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Abstract 3 

Abstract 

Within an ever-changing world, the formation of stable and enduring memories is essential in 

defining our self and identity. High demands on cognitive functions in daily life, therefore, call 

for an efficient memory system that reduces interference between memories and enables gen-

eralizations across similar events. By means of pattern separation, similar memories are stored 

as distinct and non-overlapping representations, whereas during pattern completion, previously 

stored memories are reactivated by partial environmental cues. These two complementary func-

tions are critically reliant on the hippocampus. The combination of a unique cytological and 

network architecture forms the neural substrate of hippocampal mnemonic functions. Regard-

ing pattern separation and completion, evidence from computational models, studies in rodents, 

as well as human data support the idea that those processes are mediated by the hippocampal 

dentate gyrus and CA3 regions. However, studies in humans lack information regarding mech-

anistic aspects of causality regarding the anatomical structures of the hippocampus and pattern 

separation and completion. The aim of this thesis was to elucidate the role of the human hippo-

campus and its subfield-specific contributions to pattern separation. We examined natural le-

sion models, by means of selective CA1 lesions during a transient global amnesia, and in a rare 

form of limbic encephalitis, where neurodegeneration preferentially shows in the dentate gyrus 

and CA3. The results showed that pattern separation measured by a mnemonic similarity task 

was best predicted by the volume of the DG, whereas recognition memory was stronger asso-

ciated with the volume of CA1. We also found a strong deficit in pattern separation performance 

associated with selective CA1 lesions. We then examined pattern separation performance after 

post-encoding sleep in healthy humans to clarify the neurobiological processes of memory con-

solidation. We demonstrated the relevance of hippocampal information processing during 

sleep, in the stabilization of separated information. This might also suggest a link between pat-

tern separation and completion processes during sleep-dependent memory consolidation. 
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10 1 Introduction 

1 Introduction 

One of the most important challenges in an ever-changing environment is the correct identifi-

cation of differences and similarities in the outside world. It can be difficult, for example, to 

distinguish between memories of the last summer holidays if they were all spent at the same 

place with the same company. In contrast, one would not want to miss vibrant remembrance of 

a wonderful day at the beach when seeing a picture of sand, deckchairs, and palm trees. 

In the face of the high encoding demands of everyday life, an essential feature of memory for-

mation consists in the coordination of discrimination between similar events with simultaneous 

generalization across similar impressions. These operations are highly relevant in the utilization 

of all memory capacity in the context of forming stable long-term memories (Marr, 1971). The 

discrimination between two similar events requires the separate storage of overlapping memo-

ries. Additionally, long-term memories of past events should be easily retrieved by means of 

environmental cues (Rolls, 2016). These opposite but complementing processes are supported 

by the hippocampus: The hippocampal process of pattern separation allows a distinct and non-

overlapping storage of similar mnemonic information to reduce interference of overlapping 

memories during retrieval to maximize memory capacity. Pattern completion, on the other 

hand, by means of the extraction of generalities, enables retrieving previously encoded memo-

ries in the presence of partial environmental cues (Marr, 1971; McClelland, McNaughton, & 

O’Reilly, 1995; Norman & O’Reilly, 2003; Rolls, 2016; Figure 1-1). 

Beside the role in physiological memory formation, the hippocampus is also implicated in the 

stabilization of long-term memories in the process of system consolidation. Here, memory rep-

resentations are redistributed from the hippocampal short-term store to neocortical long-term 
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stores (Frankland & Bontempi, 2005; McClelland et al., 1995). This stabilization due to redis-

tribution to long-term stores is most effective during sleep (Marr, 1971; McClelland et al., 

1995). 

 

Figure 1-1. Similar beach scenes for an illustrative example of pattern separation and completion.  The 

discrimination of similar events (e.g., the last two summer holidays) is facilitated by means of pattern 

separation. The recall of previously encountered events by environmental cues (e.g., remembering the 

last summer holidays from a picture of palm trees) is supported by pattern completion. Wilfredor, Wiki-

media Commons, licensed by CreativeCommons-Lizenz by-sa-2.0-de, URL: http://creativecom-

mons.org/licenses/by-sa/2.0/de/legalcode 

Memory impairment is commonly accompanied by hippocampal disturbances due to neurolog-

ical disorders or healthy aging (Bartsch & Wulff, 2015; Small, Schobel, Buxton, Witter, & 

Barnes, 2011). However, there are no suitable lesion models to show the contribution of the 

human hippocampus to pattern separation and completion processes. Also, mechanisms that 

stabilize pattern separation and completion are largely unknown. The studies presented in this 

thesis aimed at showing the mechanistic contribution of the human hippocampus to pattern 

separation processing and demonstrating the neurobiological processes within the hippocampus 

during consolidation by the example of sleep. Those aims were achieved by the investigation 
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of natural hippocampal lesions models in memory impaired patients with selective hippocampal 

damage, and by the examination of the effect of sleep on pattern separation. 

1.1 The role of the hippocampus in memory 

The famous patient HM became amnesic because of a surgical removal of most of both hippo-

campi due to epilepsy treatment (Scoville & Milner, 1957). HM was impaired in forming new 

memories and retrieving those of current personal experiences. However, remote memories, 

technical skills as well as general intelligence were preserved (Scoville & Milner, 1957). Those 

studies provided the first evidence that different entities of memory are dependent on different 

brain structures. The characterization of the types of memories that are reliant on the hippocam-

pal formation was promoted by the examination of memory deficits in a range of amnesic syn-

dromes (Zola-Morgan, Squire, & Amaral, 1986). Those studies have shown that the medial 

temporal lobe was critical for the recollection of personal past experiences and the retrieval of 

previously learned facts with regard to general knowledge (Squire, Knowlton, & Musen, 1993; 

Squire & Zola, 1996; Squire & Zola-Morgan, 1991; Tulving, 1991). Patient HM’s preserved 

abilities lead to the presumption that long-term memory can be divided into different compo-

nents that operate on different brain systems (Squire et al., 1993). Personal past experiences 

and the integration of those events into a spatiotemporal context form episodic memories 

(Tulving, 1991). On the other hand, factual and general knowledge are subsumed under seman-

tic memories (Tulving, 1972). Those two types of memories can be consciously recollected; 

they are referred to as explicit memories and assigned to the declarative memory system (Cohen 

& Squire, 1980; Graf & Schacter, 1985). Non-declarative forms of memory are subsumed under 

various implicit processes including procedural memory, skill learning, priming, and condition-

ing (Milner, Squire, & Kandel, 1998; Squire, 1986; Squire & Wixted, 2011; Squire & Zola, 

1996). In contrast to declarative memory, non-declarative memories are independent from the 
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medial temporal lobe and mediated by various brain systems. Procedural and skill learning 

mostly rely on corticostriatal areas, whereas priming is associated with the neocortex depending 

on the mode of sensory input (Squire et al., 1993). Similarly, regarding conditioning, the neural 

substrate is dependent on the task at hand. For instance, fear conditioning is dependent on emo-

tional responses that involve the amygdala, whereas conditioned muscular responses activate 

cerebellar areas (Squire & Zola-Morgan, 1991). Regarding the analysis of pattern separation in 

the human hippocampus and its neural substrates on the subfield level, the studies conducted in 

this thesis will concentrate on hippocampal processing in declarative memory. 

1.2 Formation and consolidation of hippocampus-dependent 

memories 

The hippocampus is involved in all stages of memory formation that include encoding, consol-

idation, and retrieval (Frankland & Bontempi, 2005; Squire, 1992). For accurate encoding and 

retrieval of past events the hippocampus performs the processes of pattern separation and com-

pletion (O’Reilly & McClelland, 1994). By means of pattern separation, similar and ambiguous 

information are rapidly encoded and the overlap of activity pattern is reduced (Marr, 1971; 

McClelland et al., 1995). Pattern separation reduces interference by orthogonalization (i.e. 

decorrelation) of similar inputs into distinct, non-overlapping representations and small differ-

ences are amplified into large differences (Knierim & Neunuebel, 2016). This process thus al-

lows the hippocampus to separately store sequentially processed, overlapping input and mini-

mizes the loss of previously stored information due to catastrophic interference (McClelland et 

al., 1995). In addition, for later retrieval, during pattern completion the hippocampus can rein-

state a previously stored pattern by means of incomplete or degraded cues (Norman & O’Reilly, 

2003). This process enables the extraction of generalities from new and previously encoded 

representations (Yassa & Stark, 2011; Figure 1-2). 
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Figure 1-2. Concept of pattern separation and completion modified after Yassa and Stark (2011).  

Pattern separation makes similar input pattern (i.e., A and A’) more distinct and reduces the overlap 

between representations. In contrast, pattern completion increases the overlap between two similar 

input patterns.  

After an initial experience, neural patterns of perceptual information are encoded in the primary 

and associative cortices – in this connection, the hippocampus collects and integrates infor-

mation of multiple features from those different areas into one memory trace (Frankland & 

Bontempi, 2005; Morris et al., 2003). At this stage, the memory representation is rather labile 

and susceptible to interference (Müller & Pilzecker, 1900). To establish long-term memories 

after encoding, the representations must be set to more stable and permanent traces within the 

process of consolidation (Dudai, 2004; Müller & Pilzecker, 1900). Memory consolidation takes 

place on two levels (Frankland & Bontempi, 2005): 

System consolidation is considered as a temporal change of a memory’s dependence on the 

hippocampus to more distributed neocortical areas (McClelland et al., 1995). That the role of 

the hippocampus in memory is time-limited has been proposed due to the finding that hippo-

campal damage often causes malfunction of recent but not remote memories (Scoville & 

Milner, 1957). In this context, the standard two-stage model of memory consolidation suggests 

two complementary learning systems: the hippocampus rapidly encodes new information for 
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temporary storage, whereas the neocortex serves as a slow-learning long-term store (Marr, 

1971; McClelland et al., 1995). The gradual redistribution from the hippocampus to neocortex 

is reliant on repeated reactivation of the memory trace (Dudai, 2004) and has been proposed to 

be most effective during quiet wakefulness and sleep, where encoding demands are absent and 

the interference level is low (Marr, 1971; O’Reilly & McClelland, 1994).  

Complementing the system level, memory consolidation also takes place at the synaptic level 

(Dudai, 2004). The formation of long-term memories is dependent on a reorganization of syn-

aptic connectivity (i.e., strengthening or weakening) as the basis for synaptic plasticity (see 

Redondo and Morris (2011) for a review). This rather fast cellular process is thought to support 

the slower mechanisms of system consolidation (Dudai et al., 2015). Encoding induces synaptic 

plasticity via long-term potentiation (LTP; Bliss & Lomo, 1973) or long-term depression (LTD; 

Dudek & Bear, 1992). Generally, LTP is thought to increase the strength of the presynaptic 

transmission as well as the activation of the postsynaptic cells (Bliss & Collingridge, 1993; 

Hebb, 1949), whereas LTD decreases the synaptic transmission (Dudek & Bear, 1992; Mana-

han-Vaughan, 1997). The modification of synapses critically underlies the temporal order of 

the spiking of the pre- and postsynaptic synapse (Abbott & Nelson, 2000). The rule of this so-

called spike-timing dependent plasticity proves that synaptic connectivity is influenced by LTP, 

when the postsynaptic neuron is activated shortly after the presynaptic neuron. However, the 

synaptic transmission is depressed via LTD when the postsynaptic neuron is activated before 

the presynaptic neuron (Bi & Poo, 1998; Markram, Lübke, Frotscher, & Sakmann, 1997). 

1.3 Anatomical organization of the hippocampal formation and 

connectivity within the tri-synaptic circuit 

The critical role of the hippocampus in processing new mnemonic information and forming 

stable and permanent episodic memories relies on its complex circuit structure and connectivity. 
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The combination of a unique anatomy with cytoarchitectonically distinct subfields and a special 

neural organization of intrinsic connections support the spectrum of hippocampal cognitive and 

mnemonic functions (Amaral & Lavenex, 2007). 

Originally, the neuroanatomist Rafael Lorente de Nó defined the hippocampus solely as the 

cornu ammonis (CA) region (Lorente de Nó, 1934). In recent literature, the term ‘hippocampus’ 

varies across broader definitions that include all areas of the hippocampal formation, meaning 

the five further regions of the medial temporal lobe: dentate gyrus (DG), entorhinal cortex (EC), 

subiculum, presubiculum, and parasubiculum (Insausti & Amaral, 2004). It became standard to 

at least relate to the adjacent regions of the CA area - DG and subiculum - when speaking of 

the ‘hippocampus’ as is the case in this thesis. 

The hippocampal formation processes multidimensional input from the limbic system and sub-

cortical areas with backprojections to cortical areas (Amaral & Lavenex, 2007; Amaral & Wit-

ter, 1989; Lavenex & Amaral, 2000). The so-called hippocampal tri-synaptic circuit is charac-

terized by unidirectional excitations from EC to DG over CA3 to CA1 (Amaral & Witter, 1989). 

Information processing starts with projections from the EC layer II neurons to the molecular 

layer of the DG and area CA3 via the perforant path (Steward & Scoville, 1976; Witter & 

Amaral, 1991). CA1 receives projections from EC layer III neurons via the perforant path at 

temporal levels and the alvear path at more septal levels (Deller, Adelmann, Nitsch, & 

Frotscher, 1996). Within the unidirectional circuit structure, CA3 neurons also get projections 

from DG granule cells that forward information via mossy fibers (Blackstad, Brink, Hem, & 

Jeune, 1970; Rosene & Van Hoesen, 1977). From CA3, information are processed via Schaffer 

collaterals to CA1 (Rosene & Van Hoesen, 1977; Swanson, Wyss, & Cowan, 1978). With its 

recurrent collateral input, CA3 forms an autoassociative network, where axons fire back to den-

drites of neurons within CA3 creating a recursive feedback loop (Amaral, Ishizuka, & 

Claiborne, 1990; Amaral & Witter, 1989; Witter, 2007). CA1 pyramidal cells mainly forward 
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information to the subiculum (Amaral, Dolorfo, & Alvarez-Royo, 1991; Rosene & Van Hoesen, 

1977). The main output of the hippocampus and backprojection to the EC originates in CA1 

and the subiculum, which are linked to deep layers (i.e. layer V/VI) of the EC (Steward & 

Scoville, 1976; Swanson & Cowan, 1977; Tamamaki & Nojyo, 1995; Witter, 1993; Figure 1-4).  

 

Figure 1-3. Schematic view of the hippocampus with intrinsic subfield connections presented by the 

example of the rat brain modified after Yassa and Stark (2011). Perforant path input from the EC (not 

shown) projects to the DG and CA3. Mossy fibers project from the DG to the area CA3. Backprojections 

from CA3 on its own neurons are formed by recurrent collaterals. Schaffer collaterals serve as input 

from CA3 to the CA1 region. 

The reported information about the hippocampal architecture and especially its connectivity are 

mostly derived from experimental studies in rodents and non-human primates. However, 

memory research demonstrated high similarities in the structure and function across mamma-

lian hippocampi (Clark & Squire, 2013). The described anatomy has thus a great significance 

for research in humans and provides a basis for discussions and interpretations regarding the 

involvement of hippocampal structure and function in human cognition and behavior. 



18 1 Introduction 

1.4 Neural substrates of pattern separation and completion in the 

hippocampus 

Hippocampal memory regarding precise encoding and correct retrieval of past events is facili-

tated by pattern separation and completion computations (O’Reilly & McClelland, 1994). 

Those essential functions are a significant subordinate of the unique molecular organization and 

connectivity of different hippocampal subfields. In this context, computational models assume 

that the DG and CA3 are especially implicated in pattern separation and completion computa-

tions (Marr, 1971; McClelland et al., 1995; Rolls, 2016). Pattern separation reduces similarity 

between input and output patterns so that similar representations are transformed to dissimilar, 

non-overlapping representations (McClelland et al., 1995; Yassa & Stark, 2011; Figure 1-4). 

The DG is thought to accomplish pattern separation by providing distinct neural codes within 

the feedforward pathway from EC to the DG and to CA3 (O’Reilly & McClelland, 1994). First, 

similar input patterns from the EC are spread over a five times larger cell population of the DG 

granule cells (200,000 EC neurons vs. 1,000,000 DG granule cells in the rat) (Amaral et al., 

1990) so that the patterns are decorrelated and less overlapping on the level of the DG (O’Reilly 

& McClelland, 1994; Rolls, 2007). Second, the firing activity of dentate granule cells is very 

sparse (i.e. relatively few neurons are active, but still provide powerful connections) leading to 

a small number of mossy fiber connections between DG and CA3 (Kesner & Rolls, 2015). 

Together with a higher number of DG granule cells compared with CA3 pyramidal cells 

(160,000 in the rat) (Amaral et al., 1990) an even sparser activity in CA3 is produced (Kesner 

& Rolls, 2015; Rolls, 2007).  
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Figure 1-4. Schematic representation of the hippocampal tri-synaptic circuit and connections to the EC 

(modified after Clark and Squire (2013)). Black arrows highlight the projections that hallmark the feed-

forward circuit structure that is especially involved in hippocampal mnemonic functions (i.e. pattern 

separation and completion). EC layer II projects to both DG and CA3 via the perforant path. DG projects 

to CA3 via mossy fiber projections. CA3, in turn, forms an autoassociative network via backprojections 

on itself. CA1 receives projections from EC layer III via the perforant path as well as from CA3 via the 

Schaffer collaterals. CA1 as the main output region of the hippocampus projects the hippocampal 

readout to the subiculum, that is like CA1 connected to deeper layers of the EC (see Yassa and Stark 

(2011) for a review). Sub = Subiculum. 

During pattern completion, a previously encoded cortical activity pattern is reinstated by reac-

tivation of partial or noisy versions of the pattern by a sensory cue (O’Reilly & McClelland, 

1994; Rolls, 2016; Figure 1-5). Here, most theories suggest that pattern completion is dependent 

on the area CA3 and its intrinsic connections generated by recurrent collaterals that function as 

an auto-associative network (McClelland et al., 1995; Treves & Rolls, 1992). The auto-associ-

ative memory within CA3 is complemented by two excitatory afferents: the mossy fiber input 

of dentate granule cells initiates storage of information, whereas the perforant path input from 
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the EC promotes retrieval of preexisting neural ensembles (Treves & Rolls, 1992). The relative 

strength and plasticity within the synaptic connections regulate the function of CA3. During 

storage, the orthogonalized input from the DG via strong mossy fiber projections outperform 

the recurrent collateral activations within the CA3 network (Treves & Rolls, 1992). Thus, new 

firing patterns are stored within recurrent collateral connections in CA3 that represents novel 

input (Rolls, 2013; Treves & Rolls, 1992, 1994). The perforant path input from the EC provides 

the cues for retrieval. Importantly, due to the recurrent collateral system and the large number 

of perforant path inputs, even a partial cue, that does not have to be very powerful, suffice for 

retrieval within CA3 (Treves & Rolls, 1992). 

1.5 Evidence from rodent studies: electrophysiological recordings 

during exploration of different and similar environments 

The assumptions made by computational models have repeatedly been confirmed by studies in 

rodents. To provoke pattern separation and completion in the rodent hippocampus, different 

behavioral setups are commonly used. For instance, the animals explore gradually morphed 

environments from circular to rectangular shapes (J. K. Leutgeb, Leutgeb, Moser, & Moser, 

2007; Muller & Kubie, 1987) or are exposed to one environment where local and distal cues 

are rotated (Lee, Yoganarasimha, Rao, & Knierim, 2004; Neunuebel & Knierim, 2014). The 

simultaneous recording of neural activity in different subfields of the hippocampus using single 

cell recordings or immediate early gene techniques rendered proofs of a functional specializa-

tion of hippocampal subfields (Lee et al., 2004; S. Leutgeb, Leutgeb, Treves, Moser, & Moser, 

2004; Vazdarjanova & Guzowski, 2004). The comparison of CA3 and CA1 ensemble firing of 

freely moving rats in two different environments showed high changes in the firing of neurons 

in CA3 (i.e. pattern separation) and a larger overlap of firing ensembles in CA1 (S. Leutgeb et 

al., 2004). A similar study, but using an installation with low environmental change, demon-

strated homogenous firing responses in CA3 compared with CA1 (Lee et al., 2004). Those two 
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studies together suggest that CA3 exhibits different tuning functions considering input similar-

ity (Guzowski, Knierim, & Moser, 2004; Yassa & Stark, 2011). In this context, using immedi-

ate-early gene-based imaging of the rodent brain confirmed that CA3 and CA1 showed a high 

overlap of firing ensembles when the environmental change was small. Indeed, an even higher 

overlap was observed in CA3 (i.e. pattern completion). By contrast, exposure to two completely 

different enclosures providing a large change of the environmental input caused a higher rate 

of non-overlapping firing patterns in both CA3 and CA1. The overlap of neural ensembles was 

even lower in CA3 compared with CA1 (i.e., pattern separation in CA3; Vazdarjanova & 

Guzowski, 2004). Those results indicate different transfer functions of CA3 and CA1: Hippo-

campal CA3 neurons perform pattern completion when the environmental change is small, and, 

conversely, exhibit pattern separation when the environmental change is large. Conversely, the 

input-output function of CA1 can be thought of as a linear transformation (Guzowski et al., 

2004; Figure 1-5). Regarding the function of the hippocampal DG, mice with dysfunctional 

granule cells due to cell-specific NMDA receptor knock-out, were unable to distinguish similar 

contexts in a standard fear conditioning paradigm (McHugh et al., 2007). Using the same ap-

paratus including local and global cues as I. Lee et al. (2004), Neunuebel and Knierim (2014) 

provided evidence that the DG implements pattern separation on its EC inputs, whereas CA3 

performs pattern completion on the inputs received from the DG and EC. The difference of 

neural pattern separation in the DG and CA3 has vividly been illustrated by means of spike 

recordings in freely moving rats. In gradually morphed environments from circular to squared 

borders (or vice versa), only a slight deformation of the enclosure was enough to strongly sep-

arate the dentate granule cells’ firing pattern. However, a major distortion of the environment 

was needed to show pattern separation in CA3 (J. K. Leutgeb et al., 2007; Figure 1-5). 
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Figure 1-5. Expected input/output transfer function of the DG, CA3, and CA1 based on rodent studies 

as summarized in Guzowski et al. (2004). The DG shows a non-linear input-output transformation as it 

is more sensible regarding the performance of pattern separation when input changes are small. CA3 is 

represented by a sigmoidal curve with performing pattern completion when environmental changes are 

small, and pattern separation when input changes are large. CA1 is described by a linear transfer func-

tion. Figure modified after Yassa and Stark (2011). 

1.6 Evidence from human studies: behavioral pattern separation 

and fMRI 

Inspired by animal literature, behavioral pattern separation in humans is commonly measured 

by means of specific match-to-sample tasks that include similar stimuli (Bakker, Kirwan, Mil-

ler, & Stark, 2008; Berron et al., 2016; Holden, Hoebel, Loftis, & Gilbert, 2012; Kirwan & 

Stark, 2007; Stark & Stark, 2017; Stark, Yassa, Lacy, & Stark, 2013). Generally, those memory 

tests comprise an encoding phase of items of one specific category (i.e., faces, objects, or 

scenes) and a retrieval phase, where the learned items have to be distinguished from items that 

are similar, commonly called ‘lure items’ (see Berron et al. (2016); Kirwan and Stark (2007); 
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Stark et al. (2013) for examples). Importantly, those similar lures tax hippocampal pattern sep-

aration so that correctly identifying lures as similar implies successful pattern separation abili-

ties, whereas confusing similar lures with their corresponding targets indicates a bias towards 

pattern completion (Lacy, Yassa, Stark, Muftuler, & Stark, 2011; Stark et al., 2013; Yassa et 

al., 2010).  

The first study that provided evidence for a functional specialization of hippocampal subfields 

regarding pattern separation in humans used the Mnemonic Similarity Task (MST; Kirwan & 

Stark, 2007; Stark et al., 2013) during fMRI. Here, Bakker et al. (2008) measured lure-related 

novelty signals in the medial temporal lobe by making use of repetition-suppression effects. In 

short, if the activity in response to a lure stimulus was more similar to the response to a novel 

stimulus, the region was supposed to be engaged in pattern separation. If the activity response 

to a lure stimulus was more similar to the response to an old stimulus, the region was suggested 

to perform pattern completion. It has been found that the CA3/DG region responded akin to 

pattern separation, whereas the hippocampal CA1 region, subiculum, and entorhinal cortex, as 

well as the parahippocampal cortex showed activity that was related to pattern completion. 

Complementing those findings, Lacy et al. (2011) examined gradual levels of similarity of lures 

to the corresponding target. The results were comparable to the findings in rodents, where the 

testing environments were gradually morphed (J. K. Leutgeb et al., 2007). The CA3/DG region 

was sensitive to small changes, so that activity levels were high for even very similar lures. In 

contrast, in the hippocampal CA1 activity was mapped in a linear fashion: Low activity levels 

responding to highly similar items and higher activity levels responding to highly dissimilar 

items (Lacy et al., 2011). Another study that used scenes instead of objects as the behavioral 

paradigm as well as a higher resolution due to 7 Tesla fMRI, demonstrated that CA1 showed a 

decreased activation regarding old items in comparison to new items, whereas only the DG 



24 1 Introduction 

showed an increased activation regarding lures (Berron et al., 2016). Importantly, the high res-

olution allowed separating the DG region from adjacent CA3 to make individual statements 

regarding both regions. However, there was no lure-specific activity in the CA3 region. This 

study was the first to provide evidence for pattern separation in the DG separated from CA3 in 

humans. 

1.7 Physiology of sleep and sleep-dependent memory 

consolidation 

Sleep is a natural and innate state characterized by reduced reactivity to the external world and 

loss of consciousness. The sleep-wake cycle is regulated by homeostatic mechanisms that cause 

a rebound of sleep after loss or deprivation (Borbély & Achermann, 1999; Borbély, Daan, Wirz-

Justice, & Deboer, 2016). While the relatively passive state of sleep has long been questioned 

regarding its function, and the exact mechanisms are still not fully understood, it is widely 

acknowledged that sleep is critically involved in the adaptation to environmental demands by 

regulation of metabolic processes, energetic utilization, and immune functions (Rasch & Born, 

2013). With regard to the sleeping brain, specific field potential oscillations hallmark different 

sleep stages that alternately occur in 90 minutes cycles (Diekelmann & Born, 2010). Typically, 

the first half of nocturnal sleep (early sleep) is predominated by slow wave sleep (SWS), 

whereas rapid eye movement (REM) sleep prevails in the second half (late sleep; Diekelmann 

& Born, 2010; Stickgold, 2005). SWS is represented by high amplitude and low frequency slow 

oscillations (peak frequency at ~ 0.75 Hz), whereas REM sleep is accompanied by ponto-ge-

niculo-occipital (PGO) waves and wakelike hippocampal theta activity (4-8 Hz). As the term 

indicates, REM sleep is reflected by phasic rapid eye movements and muscle atonia (Rasch & 

Born, 2013). Concerning the memory function of sleep, SWS and REM sleep have been found 

to be differentially involved: It is widely acknowledged that SWS supports the formation and 
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consolidation of hippocampus-dependent declarative memories, whereas REM sleep specifi-

cally processes non-declarative memory content (Maquet, 2001). For instance, after SWS ver-

bal (Drosopoulos, Wagner, & Born, 2005), emotional (Groch, Zinke, Wilhelm, & Born, 2015), 

and spatial memories (Plihal & Born, 1999) were stabilized, while REM-rich periods of sleep 

have been found to facilitate procedural memory and the effect of priming (Plihal & Born, 1997, 

1999). 

