
Independence, Invariance and the
Causal Markov Condition

Daniel M. Hausman and James Woodward1

ABSTRACT

This essay explains what the Causal Markov Condition says and defends the condition
from the many criticisms that have been launched against it. Although we are skeptical
about some of the applications of the Causal Markov Condition, we argue that it is
implicit in the view that causes can be used to manipulate their effects and that it cannot
be surrendered without surrendering this view of causation.
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Whether or not one holds that causation is a deterministic relation, there appear
to be connections between causation and probabilities. Causes are correlated
with their effects. Effects of a common cause are unconditionally correlated
with one another, but they are independent conditional on their common cause.
Causal intermediaries screen off their effects from their causes. Events that are
not related as cause and effect or as effects of common causes are uncorrelated.
These claims are rough and, as just formulated, indefensible. But they point to
an important connection between causation and probabilities. This paper is
concerned with a promising formulation of this connection, which Peter
Spirtes, Clark Glymour and Richard Scheines (hereafter SGS) call ‘the
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Causal Markov Condition,’ which was apparently first described by Kiiveri
and Speed ([1982]). This condition plays a central role in recent literature on
causal inference from statistical data. It is the keystone of SGS’s work, and it is
also central to the work of Judea Pearl and his collaborators (e.g. Pearl [1995],
[1998]). Versions of this condition have also been extensively discussed in the
statistical literature, although not always with an explicitly causal interpreta-
tion. In this essay, we examine what the Causal Markov Condition says,
whether one should accept it, and what its limits may be. In particular we
argue that there is a deep connection between the Causal Markov Condition (and
hence claims concerning screening-off) and a plausible principle connecting
causation and manipulation.

1 What is the Causal Markov Condition?
SGS define the Causal Markov Condition (CM from now on) as follows:

Let G be a causal graph with vertex setV and P be a probability
distribution over the vertices inV generated by the causal structure
represented byG. G andP satisfy the Causal Markov Condition if and
only if for every X in V, X is independent ofV\(Descendants(X) ∪
Parents(X)) givenParents(X).2

This definition obviously requires a bit of explication. A causal graphG is a set
of vertices that represent the relata of the causal relation and a set of directed
edges from one vertex to another. A causal graph can be used to represent token
causal relations, but SGS are concerned instead to represent causal relations
among types of events or among variables. For the moment we shall trust to the
reader’s own understanding of what it is for one type or variable to be a cause
of another type or variable. To avoid cumbersome terminology and notation,
we shall use the same characters to refer to types or variables and to the vertices
that represent them. SoV is both the set of vertices of the graphGand the set of
variables whose causal relations are represented byG. This conflation is, we
believe, harmless. Following SGS, we shall use upper-case italics to represent
variables and lower-case italics to represent their values.

The convention for representing causal relations is to draw a directed edge
from vertexU to vertexV if and only if there is a ‘direct’ causal relation
betweenU andV. A direct causal relation in this context is merely a causal
relation that does not pass through any of the other vertices in the setV. A
sequence of vertices {V1, . . . ,Vn} is a pathfrom V1 to Vn if and only if for all
i (i < n), there is a directed edge fromVi to Vi + 1. This essay considers only
acyclic graphs—that is graphs in which no vertex appears more than once
along any path.X is aparentof Y if and only if there is an edge fromX to Y.
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X is anancestorof Y if and only if there is a path fromX to Y. Y is adescendant
of X if and only if X is an ancestor ofY.

With these preliminaries, we are now ready to elucidateCM . X is a vertex
(variable) in the vertex (variable) setV. Descendants(X) is the set of all the
descendants ofX in the graph—that is, all the effects ofX in the setV.
Parents(X) is the set of all the parents ofX in the graph—that is the set of
all the direct causes ofX in the setV. SinceParents(X) is a subset ofV, direct
causes ofX that are not inV will not be in Parents(X).3 Independence is, of
course, probabilistic independence. SoCM says that, conditional on the set of
all its direct causes inV, X is independent of all the variables inV that are not
direct causes ofX or effects ofX. Since (trivially) X is independent of its
parents conditional on its parents, one can simplify still further and formulate
the Causal Markov Condition as follows:

CM (The Causal Markov Condition): For all distinct variablesX andY in
the variable setV, if X does not causeY, then Pr(X/Y&Parents(X)) =
Pr(X/Parents(X)).

