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Abstract
This is part II in a series of papers outlining Abstrac-
tion Theory, a theory that I propose provides a solution to
the characterisation or epistemological problem of induc-
tion. Logic is built from first principles severed from lan-
guage such that there is one universal logic independent
of specific logical languages. A theory of (non-linguistic)
meaning is developed which provides the basis for the
dissolution of the ‘grue’ problem and problems of the
non-uniqueness of probabilities in inductive logics. The
problem of counterfactual conditionals is generalised to a
problem of truth conditions of hypotheses and this general
problem is then solved by the notion of abstractions. The
probability calculus is developed with examples given. In
future parts of the series the full decision theory is devel-
oped and its properties explored.
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1 Logic and language

In Abstraction Theory, probabilities are considered to
be logical degrees of validity as opposed to degrees
of belief, some physical property or some frequency
of events in a population. This logical conception of
probabilities is generally considered to be fatally flawed
due to at least two problems: Goodman’s ‘grue’ problem
(Goodman, 1983) and the problem of the uniqueness of
priors (van Fraassen, 1989). I argue that these problems
are not inherent to logic itself but rather are a problem
with conceptions of logic in the analytic tradition. The
problems are dissolved if the principles of logic are
reformulated such that the close relationship between
logic and language is severed. To do this, we must
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consider what logic is conceived for.

There are two roles that logic plays that can be distin-
guished. The first is as a tool for ‘good’ argumentation
between people. This role is necessarily related to
language: one wants to communicate in a way such
that arguments that are ‘good’ are distinguishable from
arguments that are faulty in various ways. To do this,
a certain argreement of rules between a linguistic com-
munity is required and the goodness of the argument is
defined by the rules to be related to the form in which the
argument is seen to be expressed. Language understood
as determining relationships between forms of expression
and the goals of expression (e.g., communication) is then
the context in which to formulate logics.

The second role of logic is as a normative constraint
on action. Such constraint applies to individual agents
which need not communicate in any way. This second
role is not necessarily related to language.

It is my contention that the second role should be
the primary role of logic; logic should be considered
non-linguistic and its relationship to language oblique.
One result of this is that logic becomes greatly simplified.
Concepts related to language are disentangled from logic.
For example, the expressivity of a formal language–being
a linguistic concept–ceases to be important in the formu-
lation of logic itself; we will not have to worry that the
formal apparatus we shall use to express and work with
the theory is sufficiently expressive enough. The calculus
consequently becomes extremely simple and ostensibly
universal.

1.1 Logic

To understand the formulation of logic to be proposed,
consider the schema for the decision theory outlined
in part I: we have a collection of hypotheses {Hk |k =
1, . . . ,m}, where each hypothesis Hk is associated with
outcomes {Zk

j | j = 1, . . . ,n(k)}. We also have assump-
tions Y and potential actions {Ai | i}. The appropriate ac-

tion is the one that maximises the expected utility

e′(Ai)+ ∑
m
k=1 ∑

n(k)
j=1U(Zk

j Ai,Hk)p(Zk
j Hk |AiY )

= ∑
m
k=1 p(Hk |AiY )∑

n(k)
j=1U(Zk

j Ai,Hk)p(Zk
j |HkAiY ),

where U is a utility function. The expected utility e′ is a
weighted sum of the subexpected utilities

e′(Ai) = ∑
m
k=1 p(Hk |AiY )e′(Ai , Hk)

with subexpected utilities given by

e′(Ai , Hk)+ ∑
n(k)
j=1U(Zk

j Ai,Hk)p(Zk
j |HkAiY ).

Subexpected utilities are the expected utilities one gets
upon assumption of a hypothesis. If for some reason
e′(Ai) = Ce′(Ai , Hk) + K, where C and K are constant
over the set of actions, then we say one should act as
if hypothesis Hk were the appropriate assumption. For
exmaple, this could happen if for some l, U(Zk

j Ai,Hk) = 0
for all k 6= l. A more complicated version of this mecha-
nism is how the theory describes how one is licensed to
act as if the world were a certain way when one does not
have enough evidence to inductively infer it so.

Note that this decision theory is only a schema used as
a stepping stone to the full theory. As logic is developed,
the concepts used above will be replaced with more
refined ones.

Two central aspects of the above schema are (1) we
have not assumed that the hypotheses are exclusive,i.e.,
we have not assumed that it would be inconsistent
to assume a conjunction of two different hypotheses.
Assumption of exclusivity affects the probabilities in,
for example, the principle of total probability (see part I)
such that, with the assumption of exhaustivity, the sum
over hypotheses has only one term for each hypothesis
(as opposed to terms containing conjunctions of multiple
hypotheses). The sum over hypotheses in e′ comes from
the definition of e′ as opposed to the assumption of
exclusivity and the principle of total probability. Despite
not assuming exclusivity, (2) one does not act on the
assumption of two hypotheses at the same time. This
tells us something about how we are to understand what
hypotheses are: different hypotheses are not necessarily
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exclusive but we shall say that they are incommensurable
with eachother. This notion of incommensurability differs
in important ways from standard definitions (Kuhn, 1989;
Feyerabend, 1962) but has conceptual affinity with the
notion of taxonomic incommensurability.

As hypotheses are defined to be incommensurable
with eachother, there are things that won’t be considered
hypotheses. Consider the two sentences ‘Alice is either
at the shops or the movies’ and ‘Alice is either at the
movies or at home.’ These sentences can be appropriately
associated with something that narrows down possibil-
ities. Moreover, they can be associated with narrowing
down the same collection of possibilities. What they
are appropriately associated with can be simultaneously
assumed (in this case, Alice can be at the movies) and
are hence commensurable, i.e., they’re not hypotheses.
More generally, no hypothesis is reducible to a collection
of possibilities: they should not be understood as truth
functions of atomic propositions or sets of possible
worlds.

In contrast to the above sentences, consider ‘the
possible colours that objects may possess are red and
green’ and ‘the possible colours objects may possess are
red, green and blue.’ In our theory it is reasonable to
associate hypotheses to these sentences. Such hypotheses
are incommensurable in the following way: consider
the hypotheses to constitute conditions defining the
space of possible colours. Despite the fact that I used
the word ‘red’ in both sentences, what is meant by an
outcome associated with something possessing the colour
red depends on the context of its hypothesis. Thus an
outcome reasonably associated with ‘the apple is red’
under one of the hypotheses considered above is different
to an outcome associated with the same sentence under
the other hypothesis. Two different hypotheses cannot
‘overlap’ in their outcomes because their outcomes are
by definition different.

With these ideas in mind, let’s develop the central
principles of logic.

Propositions are the central entities of concern, as
opposed to sentences or statements.

Early Wittgenstein (Wittgenstein, 1994) associates
propositions with a logical space. The use of the phrase
‘logical space’ being metaphorically suggestive as it
reminds one of the concept of geometrical space. I’m
going to use this metaphor to twist Wittgenstein’s notion
to new purposes.

Definition: A logical space consists of points called
basic propositions. They have no complexity but are
not like atomic propositions in essential ways, hence the
different name.

Consider a geometrical space, which defines a domain
in which to understand things such as, for example,
events. Such a space has points that are given context
through, for example, the topology of the space, which
determines which points are near eachother. Similarly, we
say a logical space provides a context which determines
which basic propositions are dependent on eachother.
A logical space provides the conditions for inference
between basic propositions, much like how geometrical
space provides the conditions for movement between
points. As two points in geometrical space can be consid-
ered near eachother only if they live in the same space,
two basic propositions can be considered dependent only
if they live in the same logical space.

We say that a logical space determines the (non-
linguistic) meaning of its basic propositions1. We say
basic propositions can have meanings (given by the
logical space it is situated in) as opposed to a standard
conception where propositions are meanings.

This notion of meaning is pragmatic in character. Two
sets of basic propositions that have the same intra-set
conditions for deductive inference and no dependencies
that leave the sets are considered the same; there is
nothing else that is considered to distinguish them.

A geometrical space cannot have two topologies.
Similarly, a logical space cannot have two different webs
of dependencies. Each possible web of dependencies

1From now on meaning refers to this understanding of non-linguistic
meaning unless stated otherwise.
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requires a new logical space, i.e., there is more than
one logical space and deductive or inductive inference
can occur only inside one and cannot occur between them.

Every hypothesis is associated with a logical space:
hypotheses determine the meaning of their basic proposi-
tions.

A proposition living in one space cannot be reduced
to propositions living in another. This is why basic
propositions are not atomic.

A proposition can have only one meaning. For exam-
ple, consider a proposition within the hypothesis of (a
version of) Newtonian Gravity. We say such a proposition
cannot be within (a version of) General Relativity.

In a formal language, propositions associated with
all sentences of the language are generally taken to be
simultaneously meaningful. This is not possible unless all
of these propositions have meanings due to a single hy-
pothesis. But there are many hypotheses. Thus a formal
language as standardly considered cannot be universal
and thus is inadequate to our needs. For example, there
is no such thing as the conjunction of two propositions
from different hypotheses. Consequently, we must alter
the relationship between sentences of a language and
propositions. Namely, an utterance/inscription/sentence
is not considered to automatically be associated with a
proposition; it must first be interpreted.

