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Coherence of Information:
What It Is and Why It Matters

Stephan Hartmann (S.Hartmann@lmu.de)
Munich Center for Mathematical Philosophy, LMU Munich, 80539 Munich (Germany)

Borut Trpin (borut.trpin@lrz.uni-muenchen.de)
Munich Center for Mathematical Philosophy, LMU Munich, 80539 Munich (Germany)

Abstract

Coherence considerations play an important role in science and
in everyday reasoning. However, it is unclear what exactly is
meant by coherence of information and why we prefer more
coherent information over less coherent information. To an-
swer these questions, we first explore how to explicate the daz-
zling notion of “coherence” and how to measure the coherence
of an information set. To do so, we critique prima facie plau-
sible proposals that incorporate normative principles such as
“Agreement” or “Dependence” and then argue that the coher-
ence of an information set is best understood as an indicator of
the truth of the set under certain conditions. Using computer
simulations, we then show that a new probabilistic measure of
coherence that combines aspects of the two principles above,
but without strictly satisfying either principle, performs partic-
ularly well in this regard.
Keywords: Reasoning and Argumentation; Coherence; Truth;
Formal Epistemology

Introduction
Highly coherent information sets seem more plausible than
information sets whose elements do not hang together well.
As an example consider the following hypothetical scenario:
Three studies have been conducted on the effects of caffeine
on human health. Study 1 reports that caffeine consumption
is associated with improved cognitive performance, Study 2
reports that caffeine consumption is associated with increased
anxiety levels, and Study 3 reports that caffeine consumption
is associated with disrupted sleep patterns. In another sce-
nario, Study 1 also reports improved cognitive performance,
Study 2 reports reduced levels of anxiety, and Study 3 re-
ports no significant effect on sleep patterns. The three studies
mentioned in the first scenario are in tension with each other
as, given our background knowledge, anxiety and disrupted
sleep negatively affect cognitive performance. On the other
hand, the three studies are coherent in the second scenario.
The degree of coherence of the three studies in question does
not mean that they are necessarily true, but yet the higher co-
herence makes the studies in the second scenario seem more
plausible overall than the studies in the first scenario.

It is very plausible that coherence considerations like those
play an important role in science and everyday reasoning (see,
e.g., Harris & Hahn, 2009; Hahn, Harris, & Corner, 2016) in
a descriptive sense. However, it is not clear whether they also
have (or should have) any normative epistemological signif-
icance. Is it reasonable to take the coherence of an infor-
mation set to be an indicator of how much we should be-

lieve the information set in question? Note that we follow
Bovens and Hartmann (2003, pp. 10-11) in taking coher-
ence to be a property of information sets and not, e.g., of
propositions. Formally, if we obtain the information items
R1, . . . ,Rn from n independent and partially reliable sources,
then S= {R1, . . . ,Rn} is an information set over which a (sub-
jective) probability distribution is defined.

To answer questions related to the normative role of co-
herence considerations, we also need to look for a way to
measure the coherence of an information set. The literature
in formal epistemology provides a number of probabilistic
measures of coherence that are supposed to do just this (e.g.,
Shogenji, 1999; Glass, 2002; Olsson, 2002; Fitelson, 2003;
Bovens & Hartmann, 2003; Douven & Meijs, 2007; Schup-
bach, 2011; Koscholke, Schippers, & Stegmann, 2019). But
the measures differ in their assessments. How should we then
determine which measure of coherence (if any) is most fit for
determining the normative role of coherence considerations?

We find three types of arguments in the literature. First,
proposed measures are confronted with test cases for which
we have a clear intuition (see Koscholke, 2016). Unfortu-
nately, these test cases usually involve only information pairs
and triples as it is difficult to develop reliable intuitions for
larger information sets. Second, empirical studies are con-
ducted to determine which coherence measure best represents
our coherence intuitions (see, e.g., Harris & Hahn, 2009;
Koscholke & Jekel, 2017). In addition to the controversial is-
to-ought inference, the results obtained also cannot be used
as a normative guide because they are too diverse. Third,
we may refer to plausible normative principles that should be
satisfied by the proposed coherence measures. Interestingly,
it turned out that the two most important normative princi-
ples, Agreement and Dependence, are mutually exclusive
(Schippers, 2014). We will examine these two principles in
more detail below and argue that they are too strict for larger
information sets. Finally, we will argue that the best way
to evaluate a proposed coherence measure is to show that it
serves a desirable function, namely that of helping us figure
out which information sets are true and which are false.

