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Abstract

We give a probabilistic justification of the shape of one of the probability weighting
functions used in Prospect Theory. To do so, we use an idea recently introduced by Herzog
and Hertwig (2014). Along the way we also suggest a new method for the aggregation of
probabilities using statistical distances.
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1 Introduction

Let p be the objective probability of some event E . According to Prospect Theory people do not

use p in their reasoning and decision making, but use a weighted version of p instead. One way

of expressing the functional form of the probability weighting function is

w(p) :=
δ pγ

δ pγ + pγ
, (1)

with parameter γ, δ > 0 (Gonzales 1999) and the short hand p := 1 − p which we will use

throughout this paper. Fig. 1 illustrates the shape of the curve for various values of the param-

eters. Prospect theory is descriptively very successful, but it is considered to lack a normative

foundation (Wakker 2010).

In this paper we provide a Bayesian justification of this probability weighting function w(p).

To do so, we assume that the agent is not content with learning the objective probability of E .

After all, it is not clear whether the information source is fully reliable and it is, in any case,

a good idea to come up with an independent assessment of the situation. We therefore assume

that the agent generates n− 1 further probability estimates of E , i.e. probabilities p1, . . . , pn−1
by “harnessing the wisdom of her inner crowd” as suggested in Herzog and Hertwig (2014).

She then aggregates these probabilities together with the objective probability p, each with the

same weight, to a probability value p′. This is done by minimizing the average Kullback-Leibler

divergence between p′ and p, p1, . . . , pn−1. The main result of this paper is that this implies that

p′ = w(p).

The remainder of this paper is organized as follows. Sec. 2 introduces a new method for the

aggregation of probability values. Sec. 3 applies this method to the present case. Finally, Sec. 4

concludes with the suggestion of two lab experiments that can be done to test our proposal.
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Figure 1: The weighing function w(p) from eq. (6) for γ = .5 ans δ = .5 (orange), δ = .7 (green)
and δ = .9 (red).

2 A New Method for Probability Aggregation

A group of n members has to fix the probability of some event E . After considering the available

evidence, each group member i (i = 1, . . . , n) submits a (subjective) probability value pi ∈ (0, 1)

to a chairperson who is not part of the group and whose sole task it is to aggregate the probability

values of the group members to a group probability value p′. The chairperson considers all group

members to be equally reliable and has no additional evidence about the probability value at her

disposal. But how should the probabilities be aggregated? What is the rational way to proceed

here?

One possibility is to take the arithmetic mean of the individual probability values, i.e.

µa(p1, . . . , pn) :=
1

n
(p1 + · · ·+ pn). (2)

Another possibility is to take the geometric mean, i.e.

µg(p1, . . . , pn) := n
√
p1 · · · pn. (3)

Note that µg leads to a group probability of zero if at least one of the group members submits

a probability that approaches zero.

Here we take a different route and determine the value of p′ by minimizing the arithmetical

average Kullback-Leibler divergence between p′ and the pi’s. The Kullback-Leibler divergence

between two probability distributions P ′ and P is defined as follows:

Definition 1 (The Kullback-Leibler Divergence) Let S1, . . . ,Sn be the possible values of a ran-

dom variable S over which the probability distributions P and P ′ are defined. The Kullback-

Leibler divergence between P ′ and P is then given by

DKL(P ′||P ) :=

n∑
j=1

P ′(Sj) log
P ′(Sj)

P (Sj)
.
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Applied to our case, we want to minimize

KL =
1

n

n∑
i=1

DKL(p′||pi) , (4)

with

DKL(p′||pi) := p′ log
p′

pi
+ p′ log

p′

pi
. (5)

We now define

Definition 2 (The Probabilistic Mean)

µp(p1, . . . , pn) :=
µg(p1, . . . , pn)

µg(p1, . . . , pn) + µg(p1, . . . , pn)
.

Then the following theorem holds (all proofs are in the appendix):

Theorem 1 The probabilistic mean µp(p1, . . . , pn) minimizes KL from eqs. (4) and (5).

Note that µp can be represented more compactly: Let the individual odds oi := pi/pi and let the

collective odds O :=
∏n
i=1 oi. Then µp(p1, . . . , pn) = O/(O + 1).

