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Abstract. Intertheoretic relations are an important topic in the philosophy
of science. However, since their classical discussion by Ernest Nagel, such re-
lations have mostly been restricted to relations between pairs of theories in the
natural sciences. In this paper, we present a model of a new type of interthe-
oretic relation, called Montague Reduction, which is inspired by Montague’s
framework for the analysis of the linguistic syntax-semantics relation. To mo-
tivate the adoption of our new model, we show that this model extends the
scope of application of the Nagelian (or related) models, and that it shares the
epistemological advantages of the Nagelian model. The latter is achieved in a
Bayesian framework.
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1. Introduction

Epistemic relations between pairs of co-existing theories are an important topic in
the philosophy of science. These relations involve a connection between the laws
(or ‘propositions’) of two related theories – typically, the derivability of knowled-
ge about the empirical domain of one of the two theories from knowledge about
the domain of the other theory, cf. (Nagel, 1961). Historically, most examples of
epistemic intertheoretic relations are taken from physics. They include the rela-
tion between chemistry and atomic physics, between rigid body mechanics and
particle mechanics, and between thermodynamics and statistical mechanics. In
the last thirty years, intertheoretic relations have also received increasing interest
from other disciplines like biology (see e.g. (Scha↵ner, 1974; Weber, 2005)), eco-
logy (see e.g. (Levins and Lewontin, 1980)), neuroscience (see e.g. (Bickle, 2006;
Schouten and de Jong, 2012)), and economics (see e.g. (Hoover, 2010)).1 How-
ever, this surge of interest has not been shared by linguistics.

The scarcity of work on linguistic intertheory relations cannot be attributed
to linguists’ general disinterest in methodology. To the contrary: the availability
of large computerized text corpora and the possibility of statistically probing and
manipulating linguistic data sets have lately e↵ected a boost of interest in linguis-
tic methodology (see the recent textbooks (Litosseliti, 2010), (Rasinger, 2013),
and (Podesva and Sharma, 2013)). The above-described scarcity can then only be
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explained by the fact that linguists’ reasoning about intertheory relations presup-
poses the familiar models of these relations (assuming that the familiar models
have a satisfactory fit with relations between theories in linguistics), or by the fact
that linguists have little interest in developing or explicating2 new models of these
relations (assuming that the familiar models do not have a satisfactory fit with
relations between theories in linguistics).

In this paper, we focus on a particular type of linguistic inter-theory relation
which resists an analysis through the familiar models. This type is instantiated
by the relation between Montague’s theories of natural language syntax and se-
mantics. Since the conjunction of these two theories is typically called Montague

Grammar (Partee, 1973), cf. (Montague, 1970a; 1970b; 1973), we dub their rela-
tionMontague Reduction. The poor fit of the familiar models of intertheoretic re-
lations with the syntax-semantics relation is due to the fact that Montague’s the-
ories of syntax and semantics describe the behavior of di↵erent target domains,
and that the familiar models of intertheoretic relations are restricted to theori-
es with the same (or largely overlapping) target domains. We expect that the de-
velopment of our model of Montague Reduction will show the importance of in-
vestigating inter-theory relations in linguistics, that it will compensate for the ab-
sence of models for (one type of) these relations, and that it will yield new insight
into the spectrum of intertheoretic relations.

Montague Reduction is related to the best-studied intertheoretic relation, Na-
gelian reduction3, cf. (Nagel, 1961), and to other undirected dependency relations
by family resemblance. Like Nagelian reduction,Montague Reduction aims to de-
rive a proposition of the reduced theory (here, Montague syntax, or categorial

grammar, cf. (Ajdukiewicz, 1935)) from a proposition of the reducing theory (he-
re, Montague’s model-theoretic semantics, cf. (Tarski, 1933; Church, 1940)). As a
result, our new type of intertheoretic relation shares the rationale of Nagelian re-
duction: The reduction of syntax to semantics promotes cognitive economy and
simplicity, explains the success of the reduced theory in terms of the success of the
reducing theory, establishes the theories’ relative consistency, and e↵ects a mu-
tual flow of confirmation between the two theories.

This paper argues for the introduction of our model of Montague Reduction.
To do this, we show that Montague Reduction shares the epistemological advan-
tages of the Nagelian model of reduction.4 The paper is organized as follows: Sec-
tion 2 presents Montague’s formal framework for the analysis of natural language
syntax and semantics, and contrasts its associated model with the model of re-
duction from (Nagel, 1961). To prepare the probabilistic analysis of our new mo-
del of reduction, Section 3 reviews the relevant concepts from Bayesian confirma-
tion and network theory. Section 4 motivates the introduction of our model of
Montague Reduction. To this aim, we give a Bayesian analysis of the syntax-se-
mantics relation before and after the execution of a Montague Reduction, and

2We will see that there, in fact, are models of inter-theory relations in linguistics. Yet, since the-
se models only play a peripheral role in linguistic practice, they are rarely explicitly discussed.
3For many years, Nagelian reduction has been considered a dead end. The present paper rejects
this assumption. This stance is motivated by the observation (recorded in (Dizadji-Bahmani et
al., 2010)) that Scha↵ner’s (1974) revised model of Nagelian reduction overcomes the problems
of Nagel’s original model. For the present purposes, it will su�ce to focus only on the Nagelian
model. We outline a Scha↵ner-style extension of our model of Montague Reduction in Section 6.
4The epistemic advantages of Nagelian reduction are shown in (Dizadji-Bahmani et al., 2011).
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show that, post-reduction, the two theories are confirmatory of each other. Sec-
tion 5 identifies a problem with the generalization of our model of Montague Re-
duction to pairs of multi-proposition theories, and suggests a Montagovian solu-
tion. We close the paper by indicating how Montague Reduction can be incorpo-
rated into a sophisticated variant of Scha↵ner’s (1967) revised model of Nagelian
reduction (cf. Sect. 6).

2. Montague Reduction

We first present the two linguistic theories that we aim to relate. Section 2.1 des-
cribes the elements of the two theories, and identifies the mechanism which con-
nects these theories. Section 2.2 compares the Montagovian account of the syn-
tax-semantics relation with the model of reduction from (Nagel, 1961). To allow
a Bayesian analysis of our new type of intertheoretic relation, Section 2.3 identi-
fies Montague’s rules for the formation of complex syntactic and semantic struc-
tures with the objects of probabilistic evaluations.

2.1. Montague’s ‘Two Theories’ Theory. Montague’s framework for the a-
nalysis and interpretation of natural language syntax5 constitutes a milestone
in the understanding of linguistic syntax-semantics relations. At the end of the
1960s, there did not exist a su�ciently well-developed formal semantic theory
which could be used for the systematic interpretation of natural language.6 Mon-
tague (1970b), cf. (Montague, 1970a; 1973), provides such a theory. The latter is
a model of Church’s (1940) lambda calculus, which contains a designated domain
of semantic objects for each syntactic category.