CM says that conditional on its parents,X is independent of every variable inV
except its effects.CM thus says that every variable is screened off by the set of
all its parents from every other variable except its effects. Although SGS do not
insist explicitly that the variables be distinct from one another, this restriction
is required. When variables bear conceptual or logical connections to one
another, or when their located values have parts in common,4 then they may
bear probabilistic relations to one another that have no causal explanation, and
an unrestricted version ofCM will fail. One can also think ofCM as stating
a sufficient condition for ‘X causesY.’ If X and Y are probabilistically
dependent conditional on the set of all the direct causes ofX in a probability
distribution generated by the given causal structure among the variables inV,
thenX causesY.

SGS call the converse ofCM , ‘the faithfulness condition.’ It also plays an
important role in their work and in the work of Judea Pearl, but we are not
going to discuss it here. The Causal Markov and Faithfulness conditions
together imply the biconditional, ‘X causesY if and only if X and Y are
probabilistically dependent conditional on the set of all the direct causes of
X in a probability distribution generated by the given causal structure among
the variables inV.’ This biconditional does not provide any immediate
reductive analysis of causation, since ‘causes’ appears on both sides of the
biconditional.
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4 In our view, to hold that there are causal relations among variables is to assert modal general-
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distinct events; that is, among distinct instantiations of properties at particular spatio-temporal
locations or among spatio-temporally distinct located values of variables.



CM also has implications concerningunconditionalprobabilistic depen-
dencies betweenX and other variables. IfX andYare not related as cause and
effect and have no ancestors in common,CM implies that they are independent
conditional on the empty set—i. e. unconditionally independent.5 One can thus
regardCM as a conjunction of two claims that it is analytically useful to
separate. One concerns unconditional probabilistic dependencies and the other
concerns screening off:

CM1 If X andY are probabilistically dependent, then eitherX causesY
or YcausesX or X andYare effects of some common causeZ in the set of
variablesV.6

CM2 If Parents(X)—that is, the subset ofV containing all the direct
causes ofX in V—is non-empty, then conditional onParents(X), X is
probabilistically independent of every variable except its effects.7

CM2 implies thatParents(X) screens offX from its indirect causes and from
other effects ofParents(X) that are not also effects ofX. WhenParents(X) is
empty,CM2 holds vacuously.CM1 says in this case thatX is unconditionally
independent of every variableYwhich is not an effect ofX. CM1 andCM2 are
both expressions of the idea that genuine probabilistic dependencies—statis-
tical dependencies that do not arise from the unrepresentative character of
particular samples—reflect causal relations.CM1 says this about uncondi-
tional probabilistic dependencies, whileCM2 makes the analogous claim for
conditional dependencies. Nonetheless, the conditional independencies
asserted byCM2 do not entail the unconditional independencies implied by
CM1. Moreover, one might acceptCM1 but deny that causes always screen
off in the manner required byCM2. This last position is explicitly endorsed by
Lemmer ([1996]) and may be Cartwright’s view as well. Lemmer holds that
correlations that do not reflect direct causal connections are always due to
common causes but, like Cartwright, he denies that the full set of common
causes of two correlated joint effects (neither of which is a cause of the other)
always screens off those effects from one another. Cartwright’s arguments will
be considered below in Section9. In Sections7 and8 we will present several
arguments showing that in a deterministic contextCM1 plus additional pre-
mises impliesCM2. In Section10, we will show how these arguments can be
extended to indeterministic contexts.
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effect or as effects of a common cause inV. If CM holds, then sinceParents(X) andParents(Y)
both consist of the empty set and the set {X, Y} is, in the sense to be explained shortly ‘causally
sufficient’ if the original variable setV is, X andY must be unconditionally independent.

6 Reichenbach takes the biconditional consisting ofCM1 and its converse to define the notion of a
‘causal connection’ ([1956], p. 29). This biconditional is also one of the crucial propositions in
Hausman’s account ([1998]).

7 Both CM1 andCM2 ignore the sort of nomic but non-causal correlations one finds in the EPR
phenomena. See Section9 below for further discussion.



While CM1 andCM2 are logically independent, it is hard to see on what
grounds one might acceptCM2 and yet rejectCM1. If one believed that there
are unconditional probabilistic dependencies between variables that are not
related as cause and effect or as effects of a common cause, then why should
one believe that those dependencies should disappear when one conditions on
direct causes? Conversely, if one thinks that unconditional dependencies can
never arise by chance but only as a result of causal relationships, it is hard to
see why one should believe that there should be residual or conditional
dependencies that remain after causal structure is fully taken account of.
The more natural view is thatCM1 andCM2 stand or fall together.

