
A comprehensive theory of induction and abstraction, part I

Cael L. Hasse∗

June 27, 2017

Abstract

I present a solution to the epistemological or characteri-
sation problem of induction. In part I, Bayesian Confir-
mation Theory (BCT) is discussed as a good contender
for such a solution but with a fundamental explanatory
gap (along with other well discussed problems); useful
assigned probabilities like priors require substantive de-
grees of belief about the world. I assert that one does not
have such substantive information about the world. Con-
sequently, an explanation is needed for how one can be
licensed to act as if one has substantive information about
the world when one does not. I sketch the outlines of a so-
lution in part I, showing how it differs from others, with
full details to follow in subsequent parts. The solution
is pragmatic in sentiment (though differs in specifics to
arguments from, for example, William James); the con-
ceptions we use to guide our actions are and should be
at least partly determined by preferences. This is cashed
out in a reformulation of decision theory motivated by a
non-reductive formulation of hypotheses and logic. A dis-
tinction emerges between initial assumptions–that can be
non-dogmatic–and effective assumptions that can simul-
taneously be substantive. An explanation is provided for
the plausibility arguments used to explain assigned prob-
abilities in BCT.

In subsequent parts, logic is constructed from princi-
ples independent of language and mind. In particular,
propositions are defined to not have form. Probabili-
ties are logical and uniquely determined by assumptions.
The problems considered fatal to logical probabilities–
Goodman’s ‘grue’ problem and the uniqueness of priors
problem are dissolved due to the particular formulation of
logic used. Other problems such as the zero-prior prob-
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lem are also solved.
A universal theory of (non-linguistic) meaning is de-

veloped. Problems with counterfactual conditionals are
solved by developing concepts of abstractions and cor-
responding pictures that make up hypotheses. Spaces of
hypotheses and the version of Bayes’ theorem that utilises
them emerge from first principles.

Theoretical virtues for hypotheses emerge from the the-
ory. Explanatory force is explicated. The significance of
effective assumptions is partly determined by combina-
toric factors relating to the structure of hypotheses. I con-
jecture that this is the origin of simplicity.
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1 Preface
This series of papers is a labour of love, paid for on
borrowed time. I do not guarantee the originality of the
ideas, though I haven’t seen anything quite like them.
Erudite predantry, while good in appropriate doses can
suffocate the valuable thought if taken too seriously.

Considering the ambition of the goal, the effort spent
on some subjects may be considered inadequate. One
reason is time, for which I apologise in advance. Another
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is that the presentation of the theory roughly reflects the
theory’s own views on evidence and argument. Namely,
the pragmatic sentiments that every conception is fallible,
and the conceptions we use in the world are at least partly
determined by our values; arguments that things must
be a certain way1 are based on premises that, in lieu of
strong evidence or theoretical virtue, come from what
we prefer to be true. Moreover, intuitions do not count
as strong evidence. As the theory is based on my own
intuitions2 formed through my training as a physicist,
my positive arguments, interpreted in a precise way–just
like every logical argument in philosophy–should not be
considered very robust3. Consider the series of papers
as a confession (Nietzsche, 2003); my most coherent
account of intuitions built up over the years. Thus instead
of detailed arguments from some supposedly necessarily
true premises, I focus on providing the conceptual core
of the theory, showing its theoretical virtues, features
and results. This is in the vain hope that one day robust
evidence for or against it can be found4. I imagine this
could be done in at least two ways. One, if the theory
succeeds in helping to solve the original goal of the work
of finding a basis for deriving Quantum Theory or a
successor from first principles along lines similar to that
of Fuchs (2016), and if this successor could lead to new
experimental predictions that are seen. Two, if the theory
leads to the construction of artificial general intelligence.

In some cases, familiar words are used in perhaps
unfamiliar ways. Words like proposition, substance,
incommensurability and versimilitude to name a few.
This is partly because I lack the imagination to come
up with replacements that sound appropriate. But it is
also because I want to emphasise the similarity of the
intuitions used in defining the concepts.

I genuinely believe there are some good–though not
infallible–ideas in the paper. If you take the time to digest

1As opposed to negative ones such as arguing that a theory is incon-
sistent, incoherent or has a conceptual gap.

2Namely the fallibility of all conceptions, the limitations of analysis
of language, the dangers of over formalisation, and a certain distaste for
abundance of conceptual ingredients.

3I don’t state this in a pejorative way; the search for foundations is
important, just hard.

4See the next section for comments on how the theory provides a
limited solution to the is/ought problem.

them, you might find them worthwhile.

