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MODEL THEORY OF ANALYTIC FUNCTIONS:

SOME HISTORICAL COMMENTS

DEIRDRE HASKELL

Abstract. Model theorists have been studying analytic functions since the late 1970s.

Highlights include the seminal work of Denef and van den Dries on the theory of the p-adics

with restricted analytic functions, Wilkie’s proof of o-minimality of the theory of the reals

with the exponential function, and the formulation of Zilber’s conjecture for the complex

exponential. My goal in this talk is to survey these main developments and to reflect on

today’s open problems, in particular for theories of valued fields.

When I was invited to give this talk for the ASL annual meeting 2011,
I decided it would be a good opportunity to review the history and the
development of ideas that has led to today’s rich area of research into the
study of analytic functions from a model theoretic point of view (and vice-
versa, as interesting questions in model theory arise from the geometric
understanding of analytic functions). As I started reading, and wondering
what I had let myself in for, I very quickly had to make decisions about
what I would not be talking about. One very major area I am not talking
about is model theory and analysis, in the sense of the general study of
topological spaces equipped with a metric. There is much that is going on
in this area, from descriptive set theory to continuous logic, and it would
make a very interesting talk to hear about the historical development of
these ideas. However, it is not this talk. What I do want to talk about is the
model-theoretic study of analytic functions which begins with Tarski.
In the early 1930s, Tarski proved the decidability of the real numbers
as a field. This work was finally published in 1948 as a Rand volume, and
reprinted with annotations in 1951 by the University of California press (this
is the version which appears in the collected works) [36]. In a discussion of
related decision problems, Tarski says

. . . the decision problem is open . . . for the system obtained by
introducing the operation of exponentiation.

and comments on its potential interest. What we will see, in the course of
this talk, is the continuing role that the exponential function has played. Of
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MODEL THEORY OF ANALYTIC FUNCTIONS 369

course, this is partly because Tarski posed this problem, and much work has
been devoted to attempting to solve it. But it is also because of the wonderful
properties of the exponential function which make it so natural and yet so
powerful.
I think it is useful at this point to be precise about the objects that we are
talking about. Recall the following definition.

Definition 1. Let K be a field with an associated metric on it (and hence
a notion of differentiability) which is complete with respect to the metric. A
functionf: K → K (more generallyKn → K) is analytic in a neighborhood
U of a point a ∈ K if it is infinitely differentiable at a and the Taylor series
expansion converges to the values of the function on U : for all x ∈ U

f(x) =
∞
∑

n=0

1

n!
f(n)(a)(x − a)n .

Of course

exp(x) =
∞
∑

n=0

1

n!
xn,

which converges for all |x| < ∞, so is the canonical example of an analytic
function.
The problem of decidability of various theories was of central interest in
the late 1940’s and early 1950’s. In 1951, in a paper addressing the decision
problem for many different theories of rings, R. Robinson [33] proved the
following theorem relevant to the present discussion.

Theorem 2. The ring of entire functions over C; that is, analytic functions
that are defined on all of C, is undecidable.

The fact that an analytic function is given intrinsically as a convergent
power series, and that the collection of formal power series, or of convergent
power series, over a field forms a ring, gives us a choice of approach as
highlighted by the above result. On the one hand, we can consider the
set of power series as the universe of a structure in the language of rings,
possibly with further structure on it (e.g., a derivation or valuation). Model-
theoretically, we can then study the algebraic properties of the collection of
analytic functions, and derive interesting results, of which the above theorem
by R. Robinson is one example. On the other hand, we can consider one
(or many) analytic functions on a field as the interpretation of one (or
many) function symbols in the language. From this point of view, we are led
model-theoretically to study the properties of the sets definable from these
functions. The latter point of view is the one I plan to address for most of
the talk. However, many of the results in this direction depend on algebraic
properties of the functions, so the former point of view is also relevant to
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the analysis. Indeed, in his survey for the Logic Colloquium in 1997, Wilkie
[41] comments

. . . I believe that the future might lie more in considerations of the
former type . . .

It is also significant in the historical development, so let me say a little bit
more about results along these lines in the 1960s and 1970s, and leave the
interested reader to follow-up with Wilkie’s survey for more recent results.
In the 1960s, J. Ax and S. Kochen, and independently, Y. Ersov, looked
at power series fields in the language of valued fields (about which more in
a moment). Their major contribution is still repeatedly cited today in the
model theory of valued fields (where one often refers to anAKE-type result),
but they also proved the following theorem along the lines of R. Robinson’s
undecidablity (this is an amalgamation of several theorems in the literature)
[2], [4], [10].