We turn first toCM1. Whether one finds this condition plausible depends
on what one takes ‘correlation’ or ‘probabilistic dependency’ to mean. It is
(we believe) just coincidence that there is a correlation between whether a
Republican or Democrat wins the US Presidency and whether the American or
National League team wins the World Series in that year.8 If CM1 rules out
this belief, then it is obviously unacceptable. The natural strategy for
defending CM1 from this sort of difficulty is to distinguish between
sample frequencies and population probabilities and to takeCM1 to apply
only to the latter. According to this strategy, the above correlation is merely a
dependency in a sample drawn from some appropriate larger population.
Such sample correlations can fail to reflect causal connections—indeed, the
laws of probability ensure that it is overwhelmingly likely that this will
sometimes happen. By contrast, assuming that there is no causal relationship
between political and baseball outcomes, these variables will not be corre-
lated in an appropriate larger population and hence there will be no violation
of CM1.

Of course this defense ofCM1 raises a number of questions. What exactly is
a ‘population correlation’? When one is presented with a sample correlation,
how does one identify the appropriate population from which it is drawn and
how does one tell whether a corresponding correlation holds in this popula-
tion? If one says that a population correlation obtains betweenX andY just in
case they are related as cause and effect or as effects of a commoncause, then
CM1 turns out to be a definition of ‘population correlation’ rather than a
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between water levels in Venice and grain prices in England ([1987], p. 465; [1988], p. 215), but
we have our doubts that there is even an apparent correlation. What is at stake is not the co-
occurrence of increases in both series, but the claim that (for example) Pr(pt + 1 > pt & wt + 1 > wt ) >
Pr(pt + 1 > pt ). Pr(wt + 1 > wt ), wherep is grain price andw is water level. And it is by no means
obvious that this is true. If both prices and water levels are monotonically increasing, then all
three probabilities will be one and the above inequality will not hold. More generally, since in
most periodspt + 1 > pt andwt + 1 > wt, most of the time whenpt + 1 > pt, it will also be the case that
wt + 1 > wt. But this fact does not imply that there is anycorrelationbetween the increases in one
series and the increases in the other. We are indebted here to Forster ([1988]) and to David
Papineau.



substantive claim about relations between probabilities and causation. If the
notion of a population correlation is to be useful in this context it must be
distinct from the notion of a sample correlation, and it must not have an
explicitly causal definition. One also needs some justification for believing
that there cannot be accidental probabilistic dependencies within whole popu-
lations. In what follows we will have little to say about the status ofCM1 or
about these issues, which are deep questions for a theory of probability. We
will assume that there is some suitable notion of a population correlation—if
there isn’t, the Causal Markov Condition is a non-starter—and we will ask
whether, given this notion, there is any reason to accept the rest of what the
Markov Condition asserts. Thus this essay will focus on the screening-off
claims embodied inCM2.

2 Screening-off and the Causal Markov Condition
CM2 provides a promising formulation of the intuition behind the claim that
common causes and causal intermediaries screen off. It is false to say simply
that common causes screen off their effects or that causal intermediaries screen
off their effects from their causes. A common cause ofX andY or a causal
intermediary between them obviously does not screen them off when there is
some independent causal relationship between them. Less obviously and more
interestingly, a variableZ can fail to screen offX andY even when the only
causal connection betweenX andY is via Z. Consider the causal graph shown
in Figure 1a. There is a path betweenX andYpassing throughZ, and the only
edge out ofX is into Z. X andY have no common cause. YetX andY are not
independent conditional onZ.