2 Introduction
We have two parts to the problem of induction (Hume,
1910): (1) the justification of general standards of
inductive inference and (2) the characterisation of these
general standards. Though the series of papers mostly
focusses on (2), I’ll briefly discuss (1).

Traditionally, an inference to something was consid-
ered justified if one is justified in assuming something
else and can use ones standards to verify the inference
from the latter to the former. The idea is that these
standards are efficacious in some way; if one uses
deductive inference, one is supposed to be able to avoid
error in ones predictions. If one uses inductive inference,
error is supposed to be minimised in some way. This idea
corresponds to a substantive claim about the world. An
example of such a claim is Hume’s ‘uniformity of nature’;
the claim that the past resembles the future (though this
is vague). As Hume argued, it is eminently possible that
this not be the case. The fear is that if we can’t justify the
claim in our standards, then we potentially have no basis
to know anything substantive about the world. More-
over, we may have no reason why one ought to be rational.

Goodman (1983) considered the traditional version of
the question of (1) dissolved and I think his reasons are
good, that there is something awry in the formulation of
the problem itself. To demand that there is a justification
of standards of inference (inductive or deductive) of the
form that is traditionally hoped amounts to a demand
for efficacy of our predictions that is wishful thinking, a
demand of nature that may not be fulfilled and we should
not expect it to be.

Goodman’s positive account is one where general
standards of inference are justified or not by their level of
conformity to inferences we are willing to accept as valid.
There is a circular process of mutual adjustment between
general rules and accepted inferences. The problem of
induction reduces to this process of characterisation.
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I argue for certain distinctions that complicate this
understanding of the problem. I argue that the traditional
version of the question of (1) not only comes from wish-
ful thinking, but that any possible answer will be a form
of nonsense. Carnap (1991) argued that metaphysical
questions such as whether certain things exist have two
types of answers, one internal to a linguistic framework
and one external. The first type potentially answerable,
the second nonsense. Though the theory explicated here
will not use linguistic frameworks, a similar distinction
will emerge: meaningful answers to questions occur
only internal to a hypothesis. For us, hypotheses do not
concern only empirical truths, but non-empirical ones
also, including ones of validity and justification. The
validity of an inference is defined by a hypothesis and we
can’t externally ask about the validity of inferring said
hypothesis by using its internal definition of validity.

Though I doubt if Goodman would think in this way,
we can consider his recasting of justification as an ex-
ample of inventing a definition of ‘justification’ different
to the internal definition by a hypothesis, allowing for
meaningful inquiry into the internal justification of the
hypothesis.

We must distinguish between standards of inference
and the process in which one goes about trying to achieve
them. The process may be circular; one may decide to
consider justification defined one way in light of what
one accepts as instances of justified inference, but then
go back and revise the list of accepted inferences in
light of the defined notion of justification. However,
related to the above comments on meaningfulness,
where we require a strict hierarchy of inference, the
standards outlined here will not allow circular inference.
This affects the dissolution of the problem of justification.

Standards of inference–subsumed into standards of
rational action choice–will be considered as comprising
of two components; the normative component and a
declarative one in the form of a hypothesis.

The normative component is the normative appropri-
ateness of following the edicts of the standards. The
following of the standards is the alignment of a series
of actions and circumstances with the edicts of the

standards. The edicts are dependent upon input called
initial assumptions. In this series of papers, to say X is
assumed by an agent is to say that that agent’s actions
align with the standards in the situation where X is
an input into the standards. This notion differs from
one where to say an agent assumes something implies
something about the state of the agent. An example of
how this differs is that in the first definition, it is possible
for one to appropriately say that an agent both does and
doesn’t assume X , if inputing X into the standards has
no consequences upon the appropriate choice of actions.
Moreover, it is possible to follow the standards and
assume nothing.

In this way, the standards may be followed but the
declarative component not necessarily assumed; there can
be uncertainty about hypotheses of various competing
standards5. One may in principle gather evidence for or
against the hypotheses of different standards. Goodman’s
circular process of justification is to be considered a
reflection of the non-circular standards of weighing up
of various hypotheses for various standards.

Initial assumptions are not and cannot be justified.
More will be said on this in following papers. They can
however satisfy normative desiderata.

I don’t give any positive reasons why the following of
the standards described here are normatively appropriate.
That is beyond the scope of the project. My goal is to
provide what I consider a ‘good’ characterisation of the
standards.

