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Abstract 

We claim that adjustable parameters play a crucial role in building and applying simulation 

models. We analyze that role and illustrate our findings using examples from equations of state 

in thermodynamics. In building simulation models, two types of experiments, namely, simulation 

and classical experiments, interact in a feedback loop, in which model parameters are adjusted. A 

critical discussion of how adjustable parameters function shows that they are boon and bane of 

simulation. They help to enlarge the scope of simulation far beyond what can be determined by 

theoretical knowledge, but at the same time undercut the epistemic value of simulation models. 

 

1. Introduction 

Simulation brings together the important notions of model, theory, and experiment. Each of these 

notions has been discussed extensively in the philosophy of science. Consequently, the 

philosophy of simulation debates whether and how these established conceptions have changed 

with the rise of simulation technology.1 We do not enter the discussion of what, in that context, 

an adequate conception of a simulation experiment is, nor what an appropriate notion of a 

theoretical model is. Instead, we focus on the interface of model and experiment. Here, 

adjustable parameters enter the picture. They might appear as a minor detail, a technical matter 

of smoothing out imperfections of a model. However, we argue that they are of central 
                                                
1 Humphreys (2004) contributed the first monograph to the field. Parker (2013) or Winsberg 
(2014) provide valid overview articles that include many references. 
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importance in simulation methodology, though they are a two-edged affair. They help to enlarge 

the scope of simulation far beyond what can be determined by theoretical knowledge, but at the 

same time undercut the epistemic value of simulation models. In short, adjustable parameters are 

boon and bane of simulation models. 

Let us motivate this claim in more detail. Experimentation is a key element when characterizing 

simulation modeling2, exactly because it occurs in two varieties. The first variety has been called 

theoretical model, computer, or numerical experiments. We prefer to call them simulation 

experiments. They are used to investigate the behavior of models. Clearly simulation offers new 

possibilities for conducting experiments of this sort and hence investigating models beyond what 

is tractable by theoretical analysis. We are interested in how simulation experiments function in 

simulation modeling. Importantly, relevant properties of simulation models can be known only 

by simulation experiments.3 There are two immediate and important consequences. First, 

simulation experiments are unavoidable in simulation modeling. Second, when researchers 

construct a model and want to find out how possible elaborations of the current version perform, 

they will have to conduct repeated experiments.  

The second variety is the experiment in the classical sense. When comparing simulations to their 

target system, such classical experiments will usually provide the data to compare with. The 

situation gets interestingly complicated, since the influence of simulation on these experiments is 

growing. There is a beginning debate on the changing face of experimentation due to computer 

use (cf. Morrison 2009, 2014, Tal 2013). It is indeed striking to what extent supposedly classical 

experiments make use of simulation in their experimental setup; examples range from the Large 

Hadron Collider at Cern to scanning tunnel microscopes. 

Our claim is that adjustable parameters play a crucial role in the process of building and applying 

simulation models. Two interconnected aspects make up our claim: First, both varieties of 

experiments, or if you prefer another terminology: simulation and classical experiment, 

                                                
2 A variety of good motivations are given in, for instance, Axelrod (1997), Barberousse, 
Franceschelli, and Imbert (2009), Dowling (1999), Galison (1996), Humphreys (1994), Hughes 
(1999), Keller (2003), Morgan (2003), Morrison (2009), Rohrlich (1991), Winsberg (2003). 
3 If you want to avoid talking about experiment in this context, these properties can be known 
only by actually conducting simulations. Mark Bedau (2011) has highlighted properties that can 
be known only by actually conducting the computational process of a simulation and has aptly 
called them “weakly emergent.” 
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cooperate. Second, this cooperation makes use of a feedback loop and works via adjusting 

parameters.4 

The outline is the following. In the next section, we start with a brief introduction into 

mathematical simulation models, their implementation on computers and their application. In 

addition, equations of state in thermodynamics are introduced, as we will use examples from that 

area throughout the paper. We chose this field, because it is a theoretically well-founded field of 

both science and engineering. It provides us with excellent material to illustrate our claims as the 

parameters of equations of state are of very different nature. They range from the universal gas 

constant, which can be considered as an adjustable parameter, but one that is found to be valid in 

a very broad range of situations and closely linked to theory, to mere correlation parameters 

which are useful only in special situations and epistemologically worthless. We also argue that 

choosing examples from a theoretically well-founded field provides a stronger argument than 

choosing them from a field on which little is known and which, hence, has to rely on data-driven 

models. In the latter field adjustable parameters are important a fortiori. Thus, it is more 

demanding, and hopefully more fruitful, to show their role in examples taken from the former 

field.  

The topic of parameterization of models has received surprisingly little attention from 

philosophers. Of course, there is an intense discussion of parameters in the context of curve-

fitting and simplicity (see, for instance, Forster and Sober 1994, DeVito 1997, or Kieseppä 

1997). There, parameters play the role of degrees of freedom in a quite abstract mathematical 

sense. In the present paper, however, we assume a physical context in which parameters might 

have physical meaning. Notable exceptions that discuss this (large) area are those arguing about 

climate science. Parameterization schemes build a main component in complex climate models 

(Gramelsberger 2011, Parker 2014) and contain parameters that have to be tuned. The discussion 

about practices of tuning is just about to start in the climate community (cf. Mauritsen et al. 

2014). With thermodynamics, we add a substantially different topic to the applications discussed 

in this context. 

                                                
4 In this respect, our work elaborates the notion of “exploratory cooperation” in simulation 
modeling, put forward in Lenhard (2007). 



 

4/28 

We focus on the development of simulation models and on the decisive role experiments play. 

Here, experiments include both classical experiments, in which the real world is studied, as well 

as simulation experiments, in which the implementation of the simulation model on computers is 

investigated. The importance of the feedback loop in simulation model development is 

highlighted in section 3, which is based on the comparison of results of computer experiments 

and classical experiments. This feedback loop is the means by which modeling and 

experimentation can cooperate closely. Many extant pictures of simulation suggest a 

“downward” direction (Winsberg 2014) from theoretical model to simulation, or a “bottom-up” 

direction from phenomena to simulation models (Keller 2003), whereas we underscore that 

simulation model development is a feedback loop process in which both directions interact. 