Why not? How is the fact thatY andZ have a common causeW (so that in
conditioning onZ, one is failing to condition on all the parents ofY) relevant?
Suppose thatX measures the amount of acid in container 1 andWmeasures the
amount of base in container 2, and suppose that a mixture of equal volumes of
the acid and base is neutral. Container 1 drains into container 3. One third of the
liquid in container 2 drains into container 3 and two-thirds into container 4. All
the liquid in container 3 drains into container 4.Z is the pH of the liquid in
container 3 andY is the pH of the liquid in container 4. The causal set up is
shown in Figure 1b. Suppose that one observes that the pH of container 3
remains at 7 (i.e. neutral) when the amount of acid in container 1 increases by
10 ml. In that case, the amount of base in container 2 flowing into container 3
must have increased by 10 ml or elseZ would not remain unchanged. SoW, the
amount of base in container 2, must increase by 30 ml. So the liquid in
container 4 will become more basic—Y will increase.Z does not screen off
X andY. The reference to the full set of direct causes inCM2 is essential—
anything less will fail to screen off (Figure 1).
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CM2 remedies these difficulties with traditional formulations of claims
about screening off, but it might appear to be obviously unacceptable. Suppose
that X andY are not related as cause and effect, but are effects of a common
causeZ. Suppose further thatZ is not in the set of variablesV and thatZ causes
X via a causal pathway that does not pass through any of the variables inV.
ThenX andYmay well covary even thoughX does not causeY. CM2 appears
to be false. One can rule out this difficulty by confining oneself to what SGS
call ‘causally sufficient’ ([1993], p. 45) sets of variables—that is sets of
variables that do not leave out relevant common causes. Of course, in many
practical applications, a causally sufficient set of variables will not be known,
and one will need a method for discovering causal relationships that does not
rest on the assumption of causal sufficiency. SGS explore such methods and
develop procedures for detecting latent common causes ([1993], Ch. 6). Since
we are interested in the underlying rationale forCM1 andCM2 rather than in
applications, we shall assume thatV is causally sufficient.

Even whenV is causally sufficient,CM has been subjected to a number of
criticisms (see, for example, Sober [1988], Forster [1988] and Arntzenius
[1993]). First, as already noted, it seems that a probabilistic dependency
betweenX and Y might be merely accidental. Second, such a dependency
may arise when one mixes two subpopulations in whichX andY are causally
independent (Yule [1903]; SGS [1993], pp. 57–64). Third, dependencies that
do not reflect causal connections may arise when the ‘wrong’ variables are
measured, or the variables are not measured with sufficient accuracy or are
not distinct (Yale [1903]; Salmon [1984]; Arntzenius [1993]). Fourth, there
are correlations in quantum mechanics, which appear not to have any causal
explanation. We shall return to the difficulties concerning quantum
mechanics in Section9 and confine ourselves here to discussing the
second and third difficulties.

As an illustration of the problems created by mixing, suppose that one finds
the following results from a study of the effectiveness of a new treatment:9
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Recovers Does not recover

treated 240 140

untreated 260 350

Treatment and recovery are strongly correlated. Yet it could be that when one
analyses the data further one finds the following:

Recovers Does not recover

women treated 200 60

untreated 100 30

men treated 40 80

untreated 160 320

Among men and among women there is no correlation between treatment and
recovery. The correlation in the aggregate data results from the facts that
women are more likely to recover and that a larger proportion of the women
than the men in the sample are treated.10 One might then diagnose the problem
as a failure of causal sufficiency. If the relevant cause of treatment—gender—
had been included in the graph, there would be no conditional probabilistic
dependence between treatment and recovery. The real causal relations are as
shown in Figure 2 whereG is gender,T is treatment, andR is recovery. The
probabilistic dependencies that arise from mixing populations create no new
problems in principle—though they suggest that inferences from conditional
probabilistic dependencies to causation are problematic in practice.

As an illustration of the difficulties that arise for the Markov Condition when
variables are not accurately measured, consider a frequently cited example due
to Wesley Salmon ([1984]). A cue ball collides with two other billiard balls.
Call the variable that measures whether or not a collision occursC, the variable
that measures whether or not the first ball goes into the corner pocketA and the
variable that measures whether or not the second ball goes in the corner pocket
B. Each variable can take valuesa, ,a; b, ,b; c, ,c. Because of the
conservation of momentum, conditional on whether or not the collision (c or
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,c) occurs, whether or not the first ball goes into a corner pocket (a, ,a)
provides additional information about whether the second ball does (b, ,b).
Hence althoughC is a common cause ofA andB andA andB are not related as
cause and effect;C fails to screen offA from B. The obvious response that
defenders of the Markov Condition can make to this example is that a more
precise and informative specification of the collision event (call itC*)—‘the
exact momentum of the cue ball on striking the two target balls’ (SGS, p. 63)—
will be a screening-off common cause.