3 Desiderata of characterisation
After considering the justification problem solved,
Goodman (1983) understood the problem of induction
as one of characterising a ‘good’ theory of confirmation.
Given certain evidence, a confirmation theory determines
whether a hypothesis is confirmed or not (and perhap also
to what degree it is or isn’t confirmed). An amendment
to this is that confirmation also depends on the context

5This requires our standards to be flexible enough such that it is pos-
sible to follow them while assuming others.
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of assumptions surrounding the evidence. Bayesian
Confirmation Theory is (I consider rightly) one of the
most popular of such theories. Our goal is to come
up with a theory that has the best features of Bayesian
Confirmation Theory but overcomes its problems.

Bayesian Confirmation Theory (BCT) is a theory
of probabilities. In some formulations there are two
types of probabilities, conditional and non-conditional.
In other formulations, there are only conditional ones.
Non-conditional probabilities can be written as p(A) and
conditional probabilities as p(A |B). We shall consider
all probabilities conditional. Probabilities are functions
that map to [0,1], and are construed in BCT as degrees
of belief. Their inputs A and B are construed in various
ways. They can be construed as events, sets or sentences
expressing propositions.

If logic is used, it is equipped with the basic conjunc-
tion (AB), (inclusive) disjunction (A + B), and negation
(A). If one uses sets, set theoretic equivalents are inter-
section, union and complement respectively.

The probabilities are constrained by various axioms or
rules that formalise rationality constraints. Two, which
we call the product and sum rules are pretty universal.
For any A, B and C,

p(AB |C) = p(A |C)p(B |AC) = p(B |C)p(A |BC),

and
p(A |B)+ p(A |B) = 1.

The principle of total probability is used a lot as a rule.
It states that if a set of sentences/sets {Xi | i} is exclusive
and exhaustive, then our probabilities can be written as
weighted sums

p(A |B) = ∑
i

p(Xi |B)p(A |XiB).

We shall see how, with the right formulation, it can just be
understood as an application of the product and sum rules.

Mirroring a conception of science, BCT is often con-
ceived in terms of a number of hypotheses {Hi | i} for
which some data D is collected in order to provide evi-
dence for or against. There are also contextual assump-
tions Y which contain things like auxillary hypotheses.

The hypotheses in {Hi | i} are assumed to be exclusive and
exhaustive. From this and axioms like the principle of to-
tal probability we get a couple of equations. We have

p(E |DY ) = ∑
i

p(Hi |DY )p(E |HiDY ), (1)

i.e., predictions of E are equal to a weighted sum of pre-
dictions one would make assuming individual hypothe-
ses. Secondly, we get Bayes’ theorem with the space of
hypotheses

p(Hi |DY ) =
p(Hi |Y )p(D |HiY )

∑ j p(H j |Y )p(D |H jY )
, (2)

where a probability of the form p(D |H jY ) is generally
called a likelihood of H j. It is a measure of how well H j
predicts the data D. A probability of the form p(H j |Y ) is
generally called a prior–the degree of belief in H j prior to
collection of the data.

Equation (2) generally represents an ideal situation
when one is aware of all possible hypotheses. This is of-
ten not the case; noone was aware of General Relativity
(GR) until Einstein presented it. To deal with this, sci-
ence construed through BCT often focusses on compar-
isons between known hypotheses; we may ask, did data D
support Hi compared to H j? A useful measure of this is
the odds

Ωi j(D)+ p(H j |DY )/p(Hi |DY ) = Li jQi j,

where Li j is the ratio of likelihoods and Qi j is the ratio of
priors,

Li j +
p(D |H jY )
p(D |HiY )

, Qi j +
p(H j |Y )
p(Hi |Y )

.

The change in odds is due to only the ratio of likelihoods.
If Hi predicts D better than H j, then Li j < 1, decreasing
the odds of H j over Hi. If Hi predicts D worse than H j,
then Li j > 1, increasing the odds. Equation (2) can be
rewritten in terms of odds, showing how to connect the
concept with the probability of a hypothesis:

p(Hi |DY ) = (1+∑
j 6=i

Ωi j)
−1 = (1+∑

j 6=i
Li jQi j)

−1.

For any Hi, the hypothesis may predict the data better or
worse relative the the others, increasing or decreasing the
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odds. A net increase in the sum of the odds decreases
p(Hi |DY ) and vice versa. A low likelihood for Hi
makes it easier for alternative hypotheses to predict D
better, making it easier for p(Hi |DY )< p(Hi |Y ), though
doesn’t guarantee it.

When determining a probability of say, A, we consider
two things. Firstly, we may need assumptions B such that
we say the probability we are determining is p(A |B).
Using A and B, we may use our rules to constrain this
probability as one equal to a function of other probabili-
ties, as done in equations (1) and (2). Secondly, some of
these other probabilities are not constrained by rules and
hence must be assigned through other means. Generally
this involves introspection, perhaps supplemented with
certain techniques such as the principle of insufficient
reason or the principle of maximum entropy etc.

