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1 Introduction

In his entry on “Quantum Logic and Probability Theory” in the Stanford Ency-
clopedia of Philosophy, Alexander Wilce (2012) writes that “it is uncontroversial
(though remarkable) that the formal apparatus of quantum mechanics reduces
neatly to a generalization of classical probability in which the role played by a
Boolean algebra of events in the latter is taken over by the ‘quantum logic’ of pro-
jection operators on a Hilbert space.” For a long time, Patrick Suppes has opposed
this view (see, for example, the papers collected in Suppes and Zanotti 1996). In-
stead of changing the logic and moving from a Boolean algebra to a non-Boolean
algebra, one can also ‘save the phenomena’ by weakening the axioms of probability
theory and work instead with upper and lower probabilities. However, it is fair to
say that despite Suppes’ efforts upper and lower probabilities are not particularly
popular in physics as well as in the foundations of physics, at least so far. In-
stead, quantum logics is booming again, especially since quantum information and
computation became hot topics. Interestingly, however, imprecise probabilities
are becoming more and more popular in formal epistemology as recent work by
authors such as James Joyce (2010) and Roger White (2010) demonstrates.
In this essay I would like to give one more reason for the use of upper and lower
probabilities in quantum mechanics and outline the research program that they
inspire. The remainder of this essay is organized as follows. Sec. 2 introduces
upper and lower probabilities. Sec. 3 turns to quantum mechanics and presents the
CHSH inequality. We show that there is not always a joint probability distribution
that reproduces observed quantum correlations. Sec. 4 argues that imprecise
probabilities can be defined in these cases, and Sec. 5 concludes with a number of
open questions.

∗Munich Center for Mathematical Philosophy, LMU Munich, Ludwigstr. 31, 80539 Munich
(Germany) – http://www.stephanhartmann.org – s.hartmann@lmu.de.

1



2 Imprecise Probabilities

Imprecise probabilities are well known from the theory of uncertain reasoning
(Halpern 2005, Walley 1991). The starting point of the formal developments is the
question of how to represent one’s ignorance about a probability value. One way
to do this is to introduce a lower probability measure P∗ and an upper probability
measure P ∗, where the difference between the two is an agent’s measure of her
uncertainty about a probability assignment. To illustrate this, consider a coin
tossing experiment and start with P∗(Heads) = 0 and P ∗(Heads) = 1, which
means that the agent is in a state of full uncertainty about the outcomes of the coin
tossings. Then collect evidence and update P∗(Heads) and P ∗(Heads) accordingly.
If the coin is fair, then both measures will eventually converge to 1/2, i.e. the
probability of a fair coin to land heads. Note that the use of uppers and lowers is
compatible with the existence of a probability value. The uppers and lowers only
express our uncertainty about the probability value.
Upper and lower probability measures are defined as follows (Suppes and Zanotti
1996).

Definition 1 (Upper Probability) Let Ω be a nonempty set, B a Boolean al-
gebra on Ω, and P ∗ a real-valued function on B. Then Ω = (Ω, F, P ∗) is an upper
probability space if and only if for every A and B in B, (i) 0 ≤ P ∗(A) ≤ 1, (ii)
P ∗(∅) = 0 and P ∗(Ω) = 1, (iii) if A∩B = ∅, then P ∗(A∪B) ≤ P ∗(A) + P ∗(B).

Definition 2 (Lower Probability) Let Ω be a nonempty set, B a Boolean al-
gebra on Ω, and P∗ a real-valued function on B. Then Ω = (Ω, F, P∗) is a lower
probability space if and only if for every A and B in B, (i) 0 ≤ P ∗(A) ≤ 1, (ii)
P∗(∅) = 0 and P∗(Ω) = 1, (iii) if A ∩B = ∅, then P∗(A ∪B) ≥ P∗(A) + P∗(B).

We also note the following definition:

Definition 3 (Upper-Lower Pair) We call a pair (P∗, P
∗) an upper-lower prob-

ability pair Ω, if for every A in B we have P∗(A) ≤ P ∗(A).

Note that lower probabilities are super-additive and upper probabilities are sub-
additive, which has several consequences: First, the sum over all atoms of the
algebra may lead to a value greater than 1 for uppers and smaller than 1 for
lowers. Second, while for a probability measure P (A) =

∑
A′,B,B′ P (A,A′, B,B′)

holds, the following inequalities hold for uppers and lowers:

P ∗(A) ≤
∑

A′,B,B′

P ∗(A,A′, B,B′)

P∗(A) ≥
∑

A′,B,B′

P∗(A,A
′, B,B′).
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Interestingly, if monotonicity holds, then uppers and lowers are related in the
following way: P∗(A) = 1 − P ∗(A), where A is the complement of A in B. (We
will see later that this relation does not hold in quantum mechanics.) For an
interpretation of upper and lower probabilities in terms of betting odds, see Walley
(1991).