Declarative memory consolidation is critically reliant on the rapid encoding of new information 

in the hippocampus and transformation to neocortical long-term stores (Frankland & Bontempi, 

2005; McClelland et al., 1995). One of the first direct evidences that neuronal ensemble activity 

is gradually transferred across brain regions has been provided by studies in rats (Buzsáki, 1996, 

1998). It is assumed that the core mechanism for this transfer is based on repeated reactivation 

of newly encoded memories providing an active system consolidation process (Frankland & 

Bontempi, 2005; Marr, 1971; McClelland et al., 1995). Those reactivations occurring during 

slow wave sleep (SWS) result in reorganization and stabilization of representations in the long-

term store (Frankland & Bontempi, 2005; Rasch & Born, 2013).  

During SWS, the neocortical slow oscillation (SO) at a frequency of ∼ 0.75 Hz (Steriade, Con-

treras, Curró Dossi, & Nuñez, 1993; Steriade, Nuñez, & Amzica, 1993), serves as a frame for 

the synchronization of simultaneously present neural activity in the thalamus and hippocampus 

(Mölle & Born, 2011; Mölle, Yeshenko, Marshall, Sara, & Born, 2006; Steriade, 2006, 2006). 

First, the part of oscillatory dynamics that are essentially involved in the active system consol-

idation process are the thalamo-cortical spindles (∼ 10-15 Hz oscillations) that emerge in the 

form of two types. Fast spindles (∼ 13-15 Hz) are distributed over central and parietal regions, 

whereas slow spindles (∼ 10-12 Hz) concentrate on frontal areas (De Gennaro & Ferrara, 2003). 

Second, hippocampal sharp-wave ripples play a crucial role in memory transfer from hippo-
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campus to neocortex (Buzsáki, 1996). Sharp-waves are generated in the hippocampal CA3 re-

gion and are overlaid by ripples generated in CA1 (∼200 Hz high-frequency bursts in rodents 

(Buzsáki, Horváth, Urioste, Hetke, & Wise, 1992) and 80-100 Hz oscillations in human hippo-

campal recordings (Clemens et al., 2007, 2011)). Those two events jointly form sharp-wave 

ripples (Buzsáki, 1986; Csicsvari, Hirase, Czurkó, Mamiya, & Buzsáki, 1999; Girardeau & 

Zugaro, 2011). In particular, sharp-waves accompany the repeated reactivation of previously 

encoded memory traces during sleep (Sirota & Buzsáki, 2005; Wilson & McNaughton, 1994). 

The neocortical SO cause a temporal grouping of spindles and sharp-wave ripples into hyperpo-

larizing down-states and depolarizing up-states (Haider, Duque, Hasenstaub, & McCormick, 

2006; Shu, Hasenstaub, & McCormick, 2003; Steriade, 2006; Steriade, Timofeev, & Grenier, 

2001): During the hyperpolarizing down-states of the SO the generation of thalamo-cortical 

spindles and hippocampal sharp-wave ripples is inhibited, whereas the depolarizing up-state 

releases a new increase (rebound effect) of spindle and sharp-wave ripple activity (Clemens et 

al., 2007; Isomura et al., 2006; Mölle & Born, 2011; Peyrache, Battaglia, & Destexhe, 2011). 

The synchronization further allows for the formation of spindle-ripple events that mediate the 

hippocampal to neocortical transfer (Clemens et al., 2011; Siapas & Wilson, 1998; Sirota & 

Buzsáki, 2005; Sirota, Cicsvari, Buhl, & Buzsáki, 2003; Staresina et al., 2015). Here, ripples 

are temporally nested into spindle troughs (Clemens et al., 2011; Siapas & Wilson, 1998; Figure 

1-6). During this process, the SO orchestrates the linkage of hippocampal, thalamic, and neo-

cortical regions under a top-down control allowing communication (Buzsáki, 1996). This so-

called hippocampal-neocortical dialogue forms the basis for system consolidation of hippocam-

pus-dependent memories (Frankland & Bontempi, 2005). On the synaptic level, it is assumed 

that due to homeostasis within synaptic connections, the synaptic strength after encoding during 

wakefulness is downscaled in subsequent periods of sleep (Tononi & Cirelli, 2003, 2006). 

Higher demands on encoding mechanisms during wakefulness result in higher amplitudes of 
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SO during SWS (Huber, Ghilardi, Massimini, & Tononi, 2004; Mölle, Marshall, Gais, & Born, 

2004). Downscaling of the synaptic strength leads to sparing of energy and space by means of 

deterioration of weakly encoded memories and enhancement of strongly encoded memories, 

and, importantly, to a facilitation of new encoding after sleep (Dash, Douglas, Vyazovskiy, 

Cirelli, & Tononi, 2009; Tononi & Cirelli, 2006; Vyazovskiy, Cirelli, Pfister-Genskow, Fara-

guna, & Tononi, 2008). Whether those processes of consolidation leading to a redistribution of  

memory representations or a facilitation of encoding after sleep also apply to hippocampal pat-

tern separation is not clear. 

 

Figure 1-6. Schematic model of the hippocampal-neocortical dialogue. During SWS neocortical SO 

temporally couple thalamo-cortical spindles and hippocampal sharp-wave ripples. This synchronization 

coordinates the formation of spindle-ripple events that mediate the hippocampal to neocortical transfer. 

Repeated reactivation of newly encoded memories is accompanied by sharp-wave ripples. The dialogue 

during SWS thus forms the basis for system consolidation of hippocampus-dependent memories. Figure 

inspired by Born and Wilhelm (2012). 

1.8 Aims and hypotheses 

Theories based on the computational models of pattern separation processing and rodent studies 

that measured the behavioral outcome on the basis of hippocampal place cell remapping both 
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conclude that the DG/CA3 network is critically involved in pattern separation (Lee et al., 2004; 

J. K. Leutgeb et al., 2007; Treves & Rolls, 1994). Studies in humans support this finding by 

means of fMRI investigations that measured the activity of hippocampal areas during behav-

ioral paradigms that tax pattern separation (Bakker et al., 2008; Berron et al., 2016; Lacy et al., 

2011). Although regional neural activity of the hippocampus can be displayed by means of 

fMRI (see Berron et al. (2016) for an example), those studies lack information regarding mech-

anistic aspects of causality about the subfield-specific computational processes and the causal 

role of hippocampal structure and its function. Therefore, we examined two hippocampal lesion 

models, where specific hippocampal subfields are impaired due to neurological diseases. In 

Study I, the transient global amnesia (TGA) served as a model for a selective disruption of 

hippocampal CA1 neurons. TGA is characterized by a cognitive deficit limited to a clear ante-

rograde amnesia in the acute phase that is resolved within 24 hours (Bartsch et al., 2010; Hodges 

& Warlow, 1990). Typically, focal lesions restricted to area CA1 accompany the disturbance 

(Bartsch, Alfke, Deuschl, & Jansen, 2007; Bartsch et al., 2006). It was hypothesized that a 

selective impairment of CA1 during TGA causes a deficit in pattern separation abilities. To 

further reveal the causal role of hippocampal subfield contributions to pattern separation, an 

extremely rare patient cohort positive for LGI1 antibodies, who develop limbic encephalitis 

with persisting memory deficits (Bettcher et al., 2014; Butler et al., 2014) and structural damage 

to the hippocampal system (Irani et al., 2011, 2013; Malter et al., 2014), was examined in a 

second study. The aim of Study II was to predict pattern separation performance from DG and 

CA3 that are predominantly affected by neuroinflammatory changes due to LGI1 encephalitis 

(Finke et al., 2017; Miller et al., 2017). The hypothesis included that inflammatory lesions 

within the DG and CA3 subfields correlate to hippocampal pattern separation.  

Surprisingly, few attention has been paid to the neurobiological role of the hippocampus and 

its subfield-specific computations during consolidation. Therefore, Study III concentrates on 
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this gap in research: Pattern separation abilities were tested before and after a night of sleep 

compared to a delay period covering wakefulness. It was hypothesized that the effect of sleep-

dependent consolidation would be reflected in stabilized pattern separation after post-encoding 

sleep. Participants and patients in all three studies, were tested using a mnemonic similarity task 

(MST) that has been validated as assessing behavioral pattern separation and taxing the associ-

ated hippocampal function of neural pattern separation (Bakker et al., 2008; Lacy et al., 2011; 

Stark et al., 2013).  

In summary, the three studies conducted within this thesis were expected to clarify the relation 

of the hippocampus to pattern separation in describing structure-function relationships in 

memory as well as consolidation. 
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2 Study I 

 

2.1 Abstract 

Day-to-day life involves the perception of events that resemble one another. For the sufficient 

encoding and retrieval of similar information, the hippocampus provides two essential compu-

tational processes. Pattern separation refers to the differentiation of overlapping memory rep-

resentations, whereas pattern completion reactivates memories based on noisy or degraded in-

put. Evidence from human and rodent studies suggest that pattern separation specifically relies 

on neuronal ensemble activity in hippocampal subnetworks in the dentate gyrus and CA3. Alt-

hough a role for CA1 in pattern separation has been shown in animal models, its contribution 

in the human hippocampus remains elusive. In order to elucidate the contribution of CA1 neu-

rons to pattern separation, we examined 14 patients with an acute transient global amnesia 

(TGA), a rare self-limiting dysfunction of the hippocampal system showing specific lesions to 

CA1. Patients' pattern separation performance was tested during the acute amnestic phase and 

follow-up using an established mnemonic similarity test. Patients in the acute phase showed a 

profound deficit in pattern separation (p < .05) as well as recognition memory (p < .001) that 

recovered during follow-up. Specifically, patients tested in a later stage of the amnesia were 

less impaired in pattern separation than in recognition memory. Considering the time depend-

ency of lesion-associated hippocampal deficits in early and late acute stages of the TGA, we 

Transient hippocampal CA1 lesions in humans impair pattern 

separation performance 

A. Hanert, A. Pedersen, and T. Bartsch 

Published in Hippocampus, January 2019, doi: 10.1002/hipo.23073, [Epub ahead of print] 
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showed that the pattern separation function recovered significantly earlier than recognition 

memory. Our results provide causal evidence that hippocampal CA1 neurons are critical to 

pattern separation performance in humans. 

Keywords: CA1, hippocampus, pattern separation, recognition memory, transient global amne-

sia 

2.2 Introduction 

In daily life, we are constantly exposed to episodes that resemble one another in temporal, spa-

tial and contextual features. The formation of episodic memories from this mnemonic infor-

mation requires the detection of novelty and similarity. The hippocampus provides two opera-

tions that support rapid storage of this new mnemonic information separately from preexisting 

similar representations. The function of pattern separation is to produce non-overlapping rep-

resentations of similar neuronal input in order to reduce interference and to facilitate the for-

mation of a novel memory representation. On the contrary, pattern completion supports re-

trieval of memories based on incomplete or degraded cues (Knierim & Neunuebel, 2016; 

McClelland, McNaughton, & O’Reilly, 1995; Yassa & Stark, 2011). Recent progress in rodent 

physiology led to critical advances and reformulation of the mechanistic aspects of pattern sep-

aration and completion processes in the hippocampus. Here, the activation of hippocampal sub-

networks has been found to be associated with distinct mnemonic functions. The hippocampal 

dentate gyrus (DG) is particularly involved in pattern separation whereas CA3 has been shown 

to be capable of performing both, pattern separation and completion computations depending 

on the similarity of the sensory input (Guzowski, Knierim, & Moser, 2004; I. Lee, Yoga-

narasimha, Rao, & Knierim, 2004; J. K. Leutgeb, Leutgeb, Moser, & Moser, 2007; Neunuebel 

& Knierim, 2014). The CA1 region serves as the primary output of the hippocampus that relays 

information from CA3/DG networks to neocortical areas (Witter & Amaral, 2004). Here, results 
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from a variety of rodent studies suggest a linear input-output function of CA1 neuronal activity 

in the discrimination of similar mnemonic information (Guzowski et al., 2004; I. Lee et al., 

2004; S. Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004; Vazdarjanova & Guzowski, 2004). 

In both rodents and humans, the role of CA1 neurons in the process of pattern separation and 

completion is incompletely understood. In trying to identify the contribution of CA1 to pattern 

separation and completion processes in humans, imaging studies showed a bias toward pattern 

completion in the CA1 region (Bakker, Kirwan, Miller, & Stark, 2008), whereas a later study 

showed that CA1 exhibits pattern separation-like activity when the change of the input increases 

(Lacy, Yassa, Stark, Muftuler, & Stark, 2011). Due to methodological reasons of image reso-

lution in fMRI a fine-grained analysis of a causal relationship between hippocampal subfields 

and hippocampus-dependent behavior is complex. To mechanistically enlighten the contribu-

tion of individual hippocampal subfields and their operation in pattern separation and comple-

tion, specific lesion models are needed. For instance, Baker et al. (2016) provided evidence for 

a particular role of the DG in pattern separation in one patient with bilateral ischemic lesions in 

the DG. This case study provides insight into the causal contribution of hippocampal subfields 

to mnemonic processes and its structural foundation. To further elucidate the mechanistic con-

tribution of CA1 to pattern separation processes, we here examined patients in the acute stage 

of transient global amnesia (TGA) that is a natural lesion model of hippocampal CA1 neurons 

(Bartsch et al., 2006, 2010). As a behavioral paradigm, we used the mnemonic similarity task 

(MST) that has previously been shown to validly tax hippocampal pattern separation (Hanert, 

Weber, Pedersen, Born, & Bartsch, 2017; Kirwan & Stark, 2007; Stark, Yassa, Lacy, & Stark, 

2013). We aimed at showing that a transient hippocampal CA1 dysfunction within acute stages 

of a TGA impairs the operation of pattern separation highlighting the role of CA1 in the context 

of the formation of episodic memory.  
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2.3 Materials and procedure 

2.3.1 Study cohort  

A cohort of 14 patients (66.86 ± 2.29 years, range 53 – 80, 50% female) participated in the 

study. Patients presented to our neurological emergency unit during the acute phase of a TGA. 

Patients were diagnosed according to the criteria of a TGA (Bartsch et al., 2010; Caplan, 1985; 

Hodges & Warlow, 1990) that includes (a) that attacks are witnessed by an observer present for 

most of the attack, (b) a clear anterograde amnesia during the attack, (c) no clouding of con-

sciousness or loss of personal identity, (d) that the cognitive impairment is limited to the amne-

sia, (e) no focal neurological symptoms or epileptic signs, (f) no recent history of head injuries 

or seizures, and (g) that the attack is resolved within 24 hr. The TGA shows a characteristic 

time course with an abrupt onset of the pronounced hippocampal deficit and with a gradual 

recovery of the hippocampal functions in the last third of the attack. Patients were studied by 

one neurologist who remained 24/7 on-call for this study. All patients had a standard neurolog-

ical examination on admission and follow-up and underwent a structured interview to assess 

the time course of TGA evolution as well as clinical factors and a history of cardiovascular and 

neurological diseases. As a control group, 14 healthy subjects matched by age and gender 

(67.86 ± 2.15, 50% female) were tested. All participants gave written informed consent to the 

study that was approved by the Ethical Committee of the University of Kiel.  

2.3.2 Materials and procedure 

Patients were tested in the acute phase of the TGA (4.21 ± 0.38 hr after onset of symptoms) and 

in a follow-up testing procedure when fully recovered from all TGA symptoms (212.29 ± 19.28 

d, at least 2 months after the acute phase). The mnemonic similarity task (MST) (Kirwan & 

Stark, 2007; Stark et al., 2013; https://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-

mst/, stand-alone version for windows v 0.8) as well as the Rey Auditory Verbal Learning Test 
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(RAVLT; Rey, 1941) were performed in the acute phase of the TGA, in the follow-up meas-

urement and by the control group. TGA patients performed parallel versions of the MST (Set 

C in acute phase, Set D in follow-up phase) and RAVLT at follow-up. The RAVLT was used 

to assess the quantifiable degree and magnitude of the hippocampal deficit. 

2.3.3 Mnemonic similarity task 

For the assessment of behavioral pattern separation we used the MST (Kirwan & Stark, 2007; 

Stark et al., 2013). The encoding phase of the task consisted of 128 items displaying everyday 

objects that patients were supposed to identify as either indoor or outdoor object via button 

press on a keyboard. The following immediate test phase comprised 192 items displaying in 

each case one third as exact repetitions of the encoded objects (64 targets), objects similar to 

the encoded items (64 lures), and items that were totally new (64 foils). In this phase, partici-

pants indicated whether the objects were ‘old,’ ‘similar,’ or ‘new’ to the previously encoded 

targets via button press. Participants performed the whole task on a computer with items pre-

sented on the screen as color photographs on a white background for 3 s and 1 s inter-stimulus 

interval. Responses had to be given in the 3 s stimulus presentation for recording of data (Figure 

2-1). 
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Figure 2-1. Procedure of the MST. Participants first encoded 128 items of everyday objects presented 

on a computer screen thereby judging whether items were indoor or outdoor objects. Thereafter partic-

ipants decided whether the items were old, similar or new to the previously encoded target items in an 

immediate recall condition containing 192 items. The items displayed in the graph are taken from the 

original image data base of the MST. ISI, inter-stimulus interval. 

The responses to lure items were of particular interest with the correct ‘similar’ response indi-

cating successful pattern separation, whereas an ‘old’ response would indicate a bias toward 

pattern completion (Bakker et al., 2008; Lacy et al., 2011; Yassa et al., 2010). The lure objects 

were grouped into five degrees of similarity to a target object ranging from 1 (most similar) to 

5 (least similar). Thus, pattern separation performance was also assessed as a function of lure 

similarity (Lacy et al., 2011; Yassa et al., 2010). In summary, the MST allows the calculation 

of a Pattern Separation score (PatSep score) in previous studies often termed Behavioral Pattern 

Separation (BPS) score or Lure Discrimination Index (LDI) (Stark & Stark, 2017; Stark et al., 

2013) and a Recognition Memory (RM) score, each corrected for a response bias: (a) Pattern 

Separation (PatSep) score: PatSep = [p (correct ‘similar’ response to lures) – p (false ‘similar’ 

response to foils)], (b) RM score: RM = [p (correct ‘old’ response to targets) – (false ‘old’ 

response to foils)] (Stark et al., 2013; Yassa, Lacy, et al., 2011; Yassa et al., 2010). 
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2.3.4 Declarative memory testing 

For evaluating episodic declarative memory and assessing the magnitude of the amnestic deficit 

as well as the severity of TGA and thus hippocampal dysfunction the RAVLT was used. Over-

all, the test measures immediate memory, new verbal learning, susceptibility to interference, 

delayed recall, and recognition. It thus enables to evaluate encoding, consolidation and retrieval 

of verbal memory. 

2.3.5 General neuropsychological testing 

Healthy controls and patients at time of the follow-up measurement completed a general neu-

ropsychological test battery for the assessment of (a) executive functioning via Trail Making 

Test A and B (TMT; Reitan, 1979) (b) verbal fluency via Regensburg Word Fluency Test 

(RWT; Aschenbrenner, Tucha, & Lange, 2000) (c) working memory via digit span (Wechsler, 

1997) and (d) an estimate of premorbid general intellectual ability via a 37-item multiple choice 

vocabulary test as a German equivalent of the National Adult Reading Test (Lehrl, 2005). Par-

ticipants all performed within a normal range (Table 2-1). Handedness was assessed via the 

Edinburgh Handedness Inventory (EHI; Oldfield, 1971).  
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Table 2-1. Neuropsychological data of TGA patients (follow-up) and controls (mean ± SEM) 

 TGA Controls t(df = 26) Z p 95% CI 

Age (years) 66.86 ± 2.29 67.86 ± 2.15 -0.32 - 0.753 [-7.47, 5.47] 

TMT-A 40.71 ± 3.87 41.86 ± 4.41 - -0.23 0.839  

TMT-B 109.57 ± 19.79 85.82 ± 5.99 - -0.09 0.946  

MWT-B 32.14 ± 0.85 29.86 ± 1.76 - -0.40 0.701  

RWT-fore-

names 
27.14 ± 1.84 29.43 ± 2.47 -0.74 - 0.465 [-8.62, 4.05] 

RWT-S 13.50 ± 1.29 15.71 ± 1.45 -1.14 - 0.264 [-6.20, 1,77] 

Digit span total 12.86 ± 0.94 13.14 ± 0.94 -0.22 - 0.831 [-3.02, 2.45] 
TMT, Trail-making test; MWT, Mehrfachwahl-Wortschatz Intelligenztest; RWT, Regensburg word flu-

ency test, 95% confidence intervals are calculated for parametric tests. 

2.3.6 Magnetic resonance imaging 

Whole brain clinical MRI's of patients were acquired 24-72 h after onset of TGA symptoms 

when the detectability of hippocampal lesions is highest (Bartsch, Alfke, Deuschl, & Jansen, 

2007) High-resolution were performed on a 3 Tesla unit (Philips Achieva) using diffusion 

weighted Echo Planar Imaging (DW-EPI) (TR/TE/FA = 3,234/72/90, slice thickness 2 mm, 

voxel size 1.67 x 2.12 x 3 mm) with subsequent maps of the apparent diffusion coefficient 

(ADC), as well as additional T2-weighted turbo spin echo sequences (TR/TE/FA = 

4,455/100/90, slice thickness 2mm, voxel size 0.51 x 0.65 x 2 mm) transverse oblique plane 

parallel to the hippocampus and coronal perpendicular to the hippocampus. All images were 

inspected with respect to structural abnormalities in the whole brain including temporal and 

frontal lobe structures. 

Lesions were considered a CA1 hippocampal lesion only when detectable in both DWI and T2-

weighted images with hyperintense DWI and T2 lesions corresponding to identical locations 

within the different sectors of the cornu ammonis in the coronal plane and the rostral-occipital 

position within the hippocampus. MR images were visually inspected by two neuroradiologists 
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and one neurologist experienced in the detection of structural changes in hippocampal signals 

in TGA. Lesions were mapped within the different sectors of the cornu ammonis after Lorente 

de Nó according to the anatomical reference atlas of Duvernoy (Duvernoy, Cattin, & Risold, 

2013; Lorente de Nó, 1934; Figure 2-7. a-d). 

2.3.7 Statistical Analyses 

For investigating differences between the TGA patients' performance in the acute phase and 

follow-up, repeated measures analyses of variance (ANOVAs) with condition as within sub-

jects factor were performed.Patients' performances in both conditions (acute and follow up)  

were compared with the control group by means of two factorial ANOVAs with condition 

(acute vs. controls) or (follow-up vs. controls) as between -subjects factor. Correct responses 

(‘old│target’ vs. ‘similar│lure’ vs. ‘new│foil’), incorrect responses to lures (‘old’ vs. ‘new’), 

and performance in different degrees of lure similarity (Lure 1 to Lure 5) were compared by 

adding a within -subjects factor to the ANOVAs, respectively. For the analysis of differences 

in PatSep and RM Scores as well as the RAVLT scores between acute and follow-up paired 

samples t tests or Wilcoxon tests, depending on distribution, were performed. The same com-

parison with regard to the control group was done using independent samples t tests or Mann-

Whitney-U-tests according to distribution. The Shapiro Wilk test was performed for the pre-

testing of normal distributions and Levene's test for assessing homogeneity of variances. 

Welch's t tests were performed for independent samples when variances were heterogenous. If 

the assumption of sphericity for repeated measures ANOVAs was violated, degrees of freedom 

would be reported according to Greenhouse-Geisser correction. Post-hoc pairwise comparisons 

were conducted to specify significant effects highlighted by the ANOVA. 

As the RAVLT reflects the degree of hippocampal recovery after the onset of symptoms, the 

TGA acute group was split by their declarative memory performance in the RAVLT. Here, 
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either independent samples t tests, for comparison of the acute groups, or paired samples t test, 

for comparison of acute groups and their follow-up performance, were calculated. For the com-

parison of the acute groups regarding lure similarities, a mixed ANOVA was conducted with 

lure similarity as within -subjects factor (Lure 1 to Lure 5) and the testing time after onset of 

symptoms (early acute vs. late acute) as between-subjects factor. Moreover, for the comparison 

of both acute groups with the follow-up phase, repeated measures ANOVA with lure similarity 

(Lure 1 to Lure 5) as the first and condition (acute vs. follow-up) as the second repeated-meas-

ure factor was performed. Differences in response behavior on stimulus type level were ana-

lyzed using either two-way ANOVA for independent samples for the comparison of both acute 

groups, or two-way repeated measures ANOVA for dependent samples for the comparison of 

both acute groups with their follow-up performance. 

To statistically prove increases in performance when lure similarity decreases (i.e., lures are 

easier to distinguish from corresponding targets), Spearman's Rho expressing the relation be-

tween PatSep scores and lure similarity was calculated for every participant separately. The 

significances of the slopes of the average correlations for all three conditions were tested using 

Wilcoxon signed ranks tests against zero. The same procedure was done for the relation be-

tween the sequential number of the RAVLT learning trials and the related number of words to 

show a significant increase in learning from trial to trial. 

To analyze the relationship between scores of the MST and RAVLT, Pearson product-moment 

correlations were calculated for normal distributed variables, otherwise, Spearman's Rho was 

used. The equality of performance in neuropsychological tests of TGA patients and the control 

group was examined by independent samples t tests or Mann-Whitney-U-tests according to 

distribution. To demonstrate independence of test scores from number, lateralization and posi-
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tion of lesions in the sagittal plane, eta coefficients and Spearman's Rho were computed. Ad-

justments for multiple testing were done according to Bonferroni-Holm.  The significance level 

was set to p < 0.05, two-tailed for all tests. Data are specified as mean ± SEM. 