Definition: Interpretation is a mental act of as-
signing meaning by associating the idea2 of a
meaningful proposition with an instance of an utter-
ance/inscription/sentence3. An interpreted proposition
is one imagined in the context of acting as if some
hypothesis were true.

2I do not provide any sophisticated notion of what an idea or mental
act may be. My focus is on logic and decision theory; the definition of
notions like interpretation is to be used as an informal guide to how we
are to understand the relationships between logic, mind and language. It
is a contention of mine that a precise description of mind is unnecessary
for our purposes.

3We do not need this association to be perfect, even in principle.

In the analytic tradition, one defines an abstract
substitute to the above notion of interpretation capable
of mapping meanings with sentences: the idea being that
there is some aspect of a sentence/proposition that is
independent of us that, when analysed, can identify, or
at least constrain meaning, namely its form. Our notion
of interpretation does not compel us to use this abstract
substitute for meaning association. Moreover, the use of
form artificially constrains us. Thus we shall define the
theory such that propositions do not have form.

Propositions not having form is a result of the view of
the role of language in the theory. A contrasting view
influenced by the likes of Frege, Russell, Wittgenstein
in the Tractatus and others considers language in terms
of its capacity to represent the world. The idea being
that there are features such as the form and content of
a sentence/proposition/statement that provide this repre-
sentation and this representation is somehow reflected
in aspects of reality–perhaps for example certain terms
refer to things in the world. I contend that any such direct
reflection is misguided; that language–even in its most
idealised, regimented form–is a product of the reciever of
a message and their understanding of the intentions of the
author. There is no necessary connection between reality
and the structure of the message in terms of things like
form and hence no necessary connection between form
and what is supposedly being expressed. Any connection
is contingent on the receiver and author of the message.

This is not to say that some type of representation
cannot be achieved, at least to some limited extent, only
that it is contingent upon the interpreter.

One aspect of a message that is not dependent upon
the author and receiver is the possibility of its individu-
ation. This is reflected in the individuality of the basic
propositions. Other aspects of the basic propositions are
described in the next section.

1.2 Formal interpretation
Instead of direct expression of a proposition that we
interpret upon analysis, consider that we can instead
express interpretation itself.
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Definition: Formal interpretation is expression of
meaning assignment. This is not to be associated with an
actual act of interpretation.

Definition: We shall use the term ‘prop’ as a device to
replace expressions usually associated with propositions.
Props are not interpreted–they are not propositions.
Rather, they will be used for formal interpretation.

When formally interpreting basic propositions, we
shall use basic props, expressed using lower case letters
such as ‘a’ and ‘b’. We shall define expression of nega-
tion, conjunction and disjunction with props: ab expresses
‘a and b’, a+ b expresses (inclusive) ‘a or b’ and a ex-
presses ‘not a’. Formally this has some similarities with
Boolean algebra with the basic operations of negation,
conjunction and disjunction. Using these basic operations
we can form sentences with props, such as a+ bc. For-
mal rules we take from Boolean algebra are associativ-
ity, commutativity, distributivity and idempotence of con-
junction and disjunction, and duality. We also have two
new rules: for any props a and b,

a(b+b) = a, and = b+b. (1)

In this second rule, the blank space ‘ ’ counts as
a prop. A difference to Boolean algebra is that props
are not variables and there is no expression of truth values.

Definition: Meaning of a basic proposition is given
by its logical space when no data is given. Often we’ll
say the logical space providing meaning of a basic
proposition makes up a picture of the basic proposition.

Definition: We can express logical spaces with sen-
tences. For example, ab+ ab expresses a logical space.
The prop a is not associated with a proposition, but a sit-
uated in the space ab+ ab is. When referring to a basic
proposition, we express this situatedness using ‘◦’ after
a basic prop and before a sentence expressing a logical

space. For example, we can write ‘a◦ab+ab’. Sentences
of this form are used when talking about propositions.
For example, we can say ‘the proposition a◦ab+ab has
meaning ab+ab.’

Definition: When expressing the situatedness of a
proposition in a logical space that may or may not be
the meaning of the proposition, we use ‘|’ instead of ‘◦’.
These kinds of expression are defined as arguments, the
sentence to the right of the | called the premise and the
sentence to the left called the conclusion.

A central property of an argument is its validity. Proba-
bilities are measures of degrees of validity of an argument.

Definition: The premise of an argument provides
conditions necessary for making a valid argument with
various basic props as the conclusion. For any particular
proposition, these are its validity conditions.

It is of central importance to understand that validity
conditions are not truth conditions. There are two reasons
for the difference. Firstly, there is no notion of truth in
the theory.

Definition: To understand the second point let’s intro-
duce the notion of a prop function which is analogous
to a truth function but in this theory is used merely
as a notational device for concision of expression of
sentences of basic props. We use upper case letters for
prop functions. What is analogous to truth conditions
of a prop function X can be expressed by for example,
X = ab + a. They are conditions sufficient to make a
valid argument with ‘X’ as its conclusion. This is as
opposed to X expressing–if X expresses a logical space
under consideration–conditions necessary to validly infer
a ◦ ab + a, i.e., a ◦ ab + a is validly inferrable only if
b ◦ ab+ a is also validly inferrable but b ◦ ab+ a is not
a sufficient assumption to validly infer a ◦ ab + a. X
expresses validity conditions for a ◦ ab + a while the
‘truth conditions’ for X can be expressed by ab+ab.
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Rule: Basic props are not prop functions. For example,
it is nonsense to write a = b+c, this being akin to writing
1 = 2 . Thus there is nothing analogous to the ‘truth
conditions’ for a basic prop. The ‘truth conditions’ of a
prop function can be thought of as provided by the basic
props that ‘make it up’. In contrast, validity conditions of
a basic proposition are provided by the configuration of
basic propositions it is surrounded by in its logical space.

In natural language, we can characterise partial mean-
ing of a proposition interpreted from the statement ‘the
ball is red’ with another statement like ‘if the ball is red,
then it is not blue and vice versa.’

One can translate an ‘argument’ made in natural
language or a more formal one into an argument as
defined in the theory: when presented in an argu-
ment, the sentences of an ‘argument’–whether in a nat-
ural or formal language–will be sandwiched between
p . . .q. For example, we could have pthe ball is redq and
pthe ball is not blueq. These denote signs assigned to ei-
ther basic props or prop functions. Most propositions of
interest will be basic propositions or conjunctions of ba-
sic propositions. The basic props in the argument are for-
mally interpreted by including in the premise a picture
which can be represented by a prop function such as X .
An example of an ‘argument’ translated into an argument
with the sentences formally interpreted is the following:

pthe ball is not blueq |pthe ball is redqX .

Note that (a) this translation process will be generalised
in a subsequent section, and (b) one is in principle free
to choose whatever picture–X–one wants; the meaning of
the basic propositions is not constrained by the form of
the sentences being translated (even though the form in-
tended by the author of a sentence is generally suggestive
of the intended meaning of the sentence).

The author of a sentence does not need to intend
a precise meaning. Interpretation should be seen as
a creative act with no unique answer. The multiple
possible interpretations perhaps sharing a conceptual
affinity (though a concrete explanation of this notion is
beyond the scope of these papers). In some situations
it is possible that all interpretations are a bastardisation

of the intuition that was intended; with an appropriately
general expected utility, all interpretations will contribute
and the resulting appropriate acts may be due to each
interpretation equally so that each interpretation is only
one ingredient in the full intuition, making the intuition
uninterpretable.

I bring these things up because calculation of proba-
bilities requires formal interpretation and there is always
room for disagreement as to such a choice and moreover
there may even be cases where there is no one good
choice of interpretation. Interpretations used to analyse a
situation of interest will generally be much more simple
than the intuitions we use for said interpretations. We
can only hope that our intuitions are a) interpretable, b)
that our interpretations are complex enough to model the
features of our intuitions we are interested in exploring
and c) that more complex interpretations that are closer
to our intuitions are approximated by these simpler
ones. Even the simplest situations can require much
introspection into our intuitions.

1.3 Identity and prop functions
Theories of logical probabilities generally require ways
to determine the values of said probabilities. Generally,
(at least some) values are argued to be determinable by
symmetries. It is also common enough to counter-argue
(Franklin, 2001; van Fraassen, 1989; Urbach and How-
son, 1993; Earman, 1992) that one may make multiple
symmetry arguments of a given situation which give in-
consistent probability values. I claim that such problems
can be dissolved by this theory by a proper accounting of
the identities of basic propositions leading to an elucida-
tion of what counts as a legitimate symmetry argument
and when one makes two symmetry arguments, whether
the probabilities that are determined are probabilities of
the same propositions. We go through the principles of
such a proper accounting in this subsection.