Priors are the probabilities most in need of assignment
though sometimes likelihoods require it too.

The strength of BCT is its simplicity and explanatory
force in many nuanced real world situations (Jaynes,
2003). Calculations done with the theory seems to
conform very well to nuanced scientific reasoning.
That said, different formulations of BCT and different
examples of calculations using different techniques to
assign probabilities have a larger scope for debate.

Pursuant to a normative characterisation, there is one
issue (above others (Earman, 1992)) I want to focus on.
The probability p(A |B) is considered the degree of belief
someone (perhaps counterfactual) has in A. How, and to
what extent, is someone licensed to have such a degree of
belief?

I am asking this question in a certain way that differs
from others. One view is to consider BCT as a tool for
helping real people make precise inductive arguments
and decisions. On this view, ought implies can, so any
formulation that requires superhuman mental feats is
not appropriate. This is not the kind of normativity I
am asking about. My concern is what perfect rationality
might look like. For example, it is impossible for a person
to take into account all possible hypotheses but it is still
considered ideal if they could.

We must consider in what way both inputs–
assumptions B and the assigned probabilities–are li-
censed. I have already argued that one is not ultimately
justified in ones assumptions but there can be distinctions
of justification. In particular, the theory needs to work
when a certain ideal is upheld:

(I) One should be as non-dogmatic as possible.

A precise formulation of this ideal is difficult for at
least two reasons. Firstly, any formulation can depend
upon the original formulation of BCT, whether and what
logic is used, how its structure is understood etc. For
example, is mathematics to be considered analytic? Is
such a choice already dogmatic? Secondly, perhaps the
best measure of non-dogmatism–entropy over probability
distributions–has limitations such as, for infinite spaces
of possibilities, many distributions of probabilities have
infinite entropy and thus can’t be distinguished. Let’s
then consider the notion informally, trusting our intu-
itions to guide us. In standard formulations of BCT, any
assumptions preclude possibilities and are hence at least
a little dogmatic. Informally, assumptions can be more
or less dogmatic, the more substantive the assumptions,
the more dogmatic. Perhap a little dogmatism cannot
be escaped, but it should be minimal. Assignments of
probabilities can also be seen as substantive/dogmatic if
some probabilities are seen to be unfairly assigned higher
values than certain others.

Taking (I) seriously, we run into the following prob-
lem. Every use of BCT in real world scientific situations
makes substantive assumptions about the world or use
substantive assigned probabilities. Moreover, such
substantive assumptions often lead to strong predictions.
In order for BCT to satisfy the ideal of non-dogmatism
but also be explanatory in the many scientific situations,
some way must be found to explain how one can end
up with substantive probabilities about the world while
starting from very non-dogmatic assumptions, assigned
probabilities and realistic evidence.

One possible path to a solution is that substantive
assumptions and assigned probabilities are due to purely
pragmatic (James, 1897) reasons; that ones degrees of

5



belief can be due to previous licensed actions. Then, to
be a solution, one must consider assigned probabilities
coresponding to such degrees of belief as licensed.
I will argue that reasons similar in sentiment to the
pragmatic ones play a crucial role, though the form of
pragmatic reasoning differs fundamentally from common
interpretations.

Let’s consider the reasons given for choice of assump-
tions and assigned probabilities in scientific scenarios.
Generally, assigned probabilities are given informal
plausibility arguments based on assumptions not made
in the original determination of p(A |B). For example,
if A is a potential final state of some physical system in
an experiment, one may assign a probability distribution
over initial states, this distribution informally argued as
appropriate given ones understanding of the experimental
setup–the physics involved, how well calibrated the
equipment is etc. Without such plausibility arguments,
the choice of assumptions B and assigned probabilities
are not considered very licensed. We require an explana-
tion and formalisation of such arguments. The seemingly
reasonable answer is that BCT is just such a formalisation
of plausibility arguments so we should use the same tools
for assigned probabilities as we used for p(A |B); the
assigned probability is no longer just assigned but given
as a function of other probabilities. The problem with this
approach is that we get what Suppe (1989) calls a vicious
regress. In trying to replace the assigned probabilities
with ones that aren’t, we just end up with more.