Section 4 is devoted to a closer look on parameters and feedback and presents the central piece 

of our argument. We discuss different types of parameters and various situations in which the 

feedback loop is involved. Typically, simulation models are only simplified representations of 

their real world targets: parts of the underlying physics may be unknown or so complex that they 

cannot be incorporated in a tractable simulation model. Thus, workarounds are needed: these 

often come in the form of models in which parameters are left open – to be adjusted in the 

feedback loop. One could criticize this from a fundamental standpoint arguing that this is only a 

poor remedy for a lack of knowledge, and, hence, bane. On the other hand, one can argue that it 

is boon, because it allows modeling and simulation which otherwise would not be possible. This 

shows that a critical discussion is needed, to which we want to contribute, namely, by studying 

the epistemic and practical value of various classes of parameters. We also address the issue of 

the influence computerization has had on the use of parameters in models. It turns out that it is 

important and that also in this, there is boon and bane. 

Finally, in section 5, we sum up and draw conclusions from the fact that adjustable parameters 

are boon and bane of simulation. We argue further that simulation modeling adds a new 

experimentalist twist to mathematical modeling. 

 

2. A Primer on Thermodynamics, Simulation, and Experimentation  

Throughout the present paper, we will use examples from thermodynamics to illustrate our 

arguments. They are chosen from the well-known field of the so-called equations of state. We 
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will only consider equations aiming at describing fluid states (gas as well as liquid) – but not 

solids. This field lends itself for this purpose as it is fundamental and well known to many 

scientists and engineers, and it can also be understood by others.  Many other areas of science 

and engineering would have provided equally useful illustrations.   

The best known equation of state is that of the ideal gas 

p v = R T       (1) 

where p is the pressure, v = V  / n is the molar volume (volume per mole of substance), and T is 

the temperature measured in Kelvin. All these quantities are measurable in classical experiments. 

R is a universal constant (8.314 J mol-1 K-1). Equation (1) has been used before to illustrate issues 

of philosophy of science, for example, quite recently by Woody (2011) for discussing concepts 

of explanation. It is known that all substances fulfill Equation (1) if the density r  = 1 / v is low 

enough (or the molar volume v is large enough). 

The broader concept behind Equation (1) is that for a given amount of a given substance, p, v, 

and T are not independent: there is a function which describes the relation between these 

quantities. Hence the general form of the equation of state is:  

        f(p,v,T) = 0      (2)  

In the low density limit the function f is given by the simple Equation (1) which is universal in 

the sense that it holds for all substances. Unfortunately, the relation between p, v, and T is more 

complicated at higher density and different results are obtained for different substances. The 

reason for this is simply that at higher densities the interactions between the molecules start 

playing a role, and hence, the individuality of the molecules matters. We note already here, that 

while Equation (1) has substance-wise the widest possible range of application and the 

“parameter” R has the same value for all substances, there must be ways to tune Equation (2) to 

represent a given substance. That tuning is done by adjustable parameters.   

Well known examples of such equations are the van der Waals Equation and the Virial Equation 

of state. In Equation (2) a pair of independent variables can be chosen (e.g., p and T). The third 

(dependent) variable (then v) can then be calculated from Equation (2). There is a plethora of 

proposals for equations describing the p,v,T – behavior of substances for a wide range of 

conditions. Depending on the form of the function f, their evaluation may only be possible 
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numerically. Furthermore, several solutions may be found and algorithms have to be applied to 

select the desired one. Different solutions may correspond to different physical states (e.g., gas 

and liquid) or may be unphysical. 

The results from the equation of state can be compared directly to p,v,T – data obtained in 

laboratory experiments. A good equation of state will describe those experimental data well for a 

wide range of conditions. But the equation of state can do more. If it describes both gaseous and 

liquid states, it also describes boiling and condensation. Hence, for example, from Equation (2) 

also the so-called vapor pressure curve can be found which describes the dependence of the 

boiling temperature on the pressure.  These results can be compared to experimental data as well. 

The same holds for results on the heat of vaporization, which can also be obtained from Equation 

(2). Calculating these properties, though well-based on general thermodynamics, usually requires 

algorithms, numerical schemes and a suitable implementation on computers. 

It should be noted that mathematics serves as a powerful tool. Once the equation (2) is written 

down together with its parameters, which can easily be done on a piece of paper, a wealth of 

information on the fluid is specified, like its vapor pressure curve, or caloric quantities. The 

retrieval of that information can, however, be tedious. In practice, it will depend on the 

availability of software tools for the evaluation of the given type of equation of state, whether 

desired results can be obtained with reasonable effort. Although many codes in this field are well 

tested and considered to be reliable, there is no strict guarantee that the simulation result xsim 

agrees with the (theoretical) model value xmod. Let us move from thermodynamics to a general 

consideration of simulation. 

Simulations are based on simulation models. We will assume here that they are given by some 

set of mathematical equations, which relate input to output. We acknowledge that there are other 

classes of simulation models, like artificial neural networks, which do not fit into that definition. 

Their point is exactly to connect input and output in a highly implicit way that is based on 

extensive parameter adjustments – “learning algorithms” – instead of explicit mathematical 

equations. The more standard case, where a theory in the form of mathematical equations, 

thermodynamics in our examples, is at hand, is discussed here. This is the harder case for our 

argument, because it seems to be less dependent on experimentation and parameter adjustment – 

but let us see. 
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In most cases, today, the computer is mandatory to study the model, which is too complex to 

yield the desired output for a given input in any other way. This is generally true already for our 

equation (2) above. Addressing problems by simulation, hence, connects three important issues: 

setting up the theoretical model (suitably based on the theory of thermodynamics in our 

examples) on the one side, and implementing and executing it on computers as well as analyzing 

the results on the other. The implementation includes steps like discretization, algorithms for 

solving the equation, coding, and compilation. In practice, there often exist different 

implementations of the same model on different computers. With the simulation, only the 

specific model implementation (on the chosen computer) can be studied. There are many 

situations in which the implementation must inevitably give different results compared to the 

mathematical model, for example, due to discretization. In other cases differences may simply 

result from an erroneous implementation.  In many cases, the quantity xmod – which results from 

the theoretical model for a given input – is not directly accessible and we can only retrieve 

numbers for the corresponding result xsim of the simulation. 