To enable the systematic interpretation of natural language, Montague assu-
mes that the semantic objects in the model’s domains are associated with expres-
sions from distinct syntactic categories, and that the model’s rules for the forma-
tion of semantic objects are associated with the familiar syntactic rules. He iden-
tifies categorial grammar (Ajdukiewicz, 1935), cf. (Moortgat, 1997), as the synt-
actic theory which best facilitates this correspondence. This theory describes syn-
tax as an algebra over the set of linguistic expressions E = {En, Ev, . . . } which ge-
nerates complex expressions (e.g. the sentence Bill walks 2 Es) from simpler ex-
pressions (e.g. from the proper name Bill 2 En and the intransitive verb walk 2
Ev) via syntactic operations like concatenation.

For the combination of proper names with intransitive verbs, the behavior of
concatenation is governed by the rule Gs, cf. (Montague, 1973, rule S4). In this
rule, [AB0] is the result of concatenating the expressions A and B0 (in that order),
where A is a singular name and where B0 is the result (e.g. walks) of replacing
the verb B (here, walk) by its third person singular present form:

Gs. If B 2 Ev and A 2 En, then [AB0] 2 Es.

To facilitate the presentation of Montague Grammar, we limit ourselves to a syn-
tactically poor fragment of English, which only contains proper names, intran-

5For an introduction to Montague Grammar, the reader is referred to (Janssen, 2012), (Partee,
1997), and (Gamut, 1991).
6Thus, Montague (1970b) writes, “It is clear [. . .] that [with the exception of (Montague, 1970a)]
no adequate and comprehensive semantical theory has yet been constructed” (p. 222). Choms-
ky (1971) supports this claim by stating, “In the domain of semantics there are [. . .] problems
of fact and principle that have barely been approached, and there is no reasonably concrete or
well-defined ‘theory of semantic representation’ to which one can refer.” (p. 183).
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sitive verbs, and declarative sentences. As a result, the behavior of concatenation
is only governed by the ruleGs, such that the set of syntactic rules, G, is identified
with the singleton set {Gs}. Our fragment is then identified with the closure of
the set E under the rule Gs. By introducing other concatenation rules7, we can
easily extend our fragment to syntactically more diverse subsets of English.

We next turn to Montague’s semantic theory:We have noted above that Mon-
tague’s models contain a designated semantic domain for each syntactic category.
Thus, a model for our small fragment will include a domain of individuals Dn, a
domain of properties of individuals Dv, and a domain of truth-values Ds. The in-
terpretation function I relates the domains in E and D = {Dn,Dv,Ds} by assign-
ing, to each Ek-expression, c, (where k designates a syntactic category) a model-
theoretic object, C, in the semantic domain Dk, such that I(c) = C. In this way,
the function I will assign, to the name Bill, the individual Bill (i.e. ), and will as-
sign, to the verb walk, the property ‘walk’.

From the above interpretations, truth-values (here, the truth-value of the sen-
tence Bill walks) are obtained via a semantic correlate, Ss, of the rule Gs. In the
definition of Ss, we abbreviate ‘I(c)’ as ‘JcK’. ‘JBK(JAK)’ is interpreted as the fun-
ctional application of the interpretation of B to the interpretation of A:

Ss. If JBK 2 Dv and JAK 2 Dn, then JBK(JAK) 2 Ds.

As a result of the above, the semantics of our fragment constitutes an algebra hD,
Si over the set of basic model-theoretic objects (where S = {Ss}). The described
relation between the syntactic and the semantic algebra is captured in Figure 1:

semantic domains, D semantic algebra

{x |x walks} T,F

Dn Dv Ds Ss

En Ev Es Gs

r r r r

Bill walk Bill walks

syntactic categories, E syntactic algebra

Figure 1. The syntax-semantics map.

Our previous presentation has suggested the existence of a homomorphism bet-
ween Montague’s syntactic and the semantic algebra. However, in practice8, not

7These include other rules for the formation of sentences (e.g. the rule S9 from (Montague,
1973)), and rules for the formation of complex expressions from other categories.
8Montague’s interpretation of proper names in the domain of individuals, cf. (Montague, ’73,
rule T1.(d)), and his interpretation of other noun phrases in the domain of generalized quanti-
fiers over individuals, cf. (Montague, 1973, rule T2), reflect this observation.
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every element of the syntactic algebra is associated with a unique element of the
semantic algebra (s.t. the syntax-semantics relation is not a function). In particu-
lar, proper names are semantically ambiguous between objects in the domain,Dn,
of individuals and objects in the domain, D0

n, of generalized quantifiers over indi-
viduals (i.e. of second-order properties of individuals). The interpretation of na-
mes as generalized quantifiers is required by the interpretation of universally qua-
ntified noun phrases (e.g. every woman) as generalized quantifiers over individu-
als, by the possibility of coordinating names with quantifier phrases (cf. the com-
plex noun phrase Bill and every woman), and by the restriction of coordination
(here, and) to expressions which receive an interpretation in the same semantic
domain. While some occurrences of the name Bill will thus be interpreted as the
individual Bill (here, JBillK = ), others will be interpreted as the property of all
of Bill’s properties (here, JBillK0)9.

To preserve function-argument structure, intransitive verbs (e.g. walk) are
made ambiguous between first-order properties of individuals (JwalkK 2 Dv) and
properties of generalized quantifiers over individuals (JwalkK0 2 D0

v). To accom-
modate the obtaining of truth-values through the application of a property of ge-
neralized quantifiers to a generalized quantifier, we supplement the semantic rule
Ss by the rule S0s. The latter is specified below:

S0s. If JBK 2 D0
v and JAK 2 D0

n, then JBK(JAK) 2 Ds.

Figure 2 illustrates the resulting relation between the elements of the syntactic
and the semantic algebra.

semantic domains, D Semantic algebra

JBillK0 JwalkK JwalkK0 T,F

Dn Dv Ds SsDn D0
n Dv D0

v Ss S0s

En Ev Es Gs

r r
r

r

Bill walk Bill walks

syntactic categories, E Syntactic algebra

Figure 2. The syntax-semantics relation.

This completes our presentation of Montague’s account of the linguistic syn-
tax-semantics relation. We next compare this account to the model of intertheo-
retic reduction from (Nagel, 1961). Since we are interested in epistemic interthe-
oretic relations, we will hereafter focus on the relation between the rules Gs, Ss,
and S0s.
9Intuitively, JBillK0 abbreviates the interpretation of the term �P.P (bill), where P is a variable
over first-order properties of individuals, and where bill is the individual constant for Bill.
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2.2. Montague’s Theory and Intertheoretic Reduction. In Section 1, we
have described Montague’s model of the syntax-semantics relation as the instan-
tiation of a specific type of intertheoretic relation. To emphasize the similarities
and di↵erences of the Montagovian model to the account of reduction from (Na-
gel, 1961, Ch. 11), we next describe the reduction between two theories on the Na-
gelian model.10 We then compare Montague’s account of intertheoretic relations
to the Nagelian account.