3 Quantum Mechanics and the CHSH Inequality

Let us consider four binary random variables A,A′, B and B′ that can take the
values ai, a

′
i, bi, b

′
i = ±1 for i = 1, 2. We assume symmetry, i.e. we only consider

situations where E(A) = E(A′) = E(B) = E(B′) = 0 with the expectation value
E defined in the usual way, i.e. E(A) :=

∑2
i=1 ai p(ai). Next, we define the

quantity
F := |E(AB) + E(AB′) + E(A′B)− E(A′B′)|, (1)

where the expectation value

E(AB) :=
2∑

i,k=1

ai bk P (ai, bk) =
2∑

i,j,k,l=1

ai bk P (ai, a
′
j, bk, b

′
l) (2)

measures the correlation between the random variables A and B. P is a prob-
ability measure. Note that E(AB) takes values in the interval [−1, 1] and that
these correlations can be measured. Generalizing Bell’s theorem, Clauser, Horn,
Shimony and Holt (1969) effectively showed the following.

Theorem 1 If there is a joint probability distribution P (A,A′, B,B′), then F ≤ 2
(“CHSH inequality”).

The proof is in the appendix.
As is generally known, the CHSH inequality does not always hold. There are
experimental setups that exhibit (quantum) correlations which violate the CHSH
inequality. In experiments with correlated photons, for example, one can measure
values of F up to 2

√
2. These experiments starts with an EPR state of correlated

photons, i.e. with the state |EPR >= 1/
√

2 · (|10 > −|01 >) where |0 > and |1 >
represent the photon polarizations of the two subsystems A and B. One can then
find measurement angles α and α′ (at A) and β and β′ (at B) such that the CHSH
inequality is violated. Hence, there is not always a joint probability distribution
over A, A′, B and B′ that reproduces the expectation values E(AB) etc. Note
that these expectation values can be calculated from quantum mechanics and that
the experiments confirm the theory.
Let us now study the CHSH inequality for atoms. Experiments similar to the just-
mentioned photon experiments can be performed with an EPR state of two 2-level
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atoms that are trapped in a cavity. Here |0 > and |1 > represent the states of a
single 2-level atom being in the ground state or the excited state, respectively. Let
A := X1, A

′ := Z1, B := X2 + Z2 and B′ := X2 − Z2, where X1 denotes the Pauli
matrix σx applied to the state of subsystem 1. Z1, X2 etc. are defined accordingly.
Note that symmetry holds i.e. E(A) = E(A′) = E(B) = E(B′) = 0. Next, we
calculate E(AB) = E(AB′) = E(A′B) = −1/2

√
2 and E(A′B′) = 1/2

√
2. Hence

F = 2
√

2, i.e. the CHSH inequality is maximally violated.
Next, we examine what happens if the quantum state under consideration decays
under the influence of decoherence (Schlosshauer 2007). Clearly, how fast the state
decays will depend on the experimental context. It is known, for example, that
the decay is slower in a cavity than in free space. What is important to us is
that if the EPR state decoheres, then the correlations in the system also decay
and the CHSH inequality will eventually be satisfied after some time τ0. Once the
CHSH inequality is satisfied, the correlations can be explained classically, i.e. by
a non-contextual local hidden variables model. Moreover, these correlations can
then be accounted for by a joint probability distribution.
Let us now calculate the time τ0 when this is the case. One way of modeling
decoherence is by coupling the quantum system to a reservoir. One can then write
down the Schrödinger equation for the system plus the reservoir (environment),
make the Born-Markov approximation, trace out the environment and obtain a
quantum master equation for the reduced state ρ of the system. ρ then satisfies
the following quantum master equation, which is of the Lindblad form (Breuer
and Petruccione 2002):

dρ

dt
= −B

2

2∑
i=1

[σ
(i)
+ σ

(i)
− ρ+ ρ σ

(i)
+ σ

(i)
− − 2σ

(i)
− ρ σ

(i)
+ ], (3)

with the decay constant B. Using the theory of Generalized Dicke States (Hart-
mann 2012), this equation can be solved analytically. We then obtain for the time
evolution of the initial state ρ(0) = |EPR >< EPR|:

ρ(τ) = e−τ ρ(0) + (1− e−τ ) |00 >< 00|, (4)

with τ := B t.
Next, we calculate the expectation values of A,A′, B and B′ as defined above for
a system in the state ρ(τ) and obtain:

< A >= 0, < A′ >=< B >= − < B′ >= e−τ − 1 (5)

To make sure that symmetry holds for all times τ , we replace A → Ã := A− <
A > etc. Clearly, we then have E(Ã) = E(Ã′) = E(B̃) = E(B̃′) = 0. For the
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correlations, we obtain:

< ÃB̃ >=< AB > , < Ã′B̃ >=< A′B > −(e−τ − 1)2

< ÃB̃′ >=< AB′ > , < Ã′B̃′ >=< A′B′ > +(e−τ − 1)2 (6)

Next, we calculate F̃ as a function of τ (see eq. (1)). It is easy to see that a joint
probability distribution over Ã, Ã′, B̃ and B̃′ exists if τ > τ0 := 245, i.e. after a
relatively short period of time after the quantum state starts to decay (in units of
the inverse decay constant B). Figure 1 shows F̃ and, for comparison, also F as a
function of τ , where F is calculated using the original operators A,A′, B and B′.