Theorem 3. Let K be a field, K((t)) the field of formal power series in one
variable overK . IfK is undecidable as a field, then K((t)) is undecidable as a
valued field. For K a field of characteristic 0, if K is decidable as a field, then
K((t)) is decidable as a valued field.

Thus for K a field of characteristic 0, the field of power series over K is
decidable as a field if and only if it is decidable as a valued field ([4]). This
is not known for characteristic non-zero, and indeed, the following problem
is still open.

Open problem. Is the theory of Fp((t)) as a valued field decidable?

At about the same time as the Ax–Kochen–Ersov results, the following,
prima facie orthogonal, conjecture was expressed in a book by Lang [19]
where it is attributed to Schanuel.

Schanuel’s conjecture. Let α1, . . . , αn be complex numbers which are lin-
early independent overQ. Then the fieldQ(α1, . . . , αn, exp(α1), . . . , exp(αn))
has transcendence degree over Q at least n.

To see the breadth of this conjecture, consider the case when n = 2, α1 = 1
and α2 = ið. If Schanuel’s Conjecture holds in this case, then

trdeg(Q(1, ið, e1, eið)/Q) = trdeg(Q(ið, e)/Q) ≥ 2
and hence e and ð are algebraically independent. The conjecture essentially
sums up everything that is known or guessed about transcendental number
theory. In 1971, Ax [3], proved the power series version of Schanuel’s
Conjecture using differential-algebraic methods.

Theorem 4. Let α1, . . . , αn be complex power series in tC[[t]] (that is, with
constant term 0) which are linearly independent over Q. Then the transcen-
dence degree over C(t) of the field C(t)(α1, . . . , αn, exp(α1), . . . , exp(αn)) is
at least n.



MODEL THEORY OF ANALYTIC FUNCTIONS 371

A field of power series has an obvious way of defining a derivation on it.
The algebraic study of the properties of a field equippedwith a derivationwas
initiated by Ritt in the 1920’s (see [30], for example). They were first studied
model-theoretically byA.Robinson [31], who gave axioms for a differentially
closed field. These were simplified by L. Blum (1968) who showed further
that the theory of differentially closed fields is a model companion to the
theory of fields with a derivation, and proved that this theory has good
model-theoretic properties, for example:

Theorem 5. The theory of differentially closed fields has quantifier elimina-
tion and is ù-stable.

An account of these results can be found in [7]. A differentially closed field
is, in the first place, algebraically closed. In the situation of a real field, one
has instead the notion of aHardy field. Moving away from functions defined
bypower series, but remaining in a classwhich is closed under differentiation,
A. Robinson [32] proved the following theorem.

Theorem 6. Let H be a set of germs at∞ of infinitely differentiable, real-
valued functions. Assume H is closed under derivation, and that it forms a
field. ThenH has a real closure which is also closed under derivation.
It remains an open problem, currently being studied by Aschenbrenner,
van den Dries, van der Hoeven, to understand the model theory of Hardy
fields in general.
All this, although interesting, is not the main direction of what I want
to talk about today. Rather, I want to look at the study of sets defined by
analytic functions, and what model theory can say about them. The kind
of field on which the functions are defined is obviously important, as also
are differential-algebraic properties of the functions themselves. So let us
return to Tarski’s problem and sets defined on the real numbers by analytic
functions.
First recall the notion of a semi-algebraic set. In the language of or-
dered fields, the quantifier-free definable (with parameters) subsets ofRn are
boolean combinations of sets of the form

{y ∈ Rn : f(y) = 0 ∧
k
∧

i=1

gi (y) > 0}

wheref, gi are polynomials with real coefficients. Tarski’s decidability result
goes via quantifier elimination: the collection of semi-algebraic sets is closed
under projection. Analogously, we can define the notion of a semi-analytic
set.