2.4 Results 

2.4.1 Mnemonic similarity task performance 

We performed a 2 x 3 repeated measures ANOVA with condition (TGA acute vs. TGA follow-

up) and stimulus type (target vs. lure vs. foil) as within -subjects factors for the analysis of 

correct responses in the MST. The ANOVA revealed a significant condition x stimulus type 

interaction (F(2, 26) = 51.26, p < 0.001, η²p = 0.80). Post-hoc pairwise comparisons showed 

that patients in the acute phase of the TGA performed significantly worse than at follow-up 

considering correct responses to targets (p < 0.001) and lures (p < 0.001). There was no 

difference regarding answers to foils (p = 0.566). A 2 x 3 mixed ANOVA with group (TGA 

follow-up vs. controls) as between subjects factor and stimulus type (target vs. lure vs. foil) as 

within subjects factor. There was no significant interaction effect (F(2, 52) = 1.23, p = 0.117, 

η²p = 0.08). As expected, the test performance at follow-up was not different from the 

performance of the control group for any stimulus type (all p’s > 0.310). There was a significant 

group x stimulus type interaction in the 2 x 3 mixed ANOVA with group (TGA acute vs. 

controls) as between subjects factor and stimulus type (target vs. lure vs. foil) as within subjects 

factors (F(2, 52) = 39.72, p < 0.001 0.117, η²p = 0.60). Clearly, post-hoc between-subjects 

contrasts revealed that patients in the acute phase of the TGA performed significantly worse 

compared with the control group considering correct responses to targets (p < 0.001) and lures 

(p < 0.001), but no significant difference between the responses to foils (p = 0.550) (Figure 
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2-2).  

 

Figure 2-2. a-c) Mean (± SEM) proportion of responses to targets, lures, and foils in performing the 

MST for TGA acute vs. follow-up vs. controls. The values indicate percentages of responses relative to 

each stimulus type. Note the reduced correctness of patients in the acute phase of the TGA regarding 

target and lure items as well as the bias towards the ‘new’ response. d) Mean (± SEM) of the PatSep and 

RM scores for all groups. TGA patients were impaired in correctly separating and recognizing items of 

the MST. Adjustment for multiple testing was done using the Bonferroni-Holm correction. *p < 0.05, 

** p < 0.01, *** p < 0.001 n.s. = non-significant. 

As we were interested in the answers to lures that pose the highest demands on pattern 

separation, we analyzed the errors responding to those items. The 2 x 2 repeated measures 

ANOVA with condition (TGA acute vs. follow-up) and error type (old vs. new) as within -

subjects factors revealed a significant condition x error type interaction (F(1, 13) = 121.39, p < 

0.001, η²p = 0.90). Patients in the acute phase of the TGA were more prone to incorrectly 

respond ‘new’ to lures than in the follow-up phase (p < 0.001). In contrast, for the follow-up 

phase, the ‘old’ response to lures was more frequent than in the acute phase of the TGA (p < 

0.001). Comparing patients' performance at follow-up with the control group showed no 

interaction effect (F(1, 26) = 1.25, p = 0.273, η²p = 0.05). There was no difference between the 

committed errors of patients in the follow-up phase and the control group (both p’s > 0.189). 

As expected, the comparison between patients in the acute phase and the control group revealed 

a significant interaction effect (F(1, 26) = 72.90, p < 0.001, η²p = 0.74). Patients in the acute 
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phase responded significantly more ‘new’ to lures than the control group (p < 0.001), whereas 

the control group used the ‘old’ answer more frequently (p < 0.001). Considering the patients' 

response behavior in the acute phase, they made significantly more ‘new’ responses to lures 

(77.00 ± 5.18) than ‘old’ responses (16.43 ± 5.17) (p < 0.001). However, at follow-up, the 

incorrect ‘old’ answer was more frequent (54.50 ± 4.59 vs. 14.07 ± 2.35) (p < 0.001). Likewise, 

control group participants used the ‘old’ answer more frequently than the ‘new’ answer (45.07 

± 2.91 vs. 12.14 ± 2.03) (p < 0.001) (Figure 2-2). All p-values in multiple tests for the analysis 

of response behavior were adjusted according to Bonferroni-Holm. 

Calculating the MST scores, pairwise t-tests displayed that the scores in the acute phase 

were significantly lower than in the follow-up phase of the TGA (PatSep: t(13) = -4.06, p = 

0.004, 95% CI [-32.36, -9.89]; RM: t(13) = -8.77, p < 0.0001, 95% CI [-71.66, -43.34]; 

Bonferroni-Holm adjusted). The same held true comparing scores of TGA patients in the acute 

phase with the control group using the Welch test and Mann-Whitney U-test (PatSep: t(16.74) 

= -6.54, p < 0.001, 95% CI [-38.37, -19.63]; RM: Z = -4.18, p < 0.001, Bonferroni-Holm 

adjusted). There were no differences between the scores in the follow-up phase of the TGA and 

the control group (PatSep: t(26) = -1.23, p = 0.456, 95% CI [-20.99, 5.24]; RM: t(26) = 0.17, p 

= 0.865, 95% CI [-10.21, 12.06]; Bonferroni-Holm adjusted) (Figure 2-2). The results indicate 

profound deficits in successfully separating and recognizing previously encoded stimuli during 

the acute phase of the TGA. 

Considering different degrees of lure similarity, we found deficits in separating lures for 

all degrees over the course of the acute phase. For the PatSep score, a 2 x 5 repeated measures 

ANOVA with condition (TGA acute vs. follow-up) and similarity (Lure 1 to Lure 5) as within-

subjects’ factors revealed a significant condition x similarity interaction (F(4, 52) = 4.18, p < 

0.01, η²p = 0.24). Post-hoc pairwise tests of simple effects showed for every degree of lure 

similarity a higher score in the follow-up phase compared with the acute phase (all p's < 0.05, 
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Bonferroni-Holm adjusted). A 2 x 5 ANOVA with group (TGA acute vs. controls) as between -

subjects factor and similarity (Lure 1 to Lure 5) as within -subjects factor revealed a significant 

interaction effect (F(4, 104) = 5.42, p < 0.001, η²p = 0.17). We found significantly higher scores 

for every degree of lure similarity in the control group compared with the acute phase (all p's < 

.001). The interaction of a 2 x 5 ANOVA with group (TGA follow-up vs. controls) as between 

-subjects factor and similarity (Lure 1 to Lure 5) as within subjects factor was non-significant 

(F(2.58, 67.17) = 2.04, p = 0.125, η²p = 0.07). There was no difference for any degree of lure 

similarity (all p’s > 0.258) (Figure 2-3). 

 

Figure 2-3. Pattern separation performance (means ± SEM) as a function of lure similarity. Asterisks 

above the black line indicate significance of post-hoc comparisons between acute and follow-up. Aster-

isks above the dotted line indicate significance of comparisons between the acute group and controls. 

PatSep scores are higher in the follow-up phase of the TGA compared to the acute phase for every 

degree of lure similarity. Note the gradual increase of performance as a function of lure similarity in the 

follow-up phase and in the control group. * p < 0.05, ** p < 0.01. 

To further characterize the relation of correctly separating lures of different similarities 

during hippocampal dysfunction, we calculated correlations between lure similarity and the 

PatSep score for every participant separately. For three patients, it was not possible to calculate 

a correlational coefficient in either condition (i.e., acute vs. follow-up) as the scores of all five 
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bins were equal, so that the variable was constant without any variance. Thus, the following 

analysis was reduced to n = 11 in the acute phase and n = 12 in the follow-up phase. The average 

correlation was significantly different from zero only in the follow-up phase (rs = 0.46 ± 0.13; 

Z = 2.62, p < 0.05, adjusted for Bonferroni-Holm) and the control group (rs = 0.56 ± 0.11; Z = 

2.77, p < 0.05, adjusted for Bonferroni-Holm), whereas the correlation equaled zero in the acute 

phase of the TGA (rs = 0.05 ± 0.19; Z = 0.27, p = 0.79, adjusted for Bonferroni-Holm). The 

results show, that the patients' deficits in pattern separation during the acute phase of the TGA 

were not limited to a specific degree of lure similarity. Indeed, as there was no graduation in 

performance in the acute phase, the findings show that all functions of pattern separation were 

impaired during the amnesia (Figure 2-3).  
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2.4.2 Declarative memory 

Pairwise comparisons revealed profound deficits in verbal declarative learning for patients in 

the acute phase as measured by the RAVLT sum score, RAVLT retention score, RAVLT delayed 

recall, and RAVLT recognition score. At follow-up declarative memory performance of patients 

no longer differed from the control group's performance (Table 2-2).  

Table 2-2. Mean ± SEM of the RAVLT scores and pairwise comparisons for TGA patients (acute 

and follow-up) and controls 

 TGA acute TGA follow-up Controls 

RAVLT sum 26.43 ± 1.22 48.50 ± 1.76 50.50 ± 2.04 

RAVLT retention 1.29 ± 0.55 10.85 ± 0.78 11.86 ± 0.49 

RAVLT delayed 1.14 ± 0.48 10.50 ± 0.69 12.14 ± 0.69 

RAVLT recognition 2.64 ± 0.75 12.14 ± 1.00 13.43 ± 0.47 

pairwise compari-

sons 

acute vs. follow-up follow-up vs. 

controls 

acute vs. controls 

 t(13)/Z p 95% CI t(26)/Z 95% CI t(26)/Z p 95% CI 

RAVLT sum -10.82 *** 
[-26.48, 

-17.67] 
-0.74 

[-7.53, 

3.53] 
-10.14 *** 

[-28.95, 

-19.19] 

RAVLT retention -9.37† *** 
[-11.67, 

-7.26] 
-1.12† 

[-2.87, 

0.85] 
-4.59‡ ***  

RAVLT delayed -11.02 *** 
[-11.19, 

-7.52] 
-1.68 

[-3.65, 

0.36] 
-4.56‡ ***  

RAVLT recognition -3.25‡ **  -0.43‡  -4.53‡ ***  

†Degrees of freedom are reduced to df=12 (paired samples) and df=25 (independent samples) because 

of a missing value in the retention score in the follow-up phase; ‡ Non-parametric tests (Mann-Whitney-

U-test for independent and Wilcoxon test for dependent samples); 95% confidence intervals are calcu-

lated for parametric tests; ** p < 0.01. *** p < 0.001; Bonferroni-Holm adjusted for 12 comparisons. 
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2.4.3 Pattern separation dependent on degree of hippocampal impairment 

The TGA shows a characteristic time course with an abrupt onset of the pronounced 

hippocampal deficit and with a gradual recovery of the hippocampal functions in the later parts 

of the episode. This time-dependency of the hippocampal deficit is reflected in the correlation 

of the acute hippocampal deficit as measured in the RAVLT sum score with the time point of 

testing after onset of symptoms (r = 0.872, p < 0.0001). We thus classified the TGA patients 

into two groups by means of their performance either above or below 3 SD from the mean of 

the RAVLT sum score of the control group (50.5 ± 7.61) to incorporate a measure of the time-

dependent degree of hippocampal impairment. We defined the groups as early acute (n = 9) 

and late acute (n = 5). The latency between onset of symptoms and behavioral tests was 

significantly different between both groups (t(12) = 2.92, p = 0.013, 95% CI [0.47, 3.22], 3.56 

± 0.38 h vs. 5.40 ± 0.51 h). Further analysis of performance during the RAVLT learning trials 

revealed a significant increase in verbal declarative learning in both acute groups. We calculated 

the correlation between the learning trials and number of correct remembered words for every 

patient separately. Wilcoxon signed ranks test against zero revealed a positive slope of the 

average correlation in both the early (rs = 0.71 ± 0.09; Z = 2.66, p < 0.05, adjusted for 

Bonferroni-Holm) and the late acute group (rs = 0.88 ± 0.07 Z = 2.02, p < 0.05, adjusted for 

Bonferroni-Holm) (4). 
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Figure 2-4. RAVLT learning trials for early and late acute TGA patients. Both patient groups show a 

statistically significant increase in learning from the first to the last trial. 

In the following, we also analyzed the differences between both acute groups and their 

follow-up performance to consider individual memory performance. Comparing the early and 

late acute groups with regard to performance on the MST revealed neither difference in the 

PatSep score (t(12) = 1.10, p = 0.295, 95% CI [-3.56, 10.77]) nor the RM score (t(12) = 1.87, p 

= 0.232, 95% CI [-0.03, 0.44]). Regarding the differences between acute and follow-up, paired 

samples t tests showed that the PatSep score only differed between the early acute group and 

the follow-up (t(8) = -3.36, p < 0.05, 95% CI [-41.30, -7.69]). There was no difference 

comparing the late acute group with the follow-up condition (t(4) = -2.37, p = 0.232, 95% CI [-

32.73, 2.62]). However, the RM score was significantly lower in both acute groups compared 

with follow-up (early acute: t(8) = -7.81, p < 0.001, 95% CI [-82.04, -44.62]), late acute: t(4) = 

-4.46, p < 0.05, 95% CI [-76.29, -17.71]) indicating that pattern separation shows an earlier 

recovery than RM performance (Figure 2-5e). All p values were adjusted for multiple tests.



48 2 Study I 
 

 

 

Figure 2-5. Comparison of group performance in different scores. a) The early acute group differed 

significantly between acute and follow-up in PatSep test performance and recognition memory perfor-

mance, whereas the late acute patients only differed from follow-up regarding recognition memory. 

White bars for the control group are depicted for descriptive illustration but were not included in the 

analysis. b) PatSep in relation to the RAVLT sum score. c) The difference between early acute and 

follow-up remained considering lure similarities. d) PatSep in relation to recognition memory. Note that 

b) and d) serve as graphical illustration only of the time course of the amnesic syndrome from early 

acute to full recovery. Correlational analyses were not performed on the illustrated data. Comparisons 

between acute and follow-up were analyzed by paired samples t-tests so that mean ± SEM for follow-

up depicted in a) and c) do not reflect the values used for the statistical test. Adjustment for multiple 

testing was done using the Bonferroni-Holm correction. * p < 0.05, ** p < 0.01, *** p < 0.001.  

With regard to patients' performance in the MST, we observed an increased rate of false 

‘new’ responses to lures in the acute phase (Figure 2-5b). However, the hypothesized deficit in 

pattern separation should rather involve a heightened false ‘old’ response to lures reflecting the 
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ability or inability of discriminating similar from previously seen items. By contrast, the false 

‘new’ response indicates an overall deficit in recognition. We thus tested whether early and late 

acute groups differed in responses to lures and whether the bias toward ‘new’ responses was 

initially driven by early acute patients who were more impaired.  

A 2 x 2 factorial ANOVA with the group (early vs. late acute) as between -subjects factor 

and error type (old vs. new) as within subjects factor revealed a significant interaction effect 

(F(1, 12) = 7.55, p = 0.018, η²p = 0.39). In the early acute phase, patients showed a significantly 

higher proportion of ‘old’ responses to lures compared to ‘new’ responses (p < 0.001), whereas 

we found no difference between ‘old’ and ‘new’ responses to lures in the late acute phase of the 

amnesia (p > 0.05). Moreover, the rate of ‘old’ responses was significantly higher in the late 

acute group compared with the early acute group (p < 0.05), whereas the proportion of ‘new’ 

responses was higher in the early acute group (p < 0.05). The 2 x 2 repeated measures ANOVA 

for the comparison of follow-up with the corresponding performance in the acute phase 

revealed a significant interaction for both the late (F(1, 4) = 38.76, p = 0.003, η²p = 0.91) and 

the early acute group (F(1, 8) = 130.21, p < 0.0001, η²p = 0.94) with a higher proportion of 

‘new’ responses in both acute groups compared with a higher rate of ‘old’ responses at follow-

up (Figure 2-6). The p values are adjusted according to Bonferroni-Holm. 
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Figure 2-6. Mean (± SEM) proportion of responses to lures in performing the MST for TGA early acute 

vs. late acute vs. follow-up. The values indicate percentages of responses to lures. Patients in the early 

acute phase were more prone to respond ‘new’ to lures, whereas the response bias was reversed over 

recovery. Adjustment for multiple testing was done using the Bonferroni-Holm correction. *** p < 0.001 

n.s. = non-significant. 

Including lure similarity in the analysis, we conducted a mixed ANOVA with the group 

(early acute vs. late acute) as between-subjects factor and similarity (Lure 1 to Lure 5) as within-

subjects factor. For the PatSep score, the ANOVA revealed no significant interaction (F(4, 48) 

= 1.44, p = 0.236, η²p = 0.11), but a significant main effect of group (F(1, 12) = 18.48, p < 0.01, 

η²p = 0.61). Further analyses of simple main effects showed that there was no difference 

between the early acute group and the late acute group regarding any degree of lure similarity 

(all p’s > 0.211). In the second step, we performed within-subjects ANOVAs regarding both 

acute groups and the follow-up phase with lure similarity (Lure 1 to Lure 5) as the first and 

condition (acute vs follow-up) as the second within subjects factor. Considering the early acute 

group, there was a significant interaction effect (F(4, 32) = 3.40, p < 0.05, η²p = 0.30). The 

follow-up condition showed a significantly higher score for every degree of lure similarity (all 

p’s < 0.028). For the late acute group, there was no significant interaction (F(1.49, 5.95) = 1.96, 

p = 0.22, η²p = 0.33). Post-hoc pairwise comparisons showed no differences between any 

degrees (all p’s > 0.2, corrected for Bonferroni-Holm) (Figure 2-5c). 
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2.4.4 Relationship between MST and RAVLT performances 

Relationships between the MST performance and RAVLT based on correlational analyses 

turned out significant for the RAVLT sum score and the delayed recall test. Both scores were 

correlated with the PatSep score in the follow-up phase (RAVLT sum r = 0.695, p = 0.006; 

RAVLT delayed recall: r = 0.564, p = 0.036). In the acute phase, a correlation only revealed for 

the late acute group with the RAVLT sum score (r = 0.951, p < 0.05) (Figure 2-5d), that was a 

reflection of the RAVLT sum score serving as a criterion for differentiating the acute groups. 

2.4.5 General neuropsychological assessment 

Patients did not differ from controls in general neuropsychological test performance at follow-

up (Table 3-1). In patients with TGA, working memory and executive functions typically 

remain intact during the amnestic episode (Bartsch & Deuschl, 2010; Bartsch et al., 2010; 

Quinette et al., 2003). 

2.4.6 MRI Study 

In 11 of 14 patients, we detected a total of 19 hippocampal lesions in a time window of 24-72 

hr after onset of TGA symptoms. Six patients showed only one lesion, two patients had two 

lesions, and, in three patients, we detected three lesions in total. In four patients, lesions were 

only detected within the left, in five patients within the right cornu ammonis, and in two 

patients, lesions were detected bilaterally. Eta coefficients verified that there was neither a 

relation between lateralization of lesions and the performance on MST nor RAVLT (all p’s > 

0.05). Also, the performance on the tests was independent from the number of lesions (all p’s 

> 0.05, Spearman's rho) as well as from the position on the longitudinal axis of the hippocampus 

(all p’s > 0.05, eta coefficient). 

The detailed analysis of lesion distribution revealed that all lesions were selectively found in 

the area corresponding to the CA1 sector of the hippocampal cornu ammonis and randomly 
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distributed along the anterior-posterior axis within the hippocampus as typically seen in TGA. 

Performing a detailed whole brain analysis provided no evidence for diffusion restricted lesions 

outside the hippocampal cornu ammonis (Figure 2-7). MRI did not show any abnormalities in 

temporal or frontal lobe structures such as focal atrophy or mesial temporal sclerosis. 

 

Figure 2-7. a-d)   a) Anatomical template showing a representative coronary slice of the hippocampal 

cornu ammonis indicating sectors after Lorente de Nó. b) Synopsis of all DWI/T2 lesions transferred to 

an anatomical template of the cornu ammonis. c) Three-dimensional model of the hippocampus showing 

the anterior-posterior distribution of hippocampal CA1 lesions. Lesions were located in the lateral hip-

pocampus and were distributed along the anterior-posterior axis of the hippocampus. d) MRI of repre-

sentative lesions shows that lesions were confined to the CA1 area of the cornu ammonis. 
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2.5 Discussion 

Our results provide causal evidence that hippocampal CA1 neurons are critical to pattern sepa-

ration performance in humans. We found that patients with focal lesions restricted to the CA1 

sector of the hippocampus were profoundly impaired in behavioral pattern separation perfor-

mance. Considering the time dependency of lesion-associated hippocampal deficits in patients 

in early and late acute stages of the TGA, we also showed that the behavioral pattern separation 

performance recovered significantly earlier compared to RM. recognition memory. This points 

to a differential affection and reorganization of both functions during hippocampal disconnec-

tion in TGA.  

The formation of episodic memory requires the ability to discriminate between similar experi-

ences that depend on the hippocampus and its pattern separation function. Pattern separation 

produces non-overlapping representations of newly encoded mnemonic information to avoid 

interference (Knierim & Neunuebel, 2016; McClelland et al., 1995; Yassa & Stark, 2011). Our 

data show that this function was impaired in patients with acute hippocampal CA1 lesions. 

Patients were impaired in both recognition of previously seen items and correctly responding 

to stimuli that were similar to already seen targets. The function was restored at follow-up. The 

results complement the current picture regarding the contribution of hippocampal subfields to 

pattern separation: Computational models assume that the DG performs pattern separation by 

means of sparse coding of neural activity from the entorhinal cortex (EC) to CA3 thereby decor-

relating overlapping neural assemblies (Rolls, 2016; Treves & Rolls, 1994). Interconnected py-

ramidal neurons of the CA3 region function as an auto-associative network so that a stored 

representation can be retrieved from an incoming partial cue supporting the process of pattern 

completion (Norman & O’Reilly, 2003; O’Reilly & McClelland, 1994). Within the tri-synaptic 

circuit, CA3 ensemble activity passes CA1 as the main output relay area of the hippocampus to 

be transferred to neocortical areas (Insausti & Amaral, 2004; Knierim & Neunuebel, 2016). 
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(Wilson & McNaughton, 1994) suggested that synaptic modifications especially during sleep 

support CA1 in transmitting signals from CA3 to neocortical areas. In this context, we recently 

showed that pattern separation performance in the human hippocampus was influenced by os-

cillatory dynamics during sleep resulting in a stabilization of the memory representation (Han-

ert et al., 2017).  

By recording activity from DG and CA3, a variety of rodent studies showed that the hippocam-

pal DG is indeed involved in pattern separation, whereas the area CA3 performs pattern sepa-

ration or pattern completion depending on the change of sensory input thereby balancing the 

discriminative function in the context of the formation of a new memory representation 

(Guzowski et al., 2004; I. Lee et al., 2004; J. K. Leutgeb et al., 2007; Neunuebel & Knierim, 

2014). In this context, importantly, exposure to different environments caused differences in 

the ensemble activity of CA1 and CA3 neurons using both neural ensemble recordings and 

imaging of immediate early gene activity (I. Lee et al., 2004; S. Leutgeb et al., 2004; Vazdar-

janova & Guzowski, 2004). These experiments indicate stronger pattern separation in CA3 than 

in CA1 (Guzowski et al., 2004). The neural response in CA3 suggests a sigmoidal function, 

where large changes to the input cause pattern separation, and small changes to the input cause 

pattern completion. The area CA1, on the contrary, displays a linear relationship between input 

and output showing that CA1 indeed exhibits pattern separation in a different way (Guzowski 

et al., 2004). Our results in patients with transient CA1 lesions show impaired behavioral pattern 

separation performance strongly supporting this assumption. Considering that pattern separa-

tion in the hippocampus is mainly performed by means of the DG subnetwork providing distinct 

neural codes within the feedforward pathway to CA3 pyramidal cells (Neunuebel & Knierim, 

2014), it is most likely that the downstream circuit of CA1 is disrupted in relaying the orthog-

onalized information. Accordingly, a different transfer function of similar representations in 

humans has been shown for CA1 compared with DG/CA3 using high-resolution fMRI studies. 
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Those studies first demonstrated separation-like signals only in the DG (Baker et al., 2016; 

Berron et al., 2016) found a discontinuous response in the DG/CA3 area compared with CA1 

(Lacy et al., 2011). By varying the similarity of the presented items of the MST, it was shown 

indeed that CA1 was resistant to small changes with a linear response pattern, whereas DG/CA3 

was sensitive to small changes (Lacy et al., 2011). Those findings suggest that CA1 may not be 

involved in neural computations of pattern separation processes per se, but in subsequent for-

warding of the orthogonalized DG/CA3 input. In accordance with those results, we found be-

havioral pattern separation performance completely impaired in patients with lesions restricted 

to CA1. 

With regard to the transient hippocampal dysfunction, patients in the late acute stage of the 

TGA were less impaired in pattern separation than in RM. Specifically, the late acute group 

differed from follow-up only in pattern separation performance, whereas the groups were com-

parable in RM. We assume that the differential recovery was a result of the dependence of those 

memory functions on distinct hippocampal subnetworks. RM may be more reliant on CA1, 

whereas pattern separation is also dependent on computations in upstream hippocampal regions 

DG/CA3 (McClelland et al., 1995; Yassa & Stark, 2011). Thus, considering the hippocampal 

perturbations on the CA1-neural level, our study might also reflect a functional dissociation of 

pattern separation and RM.  

Previous studies in humans regarding disease-related structural changes to the DG, CA3 and 

CA1 found deficits in pattern separation. These studies examined patients with amnestic mild 

cognitive impairment (Yassa et al. 2010; Stark et al. 2013) as well as Alzheimer’s disease (Ally 

et al. 2013), where CA1 neurons are also affected early in the disease course (West, Coleman, 

Flood, & Troncoso, 1994; West, Kawas, Martin, & Troncoso, 2000; West, Kawas, Stewart, 

Rudow, & Troncoso, 2004). Functional MRI studies investigating subregion-associated net-
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work functions of the hippocampus suggested DG and CA3 to be associated with pattern sepa-

ration performance, whereas findings regarding the contribution of CA1 activity yielded diver-

gent outcomes (Bakker et al., 2008; Lacy et al., 2011). 