Scientists can vary the model input or other parameters and “observe” how xsim changes. This is 

an experimental activity, but one that does not deal with nature or some system in the laboratory, 

but rather with the model implemented on a computer, that is, with the simulation model. It is 

important to note that what is observed in computer experimentation is xsim, not xmod. However, 

in many cases, including our case of thermodynamics, one also has a target system, that is, an 

object of the real world, which is described somehow by the model. Comparison with this system 

is not only possible, but is an essential part of the simulation activity. Only then, application 

becomes a topic and a potential problem. The view of simulation presented above then has to be 

embedded in a wider perspective which includes the real world5, the modeling process and the 

application of the simulation results (cf. Figure 1).  

 

                                                
5 Our claim is open to many guises of how “real” is spelled out in philosophical terms. People 
concerned with issues of realism might want to resort to “target system,” which is a less laden 
term (though it does not solve any of the questions). 
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Figure 1: Scheme showing relations between the real world, modeling, simulation, and 

experiments. 

 

We start with a quantity xreal in the real world we want to model. The corresponding entity in the 

(theoretical) model is xmod. As the model is too complex to be evaluated directly, it is 

implemented on a computer and simulations are carried out as described above. These 

simulations yield a quantity xsim which can eventually be compared to results of experimental 

studies of the real world xexp.  In general, we cannot know xreal nor can we know xmod, we can 

only compare the corresponding properties of xexp and xsim. There are two types of experiment in 

play. One from “below” that provides measured values, the other from “above” that provides 

simulated values.6 Up to this point, the picture coincides with prominent schemes of modeling, 

like R.I.G. Hughes’ DDI account (1997), or Reichenbach’s (1964, 102/103) appreciation how 

mathematical deduction (on the model level) and observation work together in science. 

The discussion around Equation (2) presented above highlights the role theory plays in this 

context and reminds us not to interpret Figure 1 too literally: Equation (2) describes a priori 

only p,v,T properties. But based on arguments which combine some very basic physical 

                                                
6 Addressing the intricate questions about correspondence and representation, we refer to 
Weisberg’s recent work (2013), which offers a taxonomy for the relationships between model 
and target system. 
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statements with mathematics, it can be shown that it describes also properties which are at 

first glance unrelated to p,v,T properties, like boiling conditions, caloric properties, and 

many more. It is the success of such predictions that convinces students of taking the effort 

of studying the theory which enables them. 

Up to now, simulation was a means for revealing what the model says about the property x under 

investigation. This is regularly a task for which there is no alternative to using a computer. Still, 

the basic rationale is the standard one: The analysis and evaluation of the theoretical model via 

comparison to the target system. 

In general, the quality of a model depends on two aspects that counteract each other. It depends 

both on adequacy of representation, else the model would not yield results revealing anything 

about the target system, and tractability, which is prerequisite for obtaining some result at all. 

Here is where computers have changed the picture. They can handle very long and convoluted 

iterative algorithms that would be intractable for human beings and, hence, make models 

tractable which otherwise would be useless. 

Figure 1 is rich enough to account for our illustrative case. Equations of state (Equation 2) have 

parameters which need to be adjusted to some data on the fluid that they are meant to describe. 

That data is usually taken from laboratory experiments. An alternative is results from computer 

experiments. In most cases, for that purpose molecular simulations based on force field are used 

in which the latter describes the interactions between the molecules. In the molecular 

simulations, the p,v,T – behavior or other macroscopic thermodynamic properties can be studied 

based on a model of the interactions between the molecules. The results of these simulations 

always fulfill Equation (1) in the low density limit where the molecules are so far apart that the 

interactions play no role. But at higher densities, when the interactions start playing a role, they 

deviate from Equation (1) but open the door to formulating equations of the type (2) which 

depend on the interaction model. Thus, the computer experiments yield new opportunities 

compared to classical experiments. The type and strength of intermolecular interactions can be 

systematically varied and the effect of that variation on the p,v,T – behavior can be studied. This 

is widely used in developing new mathematical forms of equations of state (see, e.g., Wei and 

Sadus 2000). 
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3. Simulation Model Development as Feedback Loop Process 

For our claim about the significance of adjustable parameters, we need a more complex picture 

of experimentation. In this section we highlight a particular feature of simulation model 

development, namely, a feedback loop of model adaptation. It is depicted in Figure 2, which 

derives from Figure 1 by adding one arrow that closes the modeling loop. It is basically a 

classical feedback control loop which aims at minimizing the differences between a variable 

(here: xsim) and a set value (here: xexp).  The two quantities which are compared need not be 

scalar quantities but may have many entries or be, for example, trajectories over time. There are 

also many ways of carrying out the comparison.  

 

 

Figure 2: Same as Figure 1, but one arrow added, pointing to the left and closing the feedback 

loop of modeling.  

 

This feedback loop easily appears as marginal, as a pragmatic handle for fine-tuning and 

correcting imperfections of the (theoretical and simulation) models. We argue that it is not. 

Adjusting parameters fulfills essential functions in simulation modeling. Repeated comparison of 

the two types of experiment guides the modeling process. During this phase, the process consists 

in adjusting parameters. The model is explored via (simulation) experiments, motivated by 

comparison with (classic) experiments. We have hence a cooperation of both types of 

experiments that is the nucleus of model development via adjusting parameters. However, the 
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cooperation gets even more intertwined when one takes into account that the measured quantities 

themselves might be partly determined with the help of simulation. 