Definition 7. A set S ⊂ Rn is semi-analytic at a ∈ Rn if there is an open
neighborhood U of a in Rn such that S ∩ U is a finite union of sets of the
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form

{y ∈ U : f(y) = 0 ∧
k
∧

i=1

gi(y) > 0}

where the functions f and gi are analytic. The set S is semi-analytic if
it is semi-analytic at every point in Rn and it is globally semianalytic if
its image under the map (x1, . . . , xn) → (x1/

√
1 + x21 , . . . , xn/

√
1 + x2n) is

semianalytic. (This function is an analytic isomorphism fromRn to the open
unit cube (−1, 1)n .)
Semi-analytic sets have reasonable geometric properties. They were stud-
ied in the 1960s by S. Łojasiewicz, and his school ([21], although this does
not appear to be available on MathSciNet. A more complete study of both
semianalytic and subanalytic sets can be found in [6]). However, the collec-
tion of semi-analytic sets is not closed under projection, or more generally,
under images by analytic functions. Thus one is led to make a further
definition.

Definition 8. The set S ⊂ Rn is subanalytic at a ∈ Rn if there are an open
neighborhood U of a, and a bounded semianalytic set S ′ ⊂ Rn+m such that

S ∩U = {y ∈ U : ∃x ∈ Rm((y, x) ∈ S ′)}.
It is subanalytic if it is subanalytic at every point in Rn and it is globally
subanalytic if the image of S under the above map to the unit cube is suban-
alytic.

The subanalytic sets were studied under various names, including semi-
analytic shadows by Hardt [12], and P-sets by Gabrielov [11], but the name
given by Hironaka [14] is the one that stuck. In 1968 we see the first result
with a really model-theoretic flavor. Gabrielov was an undergraduate when
he was given this problem by his advisor. They were clearly informed by the
model-theoretic point of view on the Tarski–Seidenberg theorem, but were
interested in proving a geometric result.

Theorem 9. The complement of a subanalytic set is subanalytic.

To see this as a model-theoretic result, we need to specify an appropriate
language. We build the language Lan by adding a function symbol to the
language of rings for every power series f (in n variables) over R which
converges in a neighborhood of [−1, 1]n. For every new function symbol f,
interpret f on Rn by the function f̃ defined by

f̃(x) =

{

f(x), if x ∈ [−1, 1]n,
0, if x /∈ [−1, 1]n.

(we call this a restricted analytic function). Write Ran for this expansion of
the real field in the language Lan. This seems like a fairly brutal operation
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to perform on an analytic function, since it immediately loses its analyticity
on the boundary of the unit cube. However it serves to capture the local
character of the semi-analytic and subanalytic sets. In fact, the globally
semi-analytic subsets of Rn are precisely the quantifier-free definable sets
in Ran, and the globally subanalytic sets are those which are existentially
definable. Thus Gabrielov’s theorem says that the collection of subanalytic
sets is closed under complement, and hence that the theory of Ran is model-
complete.
To continue the model-theoretic development, we need to digress for a
moment to recall valued fields. The field F is valued if there is a valuation
function v : F ∗ → Γ from the field to an ordered group Γ such that v(xy) =
v(x) + v(y), v(x + y) ≥ min{v(x), v(y)}. For convenience, we define
v(0) = ∞, where ã < ∞ for every ã ∈ Γ. The set {x ∈ F : v(x) ≥ 0}
is called the valuation ring; it has a unique maximal ideal and the quotient
of the valuation ring by the maximal ideal is called the residue field. For
example, a field of formal Laurent series carries a valuation in a natural way:

take F = K((t)); v(
∞
∑

i=M

ai t
i ) =M , where aM 6= 0. Here the residue field is

K and the value group is Z.
A different example is seen in the construction of the p-adic numbers. Fix

a prime p, take F = Q, and define v(
prs

t
) = r, where p ∤ st, r ∈ Z. Here the

field has characteristic 0, and the residue field is Fp, with characteristic p.

The valuation naturally gives rise to a metric |x|p = p−v(x), and the field of
p-adic numbers Qp is the completion of Q with respect to this metric. That
the theory of the p-adic numbers as a field is decidable was proved already by
Ax and Kochen, and Ersov, in the papers referred to above, with a primitive
recursive decision procedure given by Cohen in [8]. In 1976, Macintyre [22]
proved the theory has quantifier elimination in a language with predicate
symbols for the sets of nth powers, which are thought of as analogous to the
ordering (equivalently, the set of squares) in the reals.
We can build the language Lan on top of the algebraic language for valued
fields just as we built it on the field language for the reals. For the p-adics,
the “restricted” in restricted analytic function becomes restriction to the
valuation ring. Convergence is easier in thep-adics, because of the ultrametic
property of the metric defined from the valuation — any power series with
coefficients eventually decreasing in size will converge as a function on the
valuation ring. With this setup, J. Denef and L. van den Dries [9] proved
the following quantifer elimination results for the theory of the p-adics with
analytic functions.