This response strikes us as persuasive, but notice that it is not a defense of
CM . CM fails with respect to the set of variables {A, B, C}. What this defense
alleges is thatCM holds for someotherset of variables characterizing the same
causal relations. The claim that is defended in the response is that if two
variables are correlated and neither is a cause of the other, there must exist
some set of screening-off common causes. As the above example illustrates,
this is very different from saying that even the full set of all variables that
people ordinarily describe as common causes will screen off their joint effects
or that it will be possible to specify a set of screening-off common causes in
terms of any particular framework or vocabulary for dividing up the world into
alternative candidates for common causes. In the case under discussion, there
will be no screening-off common cause if one is confined to coarse-grained
variables such as ‘collision’ or ‘no collision.’ It is only at a more refined level
of description that one will be able find a screener off. Similar limitations will
apply in many other real-life attempts to apply the Causal Markov Condition.
For example, it is a plausible guess that many of the variables that investigators
are able to conceptualize and measure in the social and behavioral sciences are
too crude in the way that the ‘collision, non-collision’ variable is. The Markov
Condition may accordingly fail for these variables even if there is some other
more informative set of variables for which it holds. What this shows is that
what is defensible is really the following principle:

CM 0 (The Causal Markov Condition): For any system of acylic causal
relations, there exists some set of variablesV such that for all distinct
variablesX andY in V, if X does not causeY, then Pr(X/Y&Parents(X)) =
Pr(X/Parents(X)).

Although it is necessary to distinguishCM from CM 0 in order to respond to
difficulties like those under discussion, during the rest of the essay, we shall
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assume thatV includes the ‘right’ variables and stick to the simpler formula-
tion (CM ).

A similar analysis applies to another class of putative counterexamples to
the Markov Condition involving what Arntzenius ([1993]) calls equilibrium
correlations. Consider a collection of gases in different initial states which are
not in thermodynamic equilibrium and suppose that each is allowed to reach
an equilibrium temperature and pressure. Then, for each gas, there will be a
correlation between the temperature or pressure in one region of the gas and the
temperature and pressure in any other region. Nonetheless, the pressure or
temperature of any one region does not cause the temperature and pressure in
any other region. (For one thing, there is no basis for singling out one region as
the cause and the other as the effect rather than conversely.) There is also no
obvious candidate for a macroscopic common cause that explains these
correlations. However, this is again no counterexample to the Markov Condi-
tion, if one is allowed to advert to a different level of description. There is a
complicated causal story, involving collisions and transfers of momentum
between huge numbers of individual molecules, that accounts for these corre-
lations and that, because it is deterministic, must conform to the Markov
Condition. (The Markov Condition holds trivially for deterministic systems
for all variablesX such thatParents(X) is the full set of determining causes of
X,since Pr(X/Y& Parents(X)) = Pr(X/Parents(X)) = 1.) The moral is again that
the level of analysis at which the Markov Condition holds may be very
different from the level one originally had in mind.

Consider next a different sort of case, also due to Arntzenius. A particle
moves around in a box. There is a perfect (anti)correlation between whether it
has the propertyA of being in the right-hand side of the box and the propertyB
of being in the left-hand side of the box, but this correlation is not due either to
a direct causal connection betweenA and B or to a common cause. Again,
however, we do not see this as a counterexample to the Markov Condition.
BecauseA andB are not distinct, this is not the sort of correlation that demands
a causal explanation. The connection betweenA andB is logical or conceptual
rather than causal. The Causal Markov Condition is only concerned with
relations amongdistinct variables. Sections6 and9 will return to this issue
at greater length and will attempt to make more precise what it is for two
variables to be distinct.11

Finally, consider a theorem due to Elliot Sober ([1988]) which shows that, in
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indeterministic contexts in which all the probabilities involved are strictly
between zero and one, if a direct (or, as Sober says, ‘proximate’) common
cause screens off its causes from its effects and its effects from one another,
then an indirect or ‘distal’ common cause of the those joint effects will not
screen them off from each other. Sober shows that, in Figure 3, ifC screens off
A andB, thenD does not. Again this is no objection to the Markov Condition
which claims only that direct causes screen off (and Sober never suggests
otherwise). It does, however, reinforce the point that one needs to apply the
condition to the right variables. What looks like a failure of the condition may
simply reflect the fact that one has conditioned on a distal cause such asD
rather than a proximate cause likeC.

These problems with the Markov Condition illustrate an important point to
which we will return. This point is that one needs to know a great deal before
one can justifiably assume that the Markov Condition is satisfied for some
system. One needs the right variables or the right level of analysis—variables
that are sufficiently informative and that are not conceptually connected. As we
shall see, one also needs to know how to segregate the system correctly into
distinct causal mechanisms. Apparent failures of the Markov Condition typi-
cally indicate limitations in background knowledge—that one is employing
variables at the wrong level, or that one is failing to include relevant variables,
or that one is treating variables or mechanisms as distinct when in fact they
are not.