Two Main Normative Principles
Not all information sets are equally coherent. Consider two
information sets, S and S′. S includes the following informa-
tion: “The weather forecast predicts heavy rain tonight”, “The
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streets in this neighborhood tend to flood during heavy rain”,
and “The drainage system in this neighborhood is outdated”.
S′, on the other hand, includes: “The weather forecast pre-
dicts heavy rain tonight”, “The streets in this neighborhood
tend to flood during heavy rain”, and “This neighborhood re-
cently completed a major overhaul of its drainage system”.

Both information sets seem coherent, but the information
in S fits together more strongly than in S′. In S, the prediction
of heavy rain, the tendency for the streets to flood, and the
outdated drainage system all support the conclusion that the
streets are likely to flood tonight. In S′, the information about
the updated drainage system weakens that conclusion.

Now suppose we add “The local river has recently under-
gone dredging and widening to prevent flooding” to S and
“The recent overhaul of the drainage system was not com-
pleted properly and may malfunction” to S′. It is then not
clear which of the two information sets is more coherent.
Some authors even claim that it is not always possible to say
which set is more coherent than another (see, e.g., Bovens &
Hartmann, 2003). This may perhaps also be the case here.

Instead of referring to intuitions about specific test cases,
an alternative approach to determining which measure of co-
herence is the most adequate, relies on normative principles
that have a certain intuitive appeal. The idea is that any ad-
equate measure of coherence should satisfy such principles.
For instance, consider the so-called Principle of Agreement
(hereafter simply Agreement). The principle goes back to
Bovens and Olsson (2000) and has been revived in, e.g.,
Schippers (2014) and Koscholke et al. (2019). It roughly
states that increasing the conditional probabilities of all in-
formation items, given other information items, should in-
crease the coherence of the information set because there is
then more mutual support.

Another principle that has an intuitive appeal is the Prin-
ciple of Dependence (hereafter Dependence). According to
Brössel (2015), the principle might be tracked all the way
back to Keynes (1921), although its application to coher-
ence has been particularly clear since the (re)introductions
by Shogenji (1999) and Fitelson (2003). Dependence states,
in simple terms, that an information set is absolutely coher-
ent (incoherent) if the information items are positively (nega-
tively) correlated.

Before we give formal definitions of the two principles, a
key concept needs to be defined:

Definition 1. A probability distribution P is defined over a set
of propositional variables V := {H1, . . . ,Hn} with the values
Hi and ¬Hi for all i = 1, . . .n.

(i) V is independent (relative to P) iff P
(∧

i∈I Hi
)
=

∏i∈I P(Hi) for all non-empty subsets I⊆{1, . . . ,n}.

(ii) V is positively correlated (relative to P) iff P
(∧

i∈I Hi
)
≥

∏i∈I P(Hi) for all non-empty subsets I⊆{1, . . . ,n} and
at least one of the “≥” is a “>”.

(iii) V is negatively correlated (relative to P) iff P
(∧

i∈I Hi
)
≤

∏i∈I P(Hi) for all non-empty subsets I⊆{1, . . . ,n} and
at least one of the “≤” is a “<”.

The two principles can then be described in the following
way (roughly following Koscholke et al., 2019):

Definition 2. (Dependence). Given a measure of coherence
Coh, we say that it satisfies Dependence if there is a threshold
τ such that for any information set S:

• Coh(S)> τ if S is positively correlated.

• Coh(S) = τ if S is independent.

• Coh(S)< τ if S is negatively correlated.

Definition 3. (Agreement). Let us assume that the follow-
ing inequality holds for all non-empty disjoint subsets of con-
junction S′,S′′ of some information set S for two probability
distributions P1 and P2:

P1

 ∧
s j∈S′

s j|
∧

sm∈S′′
sm

> P2

 ∧
s j∈S′

s j|
∧

sm∈S′′
sm

 .

Given a coherence measure Coh, we say that it satisfies
Agreement if it then also holds that: CohP1(S) > CohP2(S)
for the measurements of coherence by Coh relative to proba-
bility distributions P1 and P2, respectively.

