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Abstract The most striking observable feature of our indeterministic quantum uni-
verse is the wide range of time, place, and scale on which the deterministic laws of
classical physics hold to an excellent approximation. This essay describes how this
domain of classical predictability of every day experience emerges from a quantum
theory of the universe’s state and dynamics.
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1 Introduction

The most striking observable feature of our indeterministic quantum universe is the
wide range of time, place, and scale on which the deterministic laws of classical
physics hold to an excellent approximation. What is the origin of this predictable
quasiclassical realm in a quantum universe characterized by indeterminacy and dis-
tributed probabilities? This essay summarizes progress in answering this question
both old and new.

The regularities that characterize the quasiclassical realm are described by the
familiar classical equations for particles, bulk matter, and fields, together with the
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Einstein equation governing the regularities of classical spacetime geometry. Our ob-
servations of the universe suggest that this quasiclassical realm extends from a mo-
ment after the big bang to the far future and over the whole of the visible volume.
Were we to set out on a journey to arrive in the far future at a distant galaxy we would
count on the regularities of classical physics holding there much as they do here. The
quasiclassical realm is thus a feature of the universe independent of human cogni-
tion or decision. It is not a feature that we determine, but rather one already present
that we exploit as information gathering and utilizing systems (IGUSes) acting in the
universe.

So manifest is the quasiclassical realm that it is usually simply assumed in con-
structing effective physical theories that apply in the late universe. Classical space-
time for instance is the starting assumption for the standard model of the elementary
particle interactions. Classical spacetime obeying the Einstein equation is assumed in
cosmology to reconstruct the past history of our universe.

Even formulations of quantum mechanics assume some part of the universe’s qua-
siclassical realm. Copenhagen quantum theory assumed a separate classical physics
and quantum physics with a kind of movable boundary between them. Classical
physics was the realm of observers, apparatus, measurement outcomes, and space-
time geometry. Quantum physics was the realm of the particles and quantum fields
that were being measured. In the Everett formulations classical spacetime is usually
assumed in order to define the branching histories which are their characteristic fea-
ture.

Classical behavior is not exhibited by every closed quantum mechanical system,
only a small minority of them. For example, in the simple case of a non-relativistic
particle, an initial wave function in the form of a narrow wave packet may predict a
high probability for classical correlations in time between sufficiently coarse-grained
determinations of position at a sequence of times. But a generic wave function will
not predict high probabilities for such correlations. Classical behavior is manifested
only through certain sets of alternative coarse-grained histories and then only for
particular quantum states. In particular, we cannot expect the classical spacetime
that is the central feature of our quasiclassical realm to emerge from every state
in quantum gravity, although it must from the particular quantum state of our uni-
verse.

This essay summarizes progress in understanding the origin of our quasiclassical
realm from a fundamental quantum theory of the universe—a quantum cosmology.!
There are two inputs to this theory: First, there is the specification of the quantum dy-
namics (the Hamiltonian in the approximation of classical spacetime.) Second, there
is the particular quantum state of our universe. Superstring theory is a candidate for
the first input; Hawking’s no-boundary wave function of the universe [6] is a can-
didate for the second. An explanation of the quasiclassical realm from these inputs
consists roughly of exhibiting sets of suitably coarse-grained alternative histories of

IThis is not a review of the long history and many different approaches taken to classicality in quantum
theory. Rather it is mostly a brief summary of the author’s work, much of it with Murray Gell-Mann
(especially [1-3]) within decoherent (or consistent) histories quantum mechanics. The references should
be understood in this context. For another approach to classicality in the quantum mechanics of closed
systems see [4]. For a different kind of discussion with many references see [5].
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the universe that have high probabilities for patterns of correlations in time summa-
rized by closed systems of deterministic classical equations of motion.

The expansion of the universe together with the properties of the strong interac-
tions mean that nuclear densities (~10'> g/cm?) are the largest reached by ordinary
matter any time past the first second after the big bang. There are nearly 80 orders
of magnitude separating these densities from the Planck density (10°° g/cm?) char-
acterizing quantum gravity. This large separation in scale permits the division of the
explanation of the quasiclassical realm into two parts: first, the understanding of the
origin of classical spacetime in quantum cosmology, and, second, the origin of the
classical behavior of matter fields assuming classical spacetime.

This division into Planck scale physics and below corresponds to a division in
contemporary theoretical uncertainty. But, more importantly, it corresponds to a di-
vision in the nature of the explanation of the parts of the quasiclassical realm. As we
shall see, the classical behavior of matter follows mostly from the conservation laws
implied by the local symmetries of classical spacetime together with a few general
features of the effective theory of the elementary particle interactions (e.g. locality)
and the initial condition of the universe (e.g. low entropy). By contrast the emergence
of classical spacetime involves the specific theory of the universe’s quantum state
and a further generalization of quantum theory to deal with histories of spacetime
geometry.

These differences should not obscure the point that the explanation of the quasi-
classical realm is a unified problem in quantum cosmology. But because of them it
is convenient to explain the origin of the quasiclassical behavior of matter first and
return to the classical behavior of spacetime later.

This essay is structured as follows. In Sect. 2 we exhibit a standard text book
derivation of classical behavior largely as a foil to the kind of treatment that we
aim for. Section 3 sketches the elements of decoherent histories quantum theory. In
Sect. 4 we consider classicality in a familiar class of oscillator models. Section 5
sketches a general approach to classicality in terms of the approximately conserved
hydrodynamic variables. In Sect. 6 we briefly discuss the origin of the second law of
thermodynamics which is necessary for the understanding of the origin of the qua-
siclassical realm as well as being an important feature of it. Section 7 discusses the
origin of classical spacetime that is a prerequisite for a quasiclassical realm. Sec-
tion 8 asks why human observers focus on the quasiclassical realm. Section 9 con-
siders the Copenhagen approximation to decoherent histories quantum theory that is
appropriate for measurement situations. Open questions are mentioned in Sect. 10.
In Sect. 11 we return to the theme of the connection between fundamental physics
and the quasiclassical realm. For readers not familiar with it, an Appendix gives a
bare bones introduction to decoherent histories quantum theory in the notation that
we will use.

2 Classicality from the Ehrenfest Theorem
Standard derivations of classical behavior from the laws of quantum mechanics are

available in many quantum mechanics texts. One popular approach is based on Ehren-
fest’s theorem relating the acceleration of the expected value of a particle’s position
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to the expected value of the force:

d*(x) oV

(written here for one-dimensional motion). Ehrenfest’s theorem is true in general, but
for certain states—typically narrow wave packets—we may approximately replace
the expected value of the force with the force evaluated at the expected position,
thereby obtaining a classical equation of motion for that expected value:

2
md (x) =_3V((X)). 2.2)
dr? 0x

This equation shows that the center of a narrow wave packet moves on an orbit obey-
ing Newton’s laws. More precisely, if we make a succession of position and momen-
tum measurements that are crude enough not to disturb the approximation that allows
(2.1) to replace (2.2), then the expected values of the results will be correlated by
Newton’s deterministic law.