In the following, we assume a reduced (or phenomenological) theory, T2, and
a reducing (or fundamental) theory, T1.11 As is well known, Nagelian reduction is
a three-step process, which involves the establishment of connections (via bridge
laws) between terms in the non-logical vocabulary of the theories T1 and T2 (step
(i)), the substitution of the terms from T1 by their bridge-law correspondents
from T2 (step (ii)), and the derivation (via auxiliary assumptions) of every propo-
sition in T2 from the result of replacing the relevant terms in a proposition in T1
by their bridge-law correspondents (step (iii)), cf. (Nagel, 1961, pp. 353–354).

Accordingly, the use of the Nagelian model for the reduction of Montague’s
syntax-semantics pair requires the formulation of bridge laws connecting the na-
mes for the elements in D and E and the designators of the syntactic resp. se-
mantic operations in S and G (cf. step (i)), the substitution of the names for the
elements of D and the operations in S by their bridge-law correspondents from
E and G in the designators of the rules from S (cf. step (ii)), and the derivation
of every rule (or ‘proposition’) in G from the corresponding proposition in S (cf.
step (iii)).

In particular, step (i) connects Dn and D0
n with En, Dv and D0

v with Ev, and
Ds with Es, and connects function application, �y�x.y(x), with expression con-
catenation, � · �.12 Step (ii) converts a copy of the rules Ss and S0s (in (1a), (1b))
into the rule from (1c) by replacing every occurrence of ‘Dn’ (resp. ‘D0

n’) by ‘En’,
of ‘Dv’ (resp. ‘D0

v’) by ‘Ev’, and of ‘Ds’ by ‘Es’, and by replacing every occurrence
of ‘�y�x.y(x)’ by the operator ‘� · �’. Step (iii) trivially derives a variant of the
rule Gs from the result of this conversion.

(1) a. If Y 2 Dv and X 2 Dn, then Y (X) 2 Ds.

b. If Y 2 D0
v and X 2 D0

n, then Y (X) 2 Ds.

c. If Y 2 Ev and X 2 En, then �Y X� 2 Es.

The above example shows that the Montagovian model of the syntax-semantics
relation (hereafter, Montague Reduction, or MR) and the Nagelian model of in-
tertheoretic reduction (Nagel Reduction, or NR) agree with respect to the connec-
tability of the two theories (cf. step (i)). Yet, while Nagel Reduction satisfies this
requirement through the formulation of syntactic bridge laws (which connect pai-
rs of terms in the vocabulary of the two theories), Montague Reduction satisfies

10We will see below that – because of the interpretation of bridge laws as co-extensionality re-
lations between T1 and T2 terms – the Nagelian model of reduction can, in fact, not be applied to
the syntax-semantics pair. To allow a direct comparison of the Montagovian with the Nagelian
model, we temporarily ignore this inapplicability.
11The use of the adjectives phenomenological and fundamental (which suggests the directiona-
lity of the reduction relation) is in accordance with the treatment of theories in physics.
12To accommodate the word-order profiles of di↵erent languages (e.g. ‘subject-verb-object’ vs.
‘verb-subject-object’), we here use an order-invariant version, � · �, of the concatenation opera-
tion [ · ] from Gs. The order-(in)variance of concatenation is discussed below and in Section 6.
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this requirement through the assumption of a homomorphism h := r�1 between
the objects of the semantic and the syntactic algebra. This homomorphism gene-
ralizes the inverse image of the interpretation function I from Section 2.1, such
that h(Dk) = {I�1(a) | a 2 Dk} ✓ Ek. Since the homomorphism h also estab-
lishes connections between propositions of the two theories (s.t. h(Ss) = h(S0s) =
Gs), Montague Reduction obviates Nagel’s substitution step (ii).

In Montague Reduction, the replacement of Nagelian bridge laws by (the in-
verse image of) the relation r is made necessary by the definition of bridge laws as
co-extensionality relations between the terms in the theories T1 and T2.13 As a re-
sult, it holds for all pairs of terms, t1 and t2, from T1, resp. T2, that t1 applies to
all objects to which t2 applies, and vice versa. Since model-theoretic semantics
and categorial grammar have non-overlapping target domains14 (s.t. they do not
satisfy the co-extensionality requirement on terms), their objects need to be con-
nected in some other way. The assumption of a homorphism between the alge-
braic formulations of T1 and T2 serves this purpose. Interestingly, in Montague’s
model, the replacement of bridge laws by the homomorphism h also obviates a re-
lation between magnitude parameters, which is required in the Nagelian model,
cf. (Scha↵ner, 1974): To accommodate the magnitudes of physical properties (e.g.
the degrees Kelvin of a gas’ temperature), Nagelian bridge laws specify the func-
tional dependence relation f between the magnitudes, ⌧1 and ⌧2, of the proper-
ties denoted by the terms t1 and t2 (s.t. ⌧2 = f(⌧1)). Since the properties in the
Montagovian theories are magnitude-free, Montague’s model does not (need to)
specify such a relation.

Notably, the semantic characterization of connectability is not the only sali-
ent property of Montague Reduction: Montague Reduction is also defined by the
non-injectivity of the homomorphism h (and by the resulting non-symmetry of
the reduction relation): the Nagelian and the Montagovian model both characte-
rize reduction as a directed dependency relation. (This is reflected in the identifi-
cation of one of the two theories with the phenomenological theory, and of the
other with the fundamental theory, see the next paragraph). However, while the
association of the semantic rules Ss and S0s with the syntactic rule Gs (cf. Sect.
2.1) makes the directedness of the syntax-semantics relation explicit, Nagel’s for-
malization of bridge laws as biconditional statements conceals this property. As
a consequence, the Nagelian model of reduction represents this relation as a sym-

metric relation. The Montagovian model represents this relation as an asymme-

tric relation. To emphasize the symmetric character of Nagelian reduction, we
will sometimes describe this relation as an undirected relation.15

The identification of the semantics-syntax relation with a non-injective homo-
morphism motivates our identification of model-theoretic semantics with the fun-
damental theory, T1, and of categorial grammar with the phenomenological the-
ory, T2. This identification is further justified by the fact that nearly all relevant

13This characterization of Nagelian bridge laws is only due to (Scha↵ner, 1974, pp. 614–615), cf.
(Scha↵ner, 1993, pp. 411–477). However, since this characterization generalizes Nagel’s catego-
rization of bridge laws as meaning equivalences, conventional stipulations, or matters of fact, cf.
(Nagel, 1961, pp. 354–355), we here treat it as a proper part of Nagel’s model.
14While categorial grammar accounts for the well-formedness of syntactic structures, model-the-
oretic semantics accounts for the compositional properties of these structures’ interpretations.
15For a discussion of this issue – and for a Nagelian solution –, the reader is referred to (Kuipers,
1982) and (Dizadji-Bahmani et al., 2010).
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evidence16 directly supports categorial grammar (s.t. syntax fits the phenomena),
and by Montague’s view of the primacy of semantics, cf. (Montague, 1970b,
p. 223)17. Figure 3 compares Montague’s description of the syntax-semantics rela-
tion (right) with the Nagelian account of reduction (left):

Tf

Tp

bridge laws

Gs

Ss S0s

the map h

Figure 3. The Nagelian model (left) and the Montagovian mo-
del of reduction (right).