Theorem 10. Let Qp,an be the structure with domain Qp in the language
Lan with function symbols for the functions on the valuation ring defined by
convergent power series. The theory of Qp,an is model-complete. Add a binary
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function symbol D to the language, which is interpreted by a restricted division
function. The theory of Qp,an in the language LDan has quantifier elimination.

In the same paper, they show the analogous result for the theory of R
in a language with symbols for the restricted analytic functions. Thus
they recapture Gabrielov’s theorem, and also get a quantifier elimination
result.
The new idea of Denef and van den Dries was to really exploit the fact
that the functions are given as power series (at least in the standard model),
and thus satisfy Weierstrass preparation. What this says is that, locally,
possibly after a change of variables, a power series in n variables can be
expressed as a product of an analytic function, which is a unit in the power
series ring, and a polynomial in one of the variables with coefficients that
are power series in the other variables. For algebraic conditions, such as
being equal to zero or having a kth root, the unit is irrelevant. Thus one
can apply the algebraic quantifier elimination results to the last variable,
and proceed by induction on n. Although Weierstrass preparation is a local
result, the fact that the valuation ring is compact means that only finitely
many different products are needed. The change of variables to get into a
position to apply Weierstrass preparation requires division, and this is why
we only get model-completeness in the original language.
L. Lipshitz (1993) [20] applied the same method to an algebraically closed
valued field. Here the valuation ring is not compact, and so one needs
to treat the convergent power series with more care. Lipshitz uses power
series with two sorts of variables — one for the valuation ring and one for
the maximal ideal. Power series with coefficients of eventually convergent
norm will converge for any inputs, but power series over the valuation ring
need greater control over the convergence of the coefficients in order for the
functions to converge uniformly. Lipshitz defined a collection called the
separated power series for which he then proves model-completeness and
quantifier elimination results.
In the meantime, people continued to think about Tarski’s problem in
different ways. One observation that Tarski had made is that it follows from
his quantifier elimination that definable subsets of R are finite unions of
points and intervals. L. van denDries, in his lecture at the Logic Colloquium
1982 [37], showed that many nice properties of definable sets inRn, including
uniform finiteness of fibres of sets in definable families and that definable
functions are piecewise continuous, follow just from this simple observation.
J. Knight, A. Pillay and C. Steinhorn [17] then observed that van den Dries’s
results depend only on this property of the one-variable definable sets in
an ordered structure, and not on particular properties of the real numbers
(nor on the complete quantifier elimination). They called such structures
order minimal, by analogy with the property of a structure being minimal
(definable sets are finite or cofinite).
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Definition 11. A structure in a language with a linear ordering is o-
minimal if every definable set in one variable is quantifier-free definable just
using the ordering.

It was very soon observed by van den Dries [38] that Ran is o-minimal,
and thus formed the first non-trivial expansion of the algebraic structure on
the reals which is o-minimal. In particular, since the exponential function
is analytic, it follows that the theory of R with a function symbol for the
restricted exponential function is also o-minimal (the property of being o-
minimal is closed under reducts.)
The intuition about restricted analytic functions is that, because of Weier-
strass preparation, they are not really more complicated than polynomials.
The challenge then was to try to expand the reals by some analytic function
which is defined on all of the real numbers, yet does not have the periodicity
which would mean that it, in return, defines the integers. The big break-
through was achieved by A. Wilkie [40] (a preprint was circulating already
in 1991).

Theorem 12. The theory of Rexp is model complete and o-minimal.

The proof uses the o-minimality of Rexp|[0,1], as well as a detailed under-
standing of the nature of solutions of exponential polynomial equations that
comes from work of Khovanskii, as well as earlier work of Wilkie.
This result does not solve Tarski’s original problem. Five years later,
Macintyre and Wilkie essentially settled it in the following unexpected
way [23].

Theorem 13. If Schanuel’s conjecture is true then the theory of Rexp is
decidable. On the other hand, the decidability implies aweak formofSchanuel’s
conjecture.