0 1 2 3 4 5
-3

-2

-1

0

1

2

Figure 1: F (blue) and F̃ (violet) as a function of τ .

4 Imprecise Probabilities in Quantum Mechan-

ics

We have seen that there is a joint probability distribution P for τ ≥ τ0 that re-
produces the experimentally measurable correlations in the decaying EPR state.
But how can we account for the correlations before that time? Hartmann and
Suppes (2010) have explicitly constructed an upper probability distribution P ∗

that accounts for the correlations of a decaying EPR state at all times, i.e. before,
at, and after τ0. We therefore have unified account, which allows us to stick to a
Boolean algebra of events. It is not necessary to work with a non-Boolean algebra
in the quantum domain and a Boolean algebra in the classical domain, as quantum
logicians do. All correlations can be accounted for by an upper probability dis-
tribution. This measure is explicitly sub-additive for times τ < τ0 and turns into
an additive probability measure for τ ≥ τ0. I take this to be a main advantage of
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the proposed approach to work with imprecise probabilities in quantum mechanics
compared to the alternative quantum logical account, which do not allow for such
a unified treatment.
It is interesting to note that the situation discussed here is similar to the learning
situation discussed in Sec. 2. In the learning case, the upper probability distribu-
tion approximates the proper joint probability distribution more and more as the
number of coin tosses increases. They coincide in the limit of an infinite number
of coin tosses. In the quantum mechanical case, the upper probability distribu-
tion approximates the proper joint probability distribution more and more as the
state decays. It coincides with the joint probability distribution once the CHSH
inequality is satisfied (after a finite decay time). The joint probability distribution
emerges from the interaction of the quantum state with its environment.
For the decaying EPR state, there is also a lower probability measure. This mea-
sure also converges into a probability measure which is defined for times τ ≥ τ0.
However, the lower and the upper probability distributions are not related via
P∗(A) = 1−P ∗(A), i.e. they do not form an upper-lower pair. This is in line with
the fact that there is no joint distribution for times τ < τ0. Consequently, the
monotonicity condition is violated in quantum mechanics, and upper and lower
probability distributions have to be calculated independently by fitting them to
the quantum mechanical expectation values. It is interesting to further explore
the implications of the failure of monotonicity in quantum mechanics.

5 Open Questions

In future work, we plan to address the following four questions. First, how do
our results generalize? Is it always possible, i.e. for all quantum states and corre-
sponding sets of measurement operators, to fit an upper and a lower probability
distribution? It would be nice to have a general proof that this is always pos-
sible, or a counter example showing that it is not. Our evidence so far is only
episodic as we focused on the EPR state. Second, what is the proper interpre-
tation of upper and lower probabilities in quantum mechanics? To address this
question, the failure of monotonicity in quantum mechanics has to be understood.
It will also be interesting to relate the discussion of upper and lower probabilities
in quantum mechanics to the recent work on Quantum Bayesianism (Caves et al.
2007) which may shed some light on interpretational questions regarding upper and
lower probabilities in quantum mechanics. Third, to further explore the relation
between logic and probability in quantum mechanics, Gleason’s Theorem has to
be analyzed (Hughes 1989). Here special attention has to be paid to the additivity
assumption, which shows up in the proof of the theorem. We ask: What follows
if one allows for sub- and super additive measures? Fourth and finally, what is
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the advantage of upper and lower probabilities compared to negative probabilities
for which our decoherence story can be told as well? Negative probabilities where
famously discussed by Feynman (1987) and have recently attracted the interest of
Patrick Suppes. It will be worth to compare negative probabilities with imprecise
probabilities.
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Appendix: Proof of Theorem 1

To prove Theorem 1, we first simplify the notation and denote the value -1 by 0.
Next, we introduce the following abbreviations:

P (1111) = P (0000) := x1 , P (1110) = P (0001) = x2

P (1101) = P (0010) := x3 , P (1100) = P (0011) = x4

P (1011) = P (0100) := x5 , P (1010) = P (0101) = x6

P (1001) = P (0110) := x7 , P (1000) = P (0111) = x8,

where we have made use of the symmetry requirement. Note that 0 ≤ xi ≤ 1 for
i = 1, . . . , 8 and that

∑8
i=1 xi = 1/2. We then obtain by using eq. (2) and similar

equations for the other expectation values:

F = 4|x1 + x2 − x3 − x4 + x5 − x6 + x7 − x8|
≤ 4|x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8|
≤ 4× 1/2 = 2,

which completes the proof.
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