Note our use of dashed (rather than dotted) arrows in the above figure. This no-
tation is required by the directedness of the syntax-semantics relation, such that
the arrows from Figures 2 (resp. 1) and 3 have a di↵erent denotation: While the
arrows from Figure 2 represent Montague’s relation r, the right arrow from Fig-
ure 3 represents its inverse r�1 (i.e. the homomorphism h).

For future reference, we define Nagel Reduction and Montague Reduction in
terms of their salient properties:

Definition 1 (Nagel Reduction (NR)). A type of undirected (i.e. symmetrically

represented) dependency relation, described in (Nagel, 1961), which is defined by
the existence of intertheoretical connections between co-extensional terms in the
non-logical vocabulary of the two related theories, and by the derivability of every
proposition in the phenomenological theory from a corresponding proposition in
the fundamental theory.

Definition 2 (Montague Reduction (MR)). A type of directed (or non-symme-

tric) dependency relation, implicit in (Montague, 1970b), which is defined by the
existence of intertheoretical connections between objects of the two related the-
ories, and by the resulting trivial derivability of every proposition in the pheno-
menological theory from a corresponding proposition in the fundamental theory.

The commonalities and di↵erences between Nagel Reduction and Montague
Reduction are captured in Figure 4 (next page).

It is clear from the above that the Montagovian model of the syntax-semantics
relation instantiates only one particular type of intertheoretic relation. There are
many others, ranging from ‘strict’ Nagelian Reduction (cf. Def. 1) via the ‘weaker’
Nagel-Scha↵ner reduction (Scha↵ner, 1967; 1974) (cf. Sect. 6), to undirected dep-
endency relations, cf. (Darden and Maull, 1977; Hartmann, 1999; Mitchell, 2003).

16This evidence lies in strings of expressions (e.g. the sentence Bill walks) whose structure re-
flects the assumed formation process (here, the process described by the rule Gs; see Sect. 2.3).
17Thus, in (Montague, 1970b, p. 223, fn. 2), Montague writes, “[. . . ] I fail to see any great inte-
rest in syntax except as a preliminary to semantics [. . . ]”.
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Derivability

8
>>><

>>>:

®
NR

´
Syntactic interth. connectability (via bridge laws);

®
MR

´
Syntactic interth. connectability (via bridge laws),
Undirected dependency

Semantic interth. connectability (via the map h),
Directed dependency

Figure 4. Montague Reduction vs. Nagel Reduction.

We expect that the relation between model-theoretic semantics and categorial
grammar be found in the mid-range of this spectrum.

We close the present subsection with a number of caveats about the syntax-
semantics relation:Our previous considerations have identified the Montague Re-
duction of syntax to semantics as a weak, i.e. directed, variant of Nagel Reduc-
tion. Significantly, however, Montague Reduction is even weaker than has been
previously established. This is due to the greater structural richness of syntax,
such that Montague’s syntactic rule Gs contains more information than (the con-
junction of) the semantic rules Ss and S0s. Word order and agreement are a case in
point: To ensure the ‘right’ formation of simple English sentences (in which the
third person singular form of an intransitive verb combines with a proper name
which occurs on its left), Montague’s rule Gs uses the order-sensitive concatena-
tion operation [ · ]. Without this order-specification, nothing would prevent the
concatenation of expressions which violate the language’s word-order profile (e.g.
subject-verb-object for English). As a result, the rule from (1c) could yield either
the expression Walks Bill or Bill walks. This observation motivates our descrip-
tion of Montague Reduction as a distinct type of intertheoretic relation, rather
than strong Nagelian reduction.

Our characterization of the Montagovian syntax-semantics relation as a weak
intertheoretic relation requires one further clarification: All popular accounts of
reduction (incl. (Nagel, 1961)) assume that the reduced and the reducing theory
have the same (or largely overlapping) target domains. On this account, the two
theories both make more-or-less the same claims (e.g. about the behavior of a gi-
ven physical system). We have argued above that this is not the case for our syn-
tax-semantics pair:18 While categorial grammar accounts for the well- (or ill-)for-
medness of syntactic structures, model-theoretic semantics accounts for their in-
terpretations’ compositional properties. Admittedly, the interpretation relation I
establishes a firm connection between the objects of the two theories. However,
this does not change the fact that the ‘reductive achievement’ of Montague Re-
duction will be comparatively weaker than the achievements of reductions bet-
ween shared-domain theories.

The admonitions from the last two paragraphs all characterize our new type
of intertheoretic relation. While some of them will be ignored in the rest of this
paper, their neglect would distort our representation of the syntax-semantics re-
lation. To enable a Bayesian analysis of the model of this relation, the next sub-
section discusses the use of probabilities in linguistic syntax and semantics. Sec-
tion 3 gives a primer on Bayesian confirmation and network theory.

18Notably, relations between theories with di↵erent target domains may not be identified with
heterogeneous reductions, whose constituent theories do not share the relevant predicates: Many
heterogenous reductions (e.g. the reduction of thermodynamics to statistical mechanics) still
have a common target domain (here: observable phenomena in macroscopic systems like gases).
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2.3. Montagovian Rules and Probabilities. Our presentation of Montague’s
theory of the syntax-semantics relation has presupposed the existence of two sets
of rules, G and S, for the formation of complex syntactic and semantic objects.
Like hypotheses of any scientific theory, these rules are obtained by the scientific
method (discussed, here, for the formulation of Gs): Following the isolation of
syntactically simple sentences in a given data-set (typically, an electronic text col-
lection like the British National Corpus), linguists abstract information about
the sentences’ structural properties and propose a hypothesis (here, Gs) about
their formation. Hypotheses are tested through the analysis of strings of expres-
sions in other (new) corpora: A given string (e.g. the sentence Bill walks) is taken
to support the hypothesis if its structure does, and to question the hypothesis if
its structure does not reflect the assumed formation process (i.e. if it positively
resp. negatively instantiates Gs).

To enable a Bayesian analysis of our model of the syntax-semantics relation,
we assign a probability to every syntactic and semantic rule. A rule’s probability
is informed by the frequentist data which are available at the time. Thus, the pro-
bability of the truth of the hypothesized ruleGs will be very high (or low) if a very
large (resp. small) percentage of the expressions of the described form instanti-
ates Gs. We expect that the frequentist probability of a given rule will influence a
linguist’s psychological confidence in the rule’s descriptive adequacy. In particu-
lar, if a very large (or small) percentage of the expressions of a given form instan-
tiates Gs, the linguist’s belief in the truth of Gs will be similarly high (resp. low).