Basically two sorts of actions can be taken in modeling when the comparison of the simulation 

results and the experiments do not yield the desired results: a) the model structure can be 

adapted, that is, the set of equations is modified, for instance, to change a description or include a 

previously neglected effect, or b) model parameters are changed. It is this second option that we 

are interested in here. Parameterization schemes can be considered as a sort of auxiliary 

constructions that are intentionally used for dealing with missing knowledge and the inaccuracies 

of existing knowledge. The simulation model is designed, so that it contains parameters that can 

be adjusted in the course of the further development. 

The remainder of the paper focuses on the role of adjustable parameters. The reasons for using 

adjustable parameters are discussed in more detail, and it is shown that adjustable parameters 

form an essential component of simulation modeling. While models with adjustable parameters 

have been around much longer than computers, practical hurdles had limited their use in the past. 

The easy availability of computers and optimization software has tremendously lowered these 

hurdles. It has become much easier to utilize the adaptability of models, so that it has become 

much more tempting to succumb to the lure of making models fit by adjusting enough 

parameters. 

Parameter adjustment is only one way of model adjustment. Besides adjusting the model 

parameters, the structure of the model (the mathematical equations) can be adjusted to obtain a 

better fit to experimental data. The latter procedure is very closely related to parameter 

adjustment if the equations are changed without any other physical reasoning than obtaining a 

better representation of some data. The equations themselves then are seen as a sort of 

parameters that can be adjusted.7 We will also address this issue in the present work. 

The equations of state, which we use as examples here, contain adjustable parameters which are 

usually determined from experimental data. The exception is the equation of state of the ideal gas 

(Equation (1)). But even in that case, it can be argued that R was once not more than an 

                                                
7 We will not discuss classes of simulation models like artificial neural networks. Arguably, they 
have a very generic structure and extraordinary adaptability. Essentially, they are a proposal to 
parameterize the entire behavior (if in an opaque, or implicit way). 
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adjustable parameter. But it is no longer, R has turned out to be a universal constant. It is beyond 

the scope of the present work to discuss the far reaching consequences of that universality which 

include the definition of temperature and the atomistic nature of matter. By the way, these 

relations provide again an excellent example for the success of the combination of mathematical 

deduction with observation. We will rather focus on the consequences of the adjustment of 

parameters in equations of state and the role the computer plays in this.  

As simple examples, we use the van der Waals equation: 

         2

R T ap
v b v

= -
-

      (3)  

and the Virial equation of state in the following form: 

2

1 11p v B C
R T v v

= + +          (4) 

The researchers who have introduced these equations, J.D. van der Waals and H. Kammerlingh 

Onnes, received Nobel prizes in 1910 and 1913. These equations, though both with strong 

foundations in physics and mathematics, contain adjustable parameters, namely, a and b in 

Equation (3) and B and C in Equation (4). These parameters are needed to account for the 

individuality of different fluids, that is, water is different from nitrogen. The parameters are not 

necessarily simple numbers but can be functions of variables. For example, the theory behind 

Equation (4) yields that B and C are functions of the temperature, but not of pressure. In the 

original version of Equation (3) a and b were numbers. However, in later versions of Equation 

(3), a was considered to be a function of temperature. Adjusting functions is obviously more 

flexible than adjusting numbers. 

 

4. Adjusting Model Parameters: a closer look 

Speaking about adjustment of parameters invokes a field of similar terms with (only) slightly 

differing connotations. Calibration, for instance, is used in the context of measuring instruments. 

Hence, using calibration of parameters makes models look a bit like precision instruments. 

Tuning, on the other side, has a slightly pejorative meaning, though it is used in some areas of 

science as the standard term. Anyway, we chose adjusting because it seems to be neutral and 
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does not appear to be a good or bad thing from the start – though we do not claim our 

terminology is without alternative. Adaptation, for instance, has an equally neutral flavor. 

In this section, we discuss a spectrum of situations in which parameters get adjusted. We adopt 

here a simple scheme of a simulation model, which is based on systems theory (cf. Figure 3). 

The process model aims at describing a certain set of quantities y, which we will call output 

variables here. The output depends on the input, which is described by another set of quantities 

u, the input variables. Both y and u belong to the quantities which occur in the model. The latter 

will be called model variables x here. The set of the model variables x may contain quantities 

which are neither input nor output (i.e., internal variables). The question which subset of x is 

considered as input and which as output may depend on the application. In the models in which 

we are interested here, y and u describe properties of the target system. Ideally, y is a measurable 

quantity and u can be set in experiments. 

 

 

 

Figure 3: Parameter adjustment in models. 

 

4.1 Model parameters 

Besides the input variables u, many models require the specification of model parameters p. 

These do not necessarily correspond to anything in the real world. Cleverly setting the model 

parameters allows improving the quality of the model regarding its output y. The parameter 

adjustment involves some kind of optimization procedure. The goal of the optimization is to 

improve the agreement of the model output y with some reference data, usually experimental 



 

14/28 

data yexp (cf. Figure 4). We do not presuppose some elaborated formal algorithm for 

optimization. A simple trial-and-error method is eligible for “method,” too. We should point out, 

however, that mathematical optimization methods reach far beyond what can be handled by 

simple trial-and-error. Such methods often act like black boxes for thermodynamics modelers. 

We leave the detailed consideration of the optimization part for another paper. 

For example, in the van der Waals equation (3), the input variables may be chosen to be the 

temperature T and the molar volume v, and one may be interested in the result for the pressure p 

at those chosen conditions.  The calculated result will depend on the choices made for the 

parameters a and b. Obviously, if some p,v,T data points are available for a given substance, the 

parameters a and b can be adjusted to these data. Thus, the results obtained for a and b will 

depend on the choice of the data set to which they are fitted, and also on the way they are fitted. 