Interestingly, as proven by Schippers (2014) and further
developed by Koscholke et al. (2019), Agreement and De-
pendence mutually exclude each other – any measure that
satisfies one cannot satisfy the other principle. This is bad
news because both principles have an intuitive appeal. In re-
sponse, Koscholke et al. (2019) argues for pluralism and sug-
gests determining in which contexts which of the two princi-
ples makes sense and then finding the best measure that satis-
fies the principle in question. We, on the other hand, believe
that both principles are generally untenable. For this purpose,
let us consider the following counterexample to Agreement:

NEW PRODUCT There is a company that produces a popular
product, and Mr A is in charge of its marketing. Ms B is
responsible for product design. Consider two versions:

1. Mr A and Ms B tend to have different opinions on how to
approach the market. Mr A is very likely to be involved
in the decision-making process. If Mr A is involved,
Ms B may reconsider her design. If he is not involved,
however, Ms B is very likely to go ahead with her ideas.
Suppose that the probability distribution is defined by
the following three values: P(A) = P(B|¬A) = .9 and
P(B|A) = .6, where A stands for Mr A being involved
in the decision-making process and B for Ms B going
ahead with her design ideas.

2. Ms B is very unlikely to go ahead with her design ideas
if Mr A is not involved, and more likely than not to go
on if he is involved. However, Mr A has been on a sick
leave, so it is unlikely that he is involved in the upcoming
decision-making process.
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Suppose the probability distribution is defined by the fol-
lowing values: P(A)=P(B|¬A)= .1 and P(B|A)= .55.

In both cases, two independent witnesses each give the re-
ports:

R1: Mr A was involved in the decision-making process.
R2: Ms B went ahead with her design ideas.

In which of the two situation do the two reports fit together
better?

The question is not in which case the two reports are more
likely, but rather in which situation the two reports fit together
better or, equivalently, in which situation there is less tension
between them. Taking this into account, it seems that the
two reports R1 and R2 fit together better in situation 2. In
situation 1, both Mr A and Ms B are likely to work on the new
product, but A’s involvement dissuades B from going on with
her ideas. In situation 2, on the other hand, A’s involvement
encourages B’s, and as Dependence requires, the reports are
therefore more coherent.

However, any measure that respects Agreement will give
an opposite response because all the mutual conditional
probabilities are greater in situation 1 than in situation
2: P1(A|B) = .86 > P2(A|B) = .38 and P1(B|A) = .6 >
P2(B|A) = .55. So, according to these measures, the first
situation is the more coherent one. To us this seems wrong
because in the first situation there is more tension between A
and B. Hence, Agreement and any measure of coherence that
satisfies it should be rejected.

But what about the principle of Dependence? Since the
principles of Agreement and Dependence are known to be
mutually exclusive, our counterexample offers the possibility
of motivating coherence measures that satisfy Dependence.
However, it turns out that Dependence is too strict for larger
information sets, and thus should not be a general desidera-
tum for an acceptable coherence measure. This is essentially
because there are information sets for which all propositions
are positively correlated but have almost no overlap. With-
out a sufficient amount of overlap, however, there can be no
“hanging together” in the first place, and thus no coherence.

We can show the issue with the following example. Sup-
pose that there is a town where it rains frequently. Let R
represent that it is raining in the town, let B represent that
a person in the town is reading a book, and let C represent
that a person in the town is wearing a raincoat. Suppose
that the probability of R (rain) is 0.5. The probability of B
(reading a book) given R is 0.2, meaning that when it rains,
20% of people are expected to read books. The probability
of B given not-R (no rain) is 0.1 because fewer people read
books on a non-rainy day. The probability of C (wearing a
raincoat) given R is 0.9 and only 0.3 given not-R. Assuming
that the propositional variable R probabilistically screens off
the propositional variable B from the propositional variable C
(or, in causal language, C is the common cause of B and C),
we have enough information to calculate the joint probability
distribution over all three variables.

H1 H2

H1,H2

Set 1

H1 H2

H1,H2

Set 2

Figure 1: The relative overlap of the two information items
H1,H2 in information set 1 is larger than in set 2.