Our previous considerations have defined the probability of a given rule via
the frequency of the rule’s positive instantiations in a given sample. Notably, the
relation of direct instantiation by linguistic objects is restricted to syntactic rules.
We will see below that this observation plays an important role in the two theo-
ries’ pre-reductive confirmation (cf. Thm. 1, Sect. 4.1). The semantic rule Ss deri-
ves its support from the linguistic support of Gs via the assumption of the homo-
morphism h. The probability of Ss is thus obtained via the probability of its syn-
tactic counterpart.

This concludes our discussion of the reductive and probabilistic aspects of
Montague’s framework. We precede our introduction to Bayesianism with one fi-
nal caveat: Importantly, our attribution of probabilities to Montagovian rules
does not constitute a probabilistic extension of Montague Grammar. The central
aim of this paper is methodological, not substantive. Consequently, we do not in-
tend any revisions or additions to (our fragment of) Montague’s theory. The at-
tribution of probabilities is only a means to an end, i.e. the possibility of provid-
ing a Bayesian analysis of Montague’s model of the syntax-semantics relation. To
achieve this end, it will su�ce to restrict ourselves to the use of probabilistic vari-
ables. While nothing prevents us from inserting actual values, the use of actual
probabilistic values is not necessary for the success of our analysis.

3. A Primer on Bayesianism

We analyze a rule’s evidential support via Bayesian confirmation theory: The
central idea of this theory is the interpretation of confirmation as probability-rai-
sing, and the associated distinction between two notions of probability, relative to
the receipt of a new piece of evidence: The initial, or prior, probability of a pro-
position H (for ‘hypothesis’) is the probability of H before the evidence E has been
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considered. The final, or posterior, probability of H is the probability after E has
been considered.

Bayesian conditionalization on E requires an update of the prior probability,
P(H), to the posterior probability, P 0(H), of H, where P 0(H) is typically expres-
sed in terms of the original probability measure, i.e. P 0(H) = P(H|E), provided
that P(E) > 0. Our use of Bayes’ Theorem, a result from probability theory, yiel-
ds the following expression for the posterior probability of H:

P(H|E) =
P(E|H)P(H)

P(E)
=

P(E|H)P(H)

P(E|H)P(H) +P(E|¬H)P(¬H)(1)

=
P(H)

P(H) +P(¬H)x

In the above, the expression x := P(E|¬H)/P(E|H) is the likelihood ratio.

According to Bayesian confirmation theory, a piece of evidence E confirms the
hypothesis H if the posterior probability of H (given E) is greater than the prior
probability of H, i.e. if P(H|E) > P(H). The piece of evidence, E, disconfirms H
if P(H|E) < P(H), and is irrelevant for H if P(H|E) = P(H).19

While the case of two propositions is easy to compute, the confirmatory si-
tuation is often much more complicated. This is due to the fact that the respec-
tive hypothesis may have a fine structure, and that di↵erent pieces of evidence
may stand in certain probabilistic relations to one another. As we will see is due
course, the relation between linguistic syntax and semantics, upon which we fo-
cus in this paper, exhibits a similarly high degree of complexity.

Bayesian networks prove to be a highly e�cient tool for the computation of
the above-described scenarios.20 A Bayesian network is a directed acyclical graph
whose nodes represent propositional variables and whose arrows encode the con-
ditional independence relations that hold between the variables. In the rest of
this paper, we call parent nodes nodes with outgoing arrows, and call child nodes

nodes with incoming arrows. Root nodes are unparented nodes; descendant nodes
are child nodes, or the child of a child node, etc.

By the special choice of graph, paths of arrows may not lead back to them-
selves (s.t. the graph is acyclical). Variables at each node can take di↵erent nume-
rical values, which are assigned by the probability function P. As a result, Baye-
sian networks do not only provide a direct visualization of the probabilistic de-
pendency relations between variables, but come along with a set of e�cient algo-
rithms for the computation of whichever conditional or unconditional probability
over a (sub-)set of the variables involved we are interested in.

We illustrate the use of Bayesian networks by framing the confirmatory rela-
tion between the hypothesis H and a piece of evidence E. To do so, we first in-
troduce two binary propositional variables, H and E (printed in italic script).

19Bayesianism is presented and critically discussed in (Howson and Urbach, 2005) and (Earman,
1992). These texts also discuss Je↵rey conditionalization, which is an alternative updating rule.
For an introduction to Bayesian epistemology, the reader is referred to (Hájek and Hartmann,
2010) and (Hartmann and Sprenger, 2010).
20For an introduction to Bayesian networks, see (Neapolitan, 2003; Pearl, 1988). The mono-
graph (Bovens and Hartmann, 2003) discusses applications from epistemology and the philoso-
phy of science, and provides a short introduction to the theory of Bayesian networks.
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Each of these variables has two values (printed in roman script): H or ¬H (i.e.
‘the hypothesized rule is true’ resp. ‘false’), and E or ¬E (‘the evidence obtains’
resp. ‘does not obtain’). The relation between E and H is represented in the
graph in Figure 5:

H E

Figure 5. Bayesian network representation of the dependence
between E and H.

The arrow from H to E denotes a direct influence of the variable in the parent
node to the variable in the child node. The truth or falsity of the hypothesis af-
fects the probability of the obtaining of E.

To turn the graph from Figure 5 into a Bayesian network, we further require
the marginal probability distribution for each variable in a root node (i.e. the pri-
or probability, P(H), of H), and the conditional probability distribution for eve-
ry variable in a child node, given its parents. In the present case, the latter invol-
ves fixing the likelihoods P(E|H) and P(E|¬H). From these distributions, we can
then obtain all other probabilities via Bayesian networks. As will be relevant be-
low, the graph’s probability distribution respects the Parental Markov Condition
(PMC): A variable represented by a node in a Bayesian network is independent
of all variables represented by its non-descendant nodes in the Bayesian network,
and is conditional on all variables represented by its parent nodes.

4. Montague Reduction and Confirmation

Our previous e↵orts have restricted themselves to the presentation of Montague’s
model of the syntax-semantics relation. To motivate the introduction of this mo-
del as a new model of intertheoretic relations (in addition to the established Na-
gelian model), we next provide a Bayesian analysis of this model.

To simplify the Bayesian analysis of our new model of reduction – and to fa-
cilitate its comparison with the Bayesian analysis of Nagel-Scha↵ner reduction
from (Dizadji-Bahmani et al., 2011) –, we focus on the relation between the rules
Gs and Ss.21 These rules are associated with the propositional variables G, re-
spectively S. The reductive relation between syntax and semantics can then be
represented via the graph in Figure 7 (next page). For simplicity, we assume that
the rule G is supported by exactly one (set of) piece(s) of evidence. As has been
explained in Section 2.3, we take evidence for a given syntactic rule to be an in-
tuitively well-formed linguistic expression whose structure reflects the rule’s as-
sumed formation process. The replacement of the arrows from Figures 1 to 3 by
arrows of the form �! (cf. Fig. 5) is motivated by our interest in probabilistic de-
pendence relations between propositional variables (rather than in the relation r
or the homomorphism h). Below, these arrows capture the dependence of the pro-
bability of the truth of the syntactic rule Gs on the probability of the truth of the
semantic rule Ss. The conditional dependency of Gs on Ss enables us to obtain
an aligned chain of arrows. As a result, we can represent a flow of evidence from
the syntactic to the semantic theory.