For parameterizing equations of state different types of data are used (e.g., besides p,v,T data also 

data on vapor pressures, data on the critical point of the fluid, or caloric data). The calculation of 

such properties regularly involves numerical procedures and as a consequence computers are 

needed. This becomes especially important in the parameterization which is an optimization task 

that regularly involves a large number of evaluations of each property. Computers enable 

adjustments which were not feasible before. 

On the one side, adjusting model parameters is obviously a boon, as it can make models work. In 

many cases it is the key to making them work. Even an otherwise poor model could be 

augmented by a suitable parameter fit so that it gives fair representations of y.  In a community 

which is used to judging models solely by their ability to describe certain properties y, this is 

clearly attractive. 

In the case of equations of state, there is an obvious need for an adjustment of parameters. With 

only a few exceptions, we are not yet capable of predicting properties of real fluids from first 

principles. Hence, models describing such properties must be trained by some experimental data. 

The way to do this is by adjusting model parameters.  In the field of fluids, the predictions from 

first principles are presently basically limited to calculating ideal gas properties from 

Schrödinger’s equation. But equations like (3) and (4) are far more than some mathematical form 

which is fitted to data. We mention only some examples:  

a) by virtue of their derivation they contain Equation (1) as limiting case,  
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b) the B parameter of Equation (4) can directly be related to intermolecular pair interactions and 

was for a long time the most important source for quantitative data on them,  

c) the simple Equation (2) predicts the existence of phenomena like critical points or 

metastability of fluid phases and relates them to other fluid properties in a consistent way.   

These examples highlight the unifying power of the thermodynamic theory and are examples for 

the benefits of combining theory and experiment. 

On the other side, the adjustment is a bane, since it does not remove flaws of models; it rather 

disguises them. Even an obviously wrong model, that is, one with internal logical contradictions, 

can give fair representations of y after a suitable adjustment of parameters.  For a scientist, who 

is interested in obtaining insights from models, this is scary. He may be inclined to discard 

models as worthless if they only work after adjusting parameters to data which the model aims to 

describe. What is the use of a description of properties of something which can only be 

established based on the knowledge of the same properties? 

This point is illustrated again using equations of state as an example. These equations can be 

used for describing mixtures. The key to this is finding expressions for the parameters of the 

equation (like a and b in Equation (2)) which hold for the mixture. These mixture parameters are 

usually calculated from the corresponding pure component parameters and the composition of 

the mixture via so-called mixing rules. With the exception of the mixing rules for the parameters 

of Equation (3), which can be rigorously determined from the principles of statistical 

thermodynamics, these mixing rules are empirical. They contain parameters which usually have 

to be adjusted to mixture data. Nevertheless, they can be submitted to some tests which can be of 

logical nature (i.e., if a pure component is formally split up in two identical components, the pure 

component result should be obtained also from the mixture model) or based on fundamental 

findings of thermodynamics like those from statistical thermodynamics mentioned above. It is 

known that mixing rules which fail both in the logical tests and those from statistical 

thermodynamics, can nevertheless turn out to work well in practice, if the parameters are suitably 

adjusted. For examples, see Mathias et al. (1991). 

 

4.2 Proliferation of variants 
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Moreover, adjusting parameters leads to what we call a “flood of flavors,” because the results for 

the parameters and hence all results obtained with the model will depend on the choice of the 

data set to which the parameters are fitted, and on the way they are fitted. The flood may turn 

into a deluge if also variants of the mathematical form are included, which are only introduced to 

improve some fits and have no other basis. 

In fact, computers have opened the gates to that flooding. The possibility to easily create and 

check variants of some model on empirical grounds is at first sight positive. Upon closer 

inspection, the picture changes. Firstly, the plethora of variants of a given model will rarely have 

epistemic value. But even from an entirely instrumental standpoint, it may be detrimental. A 

plethora of versions of a model will create an obstacle for anybody who wants to use the model. 

Which one to choose? By facilitating the creation of sprawling mutations of models, computers 

have contributed to the fragmentation of research. 

Let us only consider the van der Waals equation, Equation (3), as an example.  It was developed 

in 1873. Meanwhile there are more than 400 equations of state (so-called cubic equations of 

state) which can be considered to be variants of that single equation (Valderama 2003). While 

this gives, of course, enormous credit to the ground-breaking work of van der Waals, it is also 

distressing. The variants can hardly be classified on theoretical grounds. Rather, historical (when 

were they developed?), sociological (how well are they received?) or pragmatic arguments (what 

practical benefits are offered?) and classifications are used. There are some very successful 

variants which are widely used, and there are certainly elder versions which have technical 

drawbacks, but there is a plethora of variants that are very similar. Many of these have been used 

only by the group which has proposed the equation. This danger has nicely been captured by D. 

Frenkel in his paper on the “dark side” of simulations: “In the past, we had to think about the role 

of simulations because they were expensive, now we have to think because they are (mostly) 

cheap” (2013). 

Note that the above discussion only addresses the number of mathematical forms of the equation. 

For each of these there exists a plethora of specific variants. For example, for describing 

mixtures, one can combine a given equation of state with many different mixing rules. Due to the 

combinatorial explosion, most of the options have never been explored and never will. And there 

is very likely no loss in not doing so. Furthermore, we have not addressed that, even in the 
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simpler case of a single pure component, there is a practically unlimited number of options for 

choosing the data set used for the parameterization – each of which will yield a different set of 

model parameters. 

This sprawling of variants cannot be solely attributed to the use of computers but it is certain that 

computers have strongly accelerated that development. They have also favored the increase of 

the number of parameters in a model of a given object.  While the van der Waals equation 

(Equation 3) only has the two parameters a and b, modern equations of state may have 30 or 

more adjustable parameters.8 

 

4.3 Necessity of Adjusting Model Parameters 

What are the reasons that make this parameterization problem so endemic and in a sense 

unavoidable? In general, any mathematical model presents an idealized version of the real world 

target system. There is always more abundance in the target system than in some mathematical 

model equations. Mathematics can be seen as a science which works with objects that are so 

simple that they can be fully described – which is never possible for an object of the real world.9 

Hence, there may be unknown properties of the target system that should be included in the 

model, but are not. Leaving open some model parameters and adjusting them to experimental 

data can be considered as a pragmatic remedy for this.  