This kind of elementary derivation is inadequate for the type of classical behavior
that we hope to discuss in quantum cosmology for the following reasons:

e Limited to expected values: The behavior of expected values is not enough to define
classical behavior. In quantum mechanics, the statement that the Moon moves on
a classical orbit is properly the statement that, among a set of alternative coarse-
grained histories of its position as a function of time, the probability is high for
those exhibiting the correlations in time implied by Newton’s law of motion and
near zero for all others. To discuss classical behavior, therefore, we should be deal-
ing with the probabilities of sets of alternative time histories, not with expected or
average values.

e Deals only with measurements: The Ehrenfest theorem derivation deals with the
results of “measurements” on an isolated system with a few degrees of freedom.
However, in quantum cosmology we are interested in classical behavior over cos-
mological stretches of space and time, and over a wide range of subsystems, in-
dependently of whether these subsystems are receiving attention from observers.
Certainly our observations of the Moon’s orbit, or a bit of the universe’s expan-
sion, have little to do with the classical behavior of those systems. Further, we are
interested not just in classical behavior as exhibited in a few variables and at a few
times of our choosing, but over the bulk of the universe in as refined a description
as possible, so that classical behavior becomes a feature of the universe itself and
not a choice of observers.

e Assumes the classical equations follow from the fundamental action: The Ehrenfest
theorem derivation relies on a close connection between the equations of motion of
the fundamental action and the deterministic laws that govern classical behavior.
But when we speak of the classical behavior of the Moon, or of the cosmologi-
cal expansion, or even of water in a pipe, we are dealing with systems with many
degrees of freedom whose phenomenological classical equations of motion (e.g.
the Navier-Stokes equation) may be only distantly related to the underlying funda-
mental theory, say superstring theory. We need a derivation which derives the form
of the equations as well as the probabilities that they are satisfied.
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e Posits rather than derives the variables exhibiting classical behavior: The Ehren-
fest theorem derivation posits the variables—the position x—in which classical
behavior is exhibited. But, as mentioned above, classical behavior is most prop-
erly defined in terms of the probabilities of histories. In a closed system we should
be able to derive the variables that enter into the deterministic laws, especially
because, for systems with many degrees of freedom, these may be only distantly
related to the degrees of freedom entering the fundamental action.

o Assumes classical spacetime: The Ehrenfest derivation assumes classical space-
time if only to define the Schrédinger equation that underlies (2.1). But we aim
at explaining the universe’s quasiclassical realms from a quantum cosmology
founded on a unified theory of the fundamental interactions including gravity.
Generally spacetime geometry will vary quantum mechanically. Classical behavior
must therefore be explained not posited. Indeed, we do not expect to find classical
spacetime geometry at the big bang where its quantum fluctuations may be large.
Classical spacetime is part of a quasiclassical realm, not separate from it.

Despite these shortcomings, the elementary Ehrenfest analysis already exhibits
two necessary requirements for classical behavior: Some coarseness is needed in the
description of the system as well as some restriction on its initial condition. Not every
initial wave function permits the replacement of (2.1) by (2.2) and therefore leads to
classical behavior; only for a certain class of wave functions will this be true. Even
given such a suitable initial condition, if we follow the system too closely, say by
measuring position exactly, thereby producing a completely delocalized state, we will
invalidate the approximation that allows (2.2) to replace (2.1) and classical behavior
will not be expected. Some coarseness in the description of histories is therefore also
needed.

3 Decoherent Histories Quantum Mechanics

The conferences to which this article is a contribution marked 50 years of Everett’s
formulation of quantum theory. But they were only a year away from marking
25 years of decoherent (or consistent) histories quantum theory that can be viewed
as extension and to some extent a completion of Everett’s work (e.g. [7-9]). Today,
decoherent histories is the a formulation of quantum theory that is logically con-
sistent, consistent with experiment as far as is known, consistent with the rest of
modern physics such as special relativity and field theory, general enough for histo-
ries, general enough for cosmology, and generalizable for quantum gravity. It may
not be the only formulation with these properties but it is the only such we have at
present. Quasiclassical realms are defined through the probabilities of histories of
the universe. Decoherent histories quantum theory is the framework for computing
them.

The basics of decoherent histories quantum mechanics in a classical background
spacetime are reviewed briefly in the Appendix.” We recap the essential ingredients

2Alternatively see [10] for a tutorial in the present notation.
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here: For simplicity we consider a model cosmology consisting of a closed system of
particles and fields in a very large box. The basic theoretical inputs are a Hamiltonian
H specifying quantum dynamics in the box and a density matrix p specifying the
box’s initial quantum state. Coarse-grained histories are represented by class opera-
tors Cy . In an operator formulation these are chains of Heisenberg picture projections
at a series of times formed with the aid of H [cf. (A.3)]. In a path integral formulation
they can be bundles of Feynman paths g’ (¢) in configuration space.

Probabilities are properties of exhaustive sets of exclusive histories {Cy}, @@ =
1,2,3,.... Decoherence is a sufficient condition for their probabilities { p(«)} to sat-
isfy the usual rules of probability theory. The central relation defining both decoher-
ence and probability is

D(a, @) = Tr(CopCl) = 8ura p(@). 3.1)

The first equality defines the decoherence functional. The second defines decoherence
and the probabilities that are predicted from H and p. A decoherent set of alternative
coarse-grained histories is called a realm for short.>

In a path integral formulation, sets of alternative coarse-grained histories can be
defined by partitioning fine-grained configuration space paths ¢ (¢) into exhaustive
sets of exclusive classes {cy}. A useful transcription of the decoherence functional
(3.1) for such coarse-grained histories on a time interval [0, T'] is

D)= [ 84’ [ dasta) — e OO o (gh gy, (32
Cyf Ca

Here, the integrals are over fine-grained paths ¢’ () lying in the classes ¢, and cq,
S[g ()] is the action corresponding to the Hamiltonian H, and p(qy), qo) is the con-
figuration space representative of the initial density matrix p.

4 Oscillator Models

The oscillator models pioneered in [11-13] and [2] and developed by many others
provide an explicitly computable setting for understanding aspects of classicality.
The following assumptions define the simplest model.

e We consider a single distinguished oscillator of mass M, frequency wg, and
coordinate x interacting with a bath of other oscillators with coordinates QA,
A=1,2,.... The coordinates ¢’ in (3.2) are then ¢' = (x, Q4).

e We suppose the action to be the sum of an action for the x, an action for the Q’s,
and an interaction that is a linear coupling between them. That is, we assume the
action has the form.