The signs used in an argument denoting basic props are
arbitrarily chosen. The arguments themselves (and more
specifically their degree of validity) should be indepen-
dent of this choice. To express this independence, we shall
start by expressing the choice of sign assignment using
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subscripts with signs separated by commas:

a |a+ba,b.

We will generally drop this notation if sign assignation
is unambiguous enough or we have intentionally only
partially defined the argument such that the argument
itself is ambiguous.

We previously noted that it is nonsense to write
‘a = b+ c’. We can however express equality of basic
props, i.e., ‘a = b’. These expressions of equality are
expressions about the language we are using, not about
props or propositions themselves, i.e., a = b expresses
how one should use the signs ‘a’ and ‘b’. This is fun-
damentally distinct from expressing co-inferrability–that
a can be validly inferred given b and vice versa, i.e.,
ab+ab.

For example, a = b may be expressed outside of a par-
tially defined argument prompting a more different defi-
nition:

a = b, c |ac+bd⇒ c |ac+ada,c,d .

Note that in this example, the argument is changed as the
assumptions represent a different picture. Compare the
use of a = b to expression of meaning ab+ab that creates
co-inferrability when assumed. This is expressed in an
argument:

c |(ac+bd)(ab+ab)a,b,c,d = c |abc+abda,b,c,d .

In this way we understand the identity of basic propo-
sitions as determined prior to an argument. Basic
propositions provide the building blocks of meaning; one
cannot infer that two propositions are the same, only
perhaps that they are co-inferrable.

Relabelling Symmetry: An argument is to be consid-
ered an expression of structure of validity conditions or
geometry of logical spaces. It is validity conditions mod-
ulo sign assignment. This will be reflected in a redun-
dancy of expression of our arguments, e.g., the arguments
p | pq+ pqp,q and r |rs+ rsr,s are equal:

p | pq+ pqp,q = r |rs+ rsr,s.

An argument is symmetric upon a relabelling of its basic
props.

Despite this symmetry, we may still distinguish pq+ pq
and rs+ rs within an argument, i.e.,

p | pq+ pq+ rs+ rsp,q,r,s 6= p | pq+ pq+ pq+ pqp,q.

Any relabelling step such as r → p must take one label
to an unused one. If we want to do a two way relabelling
r ↔ p where r and p are currently being used while
m and n aren’t, this should be construed as four sep-
arate relabellings such as r→ n, p→m, n→ p and m→ r.

Swapping Symmetry: We also have a swapping sym-
metry for arguments. Basic propositions and their nega-
tions are defined only as relative to eachother4; the nega-
tion of a basic proposition has exactly the same oppor-
tunity for validity conditions as a basic proposition and
should be seen as a kind of basic proposition itself. Thus,
to choose to use p in an argument as opposed to p does not
change the expression of structure of validity conditions.
Thus we have symmetries such that replacing p with p
in both the premises and conclusions does not affect the
argument. For example

p | pq+ pqp,q = p | pq+ pqp,q.

Rule: These symmetries do not apply to prop functions.

Prop functions can be used within arguments. For ex-
ample, we may define prop functions X + a+b and Y + c
such that we may express the argument a |(a+b)c as

a |XYa,b,c.

We must however be careful about sign assignation. If we
write

a |XY,

this argument is not fully defined as it may be interpreted
with multiple incompatible sign assignations. For exam-
ple,

a |XYX ,Y 6= a |XYa,b,c.

4See propositions 4.063 and 4.0641 in (Wittgenstein, 1994) for sim-
ilar thoughts.
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If an argument with prop functions is given without
an assignment of symbols, i.e., a |XY , then it is either
ambiguous or should be construed with a sign assignment
using lower case letters taken from the definitions of
the prop functions if possible, i.e., a |XYa,b,c where
X = a+ b and Y = c. If upper case letters are used for
sign assignment–as in the case of argument a |XYX ,Y –then
in the argument, the upper case letters denote basic props,
not prop functions, despite our conventions.

Prop functions may also be defined recursively. For
example we may define for n ≥ 1, Xn = Xn−1 + an and
X1 = a1. We shall however set implicit limits to pos-
sible definitions. To do this we first need some definitions.

Definition: Full disjunctive normal form of a prop
is expressed as a disjunction of terms where each term
is a conjunction of some m props (in our case basic
props) taken from the one finite set, say {a1, . . . ,am}.
For each term, some of the basic props are negated. No
two terms are the same. For example, a full disjunctive
normal form of a+ b is ab+ ab+ ab. The set of basic
props one may use is not unique. Consequently, full
disjunctive normal form is also not unique; another
way to express a + b in disjunctive normal form is by
introducing a tautology such as (ab+ ab+ ab)(c+ c) =
abc+ abc+ abc+ abc+ abc+ abc. We define minimal
full disjunctive normal form as the form that requires the
least number of basic props to express. The minimal full
disjunctive normal form of a+b is ab+ab+ab.

Minimal full disjunctive normal form is useful because
it gives us a way to say whether two sentences express the
same thing or not (assuming consistent sign assignation).

Definition: We define the scope of a prop function
as the set of basic props used to express the sentence
the prop function is equal to in minimal full disjunctive
normal form (with sign assignment implicit). We write
the scope of a prop function X as scope(X).

Suppose scope(X) = {a,b}. We can write X = X [a,b ].
Or if scope(X) = {ai|i}, we can write X = X [ai : i ].

A prop function is considered well defined only if its
scope is of finite cardinality, i.e., one may always express
it as a string of conjunctions and disjunctions of basic
props of finite length.

An argument that is expressed with prop functions is
well defined only if its prop functions are well defined
with unambiguous sign assignation. By insisting on con-
sidering only well defined arguments, we implicitly define
limits on possible prop functions. For example, the prop
function

X =
∞

∑
i=1

an

is not well defined and hence is not applicable.

2 Abstractions and a problem with
truth conditions

Consider the problem of counterfactual conditionals. I
argue that the problem can be generalised to a problem
with the use of truth conditions. This general problem
can be overcome with notions of abstractions and the
process of abstraction.

The problem is generally understood in the con-
text of more traditional notions of logic, so for the
moment let’s consider a logic where there are truth
bearers–say, sentences–that have truth conditions, there
are some sentences where it seems like they should
have some fairly reasonable truth conditions but upon
further consideration, said truth conditions seem to
disagree with other strong intuitions. Namely, consider
a sentence A → B that seems to have truth conditions
of material implication for the sentences A and B.
Moreover, let’s consider the situation where A or ‘not
A’ is true. Then by the truth conditions of material
implication, both A → B and A → B are true. But
suppose for example A = "Dave lets go of the pen" and
B = "the pen falls onto the floor". Intuitively, it seems
that one should not infer both A→ B and A→ B (given
appropriate background assumptions such as "Dave was
holding the pen in the air"). Something in common with
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sentences that have this problem is that the sentences are
not just asserting the truth conditions hold but also that
there is a connection that pertains between the antecedent
and the consequent. In this case the connection is causal.

I argue that the problem can be understood as not
limited to cases of counterfactual conditionals. Suppose
that instead of the above situation, Dave lets go of the
pen and it falls on the floor. The truth conditions of
A → B are satisfied but I argue that one can still not
necessarily infer that a connection pertains between A
and B; it is in principle possible that B is only incidentally
true or that it is true for some reason other than there
being a connection between A and B. Thus the problem
persists even in the case where the antecedent is true.
Note that it is more realistic to consider ‘hypotheses’
of greater scope than A → B; one instance of A and
B being true isn’t going to be enough to satisfy the
truth conditions of a universal ‘hypothesis’ of a causal
connection between events of a certain type. However, no
matter the ‘hypothesis’, the ‘argument’ still applies; sup-
pose the universe is clockwork and describable at every
instance in time by some state. Then suppose our data
specifies the state of the universe is for all time. It is still
possible that the data is incidentally true rather than due
to the causal connections between states at different times.

For propositions pertaining to connections between
other propositions, the heart of the problem is the use of
truth conditions to guide the inductive/deductive inferra-
bility. For any ‘hypothesis’ as a proposition with truth
conditions, there always exists some data D within the
purview of the truth conditions whereby

D = HD,

i.e., there always exists data sufficient to deduce the
hypothesis, independent of any other background
assumptions. I assert that there must always exist
background assumptions allowing for the possibility
that no connections pertain between the propositions
in D, i.e., for any hypothesis there must exist possible
background assumptions where no amount of data will
allow for deductive inference of the hypothesis. We have
an inconsistency. I assert the problem is due to the use of
truth conditions for hypotheses.

I contend that this general problem of truth condi-
tions can be understood with the notion of hypotheses
considered in section (1.1): there are some sentences
that can be interpreted as narrowing down a set of
predetermined possibilities (and hence has a kind of
‘truth conditions’) and there are others (associated with
hypotheses) that are to be associated with defining a set
of possibilities or more generally, defining connections
between a set of propositions. A connection is reflected
in logical dependencies between basic propositions; for
example, basic propositions associated with possibilities
are dependent on one another–if something is red then
it is not blue, if something is heavy then it is not light
etc.–and hence possibility–in particular, modality–is a
type of connection.