21The resulting restriction to singleton sets of rules (s.t. G = {Gs} and S = {Ss}) enables us to
drop the subscript ‘s’ from Gs and Ss.
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Figures 6 and 7 display the graphs associated with the dependence relations
between S,G, and E before and after the establishment of the relation of Mon-
tague Reduction:

S G E

Figure 6. Pre-reductive dependence relations between S, G, and E.

S G E

Figure 7. Post-reductive dependence relations between S, G, and E.

We determine the confirmation of S and G via their relevant probabilities, be-
ginning with the pre-reductive situation (in Sect. 4.1, cf. Fig. 6). The comparison
of this situation with the post-reductive situation (in Sect. 4.3; cf. Sect. 4.2, Fig. 7)
will show that the Montague Reduction of syntax to semantics raises the joint
(prior and posterior) probabilities of the two theories and improves the flow of
confirmation between these two theories.

4.1. Pre-Reductive Confirmation. LetP1(S) andP1(G) be the marginal pro-
babilities of the root nodes S and G of the Bayesian network in Figure 6, where
P1 is the relevant probability measure. Let P1(E|G) and P1(E|¬G) be the con-
ditional probabilities of the child node E. For convenience, we use the following
abbreviation scheme:

P1(S) = � , P1(G) = � ,(2)

P1(E|G) = ⇡ , P1(E|¬G) = ⇢

We assume a positive confirmatory relation between E and G, such that ⇡ > ⇢.

From the network structure in Figure 6, we can read o↵ the conditional and
unconditional independences E ?? S|G and S ?? G, such that P1(S|E) = P1(S).
Evidence E does not confirm (or disconfirm) S. Hence, there is no flow of confir-
mation from the syntactic to the semantic theory. In the absence of the homo-
morphism h : S ! G, the variables S and G are probabilistically independent
before the reduction. This fact is captured by equation (3):

P1(S,G) = P1(S)P1(G) = � �(3)

By (3), the prior probability of the conjunction of S and G equals the product of
the marginal probabilities of the positive instantiations of the root nodes. Using
the methodology from (Bovens and Hartmann, 2003), we obtain the posterior
probability of the conjunction of S and G as follows:

P⇤
1 :=

P1(S,G,E)

P1(E)
=

P1(S,G,E)
P

S,G(S,G,E)
=

� ⇡ �

� ⇡ + �̄ ⇢
(4)

The denominator of the rightmost fraction in (4) is a convex combination of ⇡ and
⇢ weighed by �, where �̄ := 1� �.22

We close the present subsection by assessing the degree of confirmation of the

22We will hereafter abbreviate ‘1� x’ as ‘x̄’.
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conjunction of S and G. To do this, we use the di↵erence measure d, cf. (Carnap,
1950), which is defined for our case as follows:23

(5) d1 := P1(S,G|E)�P1(S,G)

Thus, E confirms G if the consideration of E raises the probability of the conjun-
ction of S and G. By calculating d1, we show that this is indeed the case:

(6) d1 =
� �̄ � (⇡ � ⇢)

� ⇡ + �̄ ⇢

If we assume that �,⇡, ⇢, and � lie in the open interval (0, 1), where ⇡ > ⇢, the
above fraction is always strictly positive. We summarize our observation in the
following theorem:

Theorem 1. E confirms S and G i↵ E confirms G.

This completes our investigation of the joint probability of S and G before the
execution of a Montague Reduction of G to S. We next investigate the joint pro-
babilities of S and G after such a reduction has been performed.

4.2. Post-Reductive Confirmation. To determine the confirmation of S and
G in the post-reductive situation (cf. Fig. 7), we must first restate the probability
distributions from the previous subsection. In particular, since G is no longer a
root node in Figure 7 (and is, thus, not assigned a prior probability), we replace
the equation P1(G) = � from (2) by the equations from (7), where P2 is the new
probability measure:

P2(G|S) = 1 , P2(G|¬S) = 0(7)

The equations from (7) are warranted by Montague’s homomorphism h. All oth-
er assignments are as for P1. Our introduction of the new measure P2 is motiva-
ted by the move to a di↵erent probabilistic situation, and the need to assign the
received Montagovian propositions possibly distinct probabilistic values. Equali-
ty statements of the form P2(S) = P1(S) ensure the possibility of comparing the
confirmation of S and G in the di↵erent situations.

As is encoded by the arrow from S to G in Figure 7, Montague’s homomor-
phism h e↵ects a flow of evidence from syntax to semantics. The confirmation of
S is defined simply as follows:

Theorem 2. E confirms S i↵ ⇡ > ⇢.

According to the above theorem, the evidence E confirms the proposition S if (as
has been assumed in Section 4.1) E supports G. The equations in (7) ensure a
positive flow of confirmation from G to S.

On the basis of the above, the conjunction of S and G has the following prior
and posterior probabilities: (All calculations are included in the Appendix.)

(8) P2(S,G) = �

(9) P⇤
2 := P2(S,G|E) = ⇡ �

⇡ � + ⇢ �̄

23As is discussed in (Fitelson, 1999), cf. (Eells and Fitelson, 2000), results may depend on our
choice of confirmation measure. Whether (and to what extent) they do, will be a question for
future research.
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The degree of confirmation of the conjunction of S and G under the measure P2

is recorded below:

(10) d2 := P2(S,G|E)�P2(S,G) =
� �̄ (⇡ � ⇢)

⇡ � + ⇢ �̄

This completes our investigation of the probabilities and confirmation of the
conjunction of S and G in the post-reductive situation. To show the epistemic va-
lue of Montague Reduction, we next compare the conjunction’s probabilities and
confirmation in the two scenarios. We accept a reduction if it raises the conjunc-
tion’s probabilities or evidential support, and reject (or ignore) it otherwise.

4.3. Comparing Situations. We begin by comparing the prior probabilities of
the conjunction of S and G in the two situations from Sections 4.1 and 4.2. While
the propositional variables S and G are independent before the reduction, they
have become dependent after the reduction. This is due to the fact that G is no
longer a root node in Figure 7. To compare the joint probabilities of S and G in
the two scenarios, we assume the identity of P2(G) and P1(G), and of P2(E|G)
and P1(E|G). By the first equality in (7), we further assume the equality in (11),
such that � = �.