S[g(1)] = Stree[x (D) + S0l Q(D)] + Sine[x (), Q(D)]. 4.1

3There will generally be families of realms defined by closely related coarse grainings that exhibit classical
behavior. Realms employing slightly different intervals for defining coarse-grained position are a simple
example. Thus it would be more accurate to refer to the quasiclassical realms exhibited by the universe
rather than the quasiclassical realm and we shall do so from now on.
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More specifically, the associated Hamiltonians are
— l -2 2.2
Hiree = B (Mx~ + MCU()X ), 4.2)
a similar form with different masses and frequencies for Hy, and

Hp=x) ga0" 43)
A

for some coupling constants g4.

e We suppose the initial density matrix p factors into a product of one depending on
the x’s and another depending on the Q’s which are often called the “bath” or the
“environment”, viz:

0 (g4, q0) = (x4, X0) pB(Qp, Q0)- 4.4)

We assume that the bath oscillators are in a thermal state pp characterized by a
temperature Tp.

e We restrict attention to a simple set of alternative coarse-grained histories that fol-
low the coordinate x of the distinguished oscillator while ignoring the coordinates
QA of the bath. The histories of the distinguished oscillator are specified by giving
an exhaustive set of exclusive intervals of x at each of a series of times #1, t2, ..., ;.
A coarse-grained history ¢, is the bundle of paths x (¢) passing through a particular
sequence of intervals o = (o1, a2, ..., o) at the series of times #1, 12, ..., t,. For
simplicity we take all the intervals to be of equal size A and the times to be equally
separated by At.

Since the bath oscillators are unconstrained by the coarse graining, the integral
over the Q’s in (3.2) can be carried out to give a decoherence functional just for
coarse-grained histories of the x’s of the form:

D(ot’,oz):/ Bx’/ 8x8(x}—xf)
Col Ca

x exp{i (Sfree[x/(f)] — Stree[x(T)] + W[x/(":)’ x(t)])/h}ﬁ(x(/), X0),
4.5)

where W[x'(t), x(1)], called the Feynman-Vernon influence phase, summarizes the
results of integrations over the Q’s.

In the especially simple case of a cut-off continuum of bath oscillators and high
bath temperature the imaginary part of the influence phase is given by [12]:

2MykTg

ImW[x'(7), x(1)] = P

T
/ di (x(6) = x (1)), 4.6)
0
where y is a measure of the strength of its coupling to the bath related to the gy
in (4.3). ImW becomes substantial when x'(7) and x(t) are very different and the

time difference Ar is long enough. Then the off-diagonal elements of D(«’, &) are
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exponentially suppressed meaning that the set of alternative histories approximately
decoheres [cf. (3.1)]. Roughly, the coarse-graining time required is

hZ

L — 4.7
2MykTp A2 @7

At z Idecoh =

The time t4econ i called the decoherence time [14]. This is typically very much
shorter than typical dynamical time scales, for instance 1/y.

The diagonal elements of the decoherence functional (4.5) are the probabilities
p(a) of the individual histories in the set (cf. (3.1)). With a little work these can be
expressed in the following form [2]:

=/ ar (22 " Ve 4.8
p(w)—/cu X(-~~)eXp[—/ I<E><m) (x (1)) }w(xo,po), (4.8)

the dots denoting factors irrelevant for the subsequent argument. Here w(xg, po) is
the Wigner distribution for the density matrix of the distinguished particle p [cf. (4.4)]
and E is

E(x(1)) =X + w’x +2yx, (4.9)

where w is the frequency of the x-oscillator @y renormalized by its interaction with
the bath. Equation (4.8) has been organized to show that the factor in front of the
imaginary part of the influence phase (4.6) appears inversely in the exponent of this
relation.

E =0 is the classical equation of motion for the distinguished oscillator. This
includes a frictional force arising from the interaction of the particle with the bath.
When the coefficient in front of E? in (4.8) is large, the probabilities for histories
p(a) will peak about histories that satisfy the classical equations of motion. Thus
classical behavior of the distinguished oscillator is predicted. The width of the distri-
bution is a measure of thermal and quantum noise causing deviations from classical
predictability.

In this simple case, an analysis of the requirements for classical behavior is
straightforward. Equation (4.6) shows that high values of MykTp/h are needed to
achieve decoherence. Put differently, a strong coupling between the distinguished os-
cillator and the bath is required if interference phases are to be dissipated efficiently
into the bath. However, the larger this coupling is, the smaller the coefficient in the
exponent of (4.8) is, decreasing the size of the exponential and increasing deviations
from classical predictability. This is reasonable: the stronger the coupling to the bath
the more noise is produced by the interactions that are carrying away the phases. To
counteract that, and achieve a sharp peaking about the classical equation of motion,
M?/4h must be large. That is, high inertia is needed to resist the noise that arises
from the interactions with the bath.

Thus, much more coarse graining is needed to ensure classical predictability than
naive arguments based on the uncertainty principle would suggest. Coarse graining is
needed to effect decoherence, and coarse graining beyond that to achieve the inertia
necessary to resist the noise that the mechanisms of decoherence produce.
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Table 1

Deficiencies of the Ehrenfest Derivation
Limited to expected values, but classicality is defined through histories.
Deals only with measurements on isolated subsystems with a few degrees of freedom.
Assumes the classical equations follow directly from the fundamental action.

Posits rather than derives the variables which exhibit classical behavior.

X X X & &

Assumes classical spacetime.

This derivation of classicality deals genuinely with histories, and is not restricted
to measurements. But there is still a close connection between the classical equations
and the fundamental action. The variable x which behaves classically was posited,
not derived, and classical spacetime was assumed. The progress in relation to the
Ehrenfest derviation is summarized in Table 1.

5 Quasiclassical Coarse-Grainings, Local Equilibrium, and Hydrodynamic
Equations

Isolated systems evolve toward equilibrium; that is a consequence of statistics. But
conserved or approximately conserved quantities approach equilibrium more slowly
than others. These include conserved quantities like energy and momentum that arise
from the local symmetries of classical spacetime together with conserved charges
and numbers arising from the effective theory of the particle interactions. A situa-
tion of local equilibrium will generally be reached before complete equilibrium is
established, if it ever is. This local equilibrium is characterized by the values of con-
served quantities averaged over small volumes. Even for systems of modest size, time
scales for small volumes to relax to local equilibrium can be very, very much shorter
than the time scale for reaching complete equilibrium. Once local equilibrium is es-
tablished, the subsequent evolution of the approximately conserved quantities can
be described by closed sets of effective classical equations of motion such as the
Navier-Stokes equation. The local equilibrium determines the values of the phenom-
enological quantities such as pressure and viscosity that enter into these equations
and the constitutive relations among them.

That in a nutshell is the explanation of the quasiclassical realms of matter given
classical spacetime. It both identifies the variables in which the quasiclassical realms
are defined and the mechanism by which they obey closed sets of equations of motion.
To make this more concrete we will review very briefly the standard derivation (e.g.
[15, 16]) of these equations of motion in a simple model. We follow [3] where more
detail can be found. In [17, 18] Jonathan Halliwell explains why sets of sufficiently
coarse-grained histories of these variables decohere and lead to high probabilities for
correlations in time summarized by the same equations of motion.

Consider a system of conserved particles inside a non-rotating box interacting by
local short range potentials. Let the density matrix p—possibly pure—describe the
state of the system. Divide the box up into equal volumes of size V labeled by a dis-
crete index y. Let T*#(X, r) be the stress-energy-momentum operator in the Heisen-
berg picture. The energy density € (¥, 1) and momentum density 77/ (x, ) are T" (X, 1)
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and T' (X, 1) respectively. Let v(X,t) denote the number density of the conserved
particles. Then define

- 1 -
ev(y, 1) = —/d3xe(x,t), (5.1a)
vV Js
1
Ty (3, 1) = —/d3xﬁ(55,t), (5.1b)
Vs
- 1 -
vy, 1) = —/d3xv(x,t), (5.1¢)
vV Js

where in each case the integral is over the volume labeled by y. These are the quasi-
classical variables for our model. We note that the densities in (5.1) are the variables
for a classical hydrodynamic description of this system—for example, the variables
of the Navier-Stokes equation.