3 Factorizability
The Causal Markov Condition in the form stated by SGS is provably equivalent,
in the case of directed acyclic graphs, to the following factorizability condition:

Let G be a causal graph with vertex (variable) setV andf be a probability
density function over the variables inV generated by the causal struc-
ture represented byG. Thenf is factorizable, that is
f(V) = PX[ V f(X/Parents(X)).

P is the product. This is a paraphrase, not a quotation from SGS (see [1993],
p. 33).Parents(X) is, as before, the set of all the direct causes ofX in V, and in
the case in which a variableX has no parents, the associated term in the
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factorization is the unconditional density f(X). (Thus the factors include the
marginal distributions of all the exogenous variables.) Factorizability states
that the joint density of a set of variables is equal to the product of the density of
each variable conditional on the set of all its direct causes. Conditional on all
their direct causes, variables are all probabilistically independent of one another.
In the case of discrete variables, factorizability says that Pr(X1, . . . Xn) =
Pr(X1/Parents(X1)) . . . Pr(Xn/Parents(Xn)).

Here is a sketch of a proof of the equivalence of factorizability and the Causal
Markov Condition. Define ‘nd+X’—the non-descendants of X—to be the
subset of variables inV that are not effects of (descendants of)X, and let
‘nd–X’ be the subset ofV consisting of everything other thanX and its
descendants.nd–X is, of course,nd+X\{ X}. Obviously, Parents(X) is a
subset ofnd–X andnd+X. If factorizability holds for the whole graph and the
complete set of variables, it will also hold for the setnd+X (for the subgraph
formed by deleting all the effects ofX) and for the setnd–X (the subgraph
formed by deletingX and all its effects). Factorizability implies,

1 Pr(nd+X) = Pr(X/Parents(X)).Pr(nd–X).

By the definition of conditional probability,

2 Pr([nd+X\Parents(X)]/Parents(X)) = Pr(nd+X)/Pr(Parents(X)).

nd+X\Parents(X) consists, of course, of the members ofnd+X that are not
parents ofX. (1) and (2) imply

3 Pr([nd+X\Parents(X)]/Parents(X))
= Pr(X/Parents(X)).Pr(nd–X)/Pr(Parents(X))

and by the definition of conditional probability, one can derive

4 Pr([nd+X\Parents(X)]/Parents(X))
= Pr(X/Parents(X)).Pr([nd-X\Parents(X)]/Parents(X))

4 says thatX is independent of everything that is not a parent or a descendant
conditional on the set of all ofX’s parents, which is SGS’s formulation of the
Causal Markov Condition, and which is, as explained in Section1, equivalent
to CM . So factorizability impliesCM .

To derive factorizability fromCM , supposeV containsn variablesX1, . . . ,
Xn. LetXk be the set of all variables with indicesk, and renumber the variables,
so that ifXi is a direct cause ofXj, theni < j. Since the graph is acyclic, this can
always be done. By the ‘chain rule’, which follows from the definition of
conditional probability, one can derive:

(1) Pr(X1 . . . Xn) = Pr(Xn/Xn–1) . Pr(Xn–1/Xn–2) . . . Pr(X1).

By construction, for allj Parents(Xj) is a subset ofXj–1. Since no member of
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X j–1 is an effect ofXj, CM implies

(2) for all j, Pr(Xj /X j–1) = Pr(Xj /Parents(Xj)).

(1) and (2) then imply

(3) Pr(X1 . . . Xn) = Pr(Xn/Parents(Xn–1)) . Pr(Xn–1/Parents(Xn–2)) . . .
Pr(X1/Parents(X1)),

whereParents(X1) and possibly some of the other sets of parents is empty.
So CM implies factorization (3).

Although well known in the literature, the equivalence betweenCM and
factorizability is remarkable.CM states thatX will be independent of every-
thing except itseffectsconditional onParents(X). Factorizability, in contrast,
says nothing about the effects ofX. Instead it says that the joint distribution can
be written as a product whose factors consist of each variable conditional on its
direct causes. Yet these two claims turn out to be logically equivalent! In
addition, this equivalence permits further arguments in defense ofCM , since it
may be possible to argue directly for factorizability.