This regress may not be too much of a problem if
it can be shown how, starting from a non-dogmatic
position and using only Bayesian reasoning, the addition
of evidence leads one to make strong predictions about
future observations. Past evidence D affects predictions
of future evidence E as given by equation (1). In order
for p(E |DY ) to be large, the probabilities for hypotheses
that strongly predict E must dominate over those that
don’t. As discussed, p(Hi |DY ) can be understood in
terms of odds between the possible hypotheses. The odds
between two hypotheses changing based on the ratio of
their likelihoods; if two hypotheses are observationally
distinguishable, their odds change. If the likelihood of Hi
is small enough relative to likelihoods of enough other
hypotheses, the probability p(Hi |DY ) will be lower than

p(Hi |Y ). If p(Hi |DY ) is small enough, Hi can be said to
be effectively refuted (for the time being). Thus, given
some D that effectively refutes the right hypotheses,
strong predictions for future observations may occur.

In this vein, one may try to point to a convergence
theorem by Hawthorne (2004, 2014). The theorem
makes much weaker (more realistic) assumptions than
other convergence theorems like those of Gaifman and
Snir (1982). A great virtue of Hawthorne’s theorem
over Gaifman and Snir’s is that it is not a theorem of
convergence to certainty. I assert that one should not
expect certainty, even in the long run; any such result
should be seen as a symptom of some dogmatism. If so,
such theorems should count against any theory with such
a result.

Hawthorne’s theorem shows roughly that, given that
some hypothesis Hk is true, it is probable in the medium
term that one will observe D such that the likelihood ratio
Lk j is small for hypotheses H j that are observationally
distinguishable to Hk by D. In this way, in the medium
term it is probable that one gets evidence that makes it
easy to effectively refute some observationally distin-
guishable hypotheses. There are some caveats. Firstly,
one must be in the right situations to get observational
distinction; this is why scientists must set up experiments
to get the right observations. Just sitting in your living
room may not be enough. Secondly, effective refutation
of hypotheses becomes easier but not guaranteed. There
is however a bigger problem that makes the theorem
insufficient to explain why one should be licensed to
make strong predictions of future observations.

Consider a Bayesian agent in a medium term position;
they have gathered some evidence D about the world and
some hypotheses that are observationally distinguishable
from the others have been given low probabilities. In
order to make strong predictions for any particular future
observation E, the probabilities for hypotheses that
strongly predict E must be large relative to the others;
they must be distinguished in some way. This distinction
is not made by the effective refutation of hypotheses
whose predictions of past observations differ greatly
from what was observed; in principle one can imagine
hypotheses that strongly predict D (and are hence not
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effectively refuted) but make any predictions of the future
one may like. It is completely possible to have effectively
refuted many hypotheses and still be unable to make
strong predictions.

To make this case stronger, consider a (finite) exclu-
sive and exhaustive set of potential future observations
E + {Ei | i}. We can measure the strength of the agent’s
predictions with the entropy over the distribution of prob-
abilities of Ei:

S(E )+ −∑
i

p(Ei |DY ) log2 p(Ei |DY ),

where base 2 was chosen for the log . The strongest pre-
diction where p(Ei |DY ) = 1 for some i corresponds to a
minimal entropy of 0. There is a useful inequality

S(E )≥ ∑
j

p(H j |DY )S(E ; H j),

where

S(E ; H j)+ −∑
i

p(Ei |H jDY ) log2 p(Ei |H jDY ),

is the entropy of the predictions of future evidence
assuming H j. In order for the agent’s predictions to
be strong (i.e., for S(E) to be small), one needs the
probabilities for hypotheses with weak predictions to be
small. But effective refutation of such hypotheses is only
determined by the hypotheses’ predictions of past data D.

One needs a mechanism to probabilistically distinguish
hypotheses that make the same prediction for D but
different predictions for E. Current probabilities of
hypotheses p(Hi |DY ) are dependent upon only the
various hypotheses’ predictions of past evidence D and
their assigned priors p(Hi |Y ), i.e., any pair of hypotheses
that make the same predictions of D can only have
probabilities with different values if their initial assigned
priors have different values. BCT alone gives no guidance
as to choice of assigned priors and without this guidance
cannot solve our problem. Despite the success of BCT,
we still don’t have a good answer to why evidence of
what has happened should tell us anything about what
will happen.

If we want our initial assumptions to be non-dogmatic,
this problem becomes stark. We need a good reason to
assign a different initial prior to one hypothesis that isn’t
effectively refuted compared to other hypotheses that
aren’t effectively refuted. It is often argued that some
hypotheses have theoretical virtues that distinguish them
from others such as simplicity and explanatory force.
Indeed, I have made this argument for BCT.

The theoretical virtues are in need of explanation6. To
do this, one needs a story as to the nature and structure
of hypotheses which BCT does not provide. The story
that BCT does provide–that hypotheses are exclusive and
exhaustive–is simplistic and moreover, is dogmatic! I
consider exclusivity and exhaustivity to be substantive
assumptions about the world.