Note that the set S = {R,B,C} is positively dependent,
although there is very little relative overlap of the three in-
formation items because most people of the town don’t read
books regardless of the weather or what they are wearing.
Hence, it is not clear whether the set S should be consid-
ered as absolutely coherent: the set S′ = {R,¬B,C} (rain,
not reading a book, but wearing a raincoat) has, after all, a
much higher degree of relative overlap.

Finally, even if one does not agree with our verdict regard-
ing Dependence and Agreement, it should be noted that the
two principles are practically inapplicable when we consider
the coherence of larger information sets. The principles only
provide guidance for cases where all non-empty subsets of an
information set are correlated (Dependence) in the same way
or for cases where the conditional probabilities of information
conjuncts from specifically defined subsets are all greater un-
der one probability function than under another (Agreement).
For the vast majority of sets, these conditions do not hold as
they are very demanding. Therefore, these principles are void
for the majority of information sets.

For instance, if we use a few lines of code to generate
10,000 random probability distributions for various sizes of
information sets, we find the following: For sets with three
information items, Dependence only applies in 2400 cases.
For sets with four information items, the number of applica-
ble cases drops to 227, and further to nine for sets with five,
and all the way down to zero for sets with six information
items. This clearly shows that the larger a random informa-
tion set is, the more likely it is that it is neither independent
nor positively/negatively correlated as defined by the condi-
tions of Definition 5. Notably, any information pair is either
independent or (positively/negatively) correlated. This pro-
vides a case in point of using Dependence as a normative
principle of coherence for information pairs. Note also that
Agreement involves a comparison of two probability distri-
butions, so we assume that it provides normative guidance
in even fewer cases than Dependence. In summary, the two
principles are unlikely to be of much use in practice.

Coherence as the Degree of Relative Overlap
To motivate our own proposal of how and why to measure
coherence, we first consider the class of relative overlap mea-
sures of coherence. These measures build on the intuitions
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that (i) an information set consisting of two inconsistent in-
formation items (whose joint probability is therefore zero), is
minimally coherent and that (ii) an information set consist-
ing of two information items perfectly overlapping in prob-
ability space is maximally coherent. Accordingly, coher-
ence measures the relative overlap of propositions in prob-
ability space, as illustrated by the Figure 1). This leads to
the following measure of the coherence of an information
set S := {H1, . . . ,Hn} relative to a probability distribution P
(Glass, 2002; Olsson, 2002).1

CohOG(S) :=
P(H1,H2, . . . ,Hn)

P(H1 ∨H2 ∨·· ·∨Hn)
. (1)

Note that the joint probability (numerator) cannot increase
and the probability of a disjunction (denominator) cannot
decrease when new information is added. Therefore, new
information cannot increase the coherence as measured by
CohOG. The following counterexample shows that this is
clearly wrong. Consider an information set S consisting of
LS: “John loves to eat steak” and V: “John is a vegetarian”.
Obviously, S is not very coherent since vegetarians are not
particularly keen on steaks. An overlap measure such as
CohOG captures this correctly. However, adding another in-
formation item H: “John became a vegetarian a week ago for
health reasons”, should increase the coherence since H re-
duces the tension between LS and V, so the information fits
together very well. Unfortunately, however, CohOG comes to
a different conclusion for the aforementioned reason.

According to Meijs (2005, 2006), we should instead con-
sider how much relative overlap there is among all non-empty
non-singleton subsets of some set S and then take the average
value of coherence obtained in this way. This idea gives rise
to the measure CohOG′ ,

CohOG′(S) =
1
m

m

∑
i=1

CohOG(S′
i), (2)

where S′
i represents any of the m non-empty non-singleton

subsets of the information set S. This measure resolves the
above-mentioned counterexample. However, it cannot judge
a given information set S as more coherent than its most co-
herent two-element subset (Koscholke & Schippers, 2016).