Were the system in complete equilibrium the expected values of the quasiclassical
variables defined from the density matrix p could be accurately computed from the
effective density matrix

feq=Z"exp[—B(H — U - P — uN)]. (5.2)

Here, H, 13, and N are the operators for total energy, total momentum, and total
conserved number inside the box—all extensive quantities. The c-number intensive
quantities 8, U, and p are respectively the inverse temperature (in units where Boltz-
mann’s constant is 1), the velocity of the box, and the chemical potential. A nor-
malizing factor Z ensures Tr(0eq) = 1. In equilibrium the expected values are, for
instance,

(ev(y, D) =Tr(ev (3, 1)p) = Tr(ev (¥, 1) feq)- (5.3)

Indeed, this relation and similar ones for 7y (X, t) and vy (X, t) define equilibrium.

Local equilibrium is achieved when the decoherence functional for sets of histories
of quasiclassical variables (¢, 77, n) is given approximately by the local version of the
equilibrium density matrix (5.2)

Pleg=2" eXP[—/d3yl3(§, Dy, 0 —u@y, 0 -7y, 1) —puQ, Doy, t))]-
(5.4)

(The sum over y has been approximated by an integral.) Expected values are given
by (5.3) with peq replaced by pleq. The expected values of quasiclassical quantities
are thus functions of the intensive c-number quantities 8(y, t), #(y, t), and (¥, 1).
These are the local inverse temperature, velocity, and chemical potential respectively.
They now vary with time and place as the system evolves toward complete equilib-
rium.

A closed set of deterministic equations of motion for the expected values of
e(X,t), m(x,t), and v(X,t) follows from assuming that Pleq 18 an effective density
matrix for computing them. To see this, begin with the Heisenberg equations for the
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conservation of the stress-energy-momentum operator 7%# (X, ) and the number cur-
rent operator j% (X, t).
TP aj
_— O’ _—
oxB dxe
Noting that € (X, 1) = T" (¥, ) and 7/ (X, t) = T (X, 1), Eqs. (5.5) can be written in
a 3 + 1 form and their expected values taken. The result is the set of five equations

(5.5)

a(mt) (Tl

o ox) (5.62)
d(e) _ 3 a
S ==V, (5.6b)
B o -

The expected values are all functions of X and ¢.

The set of equations (5.6) close for the following reason: (5.3) with fjeq could in
principle be inverted to express (¥, 1), u(¥, 1), u(y,t), and therefore pieq itself, in
terms of the expected values (5.1). Thus the expected values on the right hand side of
(5.6) become functionals of the quasiclassical variables on the left hand side and the
equations close.

The process of expression and inversion sketched above could be difficult to carry
out in practice. The familiar classical equations of motion arise from further approxi-
mations, in particular from assuming that the gradients of all quantities are small. For
example, for a non-relativistic fluid of particles of mass m, the most general Galilean-
invariant form of the stress tensor that is linear in the gradients of the fluid velocity
1 (x)has the approximate form [19]

(TVy = p8 + mvu'u’ — ou aij—%&(%.ﬁ)
=P 7 axi  axi 3V
—£8ij(V - ih). (5.7)

The pressure p and coefficients of viscosity 1 and ¢ are themselves functions say of
the expected values (5.1). This form of the stress tensor in (5.6a) leads to the Navier-
Stokes equation.

What determines the volume V defining the coarse-grained variables of the quasi-
classical realms? The volume V must be large enough the ensure the decoherence of
histories constructed from these quasiclassical variables, and beyond that to ensure
classical predictability in the face of the noise that typical mechanisms of decoher-
ence produce. The volumes must be small enough to allow local equilibrium. Roughly
speaking the volume V should be chosen as small as possible consistent with these
requirements. That is, it should be chosen so the quasiclassical realms are maximally
refined consistent with decoherence and predictability. Then they are a feature of our
universe and not a matter of our choice.

We have now removed two more of the deficiencies of the Ehrenfest derivation as
shown in Table 2.
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Table 2

Deficiencies of the Ehrenfest Derivation
Limited to expected values, but classicality is defined through histories.
Deals only with measurements on isolated subsystems with a few degrees of freedom.
Assumes the classical equations follow directly from the fundamental action.

Posits rather than derives the variables which exhibit classical behavior.

N N NN

Assumes classical spacetime.

There remains the origin of classical spacetime to which we turn after a brief discus-
sion of the second law of thermodynamics.

6 The Second Law of Thermodynamics

The quasiclassical realms of our universe exhibits two important thermodynamic fea-
tures that are not directly connected to classical determinism:

e The tendency of a total entropy of the universe to increase.

e The tendency of this entropy for nearly isolated subsystems to increase in the same
direction of time. This may be called the homogeneity of the thermodynamic arrow
of time.

These two features are connected. The first follows from the second, but only in
the late universe when nearly isolated subsystems are actually present. In the early
universe we have only the first. Together they may be called the second law of ther-
modynamics.

Thermodynamics, including the second law, is an essential part of classical
physics, and, indeed, a prerequisite for it. In the previous section, for example, we
assumed the second law when we posited the rapid approach to local equilibrium
necessary to derive a closed system of deterministic equations from the conservation
relations.

Entropy is generally a measure of the information missing from a coarse-grained
description of a physical system. In the case of the quasiclassical variables (5.1) we
can define it at a given time as the maximum of the information measure —7r(p log p)
over density matrices p that preserve the expected values of the quasiclassical vari-
ables at that time. More specifically, if p is the state of the system, we take

S(t) = max[—Tr(plog p)], (6.1)
p

keeping fixed for each y

(ev(y, 1) =Tr(ev (3, 1)p) = Tr(ev (V, 1) peq), (6.2)

together with the similar relations for 7y (y,1) and vy (¥, t). The result is the local
equilibrium density matrix (5.4).

The entropy defined this way is the usual entropy of chemistry, physics, and sta-
tistical mechanics. The coarse-graining in terms of local conserved quantities that
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exhibits the determinism of the quasiclassical realms thus also defines the entropy for
its thermodynamics.

A special initial quantum state is needed to predict with high probability the clas-
sical spacetime whose symmetries are the origin of the conservation laws behind
classical determinism. But further conditions on the state are needed for the universe
to exhibit the thermodynamic features mentioned above. First, the general increase in
total entropy requires that:

e The quantum state is such that the initial entropy is near the minimum it could have
for the coarse graining defining it. It then has essentially nowhere to go but up.

e The relaxation time to equilibrium is long compared to the present age of the uni-
verse so that the general tendency of its entropy to increase will dominate its evo-
lution.