Instead of following the vicious regress of BCT, the
theory presented in this series of papers will explain
the licensing of probabilities approximating Objective
Bayesian (Jaynes, 2003) ones in appropriate scientific
contexts through a combination of factors and will also
explain the plausibility arguments used: firstly, decision
theory will be modified due to considerations indepen-
dent of the above concerns. Secondly, hypotheses will
be defined to not be reducible to a single exclusive and
exhaustive space of atomic propositions, or similarly, pos-
sible worlds. Moreover, exclusivity and exhaustivity will
not be assumed but rather emerge. From these factors,
the theory will present a way to start from very minimal
assumptions but act as if substantive assumptions about
the world are true. The structure of hypotheses and the
relationships between them will provide an explanation
of explanatory force and potentially provides a general
explanation of simplicity.

6For various reasons that I can properly argue only after more
is said in following papers, I do not consider Solomonoff induction
(Solomonoff, 1964) and the notion of Kolmogorov complexity (Kol-
mogorov, 1998) to be a good explanation of the theoretical virtue of
simplicity. The reasons relate to how one understands the relationship
between strings of signs and meaning relevant to inference associated
with them.
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4 Pragmatism
The conceptions of the world we use to guide our actions
are at least partly chosen by what we value. Moreover,
there is normative force to such choices. In this I am
expressing a certain pragmatic sentiment (James, 1897).
The problem of induction can be understood in this light
with three consequences: (1) The basis for the reason to
accept certain inferences can be, to a certain extent that
we prefer them that way; the craving for justification
lessens. (2) Preferences are individual. Thus different
individuals can in principle appropriately use different
standards of inference; intersubjective agreement be-
tween individuals is incidental. (3) The solution to the
characterisation problem will include a value component.
In this way, we shall move from finding standards
of inference to finding standards of action choice–a
decision theory–where a value component comes into
play. This general idea isn’t new (Rudner, 1953; Savage,
1972; Jeffrey, 1956) but we shall take it in a new direction.

Consider how decision theory is generally conceived
(Savage, 1972; Jeffrey, 1956)–bracketing out specific de-
tails of formulation such as the conception of probability
used and the conception of what the probabilities are of:
we can imagine an agent that has preferences and makes
choices of action in some normatively appropriate way.
The appropriate action is found by maximising the ex-
pected utility

e(Ai)+ ∑
n
j=1U(Z jAi)p(Z j |AiY ), (3)

where U is a utility function determined by the agent’s
preferences, the set {Z j| j = 1, . . . ,n} is the set of some
exclusive and exhaustive outcomes, {Ai| j = 1, . . . ,m} is
the set of actions to choose from.

Normally in decision theory we pick out only a small
subset of outcomes to consider; in deciding whether to
buy a toaster, one might consider specifically how much
it costs and how much value you expect to get from eating
toast. However, in principle buying the toaster may have
myriad secondary effects such as effects on your weight
and health, whether the toaster looks good in your home
etc. Thus, as we aim for a decision theory that aims for
universality, we shall consider the theory to take into
account all possible outcomes, i.e., the set of outcomes

is also considered complete. A precise definition of
completeness of a set of outcomes will not be given until
we define the logic used later. However, the currently
vague notion is still intuitively useful.

Pascal’s wager is one of the best known early examples
of decision theoretic arguments for choice of action. It
and similar ones are used to justify acts that are conjec-
tured to lead to belief (James, 1897). Is it then the case
that certain degrees of belief formalised in terms of initial
assigned Bayesian probabilities can be justified due to the
beliefs being a consequence of justified actions? I shall
not use this argument.

Instead, by looking at Pascal’s wager, we may come up
with a different approach that outlines a solution to the
problems considered in the previous section. A decision
theoretic formalisation of Pascal’s wager asks us to con-
sider the utility of the existence of god. Such a formali-
sation treats the hypothesis that god exists the same as if
it were an outcome like the result of a roll of the die or
the state of the weather. What if there is a functional dis-
tinction to be made between these two categories? Con-
sider the following argument schema with premises (A.1)-
(A.3):

(A.1) There are various hypotheses about the world.

With this premise I am not talking about the role of non-
observational terms in inference. Rather, I am discussing
the nature of hypotheses: one can understand hypotheses
in terms of a gap between possible epistemic positions
and the world. For example, there is epistemic modality
and metaphysical modality; the metaphysical kind associ-
ated with a hypothesis which distinguishes one or more
epistemic positions over others in some way (that will
be made clearer later). Hypotheses relate to the context
around various outcomes. To say that there are hypotheses
in the theory is to say that there is a functional distinction
at the level of standards.