From this understanding of hypotheses, it follows that
no hypothesis can have truth conditions.

Hypotheses are not specific to scientific ones. A
hypothesis can be mathematical, logical, metaphysical,
linguistic or any category one wishes to assign them.

When we think of the conditions of material implica-
tion associated with A→ B, we are imagining the case
where if we accept the hypothesis associated with A→ B,
then, the conditions of material implication hold. But if
we are in a situation of uncertainty about A → B, then
there’s no reason for the conditions to hold. This gives us
the freedom to overcome the problem.

Let’s consider counterfactual conditionals in the the-
ory being proposed in this paper as opposed to the kind
of logic considered above. There are no truth conditions
in the theory being presented here so there is no equiva-
lent question to ‘what are the truth conditions of A→ B?’
but we can ask about the nature of inductive inference
of hypotheses and in particular what validity conditions
are to be associated with hypotheses: a hypothesis con-
tains a picture that determines the validity conditions of
its propositions. A simple and instructive interpretation
of the sentence A→ B will associate the sentence with a
picture giving validity conditions of material implication.
These conditions, however, are the validity conditions of
the propositions within the picture, not the validity condi-
tions of the picture itself. Moreover, it does not turn out
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to be the validity conditions of the picture that concern
us when considering whether data provides evidence for
or against a hypothesis. To distinguish between propo-
sitions merely narrowing down possibilities and proposi-
tions concerning defining connections, the former is to be
associated with a non-basic proposition while the latter is
to be associated with an abstraction:

Definition: An abstraction of a picture is a proposition
that induces the validity conditions making up the picture,
upon assumption of the abstraction. Abstractions are
constrained to be only basic propositions or conjunctions
of them. In the latter case, we say the abstraction is a
compound of abstractions. Note that an abstraction of
a picture is understood only as relative to some logical
space (different to the space of the picture).

As an example, suppose we have assumed a space

X = Z{a(bc+bc)+abc},

where scope(Z) does not contain a, b or c. Consider a◦X
as a possible abstraction. If we now assume a ◦ X , we
change the logical space of the basic propositions as we
now have

aX = Za(bc+bc).

We say bc + bc denotes the picture associated with or
induced by abstraction a ◦ X . Note the association is
dependent on the logical space one starts from, X.

Definition: A hypothesis consists of a picture and an
associated abstraction.

It is the validity conditions of the abstraction that are
of interest when considering whether data gives evidence
for or against a hypothesis. The precise nature of how
this is the case is for later sections.

Suppose that the abstraction of A → B can be asso-
ciated with c ◦Y and the picture of A → B associated
with Z = ab + ab + ab where A = a and B = b. Our
logical space is given by Y = cZ + cQ with some prop
function Q. Now consider the situation where we have
aY . It is not necessary from this logical space that the

abstraction of A→ B, c ◦Y be inferrable,i.e., in the case
of a counterfactual conditional (and more generally), the
picture may be inferrable but that does not imply that the
abstraction is, and it is the inferrability of the abstraction
that is of concern when considering whether the data
is for or against the hypothesis. Thus the problem of
counterfactual conditionals and in a similar matter the
more general problem of truth conditions is dissolved.

Our notion of a critical distinction between hypotheses
and pictures has some similarities to Goodman’s (Good-
man, 1983) notion of a ‘hypothesis’ being lawlike as
opposed to merely accidental.

2.1 Substance

The metaphysics of the theory is intentionally extremely
underdefined. This is for the sake of generality. There is
however some positing that a world exists and that there
is a relationship between the objects of the theory and
the world. These are ’assumptions’ made by the theory
and not assumptions made in the theory. We use these
’assumptions’ to motivate certain choices, particularly
our understanding of abstractions.

Propositions and validity conditions are not the world
they are used to reflect.

Definition: The world is substance. It is substance that
governs the efficacy of the use of various pictures when
making decisions. It is assumed to exist such that there is
logical structure to the world.

A basic proposition is a pointer used–if used
effectively–to point toward substance. Maximally
specific outcomes of a hypothesis are an example of
pointing toward substance. But another way of pointing
toward substance is to point toward pictures. For ex-
ample, a proposition pertaining to a causal connection
between events is pointing towards substance because
causal connection is substance, and hence the proposition
is basic. This is a way to understand abstractions: they
are the basic propositions (or are made up of them in
conjunction) that point toward pictures.
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Substance is transcendental and effable only through
pictures. To characterise substance more–for example,
to say that there are facts, or that there are objects with
properties–is to unnecessarily constrain the theory being
presented.

2.2 Abstraction and the web of pictures
I expect (see part I) that inductive inference is insufficient
for making decisions from assumptions weak enough
to be ideal for our collective search to be free from
(unconscious) illusion. If this is so, another mechanism
other than inductive inference is required to license us to
act as if from reasonably strong assumptions. We saw in
our schema for a decision theory an example mechanism
that fits these requirements. Instead of a hypothesis
being inductively inferred, we introduce the notion
that a picture may have various levels of desiderative
significance–the greatest significance being the situation
where one should act as if one is under the assumption of
the picture in question. Measured by the relative sizes of
the weights of the subexpected utilities, this desiderative
significance is determined by a few factors that shall be
explored in a later paper. One factor of relevance here is
the probabilities of the various abstractions of the picture
relative to various other pictures. So probabilities (which
are the concern of inductive inference) contribute to
desiderative significance but not solely. The mechanism
of non-inductive inference will be called abstraction or
abstractive inference.

The motivations for the notion of abstraction are sim-
ilar to the ones for abduction (Fann, 1970) or inference
to the best explanation (IBE). There is a fundamental
difference between IBE and abstraction, hence our use of
a different name.

We may consider multiple possible abstractions at
once. Suppose we have assumptions W . Define

B + {a1, . . . ,an} ⊂ scope(W )

as some set of basic props. We say B defines a set of base
props

{Bi | i = 1, . . . ,2n},

where each Bi is a conjunction of props constructed from
all elements of B where some are chosen to be negated.
The above set is defined as the set of all Bi for which one
may do this. We can decompose W with these base props:

W = Z
{
∑

j
B jX j

}
,

where the sum is determined by the B j present in W when
written in minimal full disjunctive normal form. The
factor Z is chosen as the unique factor of maximal scope
that can be made from W written in minimal form, i.e., it
contains everything independent to props like Bi.

We call the conjunctions of abstractions compound
abstractions. A proposition Bi ◦W , considered as a
compound abstraction has an associated picture Xi.

Note that W may be decomposed in different ways
depending on the choice of B. The choice of B depends
on the abstraction one is interested in. If one is interested
in abstraction C ◦W , then one chooses a B where C ∈ B.
Different abstractions need not utilise elements of the
same B.

In the situation where two possible abstractions–a1 ◦W
and a2 ◦W–are independent in W , their pictures are
unaffected by the assumption of the other. If this is the
case, we say the two abstractions are commensurable.
Otherwise they are incommensurable. This is our version
of taxonomic incommensurability (Kuhn, 1989); the
conceptual incompatibility of competing abstractions.

Incommensurability is not the same as inconsistency;
two abstractions can be consistent in that they all may
simultaneously be able to be assumed but be incommen-
surable if assuming one abstraction changes the picture
induced by assuming the other.

Consider the case where the abstraction a1 ◦W and
compound abstraction a1a2 ◦W are both of desiderative
significance relative to W . Suppose that a2 is in the scope
of the picture corresponding to a1, i.e., a1 ◦W induces
meaning for a2 ◦W . As pictures a1W and a1a2W are both
of desiderative significance, we may construe the picture
of a1a2 ◦W as the result of first abstracting a1 ◦W and
then abstracting a2 ◦ a1W . We may describe a1 ◦W as a
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meta-abstraction of a2 ◦W ; abstracting a1 ◦W induces
meaning of possible abstraction a2 ◦W .

Meta-abstraction is a story we can apply which is
useful mainly in how it helps us to understand how think
of relationships between propositions we are interested
in; there is a hierarchy of abstraction to our hypotheses.
A picture associated with a statement ‘the apple is red’
may be induced by a meta-abstraction ‘the apple has
a colour’ which may occur in the picture induced by
a meta-abstraction associated with many statements
including ‘colour is a property’.

Hierarchies of abstraction provide context for pictures
that differentiate and locate pictures that, considered
without context, give the same validity conditional
structure and hence are the same, i.e., suppose we have
pictures of statements ‘if x is an apple, then it is a
fruit’ and ‘if x is a raven, then it is black’ with validity
conditions of component basic propositions being those
of material implication. The difference between the
pictures is not in their validity conditional structure but
rather the context of meta-abstractions they are embedded
in with desideratively significant pictures.