Even if all properties of the target system which have an influence are known, it can still be 

prohibitive to explicitly account for their influence in the model. There may simply be a lack of 

theories, or existing theories might be so complex that they would make the model intractable. 

Adjustable parameters are of prime importance in this context. They enable using simplified but 

tractable models. Such models may only be loosely related to the real object and may be obvious 

over-simplifications. But leaving open some parameters in such models and adjusting them in a 

clever way can make them work. This is at the core of engineering. Engineers look for simple 

models which will “do the job,” that is, produce good results in a certain application. Their main 
                                                
8 The coincidence of computer modeling, exploratory setting of parameters, and proliferation of 
models has been discussed by Lenhard (2014) in the context of computational chemistry. 
9 Actually, even the objects of mathematics kept ready surprises. The development of the 
discipline has been accompanied by an extraordinary – and often unexpected – malleability of 
objects. 
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interest is in the application, not in the physical interpretation. Carefully parameterized simple 

models can give astonishingly reliable and useful results.  As the parameterization involves some 

comparison with experimental data, it even guarantees a certain quality of the model (at least for 

the representation of the data that was used for the parameterization). All this is relevant not only 

in engineering but in many parts of science. Furthermore, accuracy matters and for the reasons 

mentioned above even good models will never be perfect. Parameterization can be used for 

alleviating this too. 

For example, in the van der Waals equation (1), the parameters a and b have a physical meaning. 

They are associated with attractive (a) and repulsive (b) interactions between the particles. It is 

well known that there are many different types of attractive forces, which are all lumped into the 

a parameter. It can, hence, be considered as an “effective” parameter. Such parameters are meant 

to describe the influence of a certain class of physical phenomena within a given model. In 

addition, the parameter b can be considered as such an effective parameter describing repulsion. 

Despite the crude simplifications in the assumptions on the intermolecular interactions, the van 

der Waals equation and its mutants have been extremely successful in describing real fluids. 

There are two main reasons for this. The first is that the structure of the equation (which comes 

from theory) is able to reproduce qualitatively the most important features of the behavior of 

fluids like the coexistence of vapor and liquid at certain conditions, the ideal gas limiting 

behavior etc. The second reason is that the equation contains the parameters, which can be 

suitably adjusted. Both reasons act together. 

Above, we have discussed how simulation takes advantage of the possibility to iterate the 

feedback loop. It is the very point of the feedback modeling loop that the model is adapted to 

yield some global behavior. Consequently, the parameters which are used to achieve this do not 

necessarily follow their physical interpretation – and they do not even need to have such an 

interpretation at all. 

 

4.4 Parameters with and without independent physical meaning 

In principle, any variable in a model can be used as adjustable parameter. Two cases should be 

distinguished, depending on the question whether the parameter has an independent physical 

meaning or not. Independent physical meaning is used here in the sense that there is a physical 
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interpretation outside of the context of the parameter fitting. For reasons of illustration, consider 

a model for describing the dependence of a physical property y (output) on some other physical 

property u (input). In the model, it is simply assumed, without any physical argument, that the 

relation is linear, hence: 

y = a u + b                 (5) 

where a and b are adjustable parameters. The parameter a describes the sensitivity of y on 

changes of u, which is a physical property in the example. Whether the parameter b has a 

physical interpretation depends on the range that the input values for u have. If u = 0 is a 

physically reasonable scenario, then b is simply the result for y for that case. All this is trivial and 

not the case we want to make, because here the physical interpretation is no more than some 

curve discussion in high school mathematics. The case we are interested in is when the linear 

relation of Equation (5) is resulting from some physical theory; and there could be a possibility 

for calculating a from properties that are not y and u. Still, a could be used as adjustable 

parameter in the fit using data on y and u. 

We use the van der Waals equation for a further illustration of the above: assume its parameters 

are fitted to experimental p,v,T - data of some liquid. On closer inspection of Equation (2), one 

finds that the liquid density at high pressures is determined by the b parameter. Hence, one can 

physically interpret the b parameter as describing the liquid density at high pressures. This is 

considered here as an interpretation in the context of the parameter fitting, and hence not an 

independent physical interpretation. However, as stated above, by virtue of the derivation of the 

van der Waals equation, the b parameter has a deeper meaning. It describes repulsive 

intermolecular interactions. These obviously become very important in liquids at high pressures, 

where the distances between the particles in the fluid become very low. Repulsive interactions 

can in principle also be determined independently, namely, from quantum chemistry. 

Unfortunately, the derivation of the van der Waals equation is based on such crude 

simplifications that there is no way to relate or predict the b parameter from independent sources 

of information, like quantum chemistry. 

The above shows different things: while it is fair to say that b is related to repulsive interactions, 

there is no way to establish such a correlation quantitatively. An important consequence of this is 

that the numbers for b obtained from fitting should not be over-interpreted as carrying useful 
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quantitative information on the repulsive interactions. That this is not possible becomes also 

evident when considering that the numbers obtained for the b parameter of a given real fluid will 

depend strongly on the choice of the data set used for the fit. Nevertheless, it is obviously a merit 

of the van der Waals equation that it gives structural insight into the importance of certain 

interactions at certain conditions, in our example the repulsive interactions in liquids at high 

pressures. We now return from the example to our main line of argumentation. 