Thus the solution to Tarski’s problem depends on this far-reaching con-
jecture which is not expected to be resolved any time soon.
Tarski’s problem aside, Wilkie’s proof of the o-minimality of the real field
with exponentiation opened the doors to a wealth of new problems. One
significant feature of his proof is to use differential-algebraic properties of
the exponential function. Some years later, he developed these methods to
show that the expansion of the reals by a large class of functions, the Pfaffian
functions, is o-minimal [42].

Definition 14. Asequencef1, . . . , fn of differentiable functions is aPfaf-
fian chain if there are polynomials p1(t1, t2), . . . , pn(t1, . . . , tn+1) such that
f′
i (x) = pi (x,f1, . . . , fi) for each i .

Theorem 15. Expansions of the real field by Pfaffian chains of analytic
functions are o-minimal.
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The same year, Speissegger [35] constructed an o-minimal expansion of
the reals in a different way, by adding relation symbols to the structure for
an analytically defined object.

Theorem 16. The expansion of an o-minimal structure on R by any Rolle
leaf (solution of a continuous, definable 1-form with the Rolle property) is still
o-minimal.

Work on o-minimal expansions of the reals continues to grow and prosper.
One longterm goal is to tackle what remains of Hilbert’s 16th problem; that
is, to find a bound on the number of limit cycles of polynomially defined
plane vector fields. Researchers continue to extend the range of o-minimality
beyond the analytic category, as is seen, for example, in the 2003 paper of
Rolin, Speissegger and Wilkie, where they develop an axiomatic method
for showing that an expansion of the reals by quasi-analytic functions is
o-minimal [34]. Some proofs of o-minimality now do not go via model-
completeness, so then it is also a goal to understand the quantifier complexity
of the definable sets.
But where is complex analysis in all of this? In 1993, B. Zilber gave a talk
at the 10th Berlin Easter conference in Model Theory. A paper is published
in the proceedings volume [44], and available from Zilber’s website. Instead
of adding function symbols to the language, he takes the domain to be a
compact complex manifold, and adds relation symbols to the language for
all of the complex analytic subsets.

Theorem 17. This structure has quantifier elimination and is ù-stable with
finite Morley rank.

A. Pillay took up the model-theoretic study of compact complex varieties
(where a complex variety is a reduced irreducible complex analytic space).
With his student R. Moosa, they extended Zilber’s analysis to the multi-
sorted structure, whose sorts are all compact complex varieties, each sort
having all complex analytic subsets as basic relations. One thing they prove,
as noted in [27] is:

Theorem 18. The multi-sorted structure above eliminates imaginaries.

Subsequent work (Hrushovski, Kowalski, Moosa, Pillay, Scanlon) relates
sophisticated model-theoretic ideas (for instance, internality and Zariski
geometries) to geometric properties of complex manifolds. And vice-versa,
the expression of geometric concepts in a purely model-theoretical way has
brought interesting developments. The two surveys by Moosa [27, 28] give
a very good account of these.
A very different approach to the study of complex analytic functions is
taken by Peterzil and Starchenko ([29] and subsequent work). They look
at what we might call an ‘o-minimal complex field’ as the algebraic closure
of an o-minimal real field, and show that many results of classical complex
analysis are true for these more general algebraically closed fields.
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In both of the above approaches, analytic functions are not added to the
language, and with good reason. As D.Marker noted in his 2006 JSL article
[25],

When studying the model theory of Cexp the first observation is
that the integers can be defined . . . . Since Cexp is subject to all of
Gödel’s phenomena, this is also often the last observation.

As Marker points out, Cexp is undecidable, and is also not model-complete.
Nevertheless, one can still try to understand it model-theoretically. In the
worst case it would turn out that R is definable in Cexp. The best case
would be that C is quasi-minimal; that is, every definable set is countable
or co-countable. Zilber has outlined a program to try to prove this latter
statement. In a paper in 2005 [45], he proposed axioms for an algebraically
closed field K in a language with a surjective homomorphism E from the
additive structure to the multiplicative structure ofK . These axioms include
the complex Schanuel conjecture, an existential closure axiom which is a
strong converse to Schanuel’s conjecture, and an axiom called the countable
closure property (which limits the number of existential generic points). Of
course these cannot be first-order axioms; rather they are given in Lù1,ù(Q).
Zilber then proves a categoricity theorem for this theory.

Theorem 19. For every uncountable cardinal κ, there is a unique model of
the above theory of cardinality κ and this model is quasi-minimal.