To further clarify the function of CA1 in pattern separation, we compared the behavioral output 

of a task that taxes pattern separation of both impaired and intact output structures of the hip-

pocampal circuit. Here, CA1 transmits its output information and from DG/CA3 to other brain 

regions in the context of hippocampus-dependent cognition and behavior (Knierim & Neunue-

bel, 2016). In our lesion model, we see the effect of an impaired hippocampal CA1 network, but 

we cannot make a statement regarding intrinsic CA1 computational processes as such or the 

contribution of further upstream CA3/DG network functions in the hippocampal trisynaptic 

pathway. Thus, what we can show is that CA1 has an essential and integrative relay function in 

the pattern separation processing involved in hippocampus-dependent memory, cognition, and 

behavior. Experimental and conceptual evidence of pattern separation and pattern completion 

has been provided mainly in rodent studies where, for example, the input/output function, the 

discharge and response properties of neuronal ensembles in hippocampal subnetworks as well 

as behavioral evidence are tightly linked to hippocampal functions (see Guzowski et al., 2004; 

I. Lee et al., 2004; J. K. Leutgeb et al., 2007). 

It is to be noted, that it is difficult to assess pattern completion processes in our study. The bias 

toward responding ‘old’ to lure items of the MST has been defined as a shift from pattern sep-

aration to pattern completion (Ally, Hussey, Ko, & Molitor, 2013; Yassa et al., 2010). However, 

the validity of measuring behavioral pattern completion based on the MST has repeatedly been 

discussed (Hunsaker & Kesner, 2013; Liu, Gould, Coulson, Ward, & Howard, 2016). As the 

test lacks partial cues that reactivate previously encoded memory representations - as suggested 

by the theoretical construct of pattern completion - drawing conclusions regarding the underly-

ing neural processes is challenging. However, there is evidence that CA1 is involved in pattern 
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completion processes. For instance, in an fMRI study in humans, Bakker et al. (2008) found 

completion-like activity in CA1. We confined our analysis as well as interpretation of behav-

ioral data to pattern separation. The MST has already been well validated in a variety of studies 

with regard to assessing behavioral pattern separation performance (Lacy et al., 2011; Stark et 

al., 2013; Yassa, Mattfeld, Stark, & Stark, 2011; Yassa et al., 2010). However, to further clarify 

the role of CA1 in pattern completion the application of specific tests that explicitly assess 

pattern completion function in humans is suggested. Thus, behavioral paradigms shall be used 

in prospective studies to elaborate pattern completion related functions in lesion models re-

stricted to hippocampal CA1 neurons.  

Data from human behavioral studies as well as from experimental rodent examinations suggest 

that CA1 encompasses several major functions that include temporal processing of information 

(i.e., temporal order memory), association across time, intermediate memory, and consolidation 

of new memory (Kesner, Morris, & Weeden, 2012; Rolls, 1996; Rolls & Kesner, 2006). Spe-

cifically, CA1 integrates temporal and object representations also referred to as temporal pattern 

separation (Hunsaker, Lee, & Kesner, 2008; Rolls & Kesner, 2006). In this context, CA1 plays 

an important role in match/mismatch as well as novelty detection evidenced by human and 

rodent studies (Duncan, Ketz, Inati, & Davachi, 2012; Hasselmo, 2005; Knierim & Neunuebel, 

2016; Inah Lee, Hunsaker, & Kesner, 2005; McClelland et al., 1995; Vinogradova, 2001). Fur-

thermore, CA1 neurons play a necessary role in the ability to learn map-like representations of 

an environment referring to a critical function in spatial memory (Bartsch et al., 2010). This is 

well in accordance with our results considering the relation of spatial coding to pattern separa-

tion performance with regard to place cell remapping (Colgin et al., 2010; I. Lee et al., 2004; J. 

K. Leutgeb et al., 2007, 2005). In the context of pattern separation, hippocampal remapping 

produces distinct representations in populations of place cells in exposure to similar environ-

ments. Here, pattern separation is mainly expressed in global remapping that relates to basically 
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different rates and fields of firing during encoding of different environments (Colgin, Moser, 

& Moser, 2008). In rodents, recordings of spike activity from hippocampal place cells that 

measure the remapping of place fields after the rats’ exploration of similar enclosures evinced 

the relation between remapping on a neural level and pattern separation on the part of behavior 

(J. K. Leutgeb et al., 2007, 2005). Summarizing those results, our data further illuminate the 

connection between spatial learning and pattern separation operations both involving CA1 spe-

cific computations within an unrestricted feedforward processing in the tri-synaptic hippocam-

pal circuitry. 

The tri-synaptic pathway provides the prerequisites for pattern separation and completion pro-

cesses by means of its unique cytoarchitectonic structure and different subfield functions. How-

ever, the mono-synaptic path projects from EC Layer III directly to CA1 bypassing the area 

DG/CA3 (Witter & Amaral, 2004). With this connection, CA1 is assumed to compare direct 

input from CA3 and EC to perform match/mismatch calculations between previous experiences 

and current environmental input (Duncan et al., 2012; Hasselmo, 2005). The focal CA1 lesions 

in TGA patients most likely interfered with those computations and thus further affect the output 

generation of pattern separation and completion processes. 

As we tested patients in different stages of the acute amnesia, we observed floor effects in 

memory performance. This effect might be the result of an encoding deficit in the acute phase 

of the TGA as the hippocampal CA1 is assumed to be involved in both encoding and retrieval 

processes in memory formation (Duncan, Tompary, & Davachi, 2014). We cannot rule out that 

these deficits may also involve the bias towards ‘new’ instead of ‘old’ or ‘similar’ responses to 

lures that complicated the interpretation regarding pattern separation. A quantification of en-

coding abilities in our study cohort is made possible by means of the RAVLT learning trials 

that assess learning performance of episodic memory. Even though the RAVLT performance 

in the acute phase was significantly lower compared to follow-up testing and the control group, 
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both early and late acute TGA patients showed a significant positive increase in learning from 

the first to the last trial. Considering this, patients were indeed able of encoding, albeit defi-

ciently. The impaired performance in the recall conditions of both MST and RAVLT thus might 

be due to a failure of consolidation and retrieval. This can be seen particularly in the early acute 

patients’ disproportionately high number of ‘new’ answers. The response behavior indicates a 

failure in recognition that might have interfered with the behavioral pattern separation outcome. 

It should be noted, however, that the TGA patients' results who were tested later in the course 

of the disease are valuable in interpreting our hypothesis. Specifically, those patients were able 

to encode and consolidate but were impaired in recognition memory and behavioral pattern 

separation performance. 

 The interpretation of our data critically relies on the selectivity of CA1 lesions. Indeed, beyond 

our own studies (Bartsch et al., 2007, 2006, 2010) a variety of other studies also observed focal 

hyperintense MR-lesions selectively in the area of CA1 thus providing a natural lesion model 

of CA1 neurons (Sedlaczek et al., 2004; Weon, Kim, Lee, & Kim, 2008). The neurons in CA1 

are highly vulnerable against metabolic and vascular noxious input (Bartsch et al., 2015). Typ-

ically, lesions outside CA1 or outside the hippocampus are not detected in TGA (Bartsch & 

Deuschl, 2010; Bartsch et al., 2015). 

In sum, using TGA as a human hippocampal lesion model with selective and focal disruption 

of CA1-associated neural functions, we highlight the critical role of hippocampal CA1 neurons 

in terms of a relay function for pattern separation performance in humans. Our analysis of the 

temporal course of recovery of cognitive functions also points to a possible dissociation of pat-

tern separation and RM in the context of a differential recovery of subregion-associated network 

functions of the hippocampus. 
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3.1 Abstract 

Day-to-day life involves the perception of events that resemble one another. For the sufficient 

encoding and correct retrieval of similar information, the hippocampus provides two essential 

cognitive processes. Pattern separation refers to the differentiation of similar input information, 

whereas pattern completion reactivates memory representations based on noisy or degraded 

stimuli. It has been shown that pattern separation specifically relies on the hippocampal dentate 

gyrus (DG), whereas pattern completion is performed within CA3 networks. Lesions to these 

hippocampal networks emerging in the course of neurological disorders may thus affect both 

processes. In anti-leucine-rich, glioma-inactivated 1 (LGI1) encephalitis it has been shown in 

animal models and human imaging studies that hippocampal DG and CA3 are preferentially 

involved in the pathophysiology process. Thus, in order to elucidate the structure-function re-

lationship and contribution of hippocampal subfields to pattern separation, we examined pa-

tients (n=15, age range: 36-77 years) with the rare LGI1 encephalitis showing lesions to hippo-

campal subfields. Patients were tested 3.53 ± 0.65 years after the acute phase of the disease. 

Structural sequelae were determined by hippocampal subfield volumetry for the DG, CA1, and 

CA2/3. Patients showed an overall memory deficit including a significant reduction in pattern 
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separation performance (p = 0.016). In volumetry, we found a global hippocampal volume re-

duction. The deficits in pattern separation performance were best predicted by the DG (p = 

0.029), whereas CA1 was highly predictive of recognition memory deficits (p < 0.001). These 

results corroborate the framework of a regional specialization of hippocampal functions in-

volved in cognitive processing. 

Key words: episodic memory, hippocampus-dependent memory, hippocampal sclerosis, hip-

pocampal subfield segmentation, limbic encephalitis 

3.2 Introduction 

In everyday life, we are experiencing a constant string of episodes that can be more or less 

similar with regard to time, objects, location and content. The formation of episodic memory, 

however, requires that similar experiences are transformed into unique and nonoverlapping ep-

isodes that can be differentiated into distinct memories. To prevent these memories from inter-

ference and to ensure correct retrieval of newly encoded episodes, the hippocampus provides 

two neural operations which differentiate similar episodes and store them as distinct neural 

representations (Knierim & Neunuebel, 2016; McClelland, McNaughton, & O’Reilly, 1995; 

Rolls, 2016). First, a pattern separation process is critical for the separation and storage of sim-

ilar and overlapping memory representations. During encoding, the neural input is orthogo-

nalized and de-correlated by associating distinct neural codes to the similar representations 

(Treves & Rolls, 1994). Secondly, pattern completion involves the reactivation of previously 

stored memories in case of noisy, incomplete or degraded input (Yassa & Stark, 2011). At re-

trieval, the pre-existing memory representation is reactivated as the overlapping input is used 

as a retrieval cue (McClelland et al., 1995; Norman & O’Reilly, 2003; Rolls, 2016). Animal 

models and human imaging studies suggest that the hippocampal dentate gyrus (DG) is partic-
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ularly involved in pattern separation whereas CA3 is capable of performing both, pattern sepa-

ration and completion computations depending on the variance of the sensory input (Bakker, 

Kirwan, Miller, & Stark, 2008; Berron et al., 2016; Lee, Yoganarasimha, Rao, & Knierim, 

2004; J. K. Leutgeb, Leutgeb, Moser, & Moser, 2007; S. Leutgeb, Leutgeb, Treves, Moser, & 

Moser, 2004). Animal findings show that neuronal ensembles in CA1 are also involved in pat-

tern separation but differ from CA3 as they show a more linear input-output function in re-

sponse to environmental changes. However, studies in humans characterizing the contribution 

of CA1 to pattern separation and completion are still scarce (Vazdarjanova & Guzowski, 2004).  

In this context, the study of specific lesion models allows further clarification of the causal 

relationship of individual hippocampal subfield function and their operation in hippocampus-

dependent memory processing (Bartsch, Döhring, Rohr, Jansen, & Deuschl, 2011; Bartsch et 

al., 2010; Döhring et al., 2017). Considering this, we examined patients with an anti-leucine-

rich, glioma-inactivated 1 (LGI1) encephalitis who show lesion-associated and degenerative 

changes in hippocampal subfields. Patients who are positive for LGI1 antibodies develop limbic 

encephalitis and exhibit memory impairments and hippocampus-associated epileptic seizures 

in the acute stage (Irani et al., 2011, 2013; Malter et al., 2014), whereas in post-acute stages, 

significant and disabling memory deficits persist (Bettcher et al., 2014; Butler et al., 2014). 

Interestingly, the LGI1 gene transcript in the mouse is mainly expressed in the pyramidal and 

granular layers of the DG and CA3 field of the hippocampus, where the perforant path fibers 

from the entorhinal cortex project onto dendrites of the DG granule cells (Bartsch & Wulff, 

2015; Herranz-Pérez, Olucha-Bordonau, Morante-Redolat, & Pérez-Tur, 2010; Kalachikov et 

al., 2002). Thus, the features of the LGI1 pathogenesis involving both the hippocampal DG and 

CA3 regions offer a lesion model to study the function of DG and CA3 within memory pro-

cessing in the hippocampal network. In these patients, significant atrophy in the hippocampal 

CA2/3 and CA4/DG regions and a chronic memory impairment has been reported in the post-
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acute stage (Finke et al., 2017). Also, Miller et al. (2017) found a bilateral CA3 atrophy in 

patients with this rare form of limbic encephalitis. 

The aim of the present study was to further elucidate the structure-function relationship and the 

contribution of hippocampal subfields to pattern separation in humans. We expected to find 

deficits in pattern separation in patients with LGI1 encephalitis as a result of hippocampal at-

rophy and as a consequence of limbic encephalitis (Malter et al., 2014). Against this back-

ground, inflammatory lesions particularly expressed in DG and CA3 that are characteristic of 

LGI1-antibody mediated encephalitis should correlate with impairments in subfield-specific 

computations as seen in a greater variability in hippocampal subfield volumetry (Finke et al., 

2017; Miller et al., 2017). Therefore, we tested LGI1 patients on a behavioral task, i.e., the 

Mnemonic Similarity Task (MST), that has been shown to tax hippocampal pattern separation 

(Kirwan and Stark, 2007; Stark et al., 2013; Hanert et al., 2017) and correlated task performance 

to structural sequelae in the hippocampus using high-resolution volumetry of the hippocampus. 

Hippocampal volumetry for the subfields of interest was assessed using the automated segmen-

tation method Freesurfer 6.0.0.  

3.3 Experimental Procedures 

3.3.1 Study cohort 

Fifteen patients (mean age: 64.47 ± 3.28 years, range: 36-77, 9 male) with anti-LGI1 encepha-

litis participated in the study. All reported data were collected after the acute stage of the limbic 

encephalitis with a mean time between symptoms onset and study examination of 3.53 ± 0.65 

years. Early symptoms of the limbic encephalitis before the onset of the acute phase (i.e., hip-

pocampus-associated temporal lobe seizures, uni- or bilateral faciobrachial dystonic and other 

types of seizures) were reported by 10 patients (66 %). The acute phase of limbic encephalitis 

was accompanied by typical clinical features such as amnesia, confusion, and behavioral and 
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mood disturbances. Patients were moderately neurologically impaired measured by the modi-

fied Rankin Scale (mRS) score (mean: 1.53 ± 0.26, range: 0-3). Fifteen control participants 

(mean age: 65.13 ± 3.11, range: 40-80, 9 male) were individually matched according to sex, 

age and educational background including profession and years of formal education. The study 

was approved by the local ethics committee. All participants gave written informed consent for 

the procedures. The clinical and laboratory characteristics of some of these patients have been 

published (Finke et al., 2017). The present study provides an additional and new assessment of 

cognitive performance as well as a new analysis of the MRI data. The behavioral testing in-

cluding neuropsychological assessment and acquisition of MRI data were no longer than 6 

months apart. 

3.3.2 Behavioral tests 

Mnemonic similarity task 

Behavioral pattern separation was assessed by means of the Mnemonic Similarity Task (MST; 

Kirwan & Stark, 2007; Stark et al., 2013; http://faculty.sites.uci.edu/starklab/mnemonic-simi-

larity-task-mst/). The computer-based task presents items on the screen as color photographs of 

everyday objects on a white background. The encoding phase included 128 items that had to be 

identified as either indoor or outdoor object. The immediate test phase comprised 192 items 

displaying in each case one third as exact repetitions of the encoded items (64 targets), similar 

items (64 lures), and items that were totally new (64 foils). In this phase, participants indicated 

whether the objects were ‘old’, ‘similar’ or ‘new’ to the previously encoded targets. Of partic-

ular importance were the responses to lure items with the correct ‘similar’ response indicating 

successful pattern separation, whereas incorrect ‘old’ responses to lures suggest a bias toward 

pattern completion (Bakker et al., 2008; Lacy, Yassa, Stark, Muftuler, & Stark, 2011; Yassa et 

al., 2010). The lure objects were divided into five degrees of similarity to a target object ranging 

from 1 (most similar) to 5 (least similar). Therewith, behavioral pattern separation was also 
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assessed as a function of lure similarity (Lacy et al., 2011; Yassa et al., 2010). In both the 

encoding and recall phases the stimuli were presented for 3 s with 1 s inter stimulus interval. 

For recording of data, participants had to respond via button press within the 3-s stimulus 

presentation (Figure 3-1). By means of participants’ responses at recall a Pattern Separation 

score (PatSep score) and a Recognition Memory (RM) score were computed each corrected for 

a response bias: i) Pattern Separation (PatSep) score: PatSep = [p (correct similar response to 

lures) – p (false similar response to foils)], ii) Recognition Memory (RM) score: RM = [p (cor-

rect old response to targets) – (false old response to foils)] (Stark et al., 2013; Yassa, Lacy, et 

al., 2011; Yassa et al., 2010).  

 

Figure 3-1. Procedure of the MST. First, participants encoded 128 items of everyday objects by judging 

the items as indoor or outdoor objects. Then participants were supposed to decide whether the items 

were old, similar or new to the previously seen targets in an immediate recall condition containing 192 

items. Displayed pictures are taken from the original image data base of the MST. ISI, inter-stimulus 

interval. 

Neuropsychological assessment 

A comprehensive neuropsychological test battery was used to test episodic memory (Rey audi-

tory verbal learning test, RAVLT; Rey, 1941), visuospatial memory (Rey-Osterrieth complex 

figure, ROCF), working memory (digit span forwards and backwards), executive functioning 

(Trailmaking Test A and B, TMT; Reitan, 1979), verbal fluency (Regensburg word fluency 
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test, RWT; Aschenbrenner, Tucha, & Lange, 2000), and premorbid general intelligence (Mehr-

fach-Wortschatz-Intelligenztest-B, MWT-B, as a German equivalent of the National Adult 

Reading Test; Lehrl, 2005) as described in Finke et al. (2017). 

3.3.3 MRI acquisition and hippocampal subfield segmentation 

Whole-brain MRI were acquired using 3 Tesla MRI Scanners (Siemens Tim Trio, Siemens, 

Erlangen, Germany; Philips Achieva, Philips, Best, The Netherlands). T1-weighted MRI scans 

were recorded using a three-dimensional magnetization prepared rapid gradient-echo sequence 

(3D MPRAGE, matrix size = 240x240, 176 slices, voxel size = 1x1x1 mm³). The evaluation of 

clinical images was based on T2-weighted turbo spin echo sequences as well as a 3D isotropic 

T2-weighted fluid attenuated inversion recovery (FLAIR). 

Hippocampal subfield volumetric segmentation was performed on the T1-weighted scans using 

the freely available software Freesurfer image analysis suite version 6.0.0 

(http://surfer.nmr.mgh.harvard.edu/). The standard processing steps of Freesurfer 6.0.0 are de-

scribed as follows: first, nonbrain tissues were removed using a hybrid watershed/surface de-

formation procedure (Ségonne et al., 2004). Then, images were automatically transformed to 

Talairach coordinates and subcortical white matter and deep gray matter volumetric structures 

containing the hippocampal formation were segmented (Fischl et al., 2004). The process was 

followed by intensity normalization (Sled, Zijdenbos, & Evans, 1998) and tessellation of the 

gray matter/white matter boundary (Ségonne, Pacheco, & Fischl, 2007). The automated hippo-

campal subfield segmentation was performed by means of Bayesian inference and a probabil-

istic atlas of the hippocampal formation (Fischl et al., 2004; Van Leemput et al., 2009). The 

segmentation results were visually rechecked for accuracy in all subjects. Freesurfer 6.0.0. pro-

vides results regarding the volume of the alveus, parasubiculum, presubiculum, subiculum, 

CA1, CA2/3, CA4, granule cell layer of  the DG (GC-DG), hippocampus-amygdala-transition-
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area, fimbria, molecular layer for subiculum and CA fields, hippocampal fissure and hippocam-

pal tail. However, the analysis regarding hippocampal volumetry was hypothesis-driven and 

focused on the hippocampal regions of interest that are critically involved in pattern separation 

and completion processes (i.e. CA1, CA3 and DG) (Yassa & Stark, 2011). Given the segmented 

subfields by Freesurfer 6.0.0, the analyses thus included CA1, CA2/3, GC-DG, and CA4. The 

DG is originally formed by the granule cell, polymorphic, and molecular layers (Amaral, 

Scharfman, & Lavenex, 2007). Freesurfer 6.0.0 assigns the DG’s polymorphic and molecular 

layer to the CA4 region and keeps the DG separate with the layer of the granule cells (Iglesias 

et al., 2015). Thus, we included CA4 to the GC-DG region in our analysis to make plausible 

predictions about the global DG and its contribution to hippocampal pattern separation. 

Throughout the analysis, we use the term ‘DG’ referring to the volume of the segmented GC-

DG and CA4 regions.  

The updated technique of the Freesurfer 6.0.0 version provides significant advantages over the 

earlier method used in Freesurfer 5.3 described in (Van Leemput et al., 2009). Due to the use 

of an atlas based on ex vivo MRI data, the precision of the segmentation of subfield boundaries 

was improved that also affected the accuracy of hippocampal subfield volumes. Particularly, 

the delineation and segmentation of volumes of CA1 and CA2/3 are much more congruent with 

previous histological studies (Iglesias et al., 2015). The volumes of each subfield were corrected 

for inter-individual head size by means of the estimated total intracranial volume (eTIV). The 

correction was computed according to an atlas normalization formula (Buckner et al., 2004). 

3.3.4 Statistical Analyses 

The Shapiro-Wilk test was used for pretesting of normal distributions and Levene’s test was 

performed for the assessment of homogeneity of variances. Differences between the patient and 

control group were examined with paired samples t-tests or Wilcoxon signed–rank tests de-
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pending on distribution. Accordingly, confidence intervals were calculated for either the differ-

ence of the means or medians. 2 x 5 repeated measures ANOVA with group as repeated factor 

(patient vs. control) and similarity (1 to 5) as within-subjects factor were performed to show 

differences in PatSep scores regarding lure similarities. Spearman’s ρ expressing the relation 

between PatSep scores and lure similarity was calculated for every participant separately and 

the mean correlation for both groups was calculated. Significances of the average correlations 

were tested using Wilcoxon signed–rank tests against zero. Depending on distribution Pearson’s 

r or Spearman’s ρ was used to characterize the relationship between the PatSep score and the 

RM score as well as the scores from the neuropsychological test battery. To analyze differences 

in hippocampal volume a three-way repeated measures ANOVA with group as repeated factor 

(patient vs. control) and subfield (CA1, CA2/3, DG) as well as side (left vs. right) as within-

subject factors was conducted. Degrees of freedom were corrected according to Greenhouse-

Geisser adjustment if the assumption of sphericity was violated.  ANOVA were followed by 

planned post-hoc pairwise comparisons to specify significant main and interaction effects. To 

predict behavioral outcome variables (i.e., PatSep and RM scores) by hippocampal subfield 

volumes, multiple linear regression analyses were performed. The independence of residuals 

was checked by the Durbin-Watson statistic. For testing the distribution of residuals regarding 

normality, the Shapiro-Wilk test was performed. Homoscedasticity of residuals was tested us-

ing the Breusch-Pagan test. As the independent variables were correlated, the established 

method of backward elimination was used to find best predictors of PatSep and RM scores. 

Adjustment for multiple testing was done using Benjamini & Hochberg’s False Discovery Rate. 

The significance level was set to p < 0.05, two-tailed for all tests. Data are specified as mean ± 

SEM if not otherwise stated. 
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3.4 Results 

3.4.1 Mnemonic similarity task 

Paired samples t-tests showed that pattern separation performance of LGI1 patients was signif-

icantly lower (22.01 ± 4.60) than the performance of controls (35.83 ± 3.92) (t(14) = 3.10, p = 

0.016, 95% CI [4.24, 23.41]). With regard to recognition memory, patients performed worse 

than controls (patients: 65.67 ± 6.02, controls: 79.80 ± 2.46, t(14) = 2.56, p = 0.023, 95% CI 

[2.31, 25.96]) (Figure 3-2). There was no significant correlation between pattern separation 

performance and recognition memory neither in the patient (r = 0.354, p = 0.196) nor in the 

control group (r = 0.420, p = 0.120). To further ensure that the pattern separation deficit was 

not secondary to a general impairment in recognition memory as well as to prevent that the 

results are biased by floor effects, we reran paired samples t-tests with the exclusion of patients 

(n = 3) whose recognition performance was below 3 standard deviations from the mean of the 

control group (79.80 ± 9.52). The exclusion of highly impaired patients showed that recognition 

memory performance was equal in both groups (patients: 75.00 ± 3.65, controls: 82.00 ± 2.45, 

t(11) = 1.78, p = 0.102, 95% CI [-1.65, 15.65]), whereas pattern separation performance still 

differed significantly (patients: 22.93 ± 5.57, controls: 34.38 ± 4.73, t(11) = 2.21, p < 0.05, 95% 

CI [0.02, 22.88], no alpha adjustment).  

Separate comparisons regarding the response types revealed no difference between the groups 

regarding the ‘old’ response to lures (patients: 43.93 ± 5.21, controls: 42.93 ± 2.82, t(14) = -

0.21, p = 0.833, 95% CI [-11.01, 9.01]). In contrast, patients were more prone to incorrectly 

respond ‘new’ to lures (patients: 26.87 ± 5.35, controls: 12.40 ± 2.06, t(14) = -2.90, p = 0.017, 

95% CI[-25.15, -3.78]). However, excluding the highly memory impaired patients (≤ Q1 in 

recognition memory) led to equal results across groups regarding ‘new’ responses to lures (pa-

tients: 19.25 ± 4.12, controls: 12.17 ± 2.49, t(11) = -1.98, p = 0.074, 95% CI[-14.97, 0.80]). 

Results for paired samples t-tests for all response types are displayed in Figure 3-2 B-D. 
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Figure 3-2. Results of the MST including the PatSep and RM scores as well as all response types. Note 

that the PatSep and RM scores are bias corrected scores. Values of the response types are given in 

percent corresponding to the item types. Adjustment for multiple testing was done using Benjamini & 

Hochberg’s False Discovery Rate. * p < 0.05. 

Entering the PatSep scores for 5 degrees of lure similarity in a 2 x 5 repeated measures ANOVA 

revealed no group x similarity interaction (F(4, 56) = 0.647, p = 0.632) but significant main 

effects for group (F(1, 14) = 10.03, p = 0.007) as well as similarity (F(4, 56) = 8.65, p < 0.0001). 

Post-hoc pairwise tests of simple effects demonstrated superior performance for the control 

group in every lure similarity, though not statistically significant for every degree (Lure 1: t(14) 

= 1.83, p = 0.088, 95% CI [-1.86, 23.81], Lure 2: t(14) = 3.17, p = 0.034, 95% CI [5.39, 27.94], 
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Lure 3: t(14) = 1.85, p = 0.088, 95% CI [-1.53, 20.49], Lure 4: t(14) = 2.46, p = 0.046, 95% CI 

[2.08, 30.22], Lure 5: t(14) = 2.66, p = 0.046, 95% CI [3.21, 30.12]) (Figure 3-3).  

We further analyzed different degrees of lure similarity by means of a calculation of Spearman’s 

rank correlation coefficients between lure similarity and the PatSep scores for every patient and 

control. The PatSep score was positively correlated with lure similarity for both the patient (rs 

= 0.515 ± 0.14, Z = 2.84, p = 0.008, for test against 0) and control group (rs = 0.378 ± 0.13, Z 

= 2.36, p = 0.018, for test against 0). 