(11) P2(G) = P2(G|S)P2(S) = �

Using the above, we calculate the di↵erence, �0, between the conjunction’s
pre- and post-reductive prior probabilities, and obtain

(12) �0 := P2(S,G)�P1(S,G) = � �̄.

Intuitively, the Montague Reduction of syntax to semantics is epistemically valu-
able if the prior probability of the conjunction of S and G is higher post- than
pre-reduction, i.e. if �0 > 0. Since we assume that all non-h-based probabilities
are non-extreme, we know that the former is indeed the case.

The di↵erence, �1, between the conjunction’s posterior probabilities under
the measures P2 and P1 is also strictly positive:

(13) �1 := P2(S,G|E)�P1(S,G|E) = ⇡ � �̄

⇡ � + ⇢ �̄

To show the truth of this statement, we use the above assumptions together with
the fact that ⇡ > ⇢.

The post-reductive confirmation of our propositions witnesses a similar inc-
rease. To establish this, we calculate the di↵erence between the conjunction’s pre-
and post-reductive degree of confirmation under the di↵erence measure, and ob-
tain

(14) �2 := d2 � d1 =
� �̄2 (⇡ � ⇢)

⇡ � + ⇢ �̄
.

As can be read o↵ from the expression in (14), the positivity of �2 – and the at-
tendant positive confirmatory impact of Montague Reduction – is conditional on
the requirement that � 2 (0, 1) and that ⇡ > ⇢.

The above-observed increase in the joint probabilities and evidential support
of the conjunction of S and G corresponds to the increase in a conjunction’s pro-
babilities and support after the execution of a Nagelian reduction, cf. (Dizadji-
Bahmani et al., 2011). In particular, since Nagelian bridge laws and Montague’s
homomorphism h both set the posterior probability of the truth of the ‘reduced’
proposition (given the truth (resp. falsity) of the ‘reducing’ proposition) to 1
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(resp. to 0) (cf. our (7), and equation (12) from (Dizadji-Bahmani et al., 2011)),
the Montague Reduction of categorial grammar to model-theoretic semantics
achieves an equally large24 boost in confirmation as the Nagelian reduction of a
‘suitable’25 proposition-pair. This observation is captured below:

Proposition 1. For suitable pairs of propositions, Montague Reduction is episte-

mically equally advantageous as Nagel Reduction.

We close our presentation by suggesting two possible extensions of our model of
Montague Reduction. These include the adaptation of our model to fundamental
theories with multiple propositions (in Sect. 5), and the adaptation of our model
to a variant of Scha↵ner’s (1967) revised model of Nagelian reduction (in Sect. 6).
We will see that the latter accounts for the structural richness of grammatical ru-
les.

5. Extension I: Reductions of ‘Larger’ Theories

The previous section has shown that Montague Reduction increases the joint pro-
babilities and degree of confirmation of the conjunction of pairs of theories with
a single propositional element (esp. of pairs of theories with a single-proposition
reduced theory26). Montague’s homomorphism from Section 2.1 suggests an easy
generalization of this result to pairs with more comprehensive reduced theories
(e.g. to syntactic theories with more categories of expressions) in which the beha-
vior of the syntactic operations is governed by a larger set of rules.27 The reduc-
tive relation between these ‘larger’ theories is represented via the graph from Fi-
gure 8 (next page). In the graph, we call the variables S, G, and E from Sec-
tion 4 ‘S1’, ‘G1’, and ‘E1’, respectively. The variables Si, Gi, and Ei (with 1 <
i  n 2 N) are associated with new (semantic resp. syntactic) rules and their sup-
porting pieces of evidence.

As is captured in Figure 8, Montague’s homomorphism h e↵ects a pairwise re-
duction, which reduces categorial grammar to model-theoretic semantics by redu-
cing G1 to S1, G2 to S2, G3 to S3, etc.28 As a result, the probability of syntax re-
duced to semantics will correspond to the product of the probabilities of all indi-
vidual proposition-pairs:

P2

Ä\

k

hSk,Gki
ä

= P2(S1,G1)P2(S2,G2)P2(S3,G3) . . .(15)

24To ensure the comparability of the post-reductive situation from Section 4.2 with the post-
reductive situation from (Dizadji-Bahmani et al., 2011) – which assumes Scha↵ner’s (1967) re-
vised model of Nagel Reduction (cf. Sect. 6) –, we let the posterior probability of the truth, T⇤

1,
of the corrected version of the ‘reducing’ proposition (given the truth, T1 (resp. falsity, ¬T1),
of the ‘uncorrected’ reducing proposition) and the truth, T2, of the uncorrected version of the
‘reduced’ proposition (given the truth, T⇤

2 (resp. falsity, ¬T⇤
2), of the corrected ‘reduced’ propo-

sition) both be 1 (resp. 0) (rather than p

⇤
1 or p⇤2 (resp. q⇤1 or q⇤2), as in (Dizadji-Bahmani et al.,

2011, (11) and (10))).
25Here, suitable is defined as ‘allowing the application of the described reduction procedure’. As
a result, suitable propositions for Nagelian reduction have a common target domain and contain
bijectively related predicates.
26Since the variables, S and S

0, of the rules Ss and S0
s are only probabilistically independent be-

fore the reduction, Proposition 1 extends to the three-member set {Gs, Ss, S0
s}.

27Montague’s rule G9, cf. (Montague, 1973), is an example of such a new rule.
28For simplicity, we again ignore ‘alternative’ semantic propositions S0

k (with k 2 N) for which
it holds that h(S0

k) = h(Sk) = Gk.
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G1

S1

G2

S2

G3

S3

· · ·

· · ·

E1 E2 E3 · · ·

Figure 8. Post-reductive relations between pairs of propositions hSk, Gki.

= P2(S1)P2(S2)P2(S3) . . . , (by (7))
respectively

P2(
\

k

hSk,Gk|Eki) = P2(S1,G1|E1)P2(S2,G2|E2)P2(S3,G3|E3) . . .(16)

= P2(S1|E1)P2(S2|E2)P2(S3|E3) . . .

However, the stipulation of independent morphisms between all pairs hSk, Gki
does not assign Montague’s syntax-semantics relation an optimal epistemic value.
This is due to the multiplication properties of real numbers in the open interval
(0, 1), such that the probability of the conjunction decreases in inverse proportion
to the number of its conjuncts. But this contradicts our intuitions (reflected in
much work in formal semantics, and in (Dizadji-Bahmani et al., 2011, p. 326))
that reductions between ‘larger’ (multi-proposition) theories share the epistemo-
logical advantages of reductions between ‘smaller’ theories.