Definition: We shall say a theory constitutes several
pictures linked by abstractions at multiple levels. In this
way a theory is not just a hypothesis but also context for
a hypothesis. A theory has a corresponding hypothesis
which constitutes a compound abstraction made up of
the abstractions of the theory and the induced picture
of the compound abstraction. When considering the
desiderative significance of a theory we are generally
interested in the picture of the hypothesis made from
the theory. However, the desiderative significance of the
various pictures of the theory from multiple levels are
also worth treating separately. For example, it may be that
the picture of a hypothesis is to be considered significant
but the context can change in significance by a change in
meta-abstraction. A particular example is our theory of
abstraction which will implicitly use meta-abstractions
defining meaning of numbers which give meaning to
propositions expressing the value of a probability. If one
invents and uses a new theory of numbers, the context of

our theory will change but the picture of our hypothesis
may or may not change.

At some point there may be a limit to the height of the
hierarchy of abstraction. There may be some abstractions
that cannot be construed as having meaning induced by
other desideratively significant abstractions. These most
meta of abstractions can appear almost impossible to
describe because there are no statements of desiderative
significance one can assert about them.

If the range of desideratively significant logical spaces
associated with abstractions near the top of the hierarchy
is almost universal, we can be fooled into thinking that
some of these propositions are ’necessarily true’ in some
way; there will be almost no good pictures of the world
without them.

Examples of meta-abstractions include: propositions
of rules of inference in a formal system, propositions of
equality of other propositions, propositions of mathe-
matics compared to propositions of theories expressed
mathematically, and propositions in more abstract fields
of mathematics versus ones from less abstract fields such
as category theory versus group theory.

The picture of an abstraction will generally contain
more basic propositions than those directly referred to in
an interpreted sentence. For example, a picture of ’All
emeralds are green’ may include material implication
for a number of objects X = ∏

n
i=1(eigi + eigi + eigi)

5

but also includes some Q which determines the spaces
of possible objects and possible colours and perhaps
more complicated dependencies lay out what it means for
objects to be emeralds or green etc. The resulting picture
being given by XQ. We shall call X and Q subpictures.
The subpicture prop function Q can be common to a
space of hypotheses where XQ is the picture of only one,
i.e., our effective assumptions could be W = ∑ j A jX jQ6

where A j = the abstraction prop function for picture X jQ.
The use of a common Q is one approach to constructing
pictures W of meta-abstractions.

5where ∏
n
i=1 denotes conjunctions of props label variable by i with

values between 1 and n.
6where ∑ j denotes disjunctions of props over a range of values of the

label variable j
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3 Probability
Probabilities in Abstraction Theory are understood to
be degrees of validity. As arguments are understood
to be expressions of validity conditional structure,
probabilities are defined as functions of arguments.
The probability calculus is very similar to standard
approaches except for two important differences: one,
probabilities are uniquely determined and two, they
are defined on only well defined prop functions, that is
prop functions of finite scope. One consequence being
that probabilities cannot be countably additive. The
restriction to finite scope will not limit the power of the
theory compared to definitions of probability as measures
on infinite sets; probabilities will be generalised but
the existence and properties of a generalised probabil-
ity will not be presupposed and will depend circumstance.

Suppose we have prop functions X , Y and Z of finite
scope. From basic desiderata (Cox, 1946) we have the
product and sum rules,

Product rule: P(XY |Z) = P(X |Z)P(Y |XZ)

= P(Y |Z)P(X |Y Z)

Sum rule: P(X |Z)+P(X |Z) = 1,

from which we have a generalised sum rule

P(X +Y |Z) = P(X |Z)+P(Y |Z)−P(XY |Z).

All probabilities are conditional (Hájek, 2003); uncon-
ditional probabilities are merely ones conditioned the
tautology, e.g., P(X |) = P(X |a+a).

In section (1.3), arguments were defined to have certain
symmetries. Probabilities–being functions of arguments–
must be consistent with them:

Relabelling - Meaning of a basic proposition is given
by an assumed expression of meaning; it is extrinsic to the
basic proposition and independent of the sign associated
with it. Thus if we relabel the prop in an argument, we
don’t change the argument, i.e.,

a |a+ba,b = c |c+bc,b.

This symmetry must be reflected in the probabilities, i.e.,

P(a |a+b)a,b = P(c |c+b)c,b.

Swapping symmetry - Negations of basic propositions
are defined only relative to the basic proposition. Upon
making an argument, it is as legitimate to use a as a, i.e.,

a |a+ ca,c = a |a+ ca,c.

Thus our probabilities must also be symmetric under re-
placement of a basic prop with its negation in both the
premise and conclusion, i.e.,

P(a |a+ c)a,c = P(a |a+ c)a,c.

These symmetries are ways to impose the notion that in-
ductive inference depends on only validity conditional
structure. From these symmetries and the product and
sum rules we are lead to uniquely determined probabil-
ities: consider Y written in disjunctive normal form such
that there are n terms of conjunctions and in each term
there are m basic props or their negations. For example if
Y = ab+ ab+ ab then n = 3 and m = 2. One can show
(Hasse, 2014) that

P(Y |) = n2−m. (2)

Any well defined argument can be written in the form
Z |Y . The probability corresponding to such an argument
can always be reduced to a function of probabilities of the
form P(Y |), i.e.,

P(Z |Y ) = P(ZY |)
P(Y |)

. (3)

Thus any well defined probability–the probability of a
well defined argument–is uniquely given by equation (2).

Here is a general method of determining prob-
abilities P(Z |Y ): 1) Write Y and ZY in terms of
only basic props, e.g., Y = a + b, Z = a + c so
ZY = (a + c)(a + b) = a + ab + ac + cb. 2) Find
disjunctive normal forms for Y and ZY by introducing
new basic props into each term using the rule for all a
and b, a = a(b+ b). Keep doing this until each term has
the same scope, e.g., Y = a+ b = a(b+ b)+ b(a+ a) =
ab+ ab+ ab+ ab = ab+ ab+ ab. 3) Use equations (2)
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and (3).

Indifference between possibilities drops out of our ap-
proach (Hasse, 2014). Consider that we have r possibil-
ities7 a1,a2, . . . ,ar that are assumed to be exclusive and
exhaustive and nothing else. Let’s assign such an assump-
tion a prop function Ir. The first three non-trivial exam-
ples being

I2 = a1a2 +a1a2,

I3 = a1a2a3 +a1a2a3 +a1a2a3,

I4 = a1a2a3a4 +a1a2a3a4 +a1a2a3a4 +a1a2a3a4,

et cetera. If we consider ai where 1≤ i≤ r, then we have

P(ai | Ir) =
1
r
. (4)

This is only one set of possible versions of indifference.
For example, one could assume that the possibility space
has a range of sizes instead of just one. Spaces of ’infinite’
possibilities require a generalisation.

Definition: Instead of prop functions Z and Y we may
consider infinite sequences of prop functions (Zn)∞

n=1 and
(Y n)∞

n=1. We define an asymptotic probability as

p?(Z? |Y?)+ lim
n→∞

P(Zn |Y n),

where Z? = (Zn)∞
n=1 and Y? = (Y n)∞

n=1. Asymptotic prob-
abilities need not satisfy the rules of probability theory.
For example define

p?(AB? |C?)+ lim
n→∞

P(AnBn |Cn)

= lim
n→∞

P(An |Cn)P(Bn |AnCn),

p?(A? |C?)+ lim
n→∞

P(An |Cn),

p?(B? |AC?)+ lim
n→∞

P(Bn |AnCn).

A version of Bayes’ rule

pα(AB |C) = pα(A |C)pα(B |AC)

7Note here we are associating for example ai as a possible world
(with no metaphysics attached) as opposed to the common way where
something like a1a2 . . .an is considered a possible world (Carnap, 1947;
Gaifman and Snir, 1982).

exists only if the limits in p?(A? |C?) and p?(B? |AC?)
converge. Moreover, if the limit doesn’t converge, the
asymptotic probability doesn’t exist.

Instead of there being probabilities with pictures of infi-
nite scope, we have asymptotic probabilities with infinite
sequences of pictures with finite scope.

Definition: We call an infinite sequence of pictures
asymptotic pictures that provide asymptotic meaning.
This is not to imply that meanings of propositions in
asymptotic pictures converge–they don’t.

In a realistic asymptotic picture with possibilities given
by various Ir, the possibilities will have meaning addi-
tional to just being possibilities. For example maybe they
are possible positions of a particle at a certain point in
time in a universe with many particles; the additional
meaning/validity conditional structure then being logi-
cal dependencies between the particle’s position at this
time and the properties of all particles at all other times.
This will generally disrupt the permutation symmetry that
gives us indifference. Consider a picture with a (finite)
number of possibilities, each with their own meaning. The
probabilities of the possibilities can be modelled by a dif-
ferent picture Iq where the possibilities are identified with
subsets of the q new possibilities. Now consider an infi-
nite sequence of pictures and their model pictures where
the numbers of possibilities increase indefinitely. With
these we can get ’integrals over an infinite possibility
space’ without measure theory: suppose we have a sub-
picture In = In[b1, . . . ,bn] that provides a space of n possi-
bilities. We have abstractions ak where k= 1, . . . ,m(n)−1
which partition the n possibilities into m pieces of interest.
As n→ ∞ so does m(n)→ ∞. The subset associated with
ak is {bi | jn(k)+ 1 ≤ i ≤ jn(k+ 1)}, where the function
jn defines the borders between subsets. We associate ak
with it’s subset8 using a subpicture

Rn
k + ak

{
jn(k+1)

∑
i= jn(k)+1

bi

}
+ak

{
jn(k+1)

∑
i= jn(k)+1

bi

}
.