(A.2) Outcomes from different hypotheses are different.

Take as an example outcomes as orbits of planets. There
are different hypotheses that can predict them such as
Newtonian Gravity (NG) and General Relativity (GR). To
compare their predictions there is a way to align them; to
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be able to say that their predictions in some circumstances
are very similar or not. But importantly, this premise
claims that they are still different, even if in some cases
they are perfectly aligned. We shall cash this premise out
with

(A.3) Values associated with outcomes are dependent
on the hypothesis they come from.

Often in a scientific context, we don’t distinguish the
value we see in the world by whether we see it in
terms of say, NG and GR. In fact this is one important
characteristic of science. But this doesn’t mean value
can’t be distinguished this way. The outcomes of NG are
distinct from the outcomes of GR and from this I argue
there is no in principle reason why the values associated
with their outcomes should be aligned in any way. A
potential counterargument is that if meaning is defined
instrumentally–that if both hypotheses are couched in a
neutral observation language–then the aligned outcomes
can mean the same thing. We shall not go this route;
meaning will not be defined instrumentally.

Taking (A.1)-(A.3) as premises, conclude:

(A.4) In the situation where one is uncertain about
hypotheses, one needs a decision theory that is
sensitive to the hypothesis dependence of value,
distinct from the outcome dependence of value.

Consider that equation (3) sums over utilities of a com-
plete set of possible outcomes. If there is more than one
possible hypothesis, then there is a set of outcomes for
each hypothesis that should be taken into account. Con-
sider then the following modification to (3) as a schema7

for a new decision theory:

e′(Ai)+ ∑
m
k=1 ∑

n(k)
j=1U(Zk

j Ai,H ′k)p(Zk
j H
′
k |AiY )

= ∑
m
k=1 p(H ′k |AiY )∑

n(k)
j=1U(Zk

j Ai,H ′k)p(Zk
j |H ′kAiY ),

(4)

where {H ′k |k = 1, . . . ,m} is the set of possible hypotheses.

7I say schema because without an appropriate formulation of the
logic used, which shall be presented in sections after this, there are sub-
tle problems one can encounter in this version of the theory.

Compare e′(Ai) with

e(Ai) = ∑
n
j=1U(Z jAi)∑

s
r=1 p(Hr |AiY )p(Z j |HrAiY ),

(5)
where we have assumed a set of exclusive and exhaustive
hypotheses {Hr |k = 1, . . . ,s}. The salient difference is
that the utilities in (4) are explicitly hypothesis dependent
while the ones in (3) aren’t. Moreover, utilities U(Z jAi)
could be made to be expressed with compatible hypothe-
ses like U(Z jAiHr) but they will not be under the sum
over hypotheses. Such functional differences lead to
important consequences.

We can imagine a situation similar to one in Pascal’s
arguments for wagering for god. I am not going to argue
that Pascal’s wager is reasonable, merely that there are ex-
treme situations where something like it is. Suppose that
H ′l is a hypothesis where god exists and for every other
hypothesis this isn’t the case. Then suppose that this cor-
responds to utilities such that

∀k 6= l ∀ j, i U(Zk
j Ai,H ′k) = 0,

i.e., nothing in the world has value unless god exists. If
this is so, then we have

e′(Ai) = p(H ′l |AiY )∑
n(k)
j=1U(Zl

jAi,H ′l )p(Zl
j |H ′l AiY ).

If–as is common–Ai is independent to the hypothesis–in
this case, H ′l –and the probability for H ′l is non-zero, then
p(H ′l |AiY ) = p(H ′l |Y ) such that the model e′ becomes
functionally equivalent to standard decision theory in the
situation where it is assumed that god exists, i.e., one
should act as if god exists8.

The relevant aspect of this situation for us is that
preferences can directly force effective assumptions
without needing belief; one can be licensed to act as if
something were true without believing it to be true. This
is different to the argument where one is licensed to act
where belief is a consequence and then one uses those
beliefs to assign probabilities.

8If H ′l is such that, if it were true then it is strongly preferable to
believe in god, then it is preferable to find a way to believe in god, i.e.,
to wager for it.
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The above mechanism is also different from a cer-
tain notion of acceptance in practical reasoning due
to Bratman (1992). With his notion the focus is on
the practicality of (what can be modelled as) certain
approximations of standard decision theory as used as a
mental tool. Our notion of effective assumptions is not
due to an approximation of decision theory but rather a
reformulation of it.