Note that p′ := µp(p1, . . . , pn) satisfies a number of interesting conditions (the proofs are obvious).

Anonymity p′(p1, . . . , pn) = p′(π(p1, . . . , pn)) where π is a permutation operator.

All group members contribute equally to the collective probability assignment.

Unanimity Preservation p′(p, . . . , p) = p

For a discussion of this compelling axiom, see Dietrich and List (2014).

Complementarity p′(p1, . . . , pn) + p′(p1, . . . , pn) = 1

If each group member submits the complementary probability value (i.e. p := 1−p instead

of p), then the group chooses the complementary probability value.

Floor Dominance limpj→0 p
′(p1, . . . , pn) = 0 for some j ∈ {1, . . . , n}

If one group member considers the event impossible (and no group member considers the

event certain), then the group considers the event impossible. An agent who assigns an

event a probability which approaches 0 is prepared to bet any amount of money that this

is the right assignment. Otherwise a rational agent would not do it. Hence, it is rational

to follow this agent. (Note that all other probabilities are kept fixed and are in (0, 1).)

Ceiling Dominance limpj→1 p
′(p1, . . . , pn) = 1 for some j ∈ {1, . . . , n}

If one group member considers the event certain (and no group member considers the event

impossible), then the group considers the event certain. An agent who assigns an event a

probability which approaches 1 is prepared to bet any amount of money that this is the

right assignment. Otherwise a rational agent would not do it. Hence, it is rational to follow

this agent. (Note that all other probabilities are kept fixed and are in (0, 1).)
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Note that Complementarity and Floor Dominance imply Ceiling Dominance. Note fur-

ther that µa satisfies Complementarity but not Floor Dominance and Ceiling Dominance.

µg satisfies Floor Dominance, but not Complementarity and Ceiling Dominance. We

will explore these conditions in more detail in future work. We will also extend the proposed

method to the aggregation of probability distributions and show, e.g., that it satisfies External

Bayesianity (Dietrich and List 2016).

3 A Probabilistic Justification of Prospect Theory

With this, we can state the following theorem:

Theorem 2 p’ = w(p) from eq. (1) minimizes the Kullback-Leibler divergence between p′ and

p, p1, . . . , pn−1 with γ = 1/n and

δ =

(
p1 · · · pn−1
p1 · · · pn−1

)1/n

.

This theorem suggests a probabilistic justification of Prospect Theory. To see this, we proceed

as follows: (i) The agent learns about the objective probability p of the event E . (ii) She then

generates n − 1 further estimates p1, . . . , pn−1 of the objective probability, e.g. by “harnessing

the wisdom of her inner crowd”. (iii) Finally, she aggregates p and p1, . . . , pn−1, all with the

same weight, to a probability p′ by minimizing the Kullback-Leibler divergence between p′ and

p, p1, . . . , pn−1. As a result, one obtains p′ = w(p).

Let us explore w(p) a bit more. The following three propositions hold:

Proposition 1 w(p) is subadditive, i.e. w(p) + w(p) < 1, iff µp(p1, . . . , pn−1) < 1/2.

Note that experiments suggest that w(p) + w(p) < 1. A sufficient condition for this inequality

to hold is that pi < 1/2 for all i = 1, . . . , n − 1, but it is worth noting that all that has to hold

is that the probabilistic mean of the probabilities generated by our inner crowd is smaller than

1/2.

Next, we determine the criss-crossing point pc (see again Fig. 1), which satisfies the condition

pc = w(pc). We obtain:

Proposition 2 The criss-crossing point pc is given by the probabilistic mean µp(p1, . . . , pn−1).

Finally, we show that

Proposition 3 δ < 1 if and only if pc < 1/2.

That is, w(p) is sub-additive iff the criss-crossing point pc < 1/2.

4 Conclusions

Our main result (Theorem 2) is a first step in the direction of providing a probabilistic justification

of Prospect Theory. More work needs to be done (including, e.g. the study of different weights for

the objective probability and the generated probabilities and the study of other f -divergencies,
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see Csiszár (2008)), but we hope to have convinced the reader that it is worth to pursue this

an endeavour. Theorem 2 also suggests a number of experimental tests. Here are two questions

that can be explored in the lab:

1. It is plausible to assume that participants generate more probabilities if they have more

time. So γ = 1/n should decrease if one gives participants more time to come up with their

probability assessment.