In our simple model cosmology we have neglected gravitation for simplicity, but to
understand the origin of the second law it is necessary to consider it. That is because
gravity is essential to realizing the first of the conditions above. In a self-gravitating
system gravitational clumping increases entropy. The matter in the early universe is
not clumped and nearly in thermal equilibrium—already at maximal entropy. But
the spacetime in the early universe is approximately homogeneous, implying that the
entropy has much more room to increase through the gravitational growth of fluctu-
ations. In a loose sense, as far as gravity is concerned, the entropy of the early uni-
verse is low for the coarse graining defined by quasiclassical variables. The entropy
then increases. The no-boundary quantum state in particular implies that gravitational
fluctuations are small in the early universe [20, 21] giving entropy room to grow.

Coarse graining by approximately conserved quasiclassical variables helps with
the second of the two conditions above. Small volumes come to local equilibrium
quickly. But the approximate conservation ensures that the whole system will ap-
proach equilibrium slowly, whether or not such equilibrium is actually attained.

The homogeneity of the thermodynamic arrow of time, which was the other aspect
of the second law mentioned at the beginning of this section, cannot follow from the
approximately time-reversible dynamics and statistics alone. Rather the explanation
is that the progenitors of today’s nearly isolated systems were all far from equilibrium
a long time ago and have been running down hill ever since. As Boltzmann put it over
a century ago: “The second law of thermodynamics can be proved from the [time-
reversible] mechanical theory, if one assumes that the present state of the universe. . .
started to evolve from an improbable [i.e. special] state” [22]. There is thus a stronger
constraint on the initial state than merely having low total entropy. It must be locally
low.

The initial quantum state of our universe must be such that it leads to the de-
coherence of sets of quasiclassical histories that describe coarse-grained spacetime
geometry and matter fields. Our observations require this now, and the successes of
the classical history of the universe suggests that there was a quasiclassical realm at
a very early time. In addition, the initial state must be such that the entropy of qua-
siclassical coarse graining is low in the beginning and also be such that the entropy
of presently isolated systems was also low then. Then the universe can exhibit both
aspects of the second law of thermodynamics.
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The quasiclassical coarse grainings are therefore distinguished from others, not
only because they exhibit predictable regularities of the universe governed by approx-
imate deterministic equations of motion, but also because they are characterized by a
sufficiently low entropy in the beginning and a slow evolution towards equilibrium—
two properties which make those regularities exploitable.

7 The Origin of Classical Spacetime

The classical behavior of matter in a given background spacetime depends only
weakly on the matter’s fundamental quantum physics. The forms of the dynamical
equations (5.6) follow largely from conservation laws and the conditions on the in-
teractions necessary for local equilibrium. In a sense, the quasiclassical realms shield
us from quantum physics—a happy circumstance that was of great importance his-
torically.

By contrast the origin of classical spacetime is strongly dependent on the physics
of quantum gravity and the theory of the initial quantum state of the universe. That
is both the attraction of the issue and its difficulty. It is impossible to say much about
this in the space made available for this paper. That not least because the quantum
theory sketched in Sect. 3 must be generalized further to deal with quantum spacetime
(see, e.g. [23, 24]). The discussion in Sects. 3-5 relied on a fixed notion of time to
describe histories—a notion which is not available when spacetime itself is a quantum
variable. The following heuristic discussion may however give some sense of the
issues involved.

Let’s first recall one way in which quantum mechanics predicts classical behavior
for the motion of a non-relativistic particle. Consider a particle of mass m moving
in one dimension x in a potential V(x). Wave functions ¥ (x) describe its states.
Consider wave functions that are well approximated in the semiclassical (WKB) form

Y(x) ~ A(x)expliS(x)/h], (7.1

where S(x)/h varies rapidly with x and A(x) varies slowly. Such states predict clas-
sical behavior for the particle. Specifically they imply that, in a set of alternative his-
tories suitably coarse-grained in x at a series of times, the probabilities are high for
correlations in time summarized by the classical equation of motion for the particle
(e.g. [25]).

A wave function satisfying (7.1) also predicts probabilities for which classical
histories satisfy the equation of motion. That is, it predicts probabilities for the initial
conditions to the dynamical equations. Consider histories that pass through a position
x at the time the wave function is specified. Non-zero probabilities are predicted only
for the history with momentum p given by

™ _ _ys 72
p=mS ==V5w) (12)

and the probability (density) for this history is |A(x)|2. Thus, a wave function of
semiclassical form (7.1) predicts the probabilities of an ensemble of classical histories
labeled by their initial x.
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An analogous discussion of the origin of classical spacetime can be given in quan-
tum cosmology (e.g. [23, 25]). In quantum gravity the metric on spacetime will fluc-
tuate quantum mechanically and generally not behave classically. Consider a simple
model in which the quantum metrics are restricted to be homogeneous, isotropic,
and spatially closed. As a model of the matter assume a single homogeneous scalar
field ¢ ().

Spacetime geometry in these models is described by metrics of the form

ds? = —dt* + a*(1)d 3, (7.3)

where d Q% is the metric on the unit, round, three-sphere. The scale factor a(t) de-
termines how the size of the spatial geometry varies in time. Closed Friedmann-
Robertson-Walker cosmological models describing the expansion of the universe
from a big bang have metrics of this form with a scale factor a(¢) satisfying the
Einstein equation. In quantum mechanics a(¢) could have any form. Classical behav-
ior of these minisuperspace models means high probability for coarse-grained a(¢)’s
obeying the Einstein equation.

A wave function of the universe in this model is a function ¥ (a, ¢) of the scale
factor and homogeneous scalar field. Suppose that the wave function in some region
of (a, ¢) space is well approximated by the semiclassical form

V(a,d) ~ A(a, ¢p)expliS(a. ¢)/hl, (1.4)

where S(a, ¢)/h is rapidly varying and A(a, ¢) is slowly varying. Then, from the
analogy with non-relativistic quantum mechanics, we expect* the wave function to
predict an ensemble of classical spacetimes with initial data related by the analog of
(7.2) and probabilities related to |A(a, ¢) |2.

If our universe is a quantum mechanical system, it has a quantum state. A theory of
that state is a necessary part of any ‘final theory’ and the goal of quantum cosmology.
Hawking’s no-boundary wave function of the universe [6] is a leading candidate for
this theory. In the context of the simple model the no-boundary wave function is
specified by the following functional integral:

Va,¢) = /c,5a’5¢/exp(—1[a/(f), @' (D1/h). (1.5)

Here, the path integration is over histories a’(t) and ¢’ (t) of the scale factor and mat-
ter field and I[a’(t), ¢’ ()] is their Euclidean action. The sum is over cosmological
geometries that are regular on a manifold with only one boundary at which a’(t) and
¢’ (1) take the values a and ¢. The integration is carried out along a suitable complex
contour C which ensures the convergence of (7.5) and the reality of the result.

Does the no-boundary quantum state predict classical spacetime for the universe
and if so what classical spacetimes does it predict? The answer to the first part of
the question is ‘yes’. In certain regions of (a, ¢) space the defining path integral in

4See, e. g. [23, 25] for a framework in which these expectations are partially borne out.
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Table 3

Deficiencies of the Ehrenfest Derivation
Limited to expected values, but classicality is defined through histories.
Deals only with measurements on isolated subsystems with a few degrees of freedom.
Assumes the classical equations follow directly from the fundamental action.