To overcome this problem, Koscholke et al. (2019) propose
a new measure, which combines relative overlap and average
mutual support intuitions (Douven & Meijs, 2007). The idea
is that to assess how coherent an information set S is, we need
to consider the average relative overlap of non-empty disjoint
subsets of conjunctions in S. Formally:

CohOG∗(S) =
1
k

k

∑
i=1

CohOG

 ∧
s j∈S′

s j,
∧

sm∈S′′
sm


i

(3)

1When appropriate, we use the convention of representing the
conjunction H1 ∧H2 ∧·· ·∧Hn as H1, . . . ,Hn. Note also that in what
follows we no longer explicitly mention that the coherence of an
information set is relative to a probability distribution P.

where S′ and S′′ are subsets as described above.
Unfortunately, the measure CohOG∗ also falls short. Be-

sides the fact that it satisfies Agreement, which we take to
not be plausible as the NEW PRODUCT example from the
previous section shows, it is also practically untenable. The
measure is defined as the average of conjunctions from all
respective subsets. Hence, for n information items, the mea-
sure averages over [(3n−2n+1)+1]/2 calculations of relative
overlaps (each calculated by CohOG) in specifically defined
subsets (Koscholke et al., 2019). This means that the com-
putational load exponentially increases when the set under
consideration increases and the measure is therefore compu-
tationally intractable and hence cognitively implausible.

Combining Relative Overlap and Probabilistic
Relevance

To construct a more promising measure based on relative
overlap, we first consider the simplest independence devia-
tion measure of coherence (Shogenji, 1999):

CohSh(S) :=
P(H1,H2, . . . ,Hn)

P(H1)P(H2) · · ·P(Hn)
(4)

This measure suffers from its own problems (for some stan-
dard counterexamples see, e.g., Fitelson, 2003; Bovens &
Hartmann, 2003). However, it is easy to see that it satis-
fies Dependence. If the information set under considera-
tion is positively (negatively) correlated, then the numerator
is greater (lesser) than the denominator and the measure will
judge an information set to have coherence above (below) the
threshold value of 1. If it is independent, then the numerator
and the denominator are equal and the coherence is exactly 1.

To continue, note that CohSh(S) is defined as the ratio of the
joint probability of the information in S and the probability
of the same information assuming they were probabilistically
independent and had the same marginal probabilities. Let us
now introduce a new concept that will prove useful as we
proceed.

Definition 4. A probability distribution P is defined over a set
of propositional variables V := {H1, . . . ,Hn}. The associated
probability distribution P̃ satisfies the following conditions:
(i ) P̃ is defined over the same set V; (ii ) V is independent
relative to P̃; (iii ) P̃(Hi)=P(Hi) for all i=1, . . . , n.

With this definition, the Shogenji measure can then be writ-
ten as CohSh(S) = P(S)/P̃(S). It therefore follows from start-
ing with one of the simplest (but not very convincing, see
Olsson, 2021) prima facie measures of coherence–viz. the
joint probability of S, i.e. coh(0)P (S) :=P(S)–and then normal-
izing it by coh(0)P̃ (S)= P̃(S). Because we use the associated
probability distribution P̃ in this expression, we can then say
that CohSh(S) is the measure of coherence associated with
the prima facie measure coh(0)P (S). Generalizing from this
example, the following definition specifies how one can con-
struct an improved measure of coherence, which takes inde-
pendence deviation intuitions into account:

3620



Definition 5. Let S be an information set and P be a probabil-
ity distribution defined over the corresponding set of proposi-
tional variables. Furthermore, let P̃ be the associated prob-
ability measure and let cohP be a prima facie measure of co-
herence (relative to P). Then

CohP(S) :=
cohP(S)
cohP̃(S)

(5)

is the associated measure of coherence if cohP̃(S)>0.

Let us now construct the associated measure of coherence
from the Olsson–Glass measure CohOG. The resulting mea-
sure provides a promising compromise between probabilistic
relevance and relative overlap. We obtain:

CohOG+(S) :=
P(H1, . . . ,Hn)

P(H1∨·· ·∨Hn)

/
P̃(H1, . . . ,Hn)

P̃(H1∨·· ·∨Hn)
. (6)

This measure identifies the value of coherence of an informa-
tion set with the ratio of the relative overlap and the relative
overlap that would obtain if the information set were indepen-
dent. In contrast to other relative overlap measures consid-
ered so far, we can show that CohOG+ satisfies Dependence
for information pairs and triples.