In particular, if Cexp is a model of the axioms, then it is the unique model
of cardinality the continuum, and hence is quasi-minimal. There are partial
results in the direction of this program. In the original paper, Zilber proved
that Cexp satisfies the countable closure property (incidentally, using the the-
orem of Ax on the power series version of the Schanuel conjecture). Marker
proved that Cexp satisfies a first case of the existential closure property. Of
course, the completion of this program as currently outlined would require
proving the full complex Schanuel’s Conjecture, and this is not expected to
be done any time soon. Nevertheless, to a model-theorist, the categoricity
result is perhaps the strongest reason for believing in the truth of Schanuel’s
Conjecture (as remarked to me by Rahim Moosa).
Indeed, if Schanuel’s Conjecture fails, one wonders what might be the
mysterious homomorphism which gives the unique model of Zilber’s theory
of cardinality 2ℵ0 . It follows from work of Wilkie [43] and Koiran [18] on
Liouville functions that there is some entire function on C which satisfies
Schanuel’s conjecture and a variant of the existential closure property (see
also Aschenbrenner’s review [1] of Zilber’s paper). However, given the
construction as a power series whose coefficients converge very rapidly, such
a function will not be a homomorphism from the multiplicative group of C
to its additive group, so does not give insight into this question.
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We turn now to non-archimedean analysis. A valued field naturally has an
associated notion of distance on it. Indeed, the definition of a valuation can
be expressed as the existence of a function |·| : K∗ → Γ, where Γ is an ordered
multiplicative group such that |xy| = |x||y| and |x + y| ≤ max{|x|, |y|}.
This latter property is expressed by saying the function is an ultrametric. The
ultrametric makes convergence of infinite series very easy, but unfortunately
the field is totally disconnected in the associated topology. There is thus
no good notion of analytic continuation. For the quantifier elimination
results, the method of working locally gets around this, but we can see the
associated difficulties when comparing the p-adics versus an algebraically
closed valued field. In the former case, the valuation ring is compact, and
the arguments for the p-adics are very similar to those for the reals (indeed,
the p-adic analytic quantifier elimination came before the result for the reals,
as we have already seen). The difficulties in the algebraically closed case can
be attributed to the fact that the functions do not have a natural analytic
continuation beyond the (non-compact) valuation ring.
V. Berkovich [5] proposed a way to find a better topology on a valued field.
This can be described, very roughly, as considering the space of ultrametrics
defined on the ring of polynomials over a valued field K . This is analogous
to the operation in algebraic geometry of considering the spectrum of the
ring of polynomials over K . As in the algebraic case, the field K embeds
naturally into the space of ultrametrics. There is a reasonable way to define
a topology on this space which is compact and Hausdorff, and hence is
amenable to defining analytic functions on it. As yet, the model theory of
Berkovich space has not been tackled. However, Berkovich space has been
studied using model-theoretic tools. In a recent preprint, E. Hrushovski
and F. Loeser [15] study the space of stably dominated types on the definable
subsets of an algebraically closed valued field. The Berkovich space of
an algebraic variety is such a space of stably dominated types, where the
definable set is the given variety and the value group of the field is a subset
of R.
To finish the talk, I would like tomention a very recent result about analytic
functions onavaluedfield, which illustrates again the fundamental role of the
exponential function. In 2006 [13], Hrushovski, Macpherson and I proved
that the theory of algebraically closed valued fields has elimination of imag-
inaries in a sorted language LG which includes sorts for an infinite collection
G of definable modules and their torsors. This was swiftly followed by proofs
of the analogous result for real closed valued fields [26] and p-adically closed
fields [16]. Given the elimination of quantifiers results for all of these theories
in an appropriate language with restricted analytic functions, we wondered
if the same sorted language would suffice to eliminate the further imaginaries
which can be defined with these additional functions. In fact, we have shown
that properties of the exponential function mean that this is not true.
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Theorem 20. Add function symbols to the language to be interpreted by
restricted analytic functions on the field. Assume the collections of functions
is rich enough so that the resulting structure eliminates quantifiers, and also
assume that the (restricted ) exponential and logarithm functions are included.
Let h be the function from a translate of the valuation ring to a translate of the
maximal ideal defined by h(a + x) = b exp(x). The imaginary which is the
graph of h cannot be eliminated in the above language.
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