4 Manipulability and causation
One crucial fact about causation, which is deeply embedded in both ordinary
thinking and in methods of scientific inquiry, is that causes are as it were levers
that can be used to manipulate their effects. IfX causesY, one can wiggleYby
wiggling X, while when one wigglesY, X remains unchanged. IfX andY are
related only as effects of a common causeC, then neither changes when one
intervenes and sets the value of the other but both can be changed by
manipulatingC. For most scientists, the crucial difference between the claim
thatXandYare correlated and the claim thatXcausesY is that the causal claim,
unlike the claim about correlation, tells one what would happen if one
intervened and changed the value ofX. It is this feature of causal knowledge
that is so important to action.

This connection between causation and manipulability has been defended by
a number of writers. For example, the economist Guy Orcutt writes, ‘[. . .] we
see that the statement that [. . .]z1 is a cause ofz2, is just a convenient way of
saying that if you pick an action which controlsz1, you will also have an action
which controlsz2’ ([1952], p. 307). Similarly, Clark Glymour writes, ‘One
influential view about causation goes something like this: If in a systemSwith
a set of variablesV, variableX is a direct cause of variableY then an ideal
intervention that changesX sufficiently (i) changes no variable that is not an
effect ofX, and (ii) changesY’ ([1997], p. 224; notation changed slightly). A
number of philosophers, including R. G. Collingwood ([1940]), Douglas
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Gasking ([1955]), G. H. von Wright ([1971]), and, most recently, Peter
Menzies and Huw Price ([1993]; see also Price [1991], [1992], [1993]) have
defended a more ambitious thesis. They have held, not just that there is a
connection between causation and manipulation of the sort described above
but that one can appeal to this connection to provide a reductive analysis of
causation.

As reductive analyses of causation, manipulability accounts are, in our view,
non-starters. First, although it is true that if interventions that change the value
of Xsufficiently change the value ofY, thenXcausesY, the converse is not true,
and so there is no analysis. Consider a causal arrangement like that shown in
Figure 4.

The direct positive causal influence ofX onY is exactly canceled out by the
indirect negative causal influence viaZ. So even thoughX causesY, changing
the value ofX sufficiently does not change the value ofY. Although, as SGS
argue, one should expect such violations of ‘faithfulness’ to be rare ([1993],
pp. 68–9), they are a serious difficulty for attempts to provide reductive
analyses of causation in terms of manipulability.

Even if this problem could be solved, the biconditional, ‘X causesY if and
only if interventions that change the value ofX sufficiently change the value of
Y,’ has no claim to be an analysis of causation, because its right-hand side is
chock full of causal notions. Not only does ‘change’ here mean ‘cause to be
different,’ but, as we shall see below, the notion of an intervention carries with
it other sorts of causal commitments. Those who have tried to extract a
reductive analysis of causation from the links between causation and manipul-
ability have tried to evade these fatal difficulties by emphasizing the connection
between causation and human action and by arguing that the notion of human
action is prior to and independent of the notion of causation. Indeed Menzies
and Price’s call their account an ‘agency theory’ of causation. Their hope
(which can be found in the work of Collingwood, Gasking, and von Wright as
well) is that the notion of an intervention can be understood through its links to
human agency, and that a non-circular (though highly anthropomorphic)
analysis of causation can then be constructed on its basis. Menzies and
Price, for example, maintain thatX causesY whenever agents could useX as
an effective means to bring aboutY ([1993], p. 187). In their view,X is an
‘effective means’ to bring aboutYand only if the ‘agent probability’ ofYgiven
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X is greater than the agent probability ofY given not-X. The agent probability
of YgivenX is the probability thatYobtains given thatX is brought about ‘ab
initio, as a free act of the agent concerned’ ([1993], p. 190).

Although we place the greatest emphasis on the relationship between
causation and manipulability—on the fact that in principle effects can be
controlled through their causes—we wish to distance ourselves completely
from agency or manipulability theories when they are understood in this way.
We maintain that the notion of an intervention required to explicate the
connection between causation and manipulation must be defined in explicitly
causal terms and that for this reason the links between causation and manipul-
ability could not possibly provide a reductive analysis of causation. In addition,
we deny that the relevant notion of an intervention needs to be understood
anthropomorphically, and we deny that there is anything anthropomorphic
about the claim thatX causesY. For practical purposes, causal knowledge is
especially important for human action, but the importance of a fact for human
action does not show that there is anything anthropomorphic about the fact
itself. For the purposes of finding out whetherX causesY, specifically human
interventions are of special importance, because there are often good reasons to
believe that actions that set the value ofXbear no causal relations toYexcept in
virtue of influencing the value ofX. But the relevant notion of an intervention
that sets the value ofX is (roughly) just that of something that is a direct cause
of X and that bears no causal relations to the other variables under considera-
tion except those that arise from its directly causingX. What this means is that
the interventionI is not an effect of any variable inV, I does not cause any
variable inV by a path that does not go throughX first, andI is not caused by
any variable that causes any other variable inV by a path that does not go
throughI andX first. Obviously this characterization makes no reference to
human agency and allows a natural causal process in which human activity
plays no role to count as an intervention as long as it has the right causal
characteristics. So-called ‘natural experiments’ illustrate this possibility.