Proposition 1. An agent considers information items H1, H2,
and H3 with a prior probability distribution P defined over the
corresponding propositional variables. Let S2 := {H1,H2}
and S3 := {H1,H2,H3}. Then the following hold for S=Si
with i = 2, 3: (i ) CohOG+(S)>1 if S is positively correlated;
(ii ) CohOG+(S)=1 if S is independent; (iii ) CohOG+(S)<1
if S is negatively correlated.

This is a significant result because it shows that a relative
overlap measure is able to take probabilistic relevance con-
siderations into account, although our base measure of coher-
ence CohOG does not satisfy Dependence (Schippers, 2014,
p. 3840). As we have just seen, however, CohOG+ satisfies it
even for information triples. However, it turns out that De-
pendence does not hold in general for CohOG+ . We believe
that this is a welcome result because Dependence is a very
strict principle and it is not clear whether it is reasonable to
request it for information sets of any size. However, it is very
plausible for smaller information sets. We therefore conclude
that our new coherence measure balances well both relative
overlap and dependence (or relevance) considerations with-
out strictly satisfying the underlying principles.

Coherence as an Indication of Truth
While principles like Agreement and Dependence have
some plausibility for small information sets, it is not clear
how to evaluate coherence measures for larger sets. The
larger sets are also problematic for subset-based measures
such as CohOG∗ , since they become computationally practi-
cally intractable when the size of the information sets con-
sidered is increased. Similarly, test cases are not suitable
for evaluating coherence measures in general because they
involve only small information sets (see Koscholke, 2016).

Therefore, we propose to evaluate coherence measures for
larger n in terms of how well they satisfy a particular func-
tion. Specifically, we propose to evaluate coherence mea-
sures by how well they help us identify true information sets.
This claim does not seem to fit with the extensive literature
on the truth-conduciveness of coherence and the impossibil-
ity results proved therein, according to which coherence can-
not be an indicator of truth, at least not without further ceteris
paribus conditions (for a review, see Olsson, 2021, Sections
7 and 8). And yet it is useful to examine the truth-tracking
properties of coherence measures. In doing so, we will find
that some measures perform better than others.

Douven (2021) recently demonstrated that we can consider
how well various probabilistic measures of confirmation dis-
criminate between true and false hypotheses by means of
computer simulations. In answering the puzzle regarding the
truth-tracking abilities of coherence, we can follow this ap-
proach and adapt it for our present needs. We also note the
previous simulations-based research on coherence and truth-
tracking, in particular Angere (2007, 2008) and Glass (2012).
However, our interest here is not whether higher coherence of
an information set implies higher probability on average. In-
stead, we focus on how well the coherence of an information
set distinguishes true and false information sets. Accordingly,
Douven’s (2021) method is more appropriate here.

To proceed, we note that all relative overlap measures pro-
vide a value which describes how coherent a given informa-
tion set S is. The information set can also be described in bi-
nary terms as true if all information items are true, and false
otherwise. We can then use statistical techniques to find how
well different measures of coherence are able to discriminate
true and false information sets. This provides insight into
which measures of coherence are better indicators of truth.

The procedure of our simulations may be roughly de-
scribed as follows: We generate n possible worlds over which
we define a random probability distribution and select one of
the worlds to be true (the actual world). We then randomly
generate the information set S = {H1, . . . ,Hn}, which may or
may not be true (if the actual world is in the subset of all
information), and the set of true evidence E = {E1, . . . ,En},
all of which include the actual world. Finally, to establish a
reasonable connection to the truth, we require that each in-
formation is positively correlated with true evidence, i.e., that
P(Hi|Ei)> P(Hi|¬Ei) for all i = 1, . . . ,n.

After generating the information set S and a probability
distribution as described, we can calculate how coherent S
is according to various measures of coherence, and after 100
repetitions estimate which measure of coherence provides the
best model for discriminating the truth and falsehood of the
information set by means of area under curve (AUC).

The value of AUC is usually understood as giving us the
probability that some independent continuous measure dis-
criminates dependent binary categories (here: true/false). To
simplify, an AUC score of 1 suggests that all true informa-
tion sets were measured as highly coherent and vice versa for
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Figure 2: Average AUC values for different measures of co-
herence, averaged over all simulations with seven information
items. The error bars correspond to standard deviations.

false information sets (incoherent). A score of 0.5 suggests
that a measure is about as reliable in predicting whether an
information set is true or false as a random guess. Finally, for
each of the parameters (prior probability of the information
set between .1 and .9 in .2 increments and varying cardinality
of the set), we repeat the simulations 100 times.