The results indicate that LGI1 patients were impaired in correctly separating lures from related 

targets. Notably, the same held true not only for the overall PatSep score but also for the scores 

related to lure similarities. The significant slope in pattern separation performance in both 

groups demonstrates that patients did not show a differential impairment in separating either 

highly similar or least similar lures as the deficit in pattern separation was equally dispersed 

across all degrees of similarity (Figure 3-3). 

 

Figure 3-3 Pattern separation performance as a function of lure similarity from 1 (most similar) to 5 

(least similar). There is a significant gradual increase in pattern separation performance from high to 

low similarity for both the patient and control group. However, controls show superior performance in 

pattern separation compared to LGI1 patients from highly similar lures to lures with low similarity to 

targets. * p < 0.05, ** p < 0.01. 
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3.4.2 Neuropsychological data 

Patients were profoundly impaired in episodic verbal memory performance measured by the 

RAVLT (cf. Finke et al. (2017)). They memorized fewer words throughout the five learning 

trials (patients: 36.20 ± 4.46, controls: 60.67 ± 1.97, t(14) = 5.91, p = 0.0002, 95% CI [15.60, 

33.34]), performed worse on the retention trial (patients: 6.33 ± 1.41, controls: 13.60 ± 0.46, Z 

= -3.08, p = 0.0021), as well as in delayed recall (patients: 5.87 ± 1.46, controls: 14.07 ± 0.36, 

t(14) = 5.41, p < 0.0001, 95% CI [4.95, 11.45]). Also, patients were impaired in recognizing 

the previously learned words compared to the healthy controls (patients: 10.00 ± 1.13, controls: 

14.60 ± 0.16, t(14) = 4.24, p = 0.0002, 95% CI [2.27, 6.93]). Summarizing the results of the 

neuropsychological assessment, patients were also impaired in visuo-spatial and working 

memory, executive functions, as well as verbal fluency (Table 3-1). We did not find any corre-

lation between the PatSep score and neuropsychological test variables in the patient group (all 

p’s > 0.142), whereas the control group showed significant correlations between the PatSep 

score and the learning trials of the RAVLT (r = 0.636, p = 0.043), visuospatial memory (all p’s 

< 0.05), and working memory (r = 0.625, p = 0.017). 

Table 3-1. Neuropsychological data of LGI1 patients and controls (mean ± SEM) 

 LGI1 patients Controls 95% CI t Z p 

RCF copy 31.80 ± 1.20 29.40 ± 1.42 [-5.67, 0.87] -1.57 - 0.138 

RCF recall 15.78 ± 2.50 28.67 ± 1.38 [7.70, 18.10] 5.32 -  0.0001 

TMT-A 57.13 ± 8.28 35.87 ± 4.22 [-33, -4] - -2.81 0.005 

TMT-B 201.13 ± 47.94 95.23 ± 14.69 [-150, -14] - -2.67 0.008 

MWT-B* 24.29 ± 2.50 29.53 ± 1.57 [-0.29, 10.29] 2.04 - 0.062 

RWT-forenames 20.47 ± 1.98 30.60 ± 1.91 [3.61, 16.66] 3.33 - 0.005 

RWT-S 12.40 ± 1.61 18.20 ± 1.32 [1.00, 10.60] 2.59 - 0.021 

Digit span total 11.80 ± 1.21 16.47 ± 1.03 [1.81, 7.53] 3.50 - 0.004 

t(df=14), * t(df=13); RCF, Rey-Osterrieth complex figure; TMT, Trail-making test; MWT, Mehrfach-

Wortschatz-Intelligenztest; RWT, Regensburg word fluency test. 
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3.4.3 Hippocampal volumetry 

A whole-brain analysis of normalized cortical gray matter volume showed no significant reduc-

tion in patients compared to controls (t(14) = -1.83, p = 0.088, 95% CI [-6.62, 0.52], patients: 

39.71 ± 1.88, controls: 42.76 ± 1.40). Cortical gray matter volume was not correlated to behav-

ioral measurements of the MST neither in the patient nor in the control group (all p’s > 0.427). 

With regard to the whole bilateral hippocampal volume, we found a significant reduction for 

patients (Table 3-2). A three-way repeated measures ANOVA (group x side x subfield) revealed 

significant main effects of group (F(1, 14) = 14.82, p < 0.01) and subfield (F(2, 18.06) = 

1123.61, p < 0.0001), but no effect of side (F(1, 14) = 0.85, p = 0.373). Among two way inter-

actions only the group x subfield interaction was significant (F(2, 28) = 10.11, p < 0.001). The 

three way interaction between the included factors remained also non-significant (F(2, 15.67) 

= 0.469, p = 0.525). As we found no effects for the hippocampal sides, further analyses were 

based on collapsed left and right hippocampal volumes. Post-hoc pairwise comparisons showed 

that all analyzed subfields were significantly reduced in LGI1 patients (Table 3-2). 

Table 3-2. Hippocampal volumetry (mm3) for each subfield for LGI1 patients (n=15) and controls 

(n=15) 

 LGI1 patients Controls 95% CI t p 

CA1 544.88 ± 21.19 640.76 ± 18.06 [42.65, 149.12] 3.86 0.0029 

CA2/3 182.14 ± 8.10 218.49 ± 6.15 [14.76, 57.93] 3.61 0.0029 

DG 467.22 ± 19.74 554.44 ± 15.66 [36.00, 138.44] 3.65 0.003 

Total hippo-

campal vo-

lume 

2883.29 ± 112.32 3381.08 ± 95.82 [252.47, 743.09] 4.35 0.002 

Volumes are presented as mean ± SEM (mm³) averaged across sides and normalized for estimated total 

intracranial volume. t(df = 14). Adjustment for multiple testing was done using Benjamini & Hochberg’s 

False Discovery Rate. 
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Pattern separation performance depends on DG atrophy, whereas CA1 volume 

predicts recognition memory 

The volumes of CA1, CA2/3, and DG were inserted into a stepwise multiple regression model 

to predict pattern separation performance. The backward stepwise regression demonstrated that 

only the volume of the DG was a significant predictor (t(29) = 2.30, p = 0.029, 95% CI [0.01, 

0.17]) (Figure 3-4. a-d)A) in the statistically significant model (F(1, 29) = 5.30, p = 0.029) that 

accounted for approximately 16% of the variance of pattern separation performance. With re-

gard to the RM score only the volume of CA1 earned entry to the prediction model (t(29) = 

4.75, p < 0.001, 95% CI [0.001, 0.002]) (Figure 3-4. a-d)B). The resulting equation by removing 

insignificant CA2/3 and DG volume was able to explain nearly 45% of the variance of the RM 

score (F(1, 29) = 22.54, p < 0.001). All models with corresponding parameters from the back-

ward stepwise regression analyses are presented in Table 3-3. 

Table 3-3. Stepwise linear regression model to predict the PatSep and RM scores from variability 

in hippocampal subfield volume 

PatSep Model 1 Model 2 Model 3 

Variable B SE (B) ß B SE (B) ß B SE (B) ß 

CA1 -0.040 0.107 -0.201       

CA2/3 -0.401 0.330 -0.747 -0.394 0.324 -0.733    

DG 0.286 0.180 1.306 0.241 0.132 1.102 0.088 0.038 0.399* 

R²  0.207   0.203   0.159  

RM    

Variable B SE (B) ß B SE (B) ß B SE (B) ß 

CA1 0.002 0.001 0.783 0.002 0.001 0.762* 0.001 0.0003 0.668*** 

CA2/3 -0.0004 0.003 -0.076 -0.001 0.002 -0.104    

DG -0.0001 0.002 -0.050       

R²  0.448   0.448   0.446  
B, unstandardized coefficient; SE (B) standard error of the coefficient; ß, beta coefficient, *p < 0.05, 

*** p < 0.001. 
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Figure 3-4. a-d)  a) – b) Regression lines depict the predictive model of bilateral hippocampal sub-

field volumes (mm³) of the DG on pattern separation and CA1 on recognition memory. Higher volumes 

of the DG predict higher pattern separation performance across controls (white) and LGI1 patients 

(black), whereas higher volumes of CA1 predict higher recognition memory performance. c) – d) T1-

weighted MR scans of representative subjects of both the control and patient group shows the hippo-

campal subfield segmentation. Note the higher hippocampal volume for the control participant. PatSep, 

pattern separation; RM, recognition memory CA, cornu ammonis; DG, dentate gyrus.  

3.4.4 Clinical imaging 

Follow-up routine MRI data were available for 14 patients and showed hippocampal atrophy in 

13 patients (92.85%). In 9 of 14 patients (64.29%), hippocampal atrophy was accompanied by 
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T2/ FLAIR signal increase and loss of internal laminar architecture indicating hippocampal 

clerosis in the dentate gyrus region (Figure 3-5). 

 

Figure 3-5. a – f): Representative clinical MR images of six patients with LGI1 encephalitis during 

follow-up and time point of testing. Top row: Coronal T2-weighted imaging showing bilateral (a, c, d) 

or unilateral (b, e, f) hippocampal atrophy. Magnification shows atrophy of all hippocampal cortical 

layers including CA1 and a predominant atrophy of the dentate gyrus region including loss of internal 

laminar architecture in CA4/DG. Coronal FLAIR imaging shows signal hyperintensities in hippocampal 

region CA4/DG (arrows). 
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3.5 Discussion 

Our study demonstrates that patients with a LGI1 encephalitis compared to healthy controls 

show an impaired pattern separation and recognition memory performance in combination with 

a global hippocampal volume loss. However, despite the global volume reduction, we found a 

significant structure-function relationship for pattern separation performance for the DG. Com-

pared to the areas CA2/3 and CA1, the DG proved to be the best predictor of pattern separation 

performance measured by a mnemonic similarity task. Our results thus corroborate the emerg-

ing findings of human studies that pattern separation performance is especially mediated by the 

hippocampal DG (Bakker et al., 2008; Lacy et al., 2011). Moreover, CA1 volume predicted 

recognition memory performance more than any other region of interest. These findings suggest 

a regional specialization of hippocampal functions involved in cognitive processing. 

Using the MST in combination with magnetic resonance imaging, previous fMRI studies sug-

gested the CA3 and DG regions to be associated with pattern separation performance (Bakker 

et al., 2008; Lacy et al., 2011). However, in these studies CA3/DG was collapsed and studied 

in a unitary way due to a limitation in the resolution of imaging. Of particular importance, a 

recent ultra-high resolution fMRI study with 7 Tesla showed that only the DG compared to 

other hippocampal subfields showed separation-like activity evoked by items presented by a 

mnemonic similarity task, supporting our finding of a preferential involvement of the DG in 

pattern separation performance in humans (Berron et al., 2016). In addition, a recent case study 

examining a patient with bilateral ischemic lesions in the DG further suggested a particular role 

for the DG in pattern separation as the impaired patient performed slightly worse on the MST 

compared to a healthy control group (Baker et al., 2016).  

Data from recent human studies demonstrated deficits in behavioral pattern separation in pa-

tients with amnestic mild cognitive impairment (Stark et al., 2013; Yassa et al., 2010), Alz-

heimer’s disease (Ally, Hussey, Ko, & Molitor, 2013), and traumatic brain injury (Kirwan et 



3 Study II 
 85 

al., 2012). Similarly, healthy aged humans showed deficits in pattern separation through a de-

cline of pattern separation ability during aging (Holden, Toner, Pirogovsky, Kirwan, & Gilbert, 

2013; Stark, Stevenson, Wu, Rutledge, & Stark, 2015; Stark et al., 2013; Stark, Yassa, & Stark, 

2010; Toner, Pirogovsky, Kirwan, & Gilbert, 2009; Yassa, Lacy, et al., 2011). The present data 

thus complement the current view on pattern separation dependent on hippocampal integrity in 

the context of disease-related structural as well as age-related changes in humans. Moreover, 

we additionally studied mnemonic processing of stimuli with high or low similarity to a corre-

sponding target. Our patient cohort showed impairments in pattern separation graded across all 

similarity levels, a finding that is reminiscent of the behavioral outcome found in healthy aging 

(Stark et al., 2013; Yassa, Lacy, et al., 2011). Indeed, a preferential degradation of DG function 

has been implicated in aging processes (Small, Tsai, DeLaPaz, Mayeux, & Stern, 2002; West, 

1993; Yassa, Mattfeld, Stark, & Stark, 2011). 

On a neural level, computational models suggest that within the hippocampal network, the DG 

performs pattern separation by a decorrelation of overlapping neural assemblies at encoding 

(Rolls, 2016; Treves & Rolls, 1994). This concept is supported by a variety of experimental 

rodent studies showing that the hippocampal DG is indeed involved in pattern separation, 

whereas the area CA3 performs pattern completion (J. K. Leutgeb et al., 2007; S. Leutgeb & 

Leutgeb, 2007; McHugh et al., 2007; Neunuebel & Knierim, 2014). In the process of pattern 

completion within CA3, the interconnection of pyramidal neurons functions as an auto-associ-

ative network so that a stored representation can be retrieved from an incoming partial cue 

(Norman & O’Reilly, 2003; O’Reilly & McClelland, 1994). Considering this, it has been sug-

gested that the interplay of the DG and CA3 within the tri-synaptic circuit of the hippocampus 

is a reflection of a putative concomitant functional interdependence of pattern separation and 

completion as a result of a dynamic process-inherent trade-off depending on the current state 

of input-dependent system requirements (Lisman, 1999; O’Reilly & McClelland, 1994). In this 
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process, CA3 is assumed to be able to switch between pattern separation and completion based 

on input similarity (Knierim & Neunuebel, 2016; J. K. Leutgeb et al., 2007; Vazdarjanova & 

Guzowski, 2004). In this connection, we showed in another study that the process of pattern 

separation in the hippocampus is strongly influenced by oscillatory dynamics during sleep so 

that memory representations are stabilized (Hanert, Weber, Pedersen, Born, & Bartsch, 2017). 

Judging from the inherent network anatomy of the DG-CA3 networks in our patients, it seems 

plausible that a dysfunctional DG with its strong projections onto CA3 also affects the down-

stream network functions of CA3 itself. Here, we assume that the hippocampal circuit disrup-

tion in our patient cohort caused the deficits in pattern separation compared to our healthy con-

trol group. However, regarding the DG-CA3-network embedded in the tri-synaptic circuit, the 

DG volume turned out to be a better predictor of pattern separation performance compared to 

CA2/3. Considering the dysfunctional and lesioned DG-CA3 network in our patients the CA2/3 

region failed to reach significance in the model probably due to the strong dependency of CA3’s 

pattern separation function on intact DG inputs.  

Of note, we could not show a significant prediction of pattern separation performance by CA1. 

However, recent imaging findings in humans showed that CA1 exhibits pattern separation-like 

activity when the input similarity is low (i.e., when the change of the input increases) (Lacy et 

al., 2011). Recordings from CA1 and CA3 cells in rodents likewise suggest a linear transfer 

function of CA1, whereas CA3 responds in a non-linear fashion (i.e., with pattern separation 

like activity for both small and large environmental changes; Guzowski, Knierim, & Moser, 

2004; J. K. Leutgeb et al., 2005). In that sense, both human and rodent studies showed that CA1 

is able to exhibit pattern separation, provided that the change of the input was large (Lacy et 

al., 2011; Lee et al., 2004; J. K. Leutgeb et al., 2005). However, as we presented both large and 

small input changes, it is possible that the effect of CA1 variability on pattern separation was 

dampened. Overall, given the sequential processing of mnemonic information in the DG, CA3 
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and CA1 network in the hippocampal trisynaptic circuit, we show despite the global atrophic 

changes in hippocampal regions the highest prediction of pattern separation performance by the 

DG structure supporting the special role of the DG in pattern separation processes in humans. 

In addition to impaired pattern separation, our patients showed decreased recognition memory. 

These results are in accordance with previous studies using mnemonic similarity tasks to con-

sider hippocampal efficiency in memory impaired patients (Ally et al., 2013; Yassa et al., 2010). 

Given the fact that poor memory recovery due to hippocampal atrophy is common in patients 

with LGI1 encephalitis (Malter et al., 2014) this finding was actually not surprising. The per-

sisting cognitive deficits are most likely a reflection of the severity of the encephalitis on hip-

pocampal functions in our patients as also seen in the hippocampal atrophy. More importantly, 

in our study cohort, the volume of the hippocampal area CA1 was the best predictor of recog-

nition memory performance. CA1 as the output relay area of the hippocampus receives input 

from CA3 via the Schaffer collaterals that converges with entorhinal input via the perforant 

path (Insausti & Amaral, 2004; van Strien, Cappaert, & Witter, 2009). It is assumed that CA1 

compares the converging mnemonic representations from hippocampal CA3 and information 

about the actual present state carried by entorhinal input pattern (Hasselmo, 2005; Knierim & 

Neunuebel, 2016; Vinogradova, 2001). This ideal location of CA1 facilitates a full retrieval of 

memory traces and information that fully matches the actual state (Hasselmo & Eichenbaum, 

2005; Hasselmo & Wyble, 1997). Accordingly, previous studies ascribed the function of nov-

elty detection in the sense of a match/mismatch computation in memory processing to CA1 

(Duncan, Ketz, Inati, & Davachi, 2012; Knierim & Neunuebel, 2016; Lisman, 1999; Reagh, 

Watabe, Ly, Murray, & Yassa, 2014). Thus, the position of CA1 that enables to retrieve a com-

plete memory pattern due to an integration of mnemonic inputs from different subnetworks 

clearly explains the highly predictive value of the CA1 volume regarding recognition memory 

performance in our study. Notably, neither recognition memory nor any other neurocognitive 



88 3 Study II 
 

domain were correlated with pattern separation performance in LGI1 patients arguing against 

the possibility that the pattern separation impairment was secondary to cognitive deficits. Our 

results reflect a functional dissociation of pattern separation and recognition memory perfor-

mance which might suggest that both computations are relayed by different hippocampal sub-

networks. However, future experimental models have to further differentiate network-related 

mechanisms that affect distinct cognitive and behavioral outcome in humans.  

Interestingly, Miller et al. (2017) showed a significant LGI1 encephalitis-induced hippocampal 

volume loss restricted to bilateral CA3, in contrast to the global volume reduction that was 

apparent in our data. The difference might be due to the segmentation method used to analyze 

ultra-high field 7 T MR images. However, it might be mentioned that, the examined LGI1 pa-

tients in the Miller study also showed a global hippocampal volume reduction, although not 

reaching significance levels. Hence, it is more likely that the global volume reduction that we 

observed may be better explained by a stronger noxious impact on the hippocampus due to 

stronger hippocampal inflammation in the acute phase leading to a greater disease severity of 

our study cohort. Indeed, we have shown a particular vulnerability of the hippocampus in en-

cephalitis (Bartsch et al., 2015). Also, it is plausible that the epilepsy in the acute phase with 

subsequent hippocampal sclerosis in the DG further contributed to the structural sequelae in 

our cohort (Blümcke, Cross, & Spreafico, 2013; Blümcke, Thom, et al., 2013; Coras et al., 

2014). It is, hence, important to note that pattern separation and completion deficits in the hip-

pocampus may not exclusively be determined by atrophic changes but that memory processing 

deficits may also be the result of dysfunctional cellular and neuroplastic network alterations in 

the course of the disease process without leading to neurodegeneration and atrophy. In this vein, 

Coras et al. (2014) showed that cognitive deficits in patients with epilepsy due to hippocampal 

dysfunction and hippocampal sclerosis was not associated with atrophy but with cellular 

changes in hippocampal subfields. Thus, the dysfunction of memory processing can also be 
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caused by subregional network dysfunction that may not lead in atrophic sequelae in the hip-

pocampus. In addition, the examination of damaged brain tissue can influence automated seg-

mentation sensitivity. In patients with hippocampal sclerosis, automated segmentation by 

means of Freesurfer showed a greater difference to manual segmentation compared to the 

healthy brain (Pardoe et al., 2009). In this sense, our results may be confounded by a higher 

segmentation error in the patient group. However, supporting the reliability of our findings, it 

has been shown that Freesurfer’s segmentation algorithm was sensitive to hippocampal atrophy 

in patients with mesial temporal lobe epilepsy; and, importantly, those results correlated with 

those of a manual segmentation technique (Morey et al., 2009; Pardoe et al., 2009). We have 

acknowledged the issue of a variability in segmentation due to an underlying pathology by 

visual inspection of the clinical MRI scans (Figure 3-5) that indicate the particular affection of 

the DG region thus corroborating the main effect of the DG lesioning on hippocampal functions. 

It has to be considered that a deficit in pattern separation as shown in our study cohort by di-

minished correct ‘similar’ response to lures – should be also reflected by a heightened false 

‘old’ response to lures (i.e. a shift toward pattern completion; Ally et al., 2013; Yassa et al., 

2010). However, our patient cohort showed an equal proportion of ‘old’ answers to lures com-

pared with the healthy control group probably indicating that pattern completion processes were 

not affected by the present hippocampal atrophy. However, as a caveat and limiting the inter-

pretation of pattern completion performance, the MST lacks specificity regarding partial cues 

that reactivate previously encoded mnemonic representations (Hunsaker & Kesner, 2013). We 

thus based our analysis and conclusions of behavioral data on pattern separation. Indeed, the 

assessment of pattern separation performance based on the MST has been shown in a variety 

of studies (Lacy et al., 2011; Stark et al., 2013; Yassa et al., 2010; Yassa, Mattfeld, Stark, & 

Stark, 2011).  
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In conclusion, our findings show that patients with LGI1 limbic encephalitis were impaired in 

pattern separation and recognition memory performance that can be traced back to hippocampal 

volume reduction and loss of hippocampal integrity. The facts that the LGI1 gene transcript is 

mainly expressed in DG and CA3 neurons (Herranz-Pérez et al., 2010; Kalachikov et al., 2002) 

and a deficiency of LGI1 selectively decreases synaptic transmission in the hippocampus (Fu-

kata et al., 2010), emphasize the basic principle of the structure-function relationship between 

hippocampal subfields and memory processing. Specifically, the variability of the DG was pre-

dictive of behavioral pattern separation performance compatible with the current view on the 

DG to be involved in hippocampal pattern separation. By contrast, recognition memory was 

strongest predicted by the volume of CA1. These findings show that LGI1 encephalitis differ-

entially targets distinct subregions of the hippocampal circuit and corroborate the framework 

of a regional specialization of hippocampal functions involved in cognitive processing. 
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4.1 Abstract 

Replay of hippocampal neural representations during sleep is thought to promote systems con-

solidation of declarative memory. How this reprocessing of memory during sleep affects the 

hippocampal representation itself, is unclear. Here we tested hippocampal stimulus processing 

(i.e., pattern separation) before and after periods of sleep and wakefulness in humans (female 

and male participants). Pattern separation deteriorated across the wake period but remained 

stable across sleep (p = 0.013) with this sleep-wake difference being most pronounced for stim-

uli with low similarity to targets (p = 0.006). Stimuli with the highest similarity showed a re-

versed pattern with reduced pattern separation performance after sleep (p = 0.038). Pattern sep-

aration performance was positively correlated with sleep spindle density, slow oscillation den-

sity, and theta power phase-locked to slow oscillations. Sleep, presumably by neural memory 

replay, shapes hippocampal representations and enhances computations of pattern separation to 

subsequent presentation of similar stimuli. 

Keywords: consolidation; hippocampus; memory; pattern separation, sleep 

Sleep in humans stabilizes pattern separation performance 
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Published in The Journal of Neuroscience, December 2017, 37(50):12238-12246, 

doi: 10.1523/JNEUROSCI.1189-17.2017, [Epub November 2017] 



100 4 Study III 

4.2 Introduction 

Whereas the wake state is optimal for the encoding of information, sleep following encoding is 

considered a brain state favoring the formation of long-term memory (Rasch & Born, 2013). In 

particular, sleep appears to benefit hippocampus-dependent (i.e., declarative) memory for epi-

sodes and facts (Inostroza & Born, 2013). The consolidation of hippocampus-dependent mem-

ories during sleep is causally related to the replay of patterns of neural activity that were present 

during encoding of the information during prior wakefulness (Ego-Stengel & Wilson, 2010; 

Girardeau, Benchenane, Wiener, Buzsáki, & Zugaro, 2009). In rats, firing patterns of hippo-

campal place cell assemblies evoked during navigating through a maze are replayed during 

subsequent slow-wave sleep (SWS; O’Neill, Pleydell-Bouverie, Dupret, & Csicsvari, 2010; 

Wilson & McNaughton, 1994). Such replay activity can be experimentally induced by present-

ing cues that were present during prior learning, and again during SWS after learning (Bendor 

& Wilson, 2012; Rasch, Büchel, Gais, & Born, 2007), which indeed enhanced the memory 

encoded before sleep, thus proving the causal role of neural reactivations for the consolidation 

of hippocampusdependent memory during sleep. The reactivated memory information is 

thought to be transmitted to extrahippocampal, mainly neocortical networks serving as long-

term store (Diekelmann & Born, 2010). This process is supported by the phaselocking of the 

three prime rhythms of the EEG during SWS accompanying hippocampal replay, (i.e., hippo-

campal ripples that nest into thalamic 12-15 Hz spindle oscillations, which themselves nest into 

the up-states of the neocortical <1 Hz slow oscillations; Clemens et al., 2007; Sirota, Csicsvari, 

Buhl, & Buzsáki, 2003; Staresina et al., 2015).  

Hippocampal memory reactivations, however, aside from promoting extrahippocampal 

changes, are expected to also change the features of the hippocampal representation per se, 

possibly resembling the effects of re-encoding (Inostroza & Born, 2013; Karpicke & Roediger, 

2008). Pattern separation (PatSep) and pattern completion (PatComp) represent two principal 
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features of hippocampal memory processing (McNaughton & Morris, 1987; O’Reilly & 

McClelland, 1994). Pattern separation refers to the capability of the hippocampus to form 

nonoverlapping orthogonal neural representations from similar sequential episodic stimulus in-

puts (McClelland, McNaughton, & O’Reilly, 1995). Pattern completion refers to the recall of a 

memory based on the presentation of incomplete, noisy, or degraded stimulus patterns (Norman 

& O’Reilly, 2003). Based on the hippocampal circuit structure with its recurrent associative 

networks embedded into the unidirectional trisynaptic pathway, both processes have been 

linked to computations in different hippocampal subnetworks (Bartsch, Döhring, Rohr, Jansen, 

& Deuschl, 2011; Bartsch et al., 2010; O’Reilly & McClelland, 1994). Indeed, it has been 

shown that the hippocampal dentate gyrus (DG) is essential for pattern separation and that CA3 

networks are involved in pattern completion (Guzowski, Knierim, & Moser, 2004; J. K. 