8Note the use of abstractions here isn’t necessary; one could also use

∑
jn(k+1)
i= jn(k)+1 bi instead of ak .
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One can show that

P(ak |Xn ∏
m(n)−1
l=1 Rn

l ) =
jn(k+1)− jn(k)

n
.

We may associate a parameter y with abstraction ak for
each step in the sequence, defining a coordinate system
for the space. In this way we can say for each step in
the sequence, ak is associated with the coordinate inter-
val [x(k,n),x(k + 1,n)), i.e., for step n, px(k,n) ≤ y <
x(k+ 1,n)q + ak. Assuming convergence, we can define
an ‘integral’ of some appropriate function f with the prob-
abilities:

∫ 1

0
d p f + lim

n→∞

m(n)−1

∑
k=1

f (x(k,n))×

P(px(k,n)≤ y < x(k+1,n)q |Xn ∏
m(n)−1
l=1 Rn

l )

= lim
n→∞

m(n)−1

∑
k=1

f (x(k,n))
jn(k+1)− jn(k)

n
.

The choice of parameter intervals x(k,n) is relatively ar-
bitrary. However, there may be logical dependencies be-
tween the possibilities they point to and others which
one wants to assign another parameter. For example,
two parameters may be related by an equation–pictures
in the asymptotic picture potentially only approximating
the logical dependencies of the equation, with better ap-
proximation given by subsequent pictures. The equation
relating the two parameters then makes some choices of
parameter intervals better than others.

3.1 Bayes’ theorem with hypothesis spaces
A version of Bayes’ theorem can be proved. To do this
we’ll prove another theorem first:

Theorem (1): For any two prop functions with scopes
that do not overlap Y = Y [ai : i ] and Z = Z[b j : j ],
P(Y |Z) = P(Y |), i.e., they are independent if one has no
other assumptions.

Proof: Decompose Y and Z into their minimal dis-
junctive normal forms such that we can write Y = ∑ kHk
and Z = ∑ lGl where the prop functions Hk and Gl are the
terms of the minimal disjunctive normal forms of their re-
spective prop functions Y and Z. Let |scope(Y )| = y and

|scope(Z)|= z. We have

P(Y |Z) = P(Y |∑ lGl)

= P(Y ∑uGu |∑ lGl)

= ∑
u

P(Y Gu |∑ lGl)

= ∑
u

P(Gu |∑ lGl)P(Y |Gu)

= ∑
u

P(Gu |)
P(∑ lGl |)

P(Y Gu |)
P(Gu |)

= ∑
u

P(Gu |)
P(∑ lGl |)

∑ kP(HkGu |)
P(Gu |)

= ∑
u

P(Gu |)
P(∑ lGl |)

∑ k2−(y+z)

2−z

= ∑
u

P(Gu |)
P(∑ lGl |)

P(Y |)

= P(Y |).

Theorem (2): Consider a set of base props {Bi|i} to be
used for compound abstractions. Suppose our assump-
tions are W = ∑ jB jX j where pictures Xi have a shared
subpicture Q such that for all i, Xi = QX̃i. Through ju-
dicious use of the product and sum rules and using W =
W ∑ j B j, one can find that the probability of a compound
abstraction Bi given DW is given by

P(Bi |DW ) =
P(X̃i |Q)P(D | X̃iQ)

∑ jP(X̃ j |Q)P(D | X̃ jQ)
. (5)

Proof:

P(Bi |DW ) =
P(BiX̃i |DQ)

∑ jP(B jX̃ j |DQ)

=
P(X̃i |DQ)P(Bi | X̃iDQ)

∑ jP(X̃ j |DQ)P(B j | X̃ jDQ)

=
P(X̃i |DQ)P(Bi |)

∑ jP(X̃ j |DQ)P(B j |)

=
P(X̃i |DQ)

∑ jP(X̃ j |DQ)

=
P(X̃i |Q)P(D | X̃iQ)

∑ jP(X̃ j |Q)P(D | X̃ jQ)
,
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where we used P(Bi |) = P(B j |) for all j.

Compare equation (5) to a standard version of bayes
theorem where one considers there to be a space of pos-
sible hypotheses. We’ll use lower case p for probabilities
not defined in our system. Let {Hi|i = 1, . . . , t} be a set
of exclusive and exhaustive ‘hypotheses’, D is some data
and Q is some background ’knowledge’. We have

p(Hi |DQ) =
p(Hi |Q)p(D |HiQ)

∑ j p(H j |Q)p(D |H jQ)
. (6)

The most notable difference is that for us, a hypothesis
consists of both an abstraction and a picture which play
different roles in our probabilities. In particular, the
left hand side of equation (5) is the probability of an
abstraction as opposed to the probability of a picture.
Consider again how we solved the problems of material
implication; the picture of a statement like A→ B may be
deductively inferrable given the non-occurance of event
A but the abstraction of the statement does not need to
be. We are generally interested in the inferrability of the
abstraction, not the picture; given the non-occurance of
event A, the picture of A→ B will have probability 1 but
the abstraction generally won’t.

Another difference is that the exclusivity and exhaus-
tivity of the hypotheses {Hi|i = 1, . . . , t} is predefined and
not represented in the assumptions of the arguments. We
may reasonably worry where this exclusivity and exhaus-
tivity comes from. For us, the exclusivity and exhaustivity
is explained as a natural outgrowth of our understanding
of abstraction and is not related to the exclusivity or ex-
haustivity of the pictures. Abstractions anchor pictures to
a context of meaning given by assumptions W and it is
this context that provides exclusivity and exhaustivity.

3.2 An example calculation
Let’s run through a non-trivial calculation. As the syntax
is (deliberately) low level, calculation can be cumber-
some. We shall thus focus on an unrealistic, simple
example that shall have enough significant features to
make it potentially interesting.

Imagine that we have gathered all the birds in the world
into a single enormous aviary and we have observed

some of the birds and noted their species and colour.
Consider a hypothesis for the statement ‘being a raven
makes ravens black’9. Note this means we are not just
interested in whether all ravens are black but whether
ravenness causes blackness. We are interested in the
probability of the corresponding abstraction given various
kinds of potential data observed. The meta-picture in our
assumptions will be a picture of the statement ’the colour
of ravens may be caused by their genes’. It consists of a
space of d2 +1 abstractions and their pictures; d2 of them
correspond to ’all ravens are colour r’ where r is one of
d2 colours. The last one corresponds to there being no
substance relating ravenness and something’s colours.
We assume that there are n birds10 of d1 possible species
and d2 possible colours.

Consider the following basic propositions and associ-
ated statements: for various i and j we have

si
j = pbird j is of species iq , ci

j = pbird j is of colour iq ,

s1
j = pbird j is a ravenq and c1

j = pbird j is blackq .

We shall have subpictures X̃r of the statement ‘all ravens
are colour r’ and a common subpicture Q that represents
certain background assumptions.

Our subpictures X̃r will be defined as

X̃r +
n

∏
j=1

(s1
jc

r
j + s1

j),

where s1
jc

r
j + s1

j give the validity conditions of material
implication11, i.e., ‘if bird j is a raven, then it is colour r’.

9This example is directly related to the so called ravens paradox.
There are already a number of ’solutions’ (Fitelson and Hawthorne,
2010) and the goal of the above example is not to add to these but rather
to gain some experience with the calculus and the type of thinking in-
volved in coming up with pictures. We thus won’t concern ourselves
with the minutiae of the various ’solutions’ and how they compare with
our example.

10One generalisation that one can play with is having a set of hypothe-
ses for various values of n and being uncertain as to the correct value.

11More realistic pictures would model the causal mechanism between
genes and colour. For example, genes can produce a range a colours
(and patterns of colours) in the same species. There are possibly even
albino ravens. Our pictures could reflect this diversity of potentialities.
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Our subpicture Q will define a space of d1 possible
species and d2 possible colours for each bird12:

Q +
n

∏
k=1

Ik
d1
[si : i ]Ik

d2
[c j : j ],

where Ik
d1

and Ik
d2

are subpictures that define spaces of
size d1 and d2 respectively for bird k, e.g., Ik

2 [si : i ] =
s1

ks2
k + s1

ks2
k and Ik

3 [c j : j ] = c1
kc2

kc3
k + c1

kc2
kc3

k + c1
kc2

kc3
k .

Our first d2 pictures are given by X̃rQ and our last
picture is given by Q.

We shall consider two situations with our data13:

Da +
m

∏
l=1

s1
l c1

l and Db +
m

∏
l=1

s1
l ,

where Da corresponds to us discovering that the first m
birds are black ravens and Db corresponds to us discov-
ering that the first m birds are not ravens (their colour
and particular species will turn out to be irrelevant in this
situation). Note, for simplicity we have not represented
data corresponding to ‘there are m birds that are black
ravens’; this would be data where we haven’t been able
to distinguish the birds.