We leave a more thorough simulation-based investigation
for our future research. However, for the present needs, it is
sufficient to show what happens when we simulate informa-
tion sets with seven information items. We avoid larger in-
formation sets because our results are relatively stable when
we increase the simulated information sets, and because the
computations become increasingly demanding for measures
CohOG′ and CohOG∗ . Note that the differences among the
measures decrease if the size of the information set decreases.

Figure 2 shows the average AUC values over 100 simula-
tions with seven information items over all above-described
prior probabilities of the sets. It is immediately clear from
the figure that our new measure CohOG+ comes out as the
top contender with respect to its truth-tracking abilities. Ad-
mittedly, it is not a significantly stronger indicator of truth
compared to CohOG∗ (Koscholke et al., 2019), but note that
with seven information items, our measure only requires two
calculations (CohOG for P and for P̃), while CohOG∗ needs
to determine the calculation of 966 subsets. As noted, we
get similar results also for sets with five and six information
items. For smaller sets, our new measure also comes out as
the best on average, but it is not significantly better than the
rest. Crucially, this suggests that our measure is a reliable
indicator of truth despite its computational simplicity. The
relative success of the other measures, however, provides a
more general point in favor of coherentist epistemology.

We can conclude that combining an overlap measure with
probabilistic relevance considerations not only satisfies de-
sirable properties, but also increases the likelihood that we
end up believing true information under certain plausible as-

sumptions (e.g., that the information under consideration is
positively correlated with the true evidence).2

Conclusion
Our initial question was why we prefer more coherent infor-
mation to less coherent information. To address this question,
we first tried to determine what is meant by “coherence.” To
make precise the rather vague intuition that coherent infor-
mation fits together well, we first considered two principles
that promise to facilitate the measurement of the coherence
of an information set. Unfortunately, it turned out that these
prima facie plausible principles are not compatible with each
other and individually, at least for large amounts of informa-
tion, not very plausible. We have therefore proposed to assess
the coherence of an information set according to how it helps
us reason and deliberate. In particular, we have proposed to
judge a coherence measure by how much it helps us identify
true information sets. Our computer simulations then showed
that the new coherence measure CohOG+ , which accounts for
both of the above principles in some way (without account-
ing for them exactly), performs particularly well in this regard
despite its computational simplicity.

Appendix
Proof of Proposition 1
Let’s begin with S2 = {H1,H2} and introduce the following
shorthands: α1 := P(H1)+P(H2), β1 := α1, α2 := P(H1,H2)
and β2 := P(H1)P(H2). As S2 is positively correlated,
α2 > β2. We proceed under the assumption that all proba-
bilities are in (0,1). Then we obtain

CohOG+(S2)> 1 ⇔ α2

α1 −α2
>

β2

β1 −β2
=

β2

α1 −β2

⇔ α1 α2 > α1 β2

⇔ α2 > β2,

which holds by assumption.
The proof for S3 = {H1,H2,H3} proceeds accord-

ingly. Let’s first define α1 := P(H1) + P(H2) + P(H3),
β1 := α1, α2 := P(H1,H2) + P(H1,H3) + P(H2,H3),
β2 := P(H1)P(H2) + P(H1)P(H3) + P(H2)P(H3),
α3 := P(H1,H2,H3) and β3 := P(H1)P(H2)P(H3). Note
that α2 > β2 and α3 > β3. Then we obtain

CohOG+(S3)> 1 ⇔ α3

α1 −α2 +α3
>

β3

α1 −β2 +β3

⇔ α3 (α1 −β2)> β3 (α1 −α2).

This holds because (i) α3 > β3 and (ii) α1 −β2 > α1 −α2 is
equivalent to α2 > β2, both of which hold by assumption.

The corresponding proofs for negatively correlated and for
independent information sets obtain by following the same
steps but with “=” (for independent) and “<” (for negatively
correlated) information sets instead of “>”.

2The code used to conduct the simulations as well as addi-
tional plots and data are available here: https://github.com/
philosophy-simul/truth-tracking-coherence.
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