Leutgeb, Leutgeb, Moser, & Moser, 2007; Neunuebel & Knierim, 2014). In humans, high-res-

olution imaging studies confirmed the role of the DG and CA3 in pattern separation and deter-

mined that the CA1 area contributed to pattern completion, using mnemonic similarity recog-

nition tasks (Bakker, Kirwan, Miller, & Stark, 2008; Berron et al., 2016; Lacy, Yassa, Stark, 

Muftuler, & Stark, 2011; Yassa, Mattfeld, Stark, & Stark, 2011; Yassa et al., 2010). 

Here, we used the mnemonic similarity task (MST) to study how memory processing during 

sleep affects representations toward enhancing and/or diminishing pattern separation. We rec-

orded sleep to identify EEG oscillations known to synchronize hippocampal memory replay 

activity (i.e., spindles) originating from thalamic networks and the neocortical slow oscillations.  

4.3 Materials and Methods 

4.3.1 Participants 

Thirteen healthy students (mean age, 23.46 ± 0.5 years; age range: 21–26 years; 10 women) 

participated in the study. Participants were recruited via advertisement at the university and 
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received monetary compensation (€ 75) after completion. Participants were free of neurological 

or psychiatric disorders and did not use any medication. They kept a regular sleep/wake cycle 

and did not engage in any stressful activities (e.g., exams, night shift) for an interval of at least 

6 weeks before the experiments. General sleep quality was assessed via the Pittsburgh Sleep 

Quality Index (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989). None of the subjects had 

previously participated in an experiment in our laboratory. Participants had to refrain from 

drinking alcohol and caffeine, from stressful physical activities, and from napping on the ex-

perimental days. They were all vigilant and alert according to the subject’s report at all time 

points tests were performed. Every participant gave written informed consent before the study, 

which was approved by the local ethics committee. 

4.3.2 Mnemonic similarity task  

The MST is an established recognition memory task that has been shown to tax pattern separa-

tion (Ally, Hussey, Ko, & Molitor, 2013; Bakker et al., 2008; Kirwan & Stark, 2007; Stark, 

Yassa, Lacy, & Stark, 2013; Toner, Pirogovsky, Kirwan, & Gilbert, 2009; Yassa, Lacy, et al., 

2011; Yassa et al., 2010; http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-mst/). 

The MST comprises an encoding and a recall phase. For the encoding phase, the participant is 

asked to classify 256 items (i.e., everyday objects) as either an indoor or an outdoor object via 

button press on a keyboard. Objects are sequentially presented on a computer monitor each for 

2 s with a 0.5s interstimulus interval. The two recall phases of the experiment (immediate and 

delayed) comprised 192 items (128 old plus 64 new items) each including (1) 64 exact repeti-

tions of the previously seen objects (‘targets’), (2) 64 objects that were similar to the previously 

seen objects (‘lures’), and (3) 64 new objects that the participant had not seen before (‘foils’). 

Half of the stimulus set used at encoding (128 items) was used for immediate recall testing, the 

other half for delayed recall testing. For testing recall, participants indicated (within the 2 s of 

item presentation) whether a presented object was ‘old’, ‘similar’, or ‘new’ by button press. In 
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this context, the answers to lure items were of substantial significance, implying a successful 

pattern separation when correctly responding ‘similar’ (Toner et al., 2009; Yassa et al., 2010). 

The order of sets across Wake and Sleep as well as for immediate and delayed recall was ran-

domized, and the stimuli within each set followed a pseudorandomized order. Responses at 

recall enabled calculation of two different scores that comprise performance measures of pat-

tern separation and recognition memory: 

Pattern separation score.  

Behavioral pattern separation was determined by the correct discrimination of a lure item from 

its target counterpart as follows: PatSep score = [p (correct similar response to lures) – p (false 

similar response to foils)]. The score was thus corrected for a possible response bias toward 

exhibiting a tendency to use the similar response (Bennett & Stark, 2016; Stark et al., 2013; 

Yassa, Lacy, et al., 2011; Yassa et al., 2010).  

To assess the performance of pattern separation as a function of lure similarity, PatSep scores 

were calculated for the five degrees of lure similarity to a target object (1-5: most similar to 

least similar; Lacy et al., 2011; Yassa et al., 2010). The similarity bins were the same as in 

previous studies (Bennett & Stark, 2016; Stark et al., 2013).  

Recognition memory score. 

Recognition memory was assessed by the number of correct responses to targets. To correct for 

response bias to preferentially respond with the target button, the number of incorrect target 

responses to foils was subtracted: recognition memory (RM) score = [p (correct old response 

to targets) – p (false old response to foils)] (Stark et al., 2013).  

4.3.3 Experimental design and procedure  

Each participant attended both the Wake and Sleep conditions, following a within-subject cross-

over design. Participants were randomly assigned to one of the conditions to perform at first. 
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The second condition took place 42.54 ± 5.33 d later. Each condition started with encoding of 

the MST items (encoding phase) followed by an immediate recall test, followed by a 9 h reten-

tion interval covering either nocturnal sleep (Sleep condition) or daytime wakefulness (Wake 

condition). Thereafter, recall was tested again (delayed recall, Figure 4-1). Encoding and im-

mediate recall testing lasted 30 min, and the delayed recall an additional 15 min. For the Sleep 

condition, subjects spent one adaptation night before the test night in the laboratory to habituate 

to sleeping under laboratory conditions including polysomnographic recordings. On experi-

mental days, encoding and immediate recall took place in the evening from 9:00 to 10:00 P.M. 

Then, subjects were prepared for polysomnographic recordings, and lights were turned off at 

11:00 P.M. Subjects were awakened at 07:00 A.M., and recall testing started at 7:30 A.M.  

After delayed recall testing in the Sleep condition, participants completed a neuropsychological 

test battery evaluating (1) short-term memory by the Rey Auditory Verbal Learning Test (Rey, 

1941), (ii) executive function by the Trail Making Test A and B (TMT; Reitan, 1979), (iii) 

verbal fluency by the Regensburg Word Fluency Test (Aschenbrenner, Tucha, & Lange, 2000), 

(iv) working memory by the digit span test (Wechsler, 1997), and (v) general intelligence by 

the Multiple Choice Vocabulary Intelligence Test (Lehrl, 2005). Also, handedness was assessed 

via the Edinburgh Handedness Inventory (Oldfield, 1971). 

In the Wake condition, encoding and immediate recall testing took place in the morning be-

tween 8:00 and 9:00 A.M., and delayed recall was tested between 6:00 and 7:00 P.M. Partici-

pants were told to sleep at least 6 h, but at most 8 h, the night before testing. During the wake 

interval, participants were not engaged in stressful physical and emotional activities and de-

manding cognitive tasks like exam preparations.  
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4.3.4 Polysomnography, EEG power spectra, slow oscillations, and sleep 

spindles 

Polysomnography included recordings of electroencephalogram (EEG) from F3, F4, C3, C4, 

O1, and O2 (international 10-20 system, referenced to electrodes at the mastoids, ground at 

AFz), electrooculogram (EOG) from electrodes around the eyes, and electrocardiogram (ECG). 

Signals were recorded using the SOMNOscreen™ EEG 10-20 system (Somnomedics) digitized 

at 128 or 256 Hz and filtered (EEG, 0.2-35 Hz; EOG, 0.2-10 Hz; ECG lowpass, 50 Hz). Sleep 

stages were scored off-line according to American Academy of Sleep Medicine criteria by a 

trained rater. For each subject, total sleep time, time spent in sleep stage 1 (S1), stage 2 (S2), 

SWS (i.e., stages 3 and 4), and rapid eye movement (REM) sleep and movement artifacts were 

detected. Sleep onset was defined with reference to lights off by the first occurrence of stage 1 

sleep followed by stage 2 sleep. Analyses were based on the central channels.  
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Figure 4-1. Design and procedures. Each participant performed on a Sleep and a Wake condition sepa-

rated by at least 3 weeks. Conditions started with encoding of 256 MST items followed by an immediate 

recognition test (192 items), followed by a 9-hour retention interval covering nocturnal sleep (Sleep 

condition) or daytime wakefulness (Wake condition). Thereafter, delayed recall (192 items not used for 

immediate recall) was tested. Displayed pictures in the graph are taken from the original image database 

of the MST. ISI – interstimulus interval. 

More fine-grained EEG analyses were performed to track the association of pattern separation 

and completion with specific sleep EEG oscillatory parameters during non-REM sleep (S2 and 

SWS; i.e., specifically with EEG power in different frequency band, slow oscillations, and sleep 

spindles). Analysis was based on epochs free of visually identified EEG artifacts and performed 

using the SpiSOP toolbox (http://www.spisop.org) based on MATLAB 2015a (MathWorks) 

and FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011). Additionally, EEG activity oc-

curring phase-locked to the slow oscillations was explored. Before the analyses, EEG signals 

were down-sampled to 128 Hz. The algorithms are briefly described in the following sections.  
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Power spectral analyses.  

Power spectra were calculated on consecutive 5s intervals of non-REM sleep, which overlapped 

in time by 4 s. Intervals were tapered by a single Hanning window before applying fast Fourier 

transformation that resulted in interval power spectra with a frequency resolution of 0.2 Hz. 

Power spectra were then averaged across all blocks (Welch’s method) and normalized by the 

effective noise bandwidth to obtain power spectral density estimates for all data. Mean power 

density in the following frequency bands was determined for each EEG channel separately, as 

follows: slow oscillation (0.5–1 Hz); delta (1– 4 Hz); slowwave activity (0.5–4 Hz); theta (4–8 

Hz); slow spindles (9–12 Hz); and fast spindles (12–15 Hz). 

Slow oscillation detection.  

Identification of slow oscillations was performed in non-REM sleep, separately for S2 and 

SWS. Detection was based on a previously published algorithm (Mölle, Marshall, Gais, & 

Born, 2002). For each EEG channel, the signal was filtered between 0.5 and 3.5 Hz (3 dB 

rolloff) using a digital finite impulse response filter (Butterworth filter, order of 4). Then, all 

time intervals with consecutive positive-to-negative zero crossings were marked as putative 

slow oscillation if their durations corresponded to a frequency between 0.5 and 1.11 Hz (Ngo, 

Martinetz, Born, & Mölle, 2013). Putative slow oscillations with lower amplitudes were imme-

diately excluded when both negative and positive half-wave amplitudes were smaller than -15 

and +10 μV, respectively. A slow oscillation was then identified if its negative half-wave peak 

potential was >1.25 times the mean of the negative half-wave peak of all putatively detected 

slow oscillations in the respective EEG channel, and also only if the amplitude of the positive 

half-wave peak was >1.25 times the mean positive half-wave amplitude of all other putatively 

detected slow oscillations within this channel. For each individual and channel, the number of 

slow oscillations, their density (per minutes of non-REM sleep), mean amplitude, and slope 
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(ratio between negative half-wave peak amplitude and the time between the negative peak to 

the next zero crossing; Riedner et al., 2007) were calculated. 

Spindle detection.  

Spindle identification focused on conventional (fast) spindles in central channels (C3, C4) as 

they typically occur in centroparietal brain regions (De Gennaro & Ferrara, 2003; Mölle, Berg-

mann, Marshall, & Born, 2011). Spindle frequency peaks were visually identified from non-

REM power spectra according to their expected power maximum in the 12–15 Hz band (mean 

peak, 13.82 ± 0.11 Hz). For each EEG channel, the non- REM epochs signal was filtered with 

a bandpass of ±1 Hz (-3 dB cutoff, two filter passings) around the individual spindle frequency 

peaks. Then, using a sliding window with a size of 0.2 s the root mean square (RMS) was 

computed, and the resulting signal was smoothed in the same window with a moving average. 

A spindle was detected when the smoothed RMS signal exceeded an individual amplitude 

threshold 1.5 times the SD of the filtered signal for 0.5–3 s. The threshold crossings marked the 

beginning and the end of the spindle event. Spindles were excluded with amplitudes > 200 μV. 

For each subject and channel, absolute spindle counts, spindle density (per 30s non-REM 

epochs), mean amplitude, and mean length were calculated. For spindle analyses, data from one 

outlier (with a spindle density 2 SDs from the mean) were removed (resulting n = 12).  

EEG activity phase-locked to slow oscillations.  

Time-frequency power was calculated separately for each detected slow oscillation in fre-

quency steps of 0.2 Hz and a range of 2–24 Hz using continuous Morlet wavelets with a length 

of 7 cycles that were applied to the EEG every 0.02 s, time-locked to the negative slow oscilla-

tion peak. Time-frequency data were then averaged for each subject. Averaged time-frequency 

power values were log transformed (in decibels) and, then, normalized by dividing them by the 

average power in ± 2 s window around the negative slow oscillation peak for each respective 

frequency bin. For statistical comparisons, for each subject the phase-locked power  in two 
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frequency bands of interest (Ngo et al., 2013; Schreiner & Rasch, 2015) was averaged across 

specific time windows (i.e., theta activity; 4–8 Hz) occurring at the slow oscillation down state 

(0.5 to 0.25 s around the negative slow oscillation peak) and spindle activity (12-16 Hz) occur-

ring at the subsequent slow oscillation up state (+0.25 to 1 s with reference to the negative slow 

oscillation peak).  

4.3.5 Statistical analyses  

To analyze differences between the Sleep and Wake conditions for MST parameters, difference 

values (delayed minus immediate recall scores) were calculated. A Shapiro-Wilk test for nor-

mality was applied to all parameters before statistical testing. Paired -samples t tests were used 

for the analysis of differences between Sleep and Wake conditions regarding PatSep, and RM 

scores. Also, one-sample t tests against zero were conducted to show a stabilization, decrease, 

or increase of the difference values of PatSep and RM scores. A two-factorial repeated -

measures ANOVA was performed for examining sleep/wake differences regarding the different 

degrees of lure similarity with Sleep/Wake and lure similarity as within -subject factors. If the 

sphericity assumption was violated, degrees of freedom were reported according to a Green-

house-Geisser correction. Post hoc paired -samples t tests (Fisher’s least significant difference 

method) were performed to identify differences between the Sleep and Wake condition.  For a 

further analysis to depict the relation between the PatSep score and lure similarity, Spearman’s 

for immediate and delayed recall were separately calculated for every subject. One-sample Wil-

coxon signed rank tests against zero were used to demonstrate graded decreases or increases of 

scores in relation to lure similarity. To examine differences between the correlational coeffi-

cients, Wilcoxon signed rank tests were calculated. To analyze the relationship between PatSep 

scores and sleep EEG parameters, Pearson productmoment correlations were computed for nor-

mal distributed and linearly related variables, for other variables Spearman’s was used. Con-
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sidering the exploratory nature of the correlational analysis, correction for multiple compari-

sons was excluded. All statistical analyses were performed using two-tailed tests. The signifi-

cance level was set to p < .05. Data are expressed as the mean ± SEM.Results. 

4.4 Results 

Each of 13 healthy students was tested during a Sleep and a Wake condition (Figure 4-1, ex-

perimental design and procedure). On both conditions, the encoding of MST items (color pho-

tographs of everyday objects) was followed by an immediate recall, and a 9-hour retention 

interval covering either nocturnal sleep or daytime wakefulness. Thereafter, delayed recall of 

MST items was tested. At recall, subjects were required to judge presented objects as ‘old tar-

get’, ‘similar lure’ or ‘new foil’ items, enabling the calculation of individual scores of PatSep 

performance and recognition memory. The assessment of the effects of sleep was based on 

individual retention scores (i.e., delayed minus immediate recall). 

4.4.1 Pattern Separation and Recognition Memory 

PatSep scores were distinctly higher after sleep than after wakefulness (t(12) = -3.08, p = .010, 

Figure 4-2). Additionally, the delayed-immediate recall difference revealed that PatSep scores 

remained stable across sleep (M = -3.32 ± 2.98, t(12) = -1.16 p = .287, for test against 0), 

whereas scores strongly decreased across wakefulness (M = -20.82 ± 4.24, t(12) = -4.91, p = 

.00004). Regarding recognition memory, the scores were higher after sleep (M = -7.54 ± 2.71) 

than wakefulness (M = -23.77 ± 3.12; t(12) = -3.603, p = .004, Figure 4-2, Table 4-1). 
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Table 4-1. Overview of responses in the MST in Sleep and Wake condition. 

Item type  Target   Lure   Foil  

Response old similar new old similar new old similar new 

Sleep          

Immediate 

Recall 

83.54 

(3.16) 

13.54 

(3.02) 

3.00 

(0.90) 

37.92 

(4.01) 

54.69 

(3.85) 

7.23 

(1.46) 

1.31 

(0.31) 

19.23 

(3.44) 

79.77 

(3.38) 

Delayed 

Recall 

79.08 

(2.40) 

15.77 

(1.82) 

5.23 

(1.00) 

32.69 

(3.14) 

50.69 

(3.18) 

16.62 

(2.52) 

4.38 

(1.29) 

18.46 

(2.98) 

77.15 

(3.07) 

Wake          

Immediate 

Recall 

85.62 

(2.86) 

12.31 

(2.62) 

2.15 

(0.82) 

30.62 

(3.99) 

62.38 

(3.72) 

6.85 

(1.43) 

2.46 

(0.31) 

19.69 

(4.43) 

78.23 

(4.47) 

Delayed 

Recall 

62.62 

(4.89) 

26.85 

(4.48) 

10.46 

(1.97) 

32.08 

(3.52) 

38.69 

(3.25) 

29.54 

(2.69) 

3.23 

(0.84) 

16.77 

(2.77) 

80.08 

(2.93) 

Mean ± SEM of response types relative to item types in percent.  

 

Figure 4-2. PatSep, and Recognition Memory performance separately for the Sleep (black) and Wake 

(white) conditions. Mean (±SEM) difference values (delayed-minus-immediate recall performance) 

are given. PatSep performance deteriorates across the wake interval but remains stable across sleep.  * 

p < .05; ** p < .01, for pairwise comparisons between conditions. + p < .05; ++ p < .01, for test 

against zero. 
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We examined whether the effects of sleep on the PatSep score depended on the degree of the 

lure similarity (ranging from 1 to 5, from most similar to least similar to target). The stabiliza-

tion of PatSep scores after sleep, compared with the decrease across wakefulness, was most 

pronounced for the least similar (5) lures (F(4, 48) = 8.28, p = .00004, Sleep/Wake x Similarity 

interaction, in a 2 x 5 repeated -measures ANOVA; Figure 4-3 a). The effect of sleep decreased 

with increasing lure similarity and, notably, was reversed for the most similar lures (lure 1) 

showing higher PatSep scores after wakefulness than after sleep (t(12) = 2.33, p = .038).  

The diminished PatSep score for highly similar lures compared with wakefulness lead to the 

assumption that participants were here more prone to incorrectly responding ‘old’ to lures in-

stead of ‘similar’. To prove the hypothesis, we also calculated the 2x5 (Sleep/Wake x Similar-

ity) ANOVA for the probability of incorrectly responding ‘old’ to lures (i.e., also corrected for 

the response bias, as follows: p (false old response to lures) – p (false old response to foils). As 

expected, the results mirrored the findings regarding the PatSep score. For the least similar lure 

5, the old responses were more frequent after wakefulness than after sleep (t(12) = 4.69, p = 

.001). Conversely, for the most similar lure 1, they were more frequent after sleep than after 

wakefulness (t(12) = -2.57, p = .025). 

To further analyze the dependency of sleep versus wake effects on lure similarity, we calculated 

correlations between lure similarity and the PatSep score, separately for the Sleep and Wake 

conditions for every participant. As expected, at immediate recall in both conditions the PatSep 

score was positively correlated with lure similarity (i.e., PatSep scores were the higher the less 

similar the lure was; Sleep: rs0rs = .747 ± 0.07, Z = 3.22, p = .001, for test against 0; Wake: rs 

= .735 ± 0.07, Z = 3.19, p = .001). The same positive correlation was found after sleep (rs = 

.733 ± 0.06, Z = 3.18, p = .001), but failed to reach significance after wakefulness (rs = .249 ± 

0.14, Z = 1.80, p = .071). Comparing averaged correlations across participants at immediate 
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and delayed recall revealed that these coefficients significantly differed only in the Wake con-

dition (Z = - 2.41, p = .016), whereas there was no difference in the Sleep condition (Z = - 0.31, 

p = .755;Figure 4-3 b).  

4.4.2 Sleep Recordings, Slow Oscillations, and Spindles  

Participants in the Sleep condition displayed normal sleep (total sleep time: 446.2 ± 7.1 min, sleep onset 

latency: 29.0 ± 5.1 min, sleep time in stage 1: 49.8 ± 6.9 min; sleep time in, stage 2: 196.2 ± 10.9 min; 

sleep time in, SWS: 105.1 ± 6.3 min; sleep time in, REM sleep 64.3 ± 8.0 min, movement time 10.3 ± 

5.9 min). None of these parameters correlated with the PatSep score (all p values 0.28). Correlations 

between specific EEG oscillatory measures and the PatSep score are summarized in Table 4-2.  

Table 4-2. Power Density, Slow Oscillations and Spindles - Correlations with Pattern Separation 

performance 

  
Correlations with  
PatSep retention score 

 Mean (SEM) r p 

Power Density (µV²/Hz)    

0.5–1 Hz 329.58 (38.16) .352 .238 

0.5–4 Hz 112.27 (11.80) .234 .441 

1–4 Hz (#) 86.11 (9.24) .143 .642 

4–8 Hz (#) 7.55 (0.77) -.236 .437 

9–12 Hz (#) 3.18 (0.66) -.352 .239 

12–15 Hz (#) 3.53 (0.43) -.104 .734 

Slow Oscillations    

Count 1130.23 (90.91) .408 .166 

Density (/30 s) 1.93 (0.11) .613* .026 

Amplitude (µV) (#) 169.02 (6.84) .197 .519 

Slope (µV/s) 401.16 (17.72) .215 .480 

Spindles    

Count 1659.91 (67.68) .039 .909 

Density (/30 s) 2.79 (0.05) .683* .014 

Length (s) 0.85 (0.01) -.055 .866 

Amplitude (µV) 31.22 (1.46) -.456 .159 

Means (± SEM) for power within distinct EEG frequency bands, slow oscillation and spindle parame-

ters. Right columns indicate correlations with the PatSep retention score and respective p-values. (#) 



114 4 Study III 

Correlations for frequency bands that were not normally distributed were calculated with Spearman’s 

rho, all others with Pearson product-moment correlation. * p < .05. 

 

Figure 4-3. Pattern separation performance as a function of lure similarity. (a) Mean (±SEM) PatSep 

score across five degrees of lure similarity (1 – high, 5 – low similarity) separately for the Sleep (black 

bars) and Wake (white) conditions. * p < .05; ** p < .01 for pairwise comparisons between Sleep and 

Wake condition. Difference values (delayed-minus-immediate recall) are indicated. (b) Mean (±SEM) 

PatSep scores separately at immediate and delayed recall for the Sleep and Wake conditions depict 

graded decrease and increase in performance. Note, the typical increase in pattern separation perfor-

mance with decreasing lure similarity seen before sleep and wakefulness intervals (immediate recall) is 

preserved after sleep, but deteriorates after wakefulness (delayed recall).  

Robust relations were revealed for non-REM sleep spindles and slow oscillations. Spindle den-

sity as well as slow oscillation density during non- REM sleep were positively correlated with 

PatSep performance (for central electrode sites: spindles: r = .683, p = .014, slow oscillations: 

r = .613, p = .026; Figure 4-4 a,b). Considering evidence that the occurrence of hippocampal 

memory reactivations is synchronized to neocortical slow oscillation and thalamic spindle ac-

tivity (Sirota et al., 2003; Staresina et al., 2015) we also explored the relationship of EEG ac-

tivity occurring phase-locked to the slow oscillation (±1.5 s around the negative slow oscillation 



4 Study III 115 

peak) with PatSep performance. The analyses revealed a positive correlation between PatSep 

performance and phase-locked (4–8 Hz) theta power with a maximum at central channels (at 

C3: r = .589, p = .044; Figure 4-4 c). There was no correlation of PatSep performance with (12–

16 Hz) spindle activity occurring phase-locked to the slow oscillation. 

 

Figure 4-4. EEG spindle density, slow oscillation density and slow oscillation associated theta activity 

during NonREM sleep are related to pattern separation performance. Correlation between PatSep per-

formance and a) spindle density (n = 12) and b) slow oscillation density (n = 13) during NonREM sleep 

(SWS and S2, recordings from C3/C4). c) Correlation between PatSep performance and phase-locked 

theta (4–8 Hz) power (at C3) during slow oscillation, i.e., in a -0.5 to 0.25-s window around the negative 

slow oscillation peak (n = 13). Slow oscillations were identified in NonREM sleep (SWS and S2). d) 
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Averaged time-frequency plot of EEG wavelet-power during slow oscillations (at C3) in a ±1.5-s time 

window around the negative slow oscillation peak (0 s) for a 2–24 Hz frequency band (n = 12).  

4.5 Discussion 

Our study in humans shows that pattern separation performance stabilized after sleep but dete-

riorated across a period of wakefulness. The stabilizing effect of sleep on pattern separation 

was most pronounced for lures with lowest similarity to the target stimulus. For stimuli with 

the greatest similarity to targets, pattern separation performance after postencoding sleep was 

significantly lower than after the wake period. Particularly, we found EEG spindle and slow 

oscillation density, as well as slow oscillation locked theta activity during non-REM sleep to 

be positively correlated with overnight changes in pattern separation performance. The picture 

arising from these findings is consistent with the notion that neural replay during sleep strength-

ens hippocampal representations such that similarity-dependent computations of pattern sepa-

ration are stabilized. 

Revealing superior recognition performance after sleep compared with wakefulness, our find-

ings confirm previous studies indicating that sleep supports the formation of distinct represen-

tations for discriminative stimuli (Drosopoulos, Wagner, & Born, 2005; Ellenbogen, Hulbert, 

Jiang, & Stickgold, 2009; Fenn, Gallo, Margoliash, Roediger, & Nusbaum, 2009; Gais, Plihal, 

Wagner, & Born, 2000; Maurer et al., 2015; Stickgold, James, & Hobson, 2000). The present 

data go beyond these previous data by indicating that sleep changes recognition behavior 

strongly depending on the similarity of lures to target stimuli. The clear switch from similar to 

old responses regarding highly similar lures across sleep may suggest a predomination of pat-

tern completion processes over pattern separation (Toner et al., 2009; Yassa et al., 2010). If this 

was the case, our results may indicate that reprocessing of representations during sleep simul-

taneously affects both modes of pattern separation and pattern completion. However, it should 
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also be mentioned here that the validity of the MST as a measure of hippocampal pattern sepa-

ration and completion performance (Liu, Gould, Coulson, Ward, & Howard, 2016).  