Posits rather than derives the variables which exhibit classical behavior.

AN N NS

Assumes classical spacetime.

(7.5) can be carried out by the method of steepest descents. The dominent contri-
butions come from the complex extrema of the Euclidean action. The leading order
approximation of one extremum is

V(a,¢) ~exp{[—Ir(a,¢) +iS(a, ¢)]1/h} (7.6)

where Ig(a, ¢) and —S(a, ¢) are the real and imaginary parts of the Euclidean action
evaluated at the extemizing path.

When S(a, ¢)/h varies rapidly and Iz (a, ¢)h varies slowly this is a wave func-
tion of the universe of semiclassical form (7.4). An ensemble of classical spacetimes
is predicted with different probabilities. The probabilities will be different for such
things as whether the universe bounces at a minimum radius or has an initial singu-
larity, how much matter it has, and the duration of an inflationary epoch. These are
important issues for cosmology (e.g. [26, 27]). But a quasiclassical realm of matter
depends only on the local symmetries of a classical spacetime from the arguments
of the preceding three sections. Each classical spacetime with any matter at all will
therefore exhibit quasiclassical realms.

Our list of tasks now stands as in Table 3.

8 Why We Focus on Quasiclassical Variables

A quantum universe exhibits many different decoherent sets of alternative coarse-
grained histories—many different realms. Two realms are compatible if each one
can be fine-grained to yield the same realm. But there are also mutually incompati-
ble realms for which there is no finer-grained realm of which they are both coarse-
grainings [1, 3]. Quantum mechanics by itself does not prefer any one of these realms
over the others. Why then do we as human IGUSes focus almost exclusively on qua-
siclassical realms?

Questions of the form ‘Why do we ...?" can be answered within quantum the-
ory by understanding human IGUSes as particular kinds of physical systems in the
universe. As human IGUSes, both individually and collectively, we are described in
terms of quasiclassical variables. We are therefore not separate from the universe’s
quasiclassical realms but rather phenomena exhibited by them.’ ‘Why do we...?’

5 Are there realms qualitatively different from the quasiclassical ones that exhibit IGUSes? At present we
lack a general enough conception of IGUS to formulate this question precisely much less answer it.
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questions can therefore only be formulated in terms of the probabilities of the uni-
verse’s quasiclassical realms and our description within them.

The elementary answer to the question of why we focus on quasiclassical vari-
ables is that we are physical systems described by quasiclassical variables that pos-
sess senses that are adapted to perceive quasiclassical variables. The predictable reg-
ularities of the quasiclassical realms suggests why it is adaptive to have senses that
register quasiclassical variables. But collectively we have also evolved to understand
and use quantum mechanics. This has also proved adaptive at least in the short run.®

Could the quasiclassical realms of this universe contain quasiclassically described
IGUSes elsewhere whose senses register variables substantially different from the
ones we use, even non-quasiclassical ones? To answer it would be necessary to cal-
culate the probabilities of alternative evolutionary histories of such quasiclassically
described IGUSes. It is well beyond our power at present to even formulate such
a calculation precisely much less carry it out. If we ever encounter extra-terrestrial
IGUSes this question may be settled experimentally.

Questions concerning human IGUSes in decoherent histories quantum theory are
both fascinating and difficult. But we should emphasize that answers are not required
to understand, utilize, or test the theory for other purposes. That is because IGUSes,
including human beings, occupy no special place and play no preferred role this for-
mulation of quantum theory. Rather, they are but one of the many complex systems
that can be described within it.

9 The Copenhagen Approximation

Copenhagen quantum mechanics can be seen as an approximation to decoherent his-
tories quantum theory that is appropriate for situations in which a series of measure-
ments is carried out by an apparatus on an otherwise isolated subsystem.

In Copenhagen quantum mechanics, the isolated subsystem is described quantum
mechanically. But the apparatus is described by the separate classical physics posited
by the theory. The probabilities for the outcomes of a series of “ideal” measurements
is given by unitary evolution of the subsystem’s state interrupted at the time of mea-
surements by projections onto the values of the outcomes—the infamous reduction
of the wave packet.

In decoherent histories, apparatus and subsystem are separate parts of one closed
system (most generally the universe). In a measurement, a variable of the subsystem,
perhaps not quasiclassical and perhaps not otherwise decohering, becomes correlated
with a quasiclassical variable of an apparatus. Histories of the measured variable de-
cohere because of this correlation with the decohering histories of the quasiclassical
realm.

The Copenhagen prescription for the probability of a series of measurement out-
comes can be derived from the probabilities of decoherent histories quantum theory

6Some estimate that a large percentage of the US GDP can be attributed to our understanding of quantum
theory. Our understanding of nuclear fission may prove to be less adaptive.
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by modeling the measurement situations to which it applies (e.g. [28]). Idealized mea-
surement models have a long history in quantum theory (e.g. [29]). A typical model
assumes a closed system—a model universe—consisting of an apparatus, a subsys-
tem which it measures, and perhaps other degrees of freedom. The Hilbert space is
idealized as a tensor produce Hy; ® H, with the factor H; for the subsystem and
the factor H, for the rest including the apparatus. The subsystem is measured by the
apparatus at a series of times #1, f, ..., t, and it otherwise isolated from the rest of
the universe. The initial state is assumed to factor into a pure state |) in H, and a
density matrix for the rest.

The measurement interaction is idealized to (i) occur at definite moments of time,
(ii) create a perfect correlation between the measured alternatives of the subsystem
and the registrations of the apparatus—the former represented by sets of projections
{so(#)} in H, and the latter by projections {Ry ()} in H,, and (iii) disturb the sub-
system as little as possible (an ideal measurement). Under these assumptions the
probability of the sequence of registrations can be shown [28] to be given by

P@usevar) = sl (1) -8, ()12, ©.1)

The argument of the square in (9.1) can be thought of as a state of the subsystem
which evolved from the initial |¢) by unitary evolution (constant state in the Heisen-
berg picture) interrupted by the action of projections at the times of measurements
(state reduction). This is the usual Copenhagen story.

Equation (9.1) is a huge and essential simplification when compared to the ba-
sic relation (3.1). Decoherence has been assumed rather than calculated. More im-
portantly, (9.1) refers to a Hilbert space which may involve only a few degrees of
freedom whereas (3.1) involves all the degrees of freedom in the universe.

Assumptions (i)—(ii) may hold approximately for many realistic measurement sit-
uations. But assumption (iii)—the projection postulate or second law of evolution—
does not hold for most.” But it is in this way that Copenhagen quantum mechanics
is recovered from the more general decoherent histories quantum mechanics once
one has a quasiclassical realm. It is not recovered generally but only for idealized
measurement situations. It is not recovered exactly but only to an approximation cal-
culable from the more general theory—an approximation which is truly excellent for
many realistic measurement situations [28]. The separate classical physics posited
by Copenhagen quantum theory is an approximation to the quasiclassical realms.
Copenhagen quantum mechanics is thus not an alternative to decoherent histories,
but rather contained within it as an approximation appropriate for idealized mea-
surement situations.