Admittedly, the observed decrease in the joint probabilities of larger theories
is also a problem for Nagelian reduction. However, Montague’s framework pro-
vides a strategy for avoiding this problem. This strategy arises from the possibili-
ty of constructing certain semantic domains from other domains:29 Our presen-
tation of Montague’s two theories from Section 2.1 has assumed that all seman-
tic domains (especially, the domains Dn, Dv, and Dn) are equally basic. Yet, in
the Montagovian framework, this is in general not the case. In particular, to en-
able the compositional interpretation of natural language,30 Montague’s semantic
models only contain basic domains for individuals (i.e. the set Dn) and truth-va-
lues (i.e. the set Ds), cf. (Montague, 1970a). From the elements of these domains,
elements of all other domains (e.g. the members of the set Dv) are obtained via
a number of object-forming rules (here, via function-space formation, s.t. Dv ✓
{f | f : (Dn ! Ds)}).

We expect that these constructibility relations between domains will estab-
lish connections between objects of the reducing theory (and similarly, for the re-
duced theory), which will result in mutual probabilistic dependencies between sa-

me-theory propositions. A full development of this sophisticated variant of Mon-
tague Reduction, and an assessment of its epistemological merits, will be provi-
ded in a sequel to this paper.

29A similar observation applies to syntactic categories, cf. (Ajdukiewicz, 1935).
30s.t. the semantic value of an expression is a function of the semantic values of its constituents
and their mode of combination, cf. (Partee, 1984).
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6. Extension II: Schaffner-Style Reduction

Section 2.2 has identified Montague Reduction as a model of a weak type of inter-
theoretic relation. We have attributed this weakness to the fact that the syntactic
rule Gs contains more structural information than the semantic rule Ss (or S0s).
We have used this fact to argue for the lower reductive strength of Montague Re-
duction vis-à-vis Nagelian reduction.

Yet, Nagelian reduction also does not enable the full reduction of phenomeno-
logical to fundamental propositions. For example, in the reduction of thermodyn-
amics to statistical mechanics, Nagel’s model is unable to derive the exact Second
Law of thermodynamics, in which entropy does not fluctuate in equilibrium.31

The revised model of Nagelian reduction from (Scha↵ner, 1967; 1974), cf.
(Nagel, 1977), improves the reductive accuracy of the Nagelian model by introdu-
cing a dedicated level of ‘corrected’ propositions of the two theories, and by de-
manding that the corrected version of each proposition of the fundamental theory
be obtained from the original proposition via auxiliary assumptions, and that the
corrected version of each proposition of the phenomenological theory be strongly
analogous to the original proposition.32 The resulting model of reduction is cap-
tured in Figure 9. In the figure, T ⇤

1 and T ⇤
2 are the ‘corrected’ versions of the pro-

positions T1 and T2, respectively.

T1 T ⇤
1

T ⇤
2T2

aux. assump’s

bridge laws

strong analogy

T1 T ⇤
1

T2 T ⇤
2

Figure 9. Generalized Nagel-Scha↵ner reduction.

We expect that the introduction of corrected propositions will also improve
the success of our model of Montague Reduction. In Section 2.2, we have already
noted that the syntactic correlate of function application will not contain any in-
formation about word order. We have attributed this observation to the fact that
semantics contains much less structural information than syntax. However, since
word order is a very stable property of a language, the specification of a langua-
ge’s word order-type (as an auxiliary assumption about the investigated langua-
ge) will allow us to supplement this information: For example, once we have com-
plemented Ss with the information that English is a ‘subject-verb-object’ (SVO)
language, we will be able to ‘adjust’ the rule from (1c) to the syntactic rule from
(2), where [ · ] is the order-sensitive concatenation operation from Gs. Since this
operation respects the order of the constituent basic expressions, it combines in-
transitive verbs with a name which occurs on their left :

31Nagelian reduction can only derive a variant of this law, in which thermodynamic entropy does
fluctuate in equilibrium.
32For a detailed presentation and discussion of generalized Nagel-Scha↵ner reduction, the reader
is referred to (Scha↵ner, 1967) and (Dizadji-Bahmani et al., 2010).
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(2) If Y 2 Ev and X 2 En, then [XY ] 2 Es.

Since the rule (1c) is strongly analogous to the rule (2) under this auxiliary as-
sumption, a ‘Scha↵ner-style’ variant of our model of Montague Reduction will de-
rive the ‘right’ concatenation rule for proper names and intransitive verbs.

The elaboration of this variant of our model of Montague Reduction, and a
demonstration of its (expected) epistemic advantages, is left for another occasion.
We close the paper with a summary of our main results.

7. Conclusion

In this paper, we have presented a model of a new type of intertheoretic relation,
called Montague Reduction, which is inspired by Montague’s (1973) framework
for the analysis and interpretation of natural language syntax. We have identi-
fied the commonalities of Montague Reduction with classical Nagelian reduction,
cf. (Nagel, 1961), and have established their salient di↵erences. In particular, we
have observed that Montague Reduction can establish directed dependency rela-
tions between pairs of theories with non-overlapping target domains, which can-
not be captured by Nagelian reduction. To show the epistemic rationale behind
our new type of intertheoretic relation, we have demonstrated that – like its Na-
gelian counterpart – Montague Reduction raises the posterior probability of the
conjunction of the two related theories, and increases the flow of confirmation be-
tween them. Finally, we have identified two strategies for the extension and im-
provement of our model of Montague Reduction.

Appendix: Proofs and Calculations for Section 4

We have calculated the pre-reductive probabilities of the conjunction of the posi-
tive instantiations of S and G in Section 4.1. The joint distribution, P2(S,G,E),
of the (post-reductive) graph in Figure 7 is given by the expression

P2(S)P2(G)P2(E|G).

Using the methodology from (Bovens and Hartmann, 2003), the prior probability
of the conjunction of S and G is obtained as follows:

(17) P2(S,G) =
X

E

P2(S,G, E) = ⇡ � + ⇡̄ � = �

We yield the posterior probability, P⇤
2 := P2(S,G|E), of the conjunction of S and

G thus:

(18) P⇤
2 =

P2(S,G,E)

P2(E)
=

⇡ �

⇡ � + ⇢ �̄

To obtain the di↵erence �0, we calculate

P2(S,G)�P1(S,G) = � � �2 = � �̄ .

This proves the following proposition:

Proposition 2. �0 = 0 i↵ � = 0 or 1; �0 > 0 i↵ � 2 (0, 1).

The di↵erence, �1, between the conjunction’s pre- and post-reductive poste-
rior probabilities is obtained as follows:

(19) �1 := P⇤
2 �P⇤

1 =
⇡ � � ⇡ �2

⇡ � + ⇢ �̄
=

⇡ � �̄

⇡ � + ⇢ �̄
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From the di↵erence measure

(20) d2 := P2(S,G|E)�P2(S,G) =
� �̄ (⇡ � ⇢)

⇡ � + ⇢ �̄
,

we calculate the di↵erence, �2, between the conjunction’s degree of confirmation
before and after the execution of a Montague Reduction as follows:

(21) �2 := d2 � d1 =
� �̄ (⇡ � ⇢)� �2 �̄ (⇡ � ⇢)

⇡ � + ⇢ �̄
=

� �̄2 (⇡ � ⇢)

⇡ � + ⇢ �̄

This completes our proofs and calculations for Section 4.
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