We shall use our version of Bayes’ theorem to calculate
the probabilities of the abstraction of interest. To do this
we shall calculate the probabilities of the subpictures X̃r

12Note that we are also assuming that every bird in the aviary could be
a raven and if we just assumed Q every bird would have the same prob-
ability of being a raven as any other species. Some potential changes
for the enthusiastic reader present themselves: one, we could assume
some information about the sizes of the populations of the individual
bird species. And two, we could expand the notion of species to all ob-
ject types and the notion of birds to all objects. We would then have to
be careful; suppose I observe the pen sitting on my desk to be a pen, re-
alistically, my effective assumptions would be such that the probability
of it being a raven is much lower than the probability of it being a pen.
This has a strong potential–depending on the rest of our assumptions–to
affect changes in the probability of our abstraction of interest. In the
limiting case where I assume that the pen is not a raven before I observe
it (and we’re using the same pictures and abstractions described in this
section), learning that it is a pen will not change the probability of the
abstraction of interest.

13We are choosing for simplicity data that are ’empirical’ but we could
also instead use ’sense data’ which from assumptions are used to infer
the ’empirical’ data.

given our data and Q. Consider first X̃1 and Da:

P(X̃1 |DaQ) = P(∏
n
i=1(s

1
i c1

i + s1
i ) |∏m

j=1s1
jc

1
j ∏

n
k=1Ik

d1
Ik
d2
)

=
m

∏
i=1

P(s1
i c1

i + s1
i |s1

i c1
i Ii

d1
Ii
d2
)

n

∏
j=m+1

P(s1
jc

1
j + s1

j | I
j

d1
I j
d2
)

=
n

∏
i=m+1

P(s1
i c1

i + s1
i | Ii

d1
Ii
d2
)

=
n

∏
i=m+1

{P(s1
i c1

i | Ii
d1

Ii
d2
)+P(s1

i | Ii
d1

Ii
d2
)}

=

(
1

d1d2
+1− 1

d1

)n−m

=

(
d1d2−d2 +1

d1d2

)n−m

,

where we made use of Theorem (1). Similarly, the prob-
abilities of the other pictures given both DaQ and DbQ
are

P(X̃ j 6=1 |DaQ) = 0 and

for all j, P(X̃ j |DbQ) =

(
d1d2−d2 +1

d1d2

)n−m

.

With meta-picture W = ∑
d2
i=1AiX̃1Q+Ad2+1Q, the proba-

bility for the abstraction for ’being a raven makes ravens
black’ is then given by

P(A1 |Da/bW ) =
P(X̃1 |Da/bQ)

∑
d2
i=1 P(X̃i |Da/bQ)+1

.

where the +1 comes from the probability of the tautology.
Substituting in the probabilities for the pictures we get

P(A1 |W ) =
1

d2 +
(

d1d2
d1d2−d2+1

)n ,

P(A1 |DaW ) =
1

1+
(

d1d2
d1d2−d2+1

)n−m ,

P(A1 |DbW ) =
1

d2 +
(

d1d2
d1d2−d2+1

)n−m .

We see with P(A1 |DaW ) that as soon as one black
raven (m = 1) is found, it disqualifies most abstractions,
changing the probability of A1 significantly compared to
subsequent discoveries of black ravens. This is due to our
rather strict subpictures X̃i where every raven has to be
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the same colour with no exceptions.

Both P(A1 |DaW ) and P(A1 |DbW ) increase as m in-
creases, i.e., seeing only black ravens increases the prob-
ability that ‘being a raven makes ravens black’ and see-
ing only non-ravens also increases the probability that ‘all
ravens are black’ because it increases probability for the
trivial possibility that there are no ravens. However, as
m→ n,

P(A1 |DaW )→ 1
2
,

and P(A1 |DbW )→ 1
d2 +1

.

This aligns with intuition that finding a black raven in the
aviary should provide better evidence for ‘all ravens are
black’ than finding a non-raven. The larger the number of
possible colours d2, the smaller the probability increase
when finding a non-raven. For realistically large d2,
the probability increase becomes negligible as one may
intuit. Also notice the limits of possible evidence; neither
P(A1 |DaW ) or P(A1 |DbW ) can reach 1 because no
matter how many black ravens or non-ravens are found,
there are other hypotheses consistent with the evidence.

3.3 The dissolution of arguments against
unique probabilities

We now have a universal calculus to uniquely determine
logical probabilities from assumptions. There are many
’arguments’ (Franklin, 2001; van Fraassen, 1989; Urbach
and Howson, 1993; Earman, 1992) made against this
possibility based on applying methods to determine
probabilities in different ways and getting different
answers for the same probabilities. These ’arguments’ do
not apply to Abstraction Theory.

Consider a simple example: there is a ball in an urn
which has one of three possible colours: red, blue or
white. What is the probability that, if I pick a ball from
the urn in such a way that I have no assumed control in
choosing which ball, I will pick the red ball? From a
principle of indifference/symmetry of the three possible
results, I deduce the probability to be 1/3. Let’s now

consider a reframing of the situation; that there are also
two possible results–that the ball I pick is either red or not
red. Using the principle of indifference with these two
possibilities gives us a probability of 1/2. We thus arrive
at contradictory probabilities. This is not a particularly
strong ’argument’ but its structure and limitations are the
same as the more sophisticated ones. All have at least
one of two problems.

Firstly, often there is an appeal to symmetry in the
assumptions without explicit choice of what those
assumptions are. I could say I have drawn a two dimen-
sional shape with four straight edges and one corner but
such a shape need not exist. Similarly, assumptions with
the stated symmetries need not exist either. Because the
assumptions in Abstraction Theory are in principle ex-
plicit, the existence of such assumptions can in principle
be checked.

Secondly, the criteria used for the applicability of the
symmetry constraints can be too vague, weak or depen-
dent on the particular formulation of inductive logic used.
The above example did not state any particular criteria
but suggests that symmetry constraints between any
partition of a set of exclusive and exhaustive possibilities
are legitimate. I can’t imagine a good ’argument’ as to
why this should be the case.

Let’s consider the typical kinds of futher analysis that
are better arguments but which Abstraction Theory is able
to sidestep. Suppose for the moment that we are looking
at a formulation of probabilities of ’events’ (as for
example, sets of possible worlds or similarly, truth func-
tions of atomic propositions). Ignoring for the moment
any semantic differences between events, a reasonable
sounding criterion for indifference constraints is that it is
applied to the most fine grained partition possible. It is
generally supposed that the three possibilities are actually
partitions of infinitely many possibilities. For example,
a ball is not only one of three colours but also one of an
infinite number of possible orientations etc. Because of
the infinite number of events, there is now not necessarily
an obvious unique choice of indifference constraint; we
could for example try some transformation group method
(Jaynes, 2003) but the choice of transformation group
is not unique. Or we could apply a symmetry on some
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transformed parameter rather than the original. There are
two ways Abstraction Theory sidesteps these problems:
1) there is no particular reason why in the simple case of
three possibilities being specified that the picture from
interpretation cannot actually have finite scope, e.g.,
I3; this picture being an approximation of potentially
better pictures much like how a scientific hypothesis is
approximated by one that comes along to replace it. The
basic props representing the three possibilities are not
truth functions of more fine grained propositions. 2) The
symmetry arguments used on infinite spaces require an
initial specification of a parameter for which probabilities
are constrained to be symmetric with respect to. In con-
trast, asymptotic probabilities are determinable without
any specification of parameter. The symmetry methods
of indifference or transformation groups applied to
continuous parameters/random variables are not directly
applicable (and unnecessary) and hence the problems
with the uniqueness of the results are dissolved.

It is also worth noting that when specifying a situation
in which one wants to calculate an asymptotic probability
with some parameter in mind, even with a relatively rich
background theory on the meaning of parameter value
ranges, the choice of asymptotic picture may not be
unique.

Another difficulty with finding a good criterion of ap-
plicability of symmetry constraints in inductive logics is
that generally probabilities are formulated as probabilities
of propositions that have semantic content independent
of syntax. So for example, not all possible worlds are
semantically the same so why should probabilities based
on them have symmetries based on swapping them? The
solution in Abstraction Theory is that the only symme-
tries used are between basic props or their negations (or
any symmetries derived from these ones). Basic props
and their negations have no semantic content and hence
there is no problem.

Finally, inductive logics such as Carnap’s (Carnap,
1950) and successors are dependent upon the language
in which it is formulated in. We have formulated Logic
in a language invariant way; by making everything a
probability is dependent upon explicit, if we changed the
language we used to express arguments then either we

could identify arguments from each language such that
they have the same probabilities or the language reflects
a different theory of Logic. We thus don’t have this
problem either.

3.4 The ‘grue’ non-problem
Goodman’s ‘grue’ problem (Goodman, 1983) is often
considered to be fatal to theories of logical probabilities.
Despite Abstraction Theory using logical probabilities,
their ‘meaning’ and use are very different to Confirmation
Theories with probabilities.