The founders of quantum mechanics were correct that something besides the wave
function and Schrodinger equation were needed to understand the theory. But it is
not a posited classical world to which quantum mechanics does not apply. Rather, it
is the quantum state of the universe together with the theory of quantum dynamics
that explains the origin of quasiclassical realms within the more general quantum
mechanics of closed systems.

TThe idea that the two forms of evolution of the Copenhagen approximation are some kind of problem for
quantum theory seems misplaced from the perspective of the quantum mechanics of closed systems which
has no such division.
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10 Summary and Open Questions

We now have a complete sketch of a explanation of the quasiclassical realms in our
quantum universe in the context of today’s fundamental physics. Our discussion has
been top-down—proceeding from the classical world to the quantum—starting in to-
day’s universe and working backward to the beginning. To summarize we recapitulate
these developments from the bottom up.

e The particular quantum state of our universe implies the classical behavior of
spacetime geometry coarse-grained on scales well above the Planck scale. Further,
it predicts the homogeneity of this spacetime on cosmological scales that implies
a low total entropy leading to the second law of thermodynamics.

e Local Lorentz symmetries of classical spacetime imply conservation of energy and
momentum. The effective theory of the matter interactions implies the approximate
conservation of various charges and numbers at various stages in the evolution of
the universe.

e Quasiclassical variables specified by ranges of values of the averages of densities of
conserved or approximately conserved quantities over small volumes are definable.
Sets of alternative histories of these variables decohere and define quasiclassical
realms.

e When the volumes are suitably large, the approximate conservation of the quasi-
classical variables ensure that they evolve predictably despite the noise that typical
mechanisms of decoherence produce.

e When the volumes are suitably small their contents approach local equilibrium
on time scales short compared to those on which the quasiclassical variables are
changing.

e Local equilibrium implies that the evolution of the quasiclassical variables obeys a
closed, deterministic set of equations of motion incorporating constitutive relations
determined by local equilibrium.

The chain above gives a broad outline of how the quasiclassical realms of our
universe emerge from its fundamental quantum physics and particular quantum state.
However, touch this chain where you will and there are issues that remain to make
it more realistic, more general, more complete, more precise, and more quantitative.
The following is a short and selective list of outstanding problems:

Decoherence of Classical Spacetime: Our understanding of the emergence of clas-
sical spacetime from particular states in quantum gravity is more primitive than our
understanding of the emergence of the classical behavior of matter given a fixed
spacetime. Even a cursory comparison of Sect. 7 with Sect. 5 reveals this. Partly
this is because we lack a complete and manageable quantum theory of gravity. But
even in the low energy effective theory of gravity based on general relativity we do
not have precise notions of the diffeomorphism invariant coarse grainings® that de-
fine the classical behavior of geometry in every day situations above the Planck scale.

8Deﬁning diffeomorphism invariant coarse grainings of matter fields in quantum spacetime is itself an
issue, see. e.g. [30].
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And, perforce, we have an inadequate understanding of the mechanisms effecting
their decoherence.

More Realistic Models: The model universe of a static box of particles interacting
by short range potentials that was discussed all too briefly in Sect. 5 is highly sim-
plified. Models are needed which incorporate at least the following features of the
realistic universe.

e Cosmology: The expansion of the universe, gravitational clumping, possible eter-
nal inflation, the decay of the proton, the formation and evaporation of black holes.

e Degrees of Freedom: The relativistic quantum fields that are the basic variables of
today’s effective field theories.

e Coarse-graining: Branch dependent® coarse-grainings that express narratives di-
rectly in terms of realistic hydrodynamic variables.

e Maximal Refinement: Maximal refinement of coarse-graining’s consistent with de-
coherence and classicality so that the quasiclassical realms are a feature of the
universe and not a matter of human choice as discussed at the end of Sect. 5.

e [nitial States: Initial states that arise from theories of the quantum state of the
universe and not from ad hoc assumptions about an environment as in (4.4).

Comparing Different Realms: As mentioned in Sect. 8, a quantum universe can
be described by many decohering sets of alternative coarse-grained histories—many
realms. The quasiclassical realms are distinguished by a high level of classical pre-
dictability and a low initial entropy among other properties. Intuitively they provide
the simplest description of the general regularities of the universe that are readily ex-
ploitable by IGUSes of the kinds we know about. A genuine comparison of the qua-
siclassical realms with others the universe exhibits would require quantitative mea-
sures on realms of simplicity, predictability, classicality, etc. Various approaches to
such measures have been explored [31] but no complete satisfactory result has yet
emerged.

Thus while we have gone far beyond the Ehrenfest derivation, there is still a long
way to go!

11 Quasiclassical Realms and Fundamental Physics

From the present theoretical perspective, a final theory consists of two parts: (1) a dy-
namical theory specifying quantum evolution (the Hamiltonian in simple models),
and (2) a theory of the universe’s quantum state. Without both there are no predic-
tions of any kind. With both, probabilities for the members of every decoherent set of
alternative histories of the universe are in principle predicted.

Today the search for a final theory has taken physics further and further from the
determinism and unique reality that characterized classical physics. A final theory
may incorporate quantum indeterminacy, mutually incompatible realms, and not have
spacetime at a basic level. In that context, the seemingly prosaic quasiclassical realms
of our universe appear remarkable.

On what features of the two parts of a final theory do the quasiclassical realms
depend? The discussion in this essay suggests the following:
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Requirements for Dynamics: For the most part, what is required of the dynam-
ical part of theory is an effective theory of the elementary interactions which has
the properties necessary for local equilibrium at the matter energies well below the
Planck scale that are reached in an expanding universe. Specifically, the interactions
should be approximately local and dominantly short range.

However, the specific properties of the only unscreened long range interaction—
gravity—are crucial for the quasiclassical realms. It is the gravitationally driven ex-
pansion of the universe that ensures the separation of the energy scales of matter from
those of quantum gravity. It is the attractive and universal character of gravity which
allows isolated systems to form by the growth and collapse of fluctuations. And it
is the relative weakness of the gravitational interaction which allows the universe to
remain out of total equilibrium on the time scale of its present age.

Requirements for the State: More is required of the initial state. It must be such
as to imply that histories of cosmological geometry coarse-grained above the Planck
scale behave classically. The local symmetries of this classical spacetime imply con-
servation laws which determine in part the variables characterizing the quasiclassical
realms. Further, the quantum state must imply an initial condition of low total entropy
so that the universe can exhibit the second law of thermodynamics

Almost as important as what the quantum state is required to predict is what it is
not required to predict. The beauty of quantum theory is that probabilities are basic.
A simple discoverable theory of the quantum state is therefore unlikely to predict
with high probability the particular classical history we observe with all its appar-
ent complexity. Rather it predicts the simple dynamical regularities common to every
classical history with high probability, leaving to quantum accidents the complex-
ity of particular configuration of matter observed. Thus quantum mechanics allows
the laws determining probabilities to be simple and still be consistent with present
complexity.