Specifically, the definition of pattern completion performance judging similar lures as old as-

suming a generalization process regarding target-lure pairs (Yassa & Stark, 2011) does not rep-

resent its theoretical construct as the reactivation of memory representations based on noisy or 

degraded input accurately (Hunsaker & Kesner, 2013). Consequently, since we could only show 

a shift toward pattern completion indirectly, our interpretation in this regard remains specula-

tive. As the MST has already been validated in several studies for the assessment of pattern 

separation performance (Lacy et al., 2011; Yassa, Mattfeld, et al., 2011; Yassa et al., 2010) the 

paradigm is well suited for comparing our results with previous findings regarding pattern sep-

aration, so that we concentrated on those results. Indeed, the pattern separation performance 

assessed immediately after encoding in both the Sleep and Wake condition was comparable to 

those of corresponding age groups examined in previous studies (Stark et al., 2013; Toner et 

al., 2009; Yassa, Lacy, et al., 2011). While the MST has been used mainly in conjunction with 

an immediate recall test, we here use this task for assessing how reprocessing affects memory 

representations across longer retention periods of sleep and wakefulness. Across wakefulness, 

pattern separation particularly deteriorated, which is reminiscent of changes seen in aged hu-

mans (Stark et al., 2013; Yassa, Lacy, et al., 2011) and in patients with conditions including 

deficits in episodic memory such as Alzheimer’s disease (Ally et al., 2013), Mild Cognitive 

Impairment (Yassa et al., 2010) and hippocampal damage (Kirwan et al., 2012). Recently, sleep 

deprivation was identified as another factor interfering with successful pattern separation at 

memory encoding (i.e., in an immediate recall test) whereby the impairment was restored after 

a recovery nap (Saletin et al., 2016). 

Importantly, in comparison with wakefulness, sleep did not uniformly improve pattern separa-

tion performance at all levels of lure similarity, but for lures with the highest similarity to the 
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targets sleep diminished pattern separation. Evidence from studies of neural activity in rats in-

dicates that the dentate gyrus and CA3 are simultaneously engaged in the processing of pattern 

separation and completion such that at a certain degree of similarity to a previously learned 

stimulus, acute stimulus input favors pattern completion operations (Guzowski et al., 2004; Lee, 

Yoganarasimha, Rao, & Knierim, 2004; S. Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004; 

Vazdarjanova & Guzowski, 2004). Considering this switch from pattern separation to pattern 

completion with increasing target similarity is a hallmark of hippocampal information pro-

cessing, the present observation that sleep enhanced pattern separation of dissimilar lures and 

diminished pattern separation of lures highly similar to the target corroborates the view of a 

direct impact of sleep on the hippocampal representation of the target stimuli. Neural assembly 

pattern reactivations during sleep might counter trace decay and, thus, keep the hippocampal 

representation shaped such that operations of pattern separation are enhanced to stimulus inputs 

of graded similarity, in comparison with the effects of post encoding wakefulness. 

On the other side, the pattern of changes rules out a nonspecific effect of sleep generally en-

hancing discriminability of stimulus inputs. Other nonspecific confounding effects can likewise 

be excluded. There are hints that encoding and recall of declarative memory can be affected by 

circadian factors (Tilley & Warren, 1983). Indeed, in the Sleep and Wake conditions of the 

present experiments these processes took place at different circadian phases, to avoid stress-

inducing effects of sleep deprivation impairing pattern separation (Saletin et al., 2016). How-

ever, morning and evening sessions in these conditions differed neither in immediate recall 

performance on the MST nor in vigilance and tiredness, rendering it unlikely that nonspecific 

changes in executive function substantially contributed to the differential recall pattern after 

sleep and wakefulness. Furthermore, participants achieved scores on immediate recall similar 

to those reported in previous studies (Stark et al., 2013) so that conditions are not only compa-

rable to each other but also to findings beyond our experiment. 
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Also our exploratory analysis of relations to sleep EEG oscillatory parameters highlighted con-

sistent positive correlations of spindle and slow-oscillation density as well as of theta activity 

occurring phase-locked to slow oscillations with pattern separation performance after sleep, 

which further corroborates the view of sleep, specifically non-REM sleep, being the primary 

factor mediating the effects on hippocampal memory. The correlation with sleep spindle den-

sity, a measure being independent of the duration of non-REM sleep, underscores the idea that 

spindles are genuinely involved in processes of memory consolidation. Indeed, a large body of 

findings suggests that spindle activity originating from thalamic networks enhances consolida-

tion in different memory domains, including hippocampus-dependent spatial memories 

(Eschenko, Mölle, Born, & Sara, 2006; Gais, Mölle, Helms, & Born, 2002; Meier-Koll, 

Bussmann, Schmidt, & Neuschwander, 1999; Saletin, Goldstein, & Walker, 2011; Schabus et 

al., 2004). Spindles phase lock hippocampal ripples and co-occurring neural memory reactiva-

tions to the excitable trough of the spindle oscillation (Bergmann, Mölle, Diedrichs, Born, & 

Siebner, 2012; Clemens et al., 2007; Staresina et al., 2015). Concurrently, the slow oscillations 

drive hippocampal ripples and neural reactivations such that they preferentially occur during 

the depolarizing slow-oscillation up phase (Ji & Wilson, 2007; Sirota et al., 2003; Staresina et 

al., 2015). Against this backdrop, improved pattern separation performance associated with en-

hanced spindle and slow oscillation density might reflect that memory reactivation and ripples 

occurring in hippocampal networks during the excitable phase of the spindle and slow oscilla-

tion cycle, respectively, are more effective in keeping the respective memory representation. 

Enhanced EEG theta activity occurring in synchrony with the up-to-down transition of the slow 

oscillation might likewise be connected to a more effective hippocampal processing of memory 

information. In the wake state, theta oscillations are robust indicators of ongoing encoding and 

retrieval in hippocampal networks (Klimesch et al., 2006; Nyhus & Curran, 2010). Similarly, 
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during sleep, increases in frontal EEG theta activity were observed in humans when hippocam-

pal memory representations were experimentally reactivated by presenting reminder cues dur-

ing (Schreiner, Lehmann, & Rasch, 2015; Schreiner & Rasch, 2015). The cuing-evoked in-

crease in theta activity might well reflect re-encoding of information during hippocampal reac-

tivation, although the origin of scalp-recorded EEG theta activity in humans is obscure 

(Klimesch, 1996; Klimesch, Doppelmayr, Russegger, & Pachinger, 1996). In natural condi-

tions, the neocortical slow oscillation synchronizes neural reactivations of memory information 

in hippocampal networks to the slow oscillation upstate (Diekelmann & Born, 2010; Ji & Wil-

son, 2007).  

Against this backdrop, our observation of a positive correlation between pattern separation per-

formance after sleep and theta activity occurring in synchrony with the slow oscillation during 

sleep fits well with the notion that hippocampal memory reactivations go along with a re-en-

coding and shaping of the hippocampal representations, thereby enhancing pattern separation 

and completion during the processing of stimuli with graded similarity. Altogether, our findings 

provide first-time evidence in humans supporting the notion that reactivation-based consolida-

tion processes during sleep affect the hippocampal representation itself such that hippocampal 

computations of pattern separation are enhanced.  
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5 General Discussion and Conclusions 

Memories of the past form the essence of our identity, self, and mind. Remembering yesterday 

provides guidance for tomorrow and supports the understanding of who we are and the world 

we live in. Conscious recollection of events in the view of autobiographical memories encour-

ages the reflection of past behavior leading to learning from mistakes, personal growth, and 

self-development (see Tulving (2005)). The biological substrates of memory can be assigned 

to different areas of the brain (Squire & Zola, 1996). Episodic memory content of our personal 

experiences is critically reliant on the hippocampus (McClelland, McNaughton, & O’Reilly, 

1995; Scoville & Milner, 1957). An effective memory system (i.e. minimal interference and 

maximal capacity) must provide at least two cognitive functions: first, the rapid storage of ex-

periences as individual events, and second, the effortless retrieval of those memories, when 

similar events are encountered (O’Reilly & McClelland, 1994). In this context, hippocampal 

pattern separation and pattern completion are essential cognitive processes for encoding and 

retrieval of episodes that can be assigned to specific hippocampal subnetworks (Marr, 1971; 

O’Reilly & McClelland, 1994). Theories regarding pattern separation and completion processes 

that derived from computational approaches have been consistently supported by studies in 

rodents (see Yassa and Stark (2011) for a review). The aim of the present thesis was to elucidate 

the role of the hippocampus in pattern separation and completion. In particular, we sought to 

determine the role of hippocampal subfield processing in pattern separation in humans. Specif-

ically, we achieved this aim by investigating the behavioral outcome of a pattern separation 

task in two human hippocampal lesion models. First, the selective CA1 subfield lesions in TGA, 

and, second preferential neurodegeneration in DG/CA3 subfields in a patient cohort with rare 

LGI1 encephalitis, served as natural hippocampal lesion models to examine a causal relation-

ship between anatomical structures and pattern separation performance. Furthermore, the in-

vestigation of pattern separation performance after post-encoding sleep in healthy humans was 
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performed to gain insight into the physiological neurobiological processes of memory consoli-

dation regulated by the hippocampus. 

5.1 The role of CA1 in pattern separation and recognition memory 

In Study I, the natural lesion model of TGA supports the critical relay function of CA1 neurons 

in pattern separation performance. Additionally, by measuring hippocampal volume, Study II 

showed that the volume of CA1 was the best predictor of recognition memory. Information 

processing within CA1 is characterized by the comparison of dual afferent projections – from 

EC via the perforant path and from CA3 via the Schaffer collaterals (Knierim & Neunuebel, 

2016; Lisman, 1999; O’Reilly & McClelland, 1994). The integration of those two projections 

within CA1 is assumed to be beneficial for immediate retrieval and consolidation in neocortical 

long-term stores (Treves & Rolls, 1994). With regard to the contribution of CA1 neurons to 

pattern separation processes in humans, our results complement the current picture arising from 

computational models and animal data (McClelland et al., 1995; Guzowski et al., 2004 ). Pattern 

separation is suggested to be facilitated by the DG that is in turn assumed to decorrelate over-

lapping memories by sparse coding of neural excitation from EC to CA3 (Rolls 2016, Treves 

rolls 1994). For the transfer to extra-hippocampal areas, CA3 projects to area CA1, the main 

hippocampal output (Insausti & Amaral 2004, Knierim neunuebel 2016). In Study I, the selec-

tive CA1 dysfunction caused a disruption in the transmission of separated information from the 

DG/CA3 network to the neocortex resulting in ineffective pattern separation performance on 

the behavioral level. This suggests that CA1 does not perform pattern separation on the neural 

level per se, but forwards memory information from previous DG/CA3 processes to neocortical 

areas. Connecting the results of Study I and II, this assumption applies to the result of the de-

pendence of pattern separation performance on hippocampal DG volume, but a weaker associ-

ation to the volume of CA1. The prediction of recognition memory by the CA1 volume can be 
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explained by the ideal position of CA1 as the functional readout of hippocampal circuit projec-

tions. The integration of the dual afferent projections from EC and CA3 facilitates the restora-

tion of a memory trace and thus recognition of an environmental cue (Hasselmo & Eichenbaum 

2005, Hassselmo & Wyble, 1997). Together, these results strengthen the view that CA1 with 

regard to its excitatory inputs is implicated in both pattern separation and recognition memory 

processes. The functional readout of the hippocampal circuit to neocortical areas involved in 

hippocampus-dependent memory formation, is thus highly dependent on the dynamics within 

the subnetworks. 

5.2 The Dentate Gyrus in pattern separation 

Study II showed that the DG volume was the best predictor of behavioral pattern separation 

compared to the regions CA2/3 and CA1. Theoretical models state that the DG performs pattern 

separation by the transformation of overlapping input patterns into distinct, non-overlapping 

representations (Marr, 1971; McClelland et al., 1995). This functional model of the DG in pat-

tern separation processes has been confirmed by electrophysiological recordings in rodents 

(Leutgeb, Leutgeb, Moser, & Moser, 2007; Neunuebel & Knierim, 2014). Evidence for a sep-

aration-like activity within the DG in humans has been provided by high-resolution fMRI dur-

ing a mnemonic similarity recognition paradigm (Berron et al., 2016). The results of Study II 

complement those findings by presenting a structure-function relationship between pattern sep-

aration and the DG. The findings are in accordance with previous studies that demonstrated a 

greater volume of the DG to be associated with a better discrimination of overlapping items 

(Dillon et al., 2017; Doxey & Kirwan, 2015; Stark & Stark, 2017). 

Regarding the DG and pattern separation, attention has additionally focused on a neurobiolog-

ical process of neurogenesis in the adult hippocampus (see França, Bitencourt, Maximilla, Bar-
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ros, & Monserrat (2017) for a review). Adult neurogenesis is a special feature of the hippocam-

pus, as the generation of new neurons in other parts of the brain are restricted to certain stages 

of development (Eriksson et al., 1998). In the mammalian brain, new neurons are generated 

from neural stem cells in the DG throughout adulthood and presumably integrated into the hip-

pocampal circuits (Altman & Das, 1965; Eriksson et al., 1998). In rodents, there is evidence 

that the inhibition of neurogenesis in the DG results in deficient pattern separation (Clelland et 

al., 2009), whereas an increase strengthens the ability (Sahay et al., 2011). Although its exist-

ence in humans has recently started to be questioned (Sorrells et al., 2018), and direct evidence 

for a role of hippocampal neurogenesis in pattern separation in humans is lacking, investiga-

tions regarding neurodegenerative diseases associated with cognitive decline discuss an in-

volvement of impaired hippocampal neurogenesis in cognition and memory (Deng, Aimone, & 

Gage, 2010; Zhao, Deng, & Gage, 2008).  

5.3 Vulnerability and neuroplasticity in the hippocampus 

With the clinical pictures of TGA and LGI1 the thesis presents two examples of the particular 

vulnerability of the hippocampus. Over the last twenty years, a large body of research has pro-

vided evidence for a differential affection of hippocampal subfields by pathology (see Small, 

Schobel, Buxton, Witter, & Barnes (2011) for a review). This vulnerability can be seen in the 

context of differences in regional vulnerability grounded on different cytoarchitectonic struc-

tures, as well as a differential metabolic vulnerability of the subfields. Generally speaking, the 

hippocampus is particularly susceptible to dysfunction caused by noxious vascular and meta-

bolic influences where damage is most likely to occur in CA1 neurons (Bartsch et al., 2015; 

Small et al., 2011). With regard to the hippocampal vulnerability to chronic influences like 

neurodegenerative diseases, chronic epilepsy, and neuropsychiatric disorders, for instance, the 
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DG/CA3 network could be more susceptible as compared with acute hippocampal lesions 

(Bartsch & Wulff, 2015; Small et al., 2011).  

Psychiatric diseases such as major depressive disorder, posttraumatic stress disorder, and schiz-

ophrenia display examples of clinical neurocognitive deficits associated with hippocampal im-

pairment. Declarative memory has been shown to be the most commonly impaired cognitive 

function in schizophrenia (see Tamminga, Stan, and Wagner (2010) for a review). For instance, 

deficits in an old-new recognition memory paradigm were associated with hippocampal volume 

reduction in schizophrenic patients (Weiss et al., 2004). Schizophrenia has also been found to 

correlate with pattern separation deficits (Das, Ivleva, Wagner, Stark, & Tamminga, 2014). 

Histological examinations suggest that this deficit results from reduced adult neurogenesis in 

the DG (Das et al., 2014; Reif et al., 2006; Tamminga et al., 2010). 

The strong vulnerability of the hippocampus to noxious impact is assumed to be a result of the 

high degree of neuroplasticity (McEwen, 1994). Neurogenesis as a form of enhanced plasticity 

in the hippocampal DG facilitates encoding of new information and retrieval of previously 

stored memories (Appleby, Kempermann, & Wiskott, 2011; Wiskott, Rasch, & Kempermann, 

2006). Therefore, pattern separation abilities are dependent on the generation of new neurons 

(Sahay et al., 2011). It is assumed that stress-induced distortion of hippocampal neurogenesis 

in the DG causes pattern separation deficits that are likely mediating an overgeneralization of 

fear responses in posttraumatic stress disorders (Kheirbek, Klemenhagen, Sahay, & Hen, 2012). 

Therewith, decreased neurogenesis may also explain the involvement of hippocampal dysfunc-

tion in psychiatric diseases where fear generalization is involved in the pathology (Kheirbek et 

al., 2012).  

Together those results support the formation of a framework, where the vulnerability of differ-

ent hippocampal subfields result in differential malfunction of hippocampal memory pro-
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cessing. This framework facilitates the differentiation of disorders that are related to hippocam-

pal impairment and provides insight into the mechanisms of hippocampal pathology. Against 

this background, further investigations regarding hippocampal vulnerability and plasticity are 

of importance for the development of specific therapeutic interventions that can be applied early 

and more adapted to the patients’ needs. (Bartsch & Wulff, 2015; Small et al., 2011).  

5.4 Stabilization of pattern separation in the hippocampus: a role 

for sleep 

Besides the investigation of the hippocampal subfield contribution to pattern separation in hu-

mans, the thesis aimed at showing how sleep is involved in the processes of pattern separation 

in the context of memory consolidation. Measuring pattern separation performance after post-

encoding sleep by means of the MST Study III showed that pattern separation was stabilized 

after sleep, which was mostly pronounced for a large change of the input pattern (i.e. low sim-

ilarity between target and lure). Additionally, the overnight change in pattern separation per-

formance was significantly related to oscillatory dynamics in EEG signals that hallmark the 

process of sleep-dependent memory consolidation. The findings support the notion that pattern 

separation and sleep-dependent consolidation processes are linked by their shared underlying 

neurophysiological mechanisms. Both processes include critical transfer functions that extract 

essential information by reducing interference, stabilizing neural representations and integrat-

ing new information into preexisting memory networks (Diekelmann & Born, 2010; McClel-

land et al., 1995).  

Recurrent connections within CA3 provide the basis for pattern completion: Attractor dynamics 

are able to reinstate a whole memory representation, even though only a fraction of cells begins 

to fire due to reactivation by a partial environmental cue (Treves & Rolls, 1994; Wills, Lever, 
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Cacucci, Burgess, & O’Keefe, 2005). Thus, it is assumed that pattern completion supports re-

activation of memory engrams during sleep (O’Neill, Pleydell-Bouverie, Dupret, & Csicsvari, 

2010). Likewise, as already stated, there is strong evidence that the interaction of CA3 and CA1 

pyramidal cells generates sharp wave ripple events (Buzsáki, 1986, 1989; Csicsvari, Hirase, 

Mamiya, & Buzsáki, 2000). Here, CA3 is assumed to be the initiator of synchronous population 

bursts within all areas of the hippocampal circuitry during both SWS and non-exploratory 

wakefulness (Buzsáki, 1986). Importantly, sharp wave ripple events are associated with reacti-

vation of hippocampal place cell ensembles (Pavlides & Winson, 1989; Wilson & McNaugh-

ton, 1994). Here, during sharp wave ripple activity, the reactivation of firing patterns of place 

cells induces synaptic plasticity in the form of long-term potentiation (Sadowski et al., 2016). 

As recurrent connections within CA3 drive the reactivation of firing patterns as well as promote 

the autoassociation essential for pattern completion, it is suggested that pattern completion pro-

cesses may facilitate offline consolidation (McClelland & Goddard, 1996; O’Neill et al., 2010). 

Discussing the results of Study III, we suggested that sleep promotes hippocampal pattern sep-

aration and completion depending on the degree of similarity of two input pattern: After sleep, 

the hippocampus performs pattern separation when the input similarity is low, whereas pattern 

completion is promoted when confronted with highly similar input pattern. A delay covered by 

wakefulness shows a complementary pattern. The mechanisms found within the CA3 system 

are comparable with those findings. As previously stated, the network within CA3 is biased 

towards pattern separation, when input overlap is low, but tends to perform pattern completion, 

when input similarity increases (Guzowski, Knierim, & Moser, 2004). The combination of 

those findings supports the hypothesis that neural mechanisms during sleep are highly con-

nected to the computations within CA3. The initiation of high frequency oscillations in the form 

of sharp wave ripples that activate synaptic changes within the hippocampal network during 

sleep within CA3 (Buzsáki, 1986; Sadowski et al., 2016) highlight this assumption. Although 
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the detailed cellular mechanisms during sleep that bias CA3 toward pattern separation or com-

pletion remain to be clarified, the findings suggest that the function of CA3 could be strength-

ened in the sleeping brain. 

5.5 Extraction of information during sleep 

The findings of Study III complement an existing theory of schema formation during sleep 

suggested by Lewis and Durrant (2011). The theory draws upon the findings that sleep facili-

tates the integration of new information into preexisting memory representations (Ellenbogen, 

Hu, Payne, Titone, & Walker, 2007; Tamminen, Payne, Stickgold, Wamsley, & Gaskell, 2010) 

and provides insight into hidden rules (Wagner, Gais, Haider, Verleger, & Born, 2004). The 

authors suggest that overlapping elements of memory representations are selectively strength-

ened and more strongly consolidated in neocortical areas. Due to stronger reactivation of over-

lapping representations during SWS, connections of shared features are facilitated. In a long-

term perspective of system consolidation, this process is thought to provide a framework for 

the formation of cognitive schemas as shared neural connections endure during SWS (Lewis & 

Durrant, 2011). On the conceptual level, in Study III pattern separation and completion mech-

anisms served as indicators for an active shaping of hippocampal representations within periods 

of SWS. A bias towards pattern separation after post-encoding sleep may indicate a refinement 

and sharpening of the neural representation with regard to a strengthening of details, whereas 

an extraction of essential features in terms of generalization during sleep may reflect pattern 

completion operations. This conception is in accordance with the theory of schema formation. 

Lastly, it also highlights the dependence of generalization and sharpening of neural representa-

tions on pattern separation and completion processes. 
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5.6 Methodological considerations 

In humans, behavioral paradigms cannot directly report hippocampal computational processes 

on a neural level compared with rodent examinations that use single cell recordings (Liu, Gould, 

Coulson, Ward, & Howard, 2016). In this context, the inference from computational models to 

animal investigations as well as to human data can be erroneous and should be considered with 

caution (Deuker, Doeller, Fell, & Axmacher, 2014). 

The MST has already been well validated regarding the measurement of behavioral pattern 

separation (Lacy et al., 2011; Stark et al., 2013; Yassa, Mattfeld, Stark, & Stark, 2011; Yassa 

et al., 2010). However, the MST as a measure of behavioral pattern completion has been ques-

tioned because the test lacks partial lure stimuli that can be used as retrieval cues in accordance 

with the requirement of its the theoretical background (Hunsaker & Kesner, 2013; Liu et al., 

2016). To validate the thesis’ findings with regard to pattern completion, future research should 

concentrate on tests that use incomplete lure stimuli. For instance, the ‘memory image comple-

tion task’ provides line-drawings of indoor scenes as encoding items that are shown in different 

levels of completeness at retrieval (Vieweg, Riemer, Berron, & Wolbers, 2018). The levels are 

explicitly parameterized that increase the sensitivity of the test in detecting differences (Liu et 

al., 2016) and enable an exact evaluation of pattern completion on different degrees of similar-

ity. Moreover, the MST has been criticized with regard to its context-dependency: The use of 

everyday objects cannot exclude a familiarity regarding certain items. Associations to previ-

ously stored episodes can introduce a bias during encoding and retrieval (Deuker et al., 2014; 

Hunsaker & Kesner, 2013). Abstract and context-free stimuli during encoding may be more 

sensitive in the assessment of pattern separation (Deuker et al., 2014). Taken together, a refine-

ment of paradigms with regard to the differentiation of pattern separation and pattern comple-

tion as well as the choice of items and retrieval cues may lead to a more nuanced assessment of 

the hippocampal functions by means of behavioral tests. 
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Another methodological constraint relates to the evaluation of structural MRI of patients with 

damaged brain tissue. The analysis of shrunk and deformed hippocampal subfields in patient 

cohorts requires higher quality standards. This issue may be addresses by using higher resolu-

tion and the application of manual segmentation protocols.  

5.7 Outlook and future directions 

The studies conducted within this thesis elucidated subfield specific contributions of the human 

hippocampus to the process of pattern separation as well as to neurobiological processes of 

consolidation using the example of sleep. With a behavioral pattern separation task (Stark, 

Yassa, Lacy, & Stark, 2013) and the assessment of EEG oscillatory dynamics during sleep, 

Study III used a combination of behavioral and neurophysiological markers of memory pro-

cessing during sleep. However, these methods only allowed indirect conclusions regarding hip-

pocampal activation, especially with limitations regarding the neural level. Future investiga-

tions that directly evaluate the involvement of the hippocampus are therefore suggested. First, 

this can be achieved by using high resolution fMRI techniques to clarify subfield specific ac-

tivity of the hippocampus during learning, post-encoding sleep, and recall. Those methods may 

be useful to substantiate the presumption of an active shaping of hippocampal memory repre-

sentations during sleep. Also, differences in the contributions of hippocampal regions concern-

ing sleep-dependent memory consolidation could be described by means of this methodological 

supplement that allows individual mapping of hippocampal subfields. Second, a direct solution 

to measure the hippocampal involvement regarding enhancing effects of sleep on pattern sepa-

ration is to address the single-cell level of neurons in animal studies. Applying those methods 

may be able to show a direct link between changes in the behavioral outcome after sleep and 

hippocampal replay during sleep. It is thus important to establish parallelized study protocols 
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that use similar behavioral paradigms to tax more comparable cognitive processes underlying 

the behavioral output in both rodents and humans for a valid cross-species comparison. 

To further clarify the mechanisms of sleep-dependent memory consolidation on the hippocam-

pal level, a direct manipulation of reactivation during sleep may determine how sleep affects 

the hippocampal representation with regard to pattern separation or completion tendencies after 

sleep. Reactivation of memories during sleep can serve as an efficient method to confirm the 

involvement of the hippocampus in memory consolidation, and to specifically analyze the un-

derlying mechanisms that drive the hippocampus to efficient memory encoding, consolidation, 

and retrieval (Rudoy, Voss, Westerberg, & Paller, 2009).  

5.8 Conclusions 

The three studies conducted within this thesis aimed at clarifying the role of the human hippo-

campus and its specific subfield contributions to pattern separation and memory consolidation. 

We found that the hippocampal DG as well as intact CA1 neurons are essential for pattern 

separation in humans. We demonstrated that pattern separation was best predicted by the vol-

ume of the DG, whereas recognition memory was stronger associated with the volume of CA1. 