First, consider the case where the variable, which is used as parameter, has an independent 

physical meaning. By using it as adjustable parameter that physical meaning is given up in the 

first place. A number is assigned to that variable in the feedback loop based on pragmatic 

considerations of the overall model quality, and disregarding the physical interpretation that the 

resulting number may have. However, one may try to recover the physical interpretation after the 

parameterization by comparing the result with some independent information on the property, if 

such information is available. The result of the comparison may well be disastrous without 

compromising the usefulness of the overall model. But such an outcome will shed a bad light on 

the explanatory power of the model. On the other hand, it might turn out that the fit has produced 

a number which is “physically reasonable,” that is, which meets some expectations based from 

considerations that were not included in the fit. This would be a clear sign of the epistemic value 

of the model, even in a strong sense where it not only predicts physical phenomena qualitatively 

but also quantitatively. 

If independent information on a variable (parameter) is available, one may ask why that 

independent information was not used right away in the model. A good answer to that question 

would be the lack of accuracy of the information. If the output of a model strongly depends on a 

variable which cannot be measured accurately, the variable cannot be used as input variable 

straightforwardly. In such a situation, the procedure which we have called parameter fit here 

could be a part of a scheme for data estimation. Pushing this point further, the use of physical 

variables as adjustable parameters can be considered as a part of a measuring scheme for the 

associated properties which involves both classical experiments, modeling and simulation.10  

                                                
10 Here, our paper ties in with recent accounts of how simulation influences the standard notion 
of experiment and measurement (cf. Morrison 2009, 2014, Tal 2013). 
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Let us now turn to the second case where the variable which is used as parameter has no 

independent physical meaning. At first glance, that case may seem to be trivial. One simply 

obtains some numbers from the fit and there is no need nor possibility to interpret the results for 

these numbers. All there is to do is to check the overall model quality. Maybe some kind of curve 

discussion of the fit can be added (cf. the example around Equation (5)).  

Things become more interesting if we consider why adjustable parameters without physical 

meaning are used. Basically, this results from operative requirements in the modeling process in 

which highly complex target objects have to be described with models that are still feasible. This 

may make it attractive to represent a complex real situation by a model which was initially 

developed for describing a much simpler physical situation. These models have parameters 

which describe physical quantities in the simple context for which they were initially developed. 

They therefore also carry names of physical properties. But in the complex context in which they 

are used as fitting parameters, the original physical meaning is lost, they degenerate to empirical 

parameters. However, this is disguised by the fact that they carry names of physical quantities. 

This has caused much confusion.  One should refrain from physical interpretations of results of 

fits of such parameters, despite the fact that they often carry names of physical variables. An 

example might clarify the point. 

For instance, for modeling liquid mixtures, there is an entire class of models, the so-called lattice 

models, in which the liquid is represented by particles at fixed positions on a lattice. In the 

simplest version, each particle occupies one lattice site. This picture is taken from an ideal 

crystal. For describing liquids, in which molecules are constantly moving around, changing their 

neighbors, this is a bold simplification. The key parameters in such models are those describing 

the interaction energies of neighbors on the lattice. For example, in a mixture of two components 

A and B, there are three such energies, those of the AA, the BB, and the AB interaction. If such 

simple models were applied to describe some crystal solid, one could hope to interpret the results 

for the interaction energies determined from a fit to some data in a physical way and compare 

them to independent data.  In the context of modeling liquids, there is no hope in such an 

endeavor. The numbers obtained for the interaction energies from fits to liquid mixture data have 

no meaning, even though they are still called interaction energies. 
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On the other hand, parameters of models which were chosen for entirely mathematical reasons 

(e.g., coefficients of Taylor series expansions) may turn out to have a strong independent 

physical meaning. For example, Equation (3) can be considered as a Taylor series expansion 

around the state of the ideal gas and B and C are just the first two coefficients of that expansion. 

The theory of statistical mechanics shows that these coefficients are directly related to the energy 

of pair interactions in the gas.  

In developing computer models, also hybrid schemes are applied in which model parts with a 

strong physical background and parameters that have an independent physical meaning are 

combined with empirical parts. Here, the parameters are merely there to improve some model 

results, which without the use of these parameters would be inacceptable.  

Again, the van der Waals equation provides an example. Originally, the parameter a was a 

number with a certain value for each fluid. But it was soon realized that for accurate descriptions 

of the thermodynamic behavior over a large temperature range, namely, of the vapor pressure 

curve, substantial improvements could be achieved by allowing for a temperature dependence of 

a. The mathematical forms for describing a(T) are empirical and so are the adjustable parameters 

in these forms. 

 

4.5 Parameters in the Implementation 

So far, we have only discussed model parameters. We have neglected the fact that the 

(theoretical) models often cannot be studied directly. They first have to be implemented on 

computers. Different implementations of the same model will usually not yield exactly the same 

results. As a consequence, the implementation, which is a part of the feedback loop of modeling, 

will influence the model parameterization. Aside from implementation errors, the differences 

between different implementations of one model are luckily often small enough to be neglected. 

Model parameters determined in one study are regularly and successfully used in other studies, 

even though the model implementations differ. However, there is no guarantee that this is the 

case. 

There is more concern about parameters which occur in the model implementation. Prominent 

examples of such parameters are those used in the discretization of models or those used to 
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control numerical solvers. Ideally, these parameters are chosen from ranges in which the 

influence of the parameter on the simulation result is negligible (e.g., the grids used for the 

discretization must be “fine enough”). But it may be very difficult to guarantee this.  

When there is an influence of such parameters on the simulation results, they can actively be 

adjusted in the modeling feedback loop to improve the simulation results. This is much more 

problematic than adjusting model parameters, as it is implementation-dependent. It forecloses the 

discussion of the model without referring to the specific implementation. It also may be misused 

to feint a success of the model, which cannot be attributed to the model but just to a deliberately 

tuned implementation. 

We think that adjusting parameters of the implementation should always be done based on the 

consideration of minimizing the influence of those parameters at acceptable simulation effort. It 

must never be used for tuning simulation results in the modeling feedback loop.11 

 

4.6 Models and Correlations 

Both the term “model” and the term “correlation” are used for referring to descriptions of objects 

of the real world. Model has a better reputation than its counterpart correlation. Correlations are 

often considered as “some kind of (empirical) model,” but one where physical theory is not 

invoked. Rather, statistical considerations play the leading role – largely independent from the 

physical properties of the particular target system under investigation. 