It is possible to emphasize how specific these requirements for a quasiclassical
realm are. Surely they will not be satisfied by every state in quantum gravity nor
every conceivable theory of quantum dynamics. They are sufficiently specific that
classicality could be important as a vacuum state selection principle [26, 27] in theo-
ries like string theory that permit many.

However, it is equally striking how little is required for a final theory to exhibit
a quasiclassical realm. The small number and general nature of the requirements
discussed above mean that there must be many states and dynamical theories that
manifest a quasiclassical realm. Indeed, historically classical physics has shielded us
from the nature of the final theory. Given classical spacetime, the form of the classical
equations of motion was determined by conservation laws plus Maxwell’s equations
for the electromagnetic field and the Einstein equation for spacetime geometry. The
equations of state, susceptibilities, etc that entered into these equations could be de-
termined phenomenologically. It was thus not necessary even to know about atoms
much less their quantum mechanics to explore classical regularities. As far as quan-
tum gravity is concerned, the expansion of the universe has shielded us from an im-
mediate need to consider it by driving the characteristic scales of matter away from
the Planck scale.

In these ways our particular universe has allowed a step by step, level by deeper
level journey of discovery of the fundamental regularities—a journey which we have
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not yet completed. The quasiclassical realms of every day experience have played a
central role in this journey, both as a starting point for the exploration and as the chief
observational feature of our quantum universe to be explained.
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Appendix: The Quantum Mechanics of Closed Systems

Largely to explain the notation this appendix gives a bare-bones account of some es-
sential elements of the modern synthesis of ideas constituting the decoherent histories
quantum mechanics of closed systems [7-9].

The most general objective of quantum theory is the prediction of the probabili-
ties of individual members of sets of coarse-grained alternative histories of the closed
system. For instance, we might be interested in alternative histories of the center-of-
mass of the Earth in its progress around the Sun, or in histories of the correlation
between the registrations of a measuring apparatus and a property of the subsystem.
Alternatives at one moment of time can always be reduced to a set of yes/no ques-
tions. For example, alternative positions of the Earth’s center-of-mass can be reduced
to asking, “Is it in this region—yes or no?”, “Is it in that region—yes or no?”, etc. An
exhaustive set of yes/no alternatives at one time is represented in the Heisenberg pic-
ture by an exhaustive set of orthogonal projection operators { P, ()}, ¢ =1,2,3,....
These satisfy

Za Pu(t)=1, and Py(t)Pp(t) = 8up Pa(t), (A1)

showing that they represent an exhaustive set of exclusive alternatives. In the Heisen-
berg picture, the operators P, (¢) evolve with time according to

Py (1) =T/ p, ()~ HI/R, (A.2)

The state |¥) is unchanging in time.

An important kind of set of histories is specified by a series” of sets of single
time alternatives {PO}1 (r)}, {P(f2 )}, ..., {Po'f,, (tn)} at a sequence of times 1] < t; <
-+ < t,. The sets at distinct times can differ and are distinguished by the superscript
on the P’s. For instance, projections on ranges of position might be followed by
projections on ranges of momentum, etc. An individual history « in such a set is

9Realistically the sets are branch dependent with the sets at one time depending on the particular sequence
of alternatives at preceding times. However we ignore branch dependence in this simplified exposition.
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a particular sequence of alternatives (o1, @2, ..., a,) = o and is represented by the
corresponding chain of projections called a chain or class operator

Co =Pl (tn) -+ Py, (11). (A3)

A set of histories like one specified by (A.3) is generally coarse-grained because
alternatives are specified at some times and not at every time and because the alter-
natives at a given time are typically projections on subspaces with dimension greater
than one and not projections onto a complete set of states. Perfectly fine-grained sets
of histories consist of one-dimensional projections at each and every time.

Operations of fine and coarse graining may be defined on sets of histories. A set
of histories {«} may be fine-grained by dividing up each class into an exhaustive set
of exclusive subclasses {o’}. Each subclass consists of some number of histories in a
coarser-grained class, and every finer-grained subclass is in some class. Coarse grain-
ing is the operation of uniting subclasses of histories into bigger classes. Suppose, for
example, that the position of the Earth’s center-of-mass is specified by dividing space
into cubical regions of a certain size. A coarser-grained description of position could
consist of larger regions made up of unions of the smaller ones. Consider a set of
histories with class operators {Cy} and a coarse graining with class operators {Cg} .
The operators {Cg) are then related to the operators {C,} by summation, viz.

Ca=)_Ca, (A4)

acx

where the sum is over the C,, for all finer-grained histories « contained within &.
For any individual history «, there is a branch state vector defined by

[Wy) = Co|W). (AS)

When probabilities can be consistently assigned to the individual histories in a set,
they are given by

p(@) = [[1Wa) 1> = Cal W) 1> = | P, (ta) -+ Py (1) W) (A.6)

However, because of quantum interference, probabilities cannot be consistently as-
signed to every set of alternative histories that may be described. The two-slit ex-
periment provides an elementary example: An electron emitted by a source can pass
through either of two slits on its way to detection at a farther screen. It would be in-
consistent to assign probabilities to the two histories distinguished by which slit the
electron goes through if no “measurement” process determines this. Because of in-
terference, the probability for arrival at a point on the screen would not be the sum of
the probabilities to arrive there by going through each of the slits. In quantum theory,
probabilities are squares of amplitudes and the square of a sum is not generally the
sum of the squares.
Negligible interference between the branches of a set

(Wa|Wp) 0, a#p, (A7)
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is a sufficient condition for the probabilities (A.6) to be consistent with the rules of
probability theory. The orthogonality of the branches is approximate in realistic situ-
ations. But we mean by (A.7) equality to an accuracy that defines probabilities well
beyond the standard to which they can be checked or, indeed, the physical situation
modeled [28].

Specifically, as a consequence of (A.7), the probabilities (A.6) obey the most gen-
eral form of the probability sum rules

p@~Yy p) (A.8)

aEea

for any coarse graining {a} of the {«}. Sets of histories obeying (A.7) are said to
(medium) decohere. Medium-decoherent sets are thus the ones for which quantum
mechanics makes predictions of consistent probabilities through (A.6). The decoher-
ent sets exhibited by our universe are determined through (A.7) and by the Hamil-
tonian H and the quantum state |\W). The term realm is used as a synonym for a
decoherent set of coarse-grained alternative histories.

An important mechanism of decoherence is the dissipation of phase coherence
between branches into variables not followed by the coarse graining. Consider by
way of example, a dust grain in a superposition of two positions deep in interstellar
space [32]. In our universe, about 10'! cosmic background photons scatter from the
dust grain each second. The two positions of the grain become correlated with dif-
ferent, nearly orthogonal states of the photons. Coarse grainings that follow only the
position of the dust grain at a few times therefore correspond to branch state vectors
that are nearly orthogonal and satisfy (A.8).

Measurements and observers play no fundamental role in this general formulation
of usual quantum theory. The probabilities of measured outcomes can be computed
and are given to an excellent approximation by the usual story. But, in a set of histo-
ries where they decohere, probabilities can be assigned to the position of the Moon
when it is not receiving the attention of observers and to the values of density fluctu-
ations in the early universe when there were neither measurements taking place nor
observers to carry them out.
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