Consider (4) generally. The expected utility e′ is a
weighted sum of the expected utilities one gets upon as-
sumption of a hypothesis–call these subexpected utilities.
The weights given by the probabilities of each hypoth-
esis, which can be viewed as logical components of utility.

We must distinguish between initial assumptions (in
the above case, Y ) and effective assumptions (in the
above case H ′lY ). The above case is extreme, where H ′lY
completely dominates. Generally, effective assumptions
may be considered more or less significant based on a
few factors, including the weightings of the subexpected
utilities of such assumptions relative to the others. When
using introspection to assign a Bayesian probability, I
assert that we are often considering a probability relative
to some significant effective assumptions as opposed to
relative to ones initial assumptions. There is a disconnect
between probabilities arising from ones initial assump-
tions and ones that are intuitively assigned.

In this way we shall be able to make very weak
initial assumptions–where inductive inference alone is
impossible–while at the same time make strong effective
assumptions. The model (4) is not however sufficient
for this task. It shall be built upon with a more nuanced
formulation of the structure of hypotheses, motivated
from various directions, from a theory of meaning that
will be developed, to the difficulties with counterfactual
conditionals (Goodman, 1983) which shall be connected
to the reductionism that has influenced formulations
of probability theory and decision theory since at least
Wittgenstein (1994).

Hypotheses in (4) can be understood as providing
a context of meaning for outcomes. This notion will
naturally extend to another: hypotheses can provide a
context of meaning for other hypotheses. As a general

example, consider (a version of) Classical Mechanics
as providing a context of meaning for specific possible
hypotheses of classical physics such as Electrodynamics
or Fluid Mechanics. Moreover, Classical Mechanics can
be seen as stemming from a conjunction of more abstract
hypotheses such as mathematical and metaphysical ones.

We will have a hierarchy of abstraction for hypotheses.
We shall be lead to a situation where multiple higher
level hypotheses can form a context for a single lower
level one, i.e., there are many different paths to forming
a context. Hypotheses will be built from parts. Each
part a higher level hypothesis which can correspond to a
description of some aspect of the lower level hypothesis.
There will be many paths to building a hypothesis, each
path corresponding to a different collection of parts. For
example, Newtonian Mechanics can be formulated in
terms of forces or in terms of a minimisation of action,
the resultant hypotheses being the same but the paths used
to get there different. Other examples include different
ways to formulate equivalent geometries, or different
ways to formulate equivalent theories about numbers.

From a higher level of abstraction, there will in prin-
ciple be multiple ways or paths to arrive at a hypothesis.
Each path will naturally contribute to the expected utility
by increasing the weight of the subexpected utilities for
each hypothesis. A hypothesis that has low probability
in each path but many paths will be able to dominate
in significance to decision choice due to combinatoric
reasons. This combinatoric effect will be related to the
logical structure of the hypothesis. It is in this way the
problems of BCT discussed in the previous section is
solved: differences in the logical structures of hypotheses,
separate to their predictions of past data, lead to some
hypotheses dominating over others.

I conjecture that this combinatoric mechanism is the
origin of the notion of simplicity.

Plausibility arguments can be understood with the hier-
archical web of hypotheses. In cases where subexpected
utilities of some effective assumptions dominate, instead
of assigned probabilities, we have effective probabilities
due to effective assumptions; their significance deter-
mined by the number and significance of more abstract
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effective assumptions. In such cases, one can say the
theory approximately aligns with an Objective Bayesian
one. Supppose one has X as an effective assumption. One
can give a plausibility argument from a more abstract
effective assumption Y where X is not assumed, i.e., one
may argue that if one assumes Y , then X is probable
(and implicitly that Y is a significant assumption). A
plausibility argument will correspond to a segment of a
path from a higher level of abstraction to a lower one.

Probabilities will be argued to be uniquely determined
by assumptions. The notion of degrees of belief will be
made redundant; there is no single probability an agent
assigns to any X , only a unique probability of X for any
assumed Y but with many assumptions contributing to
action choice. Our notion of probability will be logical
rather than Bayesian, though a version of Bayes’ theorem
and the principle of total probability will drop out from
first principles.

There are arguments against theories of logical prob-
abilities that are considered fatal: Goodman’s ‘grue’
argument and the argument against the uniqueness of
priors through redescription. These problems will be dis-
solved due to a reformulation of logic and its relationship
to language. Other problems like the zero prior problem
will be similarly dealt with.

Logic will be considered non-linguistic: it is subsidiary
to a normative decision theory for an agent that need not
communicate to anyone or even use symbolic tools for
internal reasoning. Propositions are defined to not have
form.

Acknowledgements I thank Selina Wang for all her
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