In the framework that we have presented here, a correlation is just an extreme version of a 

model. In Figure 3, the term model could be replaced by correlation and nothing else would have 

to be changed. The feedback loop is even more essential for the correlation than it is for the 

model. This is due to the fact that the correlation relies on adjustable parameters, either fully or 

at least in essential parts. It does not even have to have any physical background. A correlation 

can, for example, just be a mathematical form, which is taught to describe a physical situation by 

adjusting its parameters. Artificial neural networks provide a telling example, since they work 

with a generic structure, while the parameter adjustments determine the behavior nearly 

                                                
11 Cf. Oberkampf and Roy (2010, section 13.5.1) for a systematic proposal of how parameters 
influence the validation of simulations from an engineering perspective. 
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completely. It is noted here that most physical phenomena can be described by suitably 

parameterized mathematical expansions around a given point (Taylor series, Fourier series etc.).  

From this we conclude that there is a continuous transition between physical models and 

correlations, depending on the degree in which they rely on adjustable parameters and whether 

the parameters of correlations are open to a physical interpretation as in the van der Waals 

equation (see 4.4. above).  The number of adjustable parameters in a physical model should 

never exceed the number of adjustable parameters in a purely mathematical (statistical) 

correlation of the studied phenomenon, which yields a similar quality of the description. Else the 

physical theory does supposedly not work. 

      

5. Conclusion: boon and bane 

The cooperation of experiments, that is, of simulation and classical experiments, plays a crucial 

role in simulation modeling. This cooperation thrives on the feedback loop in modeling which 

provides the basis for adjusting parameters. Notably, we monitored the significance of parameter 

adjustments even in the area of thermodynamics and equations of state where theory is highly 

developed and well-grounded. Adjustable parameters will arguably not be less significant in 

fields with less support from theory.  

Adjusting parameters is often the clue that makes a model work, it is a boon. Using the term 

applicability in an engineering sense, which can broadly be identified with usefulness for solving 

practical problems, it is fair to say that adjusting parameters is often the prerequisite for the 

applicability of a model. At the same time, the adjustment of parameters limits the applicability 

of models. The model will often only be useful for describing scenarios which are not “too far 

away” from the scenarios that were used for the fit. We cannot enter into the interesting 

discussion of this in detail here and just mention that the question how far a model carries 

beyond the range where it was parameterized is closely related to the quality of the theory behind 

it, that it is by no means trivial to establish metrics to measure what “far” means, and that the 

answers to the latter question will be strongly case-dependent. In any case, it must be clear that 

the adjustment of parameters can simply not replace a sound theory.  
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Let us consider the equation of state of the ideal gas (Equation 1) as an example. We start by 

simply considering it as a model to describe p,v,T data of gases at low densities, and state that the 

region of the applicability of the model is extremely large as it holds for all substances. The 

model allows far-reaching predictions as the “parameter” R does not depend on the substance. 

Equation (1), which is often also called “Ideal Gas Law” would obviously lend itself to a closer 

discussion of the relation of the terms model and theory, but we must refrain from this here. We 

rather move to other equations of state, for which the picture changes. Let us use the van der 

Waals equation (Equation (3)) as an example and assume first that we are merely interested in 

using it for describing properties of a certain pure fluid. For this, we need to have numbers for 

the parameters a and b of that fluid. They must be obtained from an adjustment to some 

experimental data. Once this is done, we can make all sorts of predictions using Equation (3) but 

the quality of these predictions will strongly depend on the relation between the data that were 

used for the fit and the data which are to be predicted. Interestingly, there are common notions in 

the thermodynamic community as to which data are to be used for parameterizing equations of 

state for fluids. For example, as a rule, experimental data on the so-called critical point are used, 

if they are available. The reason is that parameterizations based on such data are found to be 

more broadly applicable than competing parameterizations. To summarize, the following issues 

are inextricably entwined: the model with its parameters, the way the parameters are determined, 

and the applicability of the model in certain situations. Taking this into account, a scheme for 

comparing the quality of different models would be to use the same data for the 

parameterization, to apply the models for studying the same quantities, and to compare the 

quality of the results.   

The limitation of the applicability of a model by its parameterization is not a bane in itself. But it 

becomes a bane when it is overlooked. We must get used to never think of models without 

considering the way they were parameterized.  

In a sense, adjusting parameters is strongly guided by predictive quality over a certain – and 

maybe very limited – range. While enabling application, this procedure diminishes the 

explanatory capacity of simulations, because the iterated adjustments tend to obscure or 

convolute what can be attributed to general theory, parameterization strategy, and particular 

parameter adjustment. In brief, adjustable parameters are boon and bane of simulation. 

Empirical, theoretical, and computational aspects complement each other. 
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Though our results belong to the philosophy of simulation, they point toward a more general 

philosophical perspective. Let us take simulation in terms of mathematical modeling. Simulation 

then does not merely extend mathematical modeling, but adds a new twist to it. Now classical 

and simulation experiments cooperate, building on the feedback loop and on adjustable 

parameters. Our investigation thus adds a new twist to the so-called “new experimentalism” of 

Hacking, Franklin and others. They highlighted the importance of experimental (instead of solely 

theoretical) knowledge in the sciences. Philosophy of science would then examine how 

experimental knowledge actually arrived at and how this knowledge functions. The rationality of 

science then is not distilled from some logic, but from actual scientific practices. Our paper 

contributes to this line of reasoning and extends to practices of simulation. The interesting twist 

then introduces an empiricism that is different from earlier accounts of modeling in an important 

way. It neither explores the theoretical model, nor inserts measured values (as in semi-empirical 

methods) for parameters hard to calculate. The cooperation of experiments and the exploratory/ 

empiricist nature of adjusting parameters extend well into the home territory of theory. 
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