However, we also found that an impairment restricted to CA1 neurons, but intact remaining 

hippocampal subfields, complicated pattern separation performance. Collectively, these results 

refine the current view on hippocampus-dependent memory processing with the DG as a crucial 

‘pattern separator’, and CA1 essentially involved in transferring the separated output to neo-

cortical long-term stores. Importantly, we demonstrate the relevance of the hippocampal-neo-

cortical transfer during SWS, in the stabilization of separated information. We propose the CA3 

region as the common ground of both the generation of sharp-wave ripple events as well as 

pattern separation and completion computations. This may speak in favor of a fundamental link 
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between pattern separation and completion processes during sleep-dependent memory consol-

idation. As the stabilization effect was dependent on the degree of similarity and significantly 

correlated with EEG oscillatory markers of sleep-dependent memory consolidation, we suggest 

that sleep actively affects hippocampal memory representations. This novel finding serves as 

the basis for future research regarding the specific role of subfield activity during sleep. In 

conclusion, the thesis highlights the importance of the intriguing hippocampal subfield structure 

for pattern separation and the associated role of pattern separation in describing structure-func-

tion relationships in memory and consolidation. 
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6 Deutsche Zusammenfassung (German Summary) 

6.1 Kurzzusammenfassung 

In einer von stetigen Veränderungen geprägten Umwelt ist die Bildung von stabilen Gedächt-

nisinhalten unerlässlich, um unser Selbst sowie eine Identität zu entwickeln. Durch hohe kog-

nitive Anforderungen im Alltag benötigen wir hierfür ein effizientes Gedächtnissystem. Um 

zwischen ähnlichen Ereignissen zu unterscheiden, aber auch Generalisierungen über ähnliche 

Ereignisse zu schaffen, bietet das Gedächtnis zwei entgegengesetzte, sich jedoch ergänzende 

Funktionen. Erstens werden durch die sogenannte Musterseparation ähnliche Gedächtnisreprä-

sentationen unabhängig voneinander gespeichert. Zweitens können durch den Prozess der Mus-

terkomplettierung zuvor gespeicherte Ereignisse durch Hinweisreize aus der Umwelt erinnert 

werden. Die Abhängigkeit dieser Funktionen vom Hippocampus, insbesondere von dessen Sub-

regionen Gyrus Dentatus und CA3, wurde bereits in einer Vielzahl von theoretischen Modellen 

beschrieben, sowie anhand von Tier- und Humanstudien untersucht. Allerdings fehlen den ver-

gangenen Studien im Hinblick auf den menschlichen Hippocampus eine mechanistische Aus-

sage zur Kausalität zwischen Anatomie und Funktion. Zudem ist es bisher unklar, in welcher 

Weise Musterseparation und -komplettierung im Hinblick auf die Bildung von Langzeitge-

dächtnis stabilisiert werden können. Diese Arbeit hatte zum Ziel, die Rolle des menschlichen 

Hippocampus bezüglich der Musterseparation sowie der Gedächtniskonsolidierung zu präzisie-

ren. Hierfür wurden erstens Patienten mit einer selektiven Läsion in der CA1-Region des Hip-

pocampus, und zweitens ein Patientenkollektiv, bei der eine Neurodegeneration bevorzugt im 

Subnetzwerk Gyrus Dentatus/CA3 auftritt, hinsichtlich der Musterseparation untersucht. Die 

Studien zeigten insgesamt, eine defizitäre Musterseparationsleistung bei selektiver Beeinträch-

tigung der CA1-Region. Außerdem ging hervor, dass die Musterseparation signifikant vom Vo-

lumen der Gyrus Dentatus-Region abhing, die Rekognitionsleistung hingegen vom Volumen 
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von CA1. Diese Ergebnisse sprechen für eine regionale Spezialisierung der Hippocampusfunk-

tion. Eine weitere Studie wurde mit dem Ziel durchgeführt, Einblicke in die neurobiologischen 

Prozesse der hippocampusabhängigen Gedächtniskonsolidierung zu gewinnen. Diesbezüglich 

haben wir die Musterseparation nach einer Schlaf- und Wachphase bei gesunden Menschen 

untersucht. Hier fanden wir eine besondere Relevanz des Tiefschlafes bei der Stabilisierung 

von separierten Informationen. Insgesamt stellen die drei Studien die Bedeutung der einzigar-

tigen Struktur des Hippocampus für die Musterseparation und für die Beschreibung von Struk-

tur-Funktions-Beziehungen in Gedächtnis und Konsolidierung heraus. 

6.2 Einleitung 

Unser Gedächtnis bildet die Grundlage unseres Denkens, Handelns und Fühlens. Durch die 

fortwährende Speicherung persönlicher Erlebnisse und den möglichen Zugriff auf diese Erin-

nerungen schafft das Gedächtnis unsere Identität (Tulving, 2005). Angesichts der hohen kog-

nitiven Anforderungen des Alltags sollte das Gedächtnis so effizient wie möglich genutzt wer-

den können. Hierfür stehen dem Gedächtnissystem zwei wesentliche kognitive Prozesse zur 

Verfügung: Ähnliche Inhalte können getrennt voneinander gespeichert werden, um Interferen-

zen zu reduzieren und die Speicherkapazität zu maximieren. Darüber hinaus sollten innerhalb 

eines stabilen Langzeitgedächtnisses vergangene Ereignisse anhand von Hinweisreizen der 

Umwelt leicht abrufbar sein und verknüpft werden können. Diese beiden essentiellen Prozesse 

werden als Musterseparation und Musterkomplettierung bezeichnet. (Marr, 1971; McClelland, 

McNaughton, & O’Reilly, 1995; Yassa & Stark, 2011). 

Beide Funktionen sind abhängig vom Hippocampus, einer Hirnstruktur im medialen Tempo-

rallappen, die für die Enkodierung, Speicherung, Konsolidierung und den Abruf von episodi-

schem und semantischem Gedächtnis essentiell ist (Frankland & Bontempi, 2005; Squire, 
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1992). Das episodische Gedächtnis umfasst Inhalte bezüglich persönlicher Ereignisse und de-

ren Integration in einem räumlichen und zeitlichen Zusammenhang, während das semantische 

Gedächtnis reines Faktenwissen enthält (Tulving, 1972). Diese beiden Arten von Gedächtnis-

inhalten werden unter dem deklarativen Gedächtnis zusammengefasst und stehen dem nicht-

deklarativen Gedächtnis gegenüber. Unter nicht-deklarativen Gedächtnisinhalten werden im-

plizite Formen des Gedächtnisses zusammengefasst und beinhalten vor allem das  prozedurale 

Gedächtnis, Priming und Konditionierung (Milner, Squire, & Kandel, 1998; Squire, 1986; 

Squire & Wixted, 2011). 

Ein initiales Ereignis ruft die Enkodierung neuronaler Muster der Wahrnehmungsinformation 

im primären und assoziativen Kortex hervor. Innerhalb des Hippocampus werden diese multip-

len Informationen in einer einzelnen Gedächtnisspur integriert (Frankland & Bontempi, 2005; 

Morris et al., 2003). Dennoch ist die Gedächtnisrepräsentation in diesem Stadium eher labil und 

anfällig für Störungen (Müller & Pilzecker, 1900). Um langanhaltende Erinnerungen zu schaf-

fen, müssen die Repräsentationen einen Konsolidierungsprozess durchlaufen, in dem stabilere 

und dauerhafte Gedächtnisspuren gebildet werden (Dudai, Karni, & Born, 2015; Müller & Pil-

zecker, 1900). 

Diese Konsolidierungsprozesse finden auf zwei Ebenen statt: auf der Systemebene und der sy-

naptischen Ebene (Frankland & Bontempi, 2005). Dadurch, dass Schädigungen des Hippocam-

pus meist mit dem Verlust von kürzer zurückliegenden Erinnerungen einhergehen, weiter ent-

fernte Ereignisse jedoch erinnert werden können, wird ein Zweistufenmodell der Gedächtnis-

konsolidierung angenommen. Innerhalb der sogenannten Systemkonsolidierung löst sich die 

Abhängigkeit der Gedächtnisrepräsentation vom Kurzzeitspeicher des Hippocampus hin zum 

Langzeitspeicher in neokortikalen Regionen (McClelland et al., 1995). Diese Reorganisation 

ist im Wesentlichen auf eine wiederholte Reaktivierung der Gedächtnisspur zurückzuführen 
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(Dudai, 2004). Es wird angenommen, dass die Reorganisation innerhalb des Konsolidierungs-

prozesses während des Schlafes am effektivsten ist, da kognitive Anforderungen und Interfe-

renzen durch Umweltreize reduziert sind (Marr, 1971; O’Reilly & McClelland, 1994). Diese 

Systemebene ergänzend, tragen Restrukturierungen der synaptischen Konnektivität zur For-

mierung des Langzeitgedächtnisses bei (Dudai, 2004; Dudai et al., 2015). Langzeitpotentierung 

und Langzeitdepression auf zellulärer Ebene regulieren die Stärkung und Schwächung synap-

tischer Verbindungen und bilden die Basis für synaptische Plastizität (Bliss & Collingridge, 

1993; Dudek & Bear, 1992; Hebb, 1949). Diese Form der Reorganisation unterstützt die Kon-

solidierung der Gedächtnisspur auf der Systemebene (Dudai et al., 2015). 

Dem Schlaf wird eine wichtige Rolle in der Konsolidierung von hippocampus-abhängigen Ge-

dächtnisinhalten zugesprochen (Marr, 1971; O’Reilly & McClelland, 1994). Spezifische Feld-

potenzialschwankungen charakterisieren den Schlaf in unterschiedlichen Stadien. Die Haupt-

schlafstadien beinhalten den Tiefschlaf (engl. Slow Wave Sleep, SWS), der durch langsame 

Oszillationen (~ 0,75 Hz) gekennzeichnet ist, sowie den REM-Schlaf (REM, engl. Rapid Eye 

Movement), für dessen Hirnaktivität vor allem hippocampale Theta-Aktivität (~4-8 Hz) cha-

rakteristisch ist (Rasch & Born, 2013). Bezüglich der Gedächtnisfunktion des Schlafes unter-

stützt der SWS Hippocampus-abhängige Gedächtnisinhalte, wobei REM-Schlaf nicht-deklara-

tive Gedächtnisinhalte verarbeitet (Maquet, 2001). 

Der Hauptmechanismus der schlafabhängigen Gedächtniskonsolidierung von deklarativen In-

halten basiert auf dem Transfer vom hippocampalen Kurzzeitspeicher zum neocorticalen Lang-

zeitspeicher während des SWS (McClelland et al., 1995). Dieser Transfer basiert auf einer  zeit-

lichen Kopplung von neokortikalen langsamen Oszillationen (~ 0,75 Hz), thalamo-kortikalen 

Spindeln (~ 10-15 Hz) und hippocampalen Sharp-Wave-Ripple-Oszillationen (~ 150 -250 Hz) 

(Buzsáki, 1996; Mölle & Born, 2011; Steriade, 2006). Innerhalb dieses sogenannten hippocam-
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palen-neocorticalen Dialoges regulieren die langsamen Oszillationen die Vernetzung von Hip-

pocampus, Thalamus und Neocortex (Buzsáki, 1996). Da die Sharp-Wave-Ripple-Aktivität mit 

wiederholter Reaktivierung der Gedächtnisrepräsentationen verbunden ist, trägt der hippocam-

pale-neocorticale Dialog zur Konsolidierung der Gedächtnisspur auf der Systemebene bei 

(Sirota, Csicsvari, Buhl, & Buzsáki, 2003; Wilson & McNaughton, 1994), welche als aktive 

Systemkonsolidierung bezeichnet wird (Rasch & Born, 2013). Aus energetischen Gründen wird 

während des SWS auf der synaptischen Ebene, die Aktivität durch homöostatische Prozesse 

reduziert (Tononi & Cirelli, 2003, 2006). Hierbei zerfallen nur schwach enkodierte Gedächt-

nisrepräsentationen, während stark enkodierte Inhalte auch der Reduzierung der synaptischen 

Aktivität standhalten (Vyazovskiy, Cirelli, Pfister-Genskow, Faraguna, & Tononi, 2008).  

Die bedeutende Rolle des Hippocampus in der Verarbeitung neuer Gedächtnisinformationen 

und in der Bildung stabiler autobiographischer Erinnerungen beruht auf der komplexen zellulär-

molekularen Struktur des Hippocampus sowie der speziellen Vernetzung seiner Subfelder 

(Amaral & Lavenex, 2007). Der sogenannte trisynaptische Schaltkreis wird durch unidirektio-

nale Projektionen vom entorhinalen Kortex zum Gyrus Dentatus über CA3 zu CA1 charakteri-

siert (Amaral & Witter, 1989). Theoretische Modelle nehmen an, dass der Gyrus Dentatus und 

die CA3-Region besonders an der Ausführung von Musterseparationsprozessen beteiligt sind 

(Marr, 1971; McClelland et al., 1995; Rolls, 2016). Es wird vermutet, dass der Gyrus Dentatus 

ähnlichen Umweltreizen unterschiedliche neuronale Codes zuweist, wodurch die Ähnlichkeit 

zwischen neuronalen Mustern reduziert und damit die Separation vereinfacht wird (McClelland 

et al., 1995; Yassa & Stark, 2011). Hinsichtlich der Musterkomplettierung zeigen etablierte 

Modelle auf, dass innerhalb der CA3-Region ein rekurrentes Netzwerk am Prozess beteiligt ist. 

Hier wird selbst bei unvollständiger Reaktivierung eines bereits enkodierten Musters der Abruf 

der gesamten Repräsentation ermöglicht (O’Reilly & McClelland, 1994; Treves & Rolls, 1994). 
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Die theoretischen Modelle hinsichtlich der subfeldspezifischen Unterstützung der Mustersepa-

rations- und komplettierungsfunktionen konnten anhand von Tierstudien in Nagetieren bewie-

sen werden (Guzowski, Knierim, & Moser, 2004; Lee, Yoganarasimha, Rao, & Knierim, 2004; 

J. K. Leutgeb, Leutgeb, Moser, & Moser, 2007; S. Leutgeb, Leutgeb, Treves, Moser, & Moser, 

2004; Neunuebel & Knierim, 2014). Auch zeigen unterschiedliche Humanstudien Evidenz für 

die Validität der Modelle anhand von funktioneller Magnetresonanztomografie (Bakker, Kir-

wan, Miller, & Stark, 2008; Berron et al., 2016; Lacy, Yassa, Stark, Muftuler, & Stark, 2011; 

Yassa et al., 2010). 

Auf funktioneller Bildgebung begründet können Studien in Bezug auf den Hippocampus des 

Menschen ausschließlich korrelative Zusammenhänge zwischen der Subfeldaktivierung und 

der Musterseparation auf der Verhaltensebene aufzeigen. Zudem sind Läsionsmodelle, die eine 

kausale Interpretation der Struktur-Funktions-Beziehung zulassen würden, beim Menschen 

eine Seltenheit. Um die Funktion der einzelnen Subfelder des Hippocampus innerhalb der Mus-

terseparation aufzuzeigen, haben wir die Musterseparationsleistung bei Patienten mit Hippo-

campusschädigungen untersucht. Ziel war außerdem aufzuzeigen, welche Rolle der schlafab-

hängigen Gedächtniskonsolidierung bei Musterseparation zukommt. 

6.3 Studie I 

Das Verständnis über die Rolle der CA1-Neurone bezüglich des Prozesses der Mustersepara-

tion und -komplettierung ist bezüglich des menschlichen Hippocampus lückenhaft. Hinsichtlich 

des Gyrus Dentatus und der CA3-Region ist die spezifische Wirkung innerhalb dieser Prozesse 

sowohl durch Nagetierstudien als auch in Humanstudien bereits belegt werden können. Um den 

Beitrag von CA1-Neuronen bezüglich der Musterseparation im menschlichen Hippocampus zu 

untersuchen, haben wir 14 Patienten (66,86 ± 2,29 Jahre, Spannweite 53 – 80, 50% weiblich) 

innerhalb einer akuten transienten globalen Amnesie (TGA), einer seltenen, selbstlimitierenden 
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Dysfunktion des Hippocampus mit spezifischen CA1-Läsionen, getestet. Die Musterseparati-

onsleistung der Patienten wurde in der akut-amnestischen Phase sowie nach vollständiger Ge-

nesung innerhalb der Nachuntersuchung mittels des Mnemonic Similarity Task (MST) erfasst. 

Dieses Paradigma überprüft anhand der Darbietung von alten, ähnlichen und neuen Stimuli 

Musterseparation auf der Verhaltensebene, welche jedoch die hippocampale Musterseparati-

onsleistung anspricht und damit anhand von Antwortverhalten auf Aktivität und Funktion des 

Hippocampus rückgeschlossen werden kann (Stark, Yassa, Lacy, & Stark, 2013). Dies konnte 

bereits anhand einer Vielzahl von Studien, auch mit Unterstützung funktioneller Magnetreso-

nanztomografie, belegt werden (Bakker et al., 2008; Lacy et al., 2011; Yassa et al., 2010). In 

der Akutphase zeigten die Patienten ein starkes Defizit in der Musterseparation bezüglich der 

ähnlichen Stimuli (p < 0.05) sowie der Rekognitionsleistung bei alten Stimuli (p < 0.001). Zum 

Zeitpunkt der Nachuntersuchung erholten sich beide Funktionen. Wir konnten zudem zeigen, 

dass sich die Musterseparations- und Rekognitionsleistungen unterschiedlich in zeitlicher Ab-

hängigkeit von läsionsassoziierten Hippocampusdefiziten regenerierten. Die Musterseparati-

onsfunktion erholte sich im Vergleich zur Rekognition früher. Dies zeigte sich anhand des Ver-

gleichs der Leistungen von frühen und späten Akutstadien der TGA. Diese Ergebnisse sprechen 

für einen Kausalzusammenhang zwischen der Funktion hippocampaler CA1-Neurone und der 

Musterseparationsleistung beim Menschen. Das Läsionsmodell zeigt die Auswirkungen selek-

tiver CA1-Läsionen auf die Funktion des Netzwerkes. Auch wenn keine Aussage über Prozesse 

innerhalb der CA1-Region oder den Beitrag weiter vorgelagerter Netzwerkfunktionen in CA3 

und Gyrus Dentatus möglich ist, können wir dennoch annehmen, dass CA1 eine essentielle 

integrative Funktion in der Verarbeitung von Musterseparationsprozessen hat. 
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6.4 Studie II 

Bei der leucinreichen, gliominaktivierten 1 (LGI1) Enzephalitis konnte in Tiermodellen sowie 

in Bildgebungsstudien beim Menschen gezeigt werden, dass der Gyrus Dentatus sowie CA3-

Neurone im Hippocampus bevorzugt in der Pathophysiologie involviert sind. Um die Struktur-

Funktions-Beziehung und den Beitrag der hippocampalen Subfelder innerhalb der Mustersepa-

ration beim Menschen zu spezifizieren, haben wir 15 Patienten (64,47 ± 3,28 Jahre, Spann-

weite: 36-77 Jahre, 9 männlich) mit dieser seltenen Form der Hippocampusschädigung mithilfe 

des MST untersucht. Die Patienten wurden 3,53 ± 0,65 Jahre nach der akuten Phase der Erkran-

kung getestet. Folgeschädigungen der Neuroinflammation innerhalb des Hippocampus wurden 

anhand einer Volumetrie der Subfelder für den Gyrus Dentatus, CA1 und die CA2/3 Region 

mithilfe eines automatisierten Segmentierungsalgorithmus (Freesurfer 6.0.0; (http://sur-

fer.nmr.mgh.harvard.edu/) anhand der T1-gewichteten Aufnahmen der Magnetresonanztomo-

grafie bestimmt. Die Patienten zeigten ein globales Gedächtnisdefizit einschließlich einer sig-

nifikanten Reduktion der Musterseparationsleistung im Vergleich zu einer gesunden altersge-

matchten Kontrollgruppe (p = 0,016). Die Hippocampusvolumetrie belegte eine signifikante 

Volumenreduktion in allen untersuchten Subfeldern. Eine schrittweise Regression zeigte, dass 

das Volumen des Gyrus Dentatus die beste Vorhersagekraft in Bezug auf die Musterseparati-

onsleistung habe (p = 0,029), während die Reduktion des CA1-Volumens die Defizite in der 

Rekognitionsleistung am besten erklärte (p < 0,001). Vor dem Hintergrund, dass das LGI1-

Gen-Transkript hauptsächlich im Gyrus Dentatus und der CA3-Region zum Ausdruck kommt 

(Herranz-Pérez, Olucha-Bordonau, Morante-Redolat, & Pérez-Tur, 2010; Kalachikov et al., 

2002) und ein Mangel an LGI1 Proteinen selektiv die synaptische Übertragung innerhalb des 

Hippocampus verringert (Fukata et al., 2010), wird das Hauptprinzip der Struktur-Funktions-

beziehung zwischen Subfeldern und Gedächtnisprozessen verdeutlicht. Die besondere Vorher-

sagekraft des Gyrus Dentatus Volumens für die Musterseparation stimmt mit ursprünglichen 
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Gedächtnismodellen des Hippocampus überein, derer zufolge der Gyrus Dentatus die Musters-

eparation unterstützt (Marr, 1971; McClelland et al., 1995). Auch werden anhand dieses Ergeb-

nisses Erkenntnisse aus Bildgebungsstudien am Menschen ergänzt, die die Funktion des Gyrus 

Dentatus innerhalb der Musterseparation hervorheben (Bakker et al., 2008; Berron et al., 2016). 

Die Rekognitionsleistung zeigte sich am besten durch das Volumen der CA1-Region, sodass 

die Ergebnisse insgesamt für eine regionale Spezialisierung der Hippocampusfunktionen spre-

chen. 

6.5 Studie III 

Stabilisierungsprozesse innerhalb der Musterseparation und -komplettierung sind weitgehend 

unklar. Aufgrund der Tatsache, dass Schlaf eine essentielle Rolle in der aktiven Systemkonso-

lidierung von hippocampusabhängigen Gedächtnisinhalten spielt (Marr, 1971; O’Reilly & 

McClelland, 1994), haben wir die neurobiologischen Grundlagen der Musterseparation inner-

halb der schlafabhängigen Gedächtniskonsolidierung untersucht. Hierzu haben wir die hippo-

campale Stimulusverarbeitung anhand des MST vor und nach Schlaf- und Wachphasen bei 13 

jungen, gesunden Probanden (23,46 ± 0,5 Jahre; Spannweite: 21–26 Jahre; 10 weiblich) unter-

sucht. Jeder Proband nahm in randomisierter Reihenfolge sowohl an der Wach- als auch an der 

Schlafbedingung teil. Die zweite Bedingung erfolgte mindestens in einem Abstand von drei 

Wochen zu der ersten Bedingung. In beiden Bedingungen wurden zunächst die Items des MST 

gelernt und in einem sofortigen Abrufphase getestet. Nach einen 9-stündigen Intervall von ent-

weder Schlaf oder Wachzustand wurde in einem verzögerten Abruf noch einmal die Musterse-

parationsleistung in Bezug auf die gelernten Stimuli ermittelt. Wir konnten zeigen, dass sich 

die Musterseparationsleistung über die Wachphase verschlechterte, jedoch über die Schlaf-

phase hinweg stabil geblieben ist (p = 0,013). Die Diskrepanz zwischen der Leistung nach der 
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Wach- und Schlafphase hat sich am stärksten für Items manifestiert, die einen hohen Unter-

schied zum zuvor gelernten Stimulus aufwiesen (p = 0,006). Stimuli mit sehr hoher Ähnlichkeit 

zum zuvor Gelernten, zeigten ein umgekehrtes Ergebnismuster mit reduzierter Musterseparati-

onsleistung nach der Schlafphase (p = 0,038). Die aufgezeichnete Polysomnografie brachte ei-

nen Nachweis dafür, dass für schlafabhängige Gedächtniskonsolidierung typische EEG Oszil-

lationen positiv mit der Musterseparationsleistung korrelierten. Die Korrelation zeigte sich für 

die Spindeldichte, die Dichte der langsamen Oszillationen, sowie für Theta-Aktivität, die zeit-

lich an die langsamen Oszillationen gebunden waren. Die Ergebnisse unterstützen die An-

nahme, dass die neuronale Reaktivierung während aktiver Systemkonsolidierungsprozesse im 

Zuge des Schlafens die Gedächtnisrepräsentation im Hippocampus stärkt, sodass abhängig von 

der Ähnlichkeit des Stimulus die Musterseparationsleistung stabilisiert wird. 

6.6 Diskussion 

Das Ziel dieser Arbeit war es, die Rolle des Hippocampus und dessen subfeldspezifischen Ver-

arbeitungsprozesse bei der Funktion der Musterseparation sowie bei der schlafabhängigen Ge-

dächtniskonsolidierung beim Menschen zu spezifizieren. Wir konnten zeigen, dass sowohl der 

Gyrus Dentatus als auch intakte CA1-Neuron für die Musterseparation beim Menschen essen-

tiell sind. Die Musterseparationsleitung konnte am besten durch das Volumen des Gyrus Den-

tatus vorhergesagt werden, wohingegen die Rekognitionsleistung stärker mit dem CA1-Volu-

men korrelierte. Eine selektive Beeinträchtigung von CA1-Neuronen führte jedoch auch zu ei-

nem Defizit in der Musterseparation. Insgesamt präzisieren diese Ergebnisse das aktuelle Ver-

ständnis von hippocampusabhängiger Gedächtnisverarbeitung: Der Gyrus Dentatus zeigte sich 

im Einklang mit der aktuellen Humanliteratur als entscheidend in der Musterseparation, wohin-

gegen die CA1-Region im Wesentlichen an der Übertragung von separierter Information in 

neokortikale Langzeitspeicher beteiligt ist. Außerdem wird aus Studie III die Bedeutung des 
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hippocampalen-neocorticalen Transfers bei der Stabilisierung von separierten Informationen 

deutlich. Die CA3-Region stellt eine gemeinsame Ebene von Musterseparation und -komplet-

tierung sowie der Generierung von Sharp-Wave-Ripple Oszillationen dar. Da der Stabilisie-

rungseffekt durch SWS vom Grad der Ähnlichkeit der Stimuli abhing, sowie charakteristische 

EEG Oszillationen, die für schlafabhängige Gedächtniskonsolidierung sprechen, mit der Mus-

terseparation korreliert sind, nehmen wir an, dass Schlaf aktiv auf hippocampale Repräsentati-

onen einwirken kann. Diese neuen Ergebnisse dienen als Basis für die Planung von zukünftiger 

Forschung, die sich auf einen direkten Zusammenhang zwischen schlafabhängiger Gedächtnis-

konsolidierung und Aktivität der hippocampalen Subfelder konzentrieren sollte. Zuletzt beto-

nen die drei Studien dieser Arbeit die Signifikanz der hippocampalen Subfeldstruktur für Mus-

terseparationsprozesse in der Beschreibung der Struktur-Funktionsbeziehung im Hinblick auf 

Gedächtnis und Konsolidierung.  
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