In order for there to be a ‘grue’ problem in Abstraction
Theory, it must be formulated differently and there’s
no unique way to do this. I argue that any attempt at a
‘standard’ formulation of the problem collapses.

A Confirmation Theory considers relationships be-
tween ‘hypotheses’ and ‘evidence’. This can be given
by a confirmation function c(h,e) for ‘hypothesis’ h and
evidence e. If c is defined to have a range on a two
element set, c(h,e) = x expresses whether e confirms or
disconfirms h. If c is defined on the real line, then it ex-
presses a degree of confirmation. Often, the confirmation
function is interpreted as a probability function (Carnap,
1950).

The general ‘argument’ is that in a Confirmation
Theory, there is a situation whereby two ‘hypotheses’
are equally confirmed as the confirmation function is
symmetric but the two ‘hypotheses’ intuitively shouldn’t
be equally confirmed, giving us a contradiction. Firstly,
these ‘hypotheses’ in Confirmation Theories are defined
syntactically with meaning associated with the con-
stituent signs implicitly assigned, while in Abstraction
Theory, pictures–which are the things that best corre-
spond to ‘hypotheses’ in Confirmation Theories–are
used to explicitly assign meaning to propositions. These
meanings are underconstrained by usual formulations
of the problem and thus it is not a well-posed problem.
Moreover, probabilities of abstractions (these being the
probabilities of interest) are not uniquely determined by
a picture and evidence, but also require a meta-picture
that is not chosen in the setup of the problem, making
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the problem less well-posed. Finally, the most apt thing
in Abstraction Theory that best corresponds to degree of
confirmation is not probability but desiderative signifi-
cance (which shall be explicated in a future paper)–the
relative weight a picture contributes to the decision
process. The probabilities of abstractions of a picture
from many (generally infinite) meta-pictures contribute to
the desiderative significance of said picture. Desiderative
significance is also dependent upon initial assumptions
(which is also not unique) and a kind of ‘sense data’
instead of ‘scientific evidence’. A proper formulation
of a ‘grue’ problem in Abstraction Theory must make
an argument that two different pictures have the same
desiderative significance under various circumstances
when they shouldn’t.

There are three classes of possible approaches to
constructing a ‘grue’ problem in Abstraction Theory.
1) Find a ‘grue’ problem that applies to probabilities
with a wide enough class of meta-pictures such that
it affects desiderative significance for any realistic
initial assumptions. 2) Find a problem that applies to
desiderative significance as a whole even if it doesn’t
necessarily apply to individual probabilities. 3) Make a
strong argument for a certain meta picture as effective
assumption (or a class of them) that allows for two
pictures with a ‘grue’ like problem. 4) Make a strong
argument for the desiderative significance of two pictures
(that don’t necessarily share a significant meta picture)
with realistic initial assumptions that intuitively shouldn’t
both be significant.

Suppose we wanted to construct an ‘argument’ as
closely aligned as possible with techniques from original
formulations of the problem–a ‘standard’ formulation.
We would look at symmetries in probabilities that may be
useful to classes 1) and 3) of approaches. Let’s attempt to
construct such an ‘argument’.

Suppose that we observe a number of objects before
some time t that are emeralds and we note that they
are green. We are interested in the hypothesis that ‘all
emeralds are green.’ Suppose we also consider the
statement ‘object a is grue’ where something is grue iff it
is green and observed before time t or it is not green and
not observed before time t. The second hypothesis we’re

interested in is that ‘all emeralds are grue.’ Interpreting
these as hypotheses means we are not interested in
whether all emeralds are accidentally green or grue but
whether there is substance that makes them so (such as a
cause).

The ‘argument’ utilises symmetries between statements
like ‘a is green’ and ‘a is grue’. The universal symmetry
that most closely corresponds to the symmetries generally
used is the relabelling symmetry of basic props. Thus our
interpretation of these statements will use basic props as
opposed to prop functions14. Supposing we have n ob-
jects, {xi|i}, for each i = 1, ...,n, we have basic props
pGxiq for ‘xi is green’ and pUxiq for ‘xi is grue’. We shall
also have basic props pOxiq for ‘xi is observed before time
t. The choice of grue and green statements corresponding
to basic props means the definition relating grue and green
together is a prop function

X +
n

∏
i=1
{pUxi ≡ (Gxi ≡ Oxi)q}

=
n

∏
i=1
{pUxiq(pGxiqpOxiq+pGxiqpOxiq)

+pUxiq(pGxiqpOxiq+pGxiqpOxiq)},

where≡ denotes material biconditionality. The Goodman
argument most similar to our construction requires the
equivalent of this prop function to be assumed, breaking
a requirement of Carnap’s theory that atomic sentences
be independent. For us there is no inconsistency but
rather a natural interpretation; X is a subpicture giving
partial meaning to the basic propositions within its scope.
However, we run into a different problem: the addition of
X in the pictures of interest changes the original meanings
of our propositions. We have altered the original situation
we were interested in such that it may not be applicable
or interesting anymore. But for the sake or argument, let
us suppose for the moment that this isn’t a problem.

Let the abstractions for ‘all emeralds are green’ and ‘all
emeralds are grue’ be AG and AU respectively and other

14This choice is similar to a version of Goodman’s argument against
Carnap’s theory where both the green and grue predicates are primitive
as opposed to one of them being elementary. If predicate M were ele-
mentary and a an individual, then Ma is similar to a prop function as
opposed to a basic prop.
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abstractions given by A j. Suppose the full meta-picture is
given by

Y + XW{AGZ[(pExiq,pGxiq : i) . . . ]

+AU Z[(pExiq,pUxiq : i) . . . ]+
q

∑
j=3

A jZ j},

where W is a shared subpicture for doing things like defin-
ing the space of possible colours. The pictures corre-
sponding to abstractions are manifest. Also suppose we
have data

D̃m +
m

∏
i=1

pExiqpGxiqpOxiq,

where we use
D̃mX = DmX ,

where

Dm +
m

∏
i=1

pExiqpGxiqpUxiqpOxiq.

Let’s now apply the relabelling symmetries for all i,
pGxiq↔ pUxiq:

P(AG |Dm[(pGxiq,pUxiq : i) . . . ]Y [(pGxiq,pUxiq : i) . . . ])

=

P(AG |Dm[(pUxiq,pGxiq : i) . . . ]Y [(pUxiq,pGxiq : i) . . . ]).

The abstraction AG now corresponds to the prop function
Z[(pExiq,pUxiq : i) . . . ] which was originally associated
with the picture for ‘all emeralds are grue’. So it seems
like we’re almost there. The prop functions Dm and X
are symmetric to the relabelling also. The corresponding
symmetries in regular Confirmation Theories with proba-
bilities are then sufficient to finish the ‘argument’ proving
that ‘all emeralds are green’ and ‘all emeralds are grue’
have the same probability. An obvious problem is that
Y does not contain only X and so Y is not necessarily
symmetric to the relabelling. But that’s not the real
problem: for all i, the propositions associated with pGxiq
and pUxiq either have the same meaning or they don’t.
If they have the same meaning then this contradicts
the presupposition behind the intuition that the two
hypotheses can’t be equally confirmed. If they don’t
have the same meaning, then the relabelling swaps the
propositions associated with the props; the proposition
originally associated with pUxiq becomes associated

with pGxiq, i.e., the relabelling did not change the situ-
ation represented in the argument. Thus the ‘argument’
dissolves.

The ‘grue’ problem exploits ambiguity in the meaning
associated with the signs used in a constructed language.
Abstraction Theory is devised to take full explicit account
of meaning such that no ambiguity remains and thus
cannot be exploited in a similar way.

One virtue of the original ‘grue’ problem is that one
can imagine applying its techniques to a wide variety
of ‘hypotheses’ and hence is not strongly dependent
upon specifics of the situation. We see from the above
‘argument’, that trying to make an ‘argument’ similar
to versions of the original with a universal symmetry
fails. If instead one wants to construct an ‘argument’
that does not rely on a universal symmetry but rather
relies on specific examples, one faces large difficulties.
Such an ‘argument’ falls into our third and fourth
categories of approaches which means one has to argue
for the desiderative significance of various pictures. As
will be explicated in more detail in future papers, the
desiderative significance of a picture is dependent upon
its logical structure and the logical structure of the initial
assumptions in a complex way. Without extreme amounts
of hard work, one should never expect the example
pictures one uses for individual calculations to properly
reflect a realistically significant picture; most pictures one
imagines are vastly simplified models of realistic pictures
which, if constructed well, approximate predictions of
realistic pictures within domains of interest, i.e., having
similar ‘likelihoods’ and potentially even similar relative
‘priors’. However, despite these approximations, the
logical structures of model pictures versus their realistic
counterparts need not lead to similar significance at
all. Thus one cannot simply use two model pictures
for an ‘argument’ that does not rely on some universal
symmetry making such an ‘argument’ incredibly difficult.
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