. 3:315. doi:

10.3389/fpsyg.2012.00315

Tuovinen, J. E., and Sweller, J. (1999). A comparison of cognitive load associated

with discovery learning and worked examples. J. Educ. Psychol. 91:334. doi:

10.1037/0022-0663.91.2.334

Van der Ven, S. H., Kroesbergen, E. H., Boom, J., and Leseman, P. P.

(2012). The development of executive functions and early mathematics: a

dynamic relationship. Br. J. Educ. Psychol. 82, 100–119. doi: 10.1111/j.2044-

8279.2011.02035.x

Zamarian, L., Ischebeck, A., and Delazer, M. (2009). Neuroscience of learning

arithmetic—evidence from brain imaging studies. Neurosci. Biobehav. Rev. 33,

909–925. doi: 10.1016/j.neubiorev.2009.03.005

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer, Hans-Christoph Nuerk, and handling Editor declared their

shared affiliation, and the handling Editor states that the process nevertheless met

the standards of a fair and objective review.

Copyright © 2016 Han, Yang, Lin and Yen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 14 February 2016 | Volume 7 | Article 72

http://www.jstor.org/stable/30163178
http://www.jstor.org/stable/30163178
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