2. If our inner crowd would recommend higher probability values, i.e. if the geometric average

of these probabilities would be greater than 1/2, then pc > 1/2. Can we manipulate

participants to do so (e.g. by introducing a suitable anchor)?

A Proofs

A.1 Theorem 1

To find the minimum, we differentiate KL by p′ and obtain:

∂KL

∂p′
= log

[
p′

p′
· n

√
p1 · · · pn
p1 · · · pn

]
= log

[
p′

p′
· µg(p1, . . . , pn)

µg(p1, . . . , pn)

]
.

Setting this expression equal to zero, we obtain p′ = µp(p1, . . . , pn).

A.2 Theorem 2

Using eqs. (4) and (5), we minimize

KL =
1

n

(
DKL(P ′||P ) +

n−1∑
i=1

DKL(P ′||Pi)

)

=
1

n

(
(p′ log

p′

p
+ p′ log

p′

p
) +

n−1∑
i=1

(p′ log
p′

pi
+ p′ log

p′

pi
)

)
.

To do so, we differentiate KL by p′ and obtain

∂KL

∂p′
= log

[
p′

p′
· n

√
p p1 · · · pn−1
p p1 · · · pn−1

]
.
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Setting this expression equal to zero, we obtain

p′ =
n
√
p p1 · · · pn−1

n
√
p p1 · · · pn−1 + n

√
p p1 · · · pn−1

=
n
√
p1 · · · pn−1 · n

√
p

n
√
p1 · · · pn−1 · n

√
p+ n

√
p1 · · · pn−1 · n

√
p

=

n

√
p1···pn−1

p1···pn−1
· n
√
p

n

√
p1···pn−1

p1···pn−1
· n
√
p+ n
√
p

=

(
p1···pn−1

p1···pn−1

)1/n
· p1/n(

p1···pn−1

p1···pn−1

)1/n
· p1/n + p1/n

=
δ pγ

δ pγ + pγ
,

with

γ := 1/n , δ :=

(
p1 · · · pn−1
p1 · · · pn−1

)1/n

.

A.3 Proposition 1

First, we show that w(p) + w(p) < 1 iff δ < 1. This follows from the fact that the following

inequalities are equivalent for p ∈ (0, 1) and γ, δ > 0:

w(p) + w(p) < 1

δ pγ

δ pγ + pγ
+

δ pγ

δ pγ + pγ
< 1

δ pγ (δ pγ + pγ) + δ pγ (δ pγ + pγ) < (δ pγ + pγ)(δ pγ + pγ)

δ2 < 1

δ < 1

Next, we use the definition of δ and show that the following inequalities are equivalent for

p ∈ (0, 1):

δ < 1(
p1 · · · pn−1
p1 · · · pn−1

)1/n

< 1(
p1 · · · pn−1
p1 · · · pn−1

)1/(n−1)

< 1

µg(p1, . . . , pn−1)

µg(p1 · · · pn−1)
> 1

Finally, we note that

µp(p1, . . . , pn−1) =

(
1 +

µg(p1, . . . , pn−1)

µg(p1 · · · pn−1)

)−1
< 1/2.
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A.4 Proposition 2

The following equations are equivalent:

pc =
δ pγc

δ pγc + pγc
δ pγc pc = pc p

γ
c

δ pγc = pγc

δ =

(
pc
pc

)γ
.

From this we conclude that

pc =
δ1/γ

1 + δ1/γ

=
δn/(n−1)

1 + δn/(n−1)
(6)

=
n−1
√
p1 · · · pn−1

n−1
√
p1 · · · pn−1 + n−1

√
p1 · · · pn−1

=
µg(p1, . . . , pn−1)

µg(p1, . . . , pn−1) + µg(p1, . . . , pn−1)

= µp(p1, . . . , pn−1).

A.5 Proposition 3

From eq. (6) of the proof of Proposition 2, we obtain that the following inequalities are equivalent:

pc < 1/2

δn/(n−1)

1 + δn/(n−1)
< 1/2

δn/(n−1) < 1/2 + 1/2 δn/(n−1)

δn/(n−1) < 1

δ < 1
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