The connection between causation and manipulation we are going to rely on
is a refinement of the claim that if one were to intervene to set the value ofX
within some range of values ofX and the value ofY were to change, thenX
causesY. In other words, ifX does not causeY, then the value ofY would not
change if a possible intervention were to change the value ofX.

The notion of an intervention is crucial to our formulation of the connection
between causation and manipulation. In addition to causing a change in the
variableX, an intervention onX must satisfy other conditions. Since changes in
another variableY, given an intervention with respect toX, are supposed to be
produced through the change inX, a purported intervention that changesX
must not directly change the value ofY. In addition, the process that changes
the value ofX must not also cause a change in other causes ofYand the change
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in the value ofX must not be correlated with such changes. If these conditions
are not met, a change in the value ofXcould be accompanied by a change in the
value ofY even thoughX does not causeY. The rough idea of an intervention
with respect toX is that of an exogenous change in the value ofX that changes
Y, if at all, only throughX and notvia some other causal route. Both of us have
given more precise and slightly different versions of this intuitive idea else-
where (Hausman [1998], sections 5.3* and 7.1*; Woodward [1997], p. S30), as
have a number of other writers including SGS ([1993], sections 3.7.2 and 7.5)
and Cartwright and Jones ([1991]). We shall not rehearse the details of these
characterizations here, because nothing in the subsequent argument depends
on them. The crucial point is that an intervention with respect toX is a direct
cause ofX that has no causal relations to any of the variables inV except in
virtue of being a direct cause ofX. Notice that it follows that an intervention
with respect toX cannot also be an intervention with respect to any other
variable.

To illustrate these ideas, consider a system in which two variables,B (e.g.
the position of a barometer dial) andS(e.g. the occurrence or non-occurrence
of a storm) are joint effects of a common causeA (e.g. atmospheric pressure),
and in which neitherSnor B is a cause of the other. As shown in Figure 5, an
intervention onB with respect to this set of variables would consist of a process
Q which changes the value ofB but which is neither cause nor effect ofA or S
nor of any cause ofAorS. (CM1 implies thatQwill be uncorrelated withAand
S, their causes, and with any causes ofB by a path that does not go throughQ.)
Q might be the action of a mechanical device that randomly sets the barometer
dial at different positions. Our principle connecting intervention and causation
maintains that if (as we have assumed)B doesn’t causeS, then intervening to
change the value ofB in this way will not change the value ofS. That is,BandS
should be probabilistically independent under such interventions onB. Of
course there areother ways of changing the value ofB that will change the
value ofS. For example, processes that change the value ofB by changing the
value ofA will also change the value ofS. However, no such process counts as
an intervention. It is the behavior ofS under interventions onB and not the
behavior ofSunder other sorts of changes inB that is crucial for the question of
whetherB causesS.
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We also emphasize that we are not claiming that causal claims hold only
when interventions arefeasible(or, to reiterate a point made above, only when
they are carried out by human beings). Whether or not interventions that set the
value of X are feasible and whether or not they have in fact taken place is
irrelevant. The connection between causation and manipulability is counter-
factual. If X does not causeY, thenY would remain unchanged if any inter-
vention were to occur that changed the value ofX (within the relevant range of
values ofX).12

Note that the principle connecting causation and manipulation says that a
sufficient condition forX to causeY is that interventions onX within a certain
rangeare associated with changes inY. The italicized phrase is added, because
even thoughX causesY, interventions that change the value ofX ‘too much’
may cause the relationship betweenX and Y to break down. For example,
interventions that increase the extensionX of a spring within some range of
values ofX may increase the restoring forceF that it exerts, even though
arbitrarily large extensions may have no effects or negative effects onF.

The connection between causation and manipulation we have pointed to
apparently leaves open the possibility thatX causesYand thatYcausesX in the
circumstances in which an intervention on either variable leads to a change in
the other. This can happen at the type-level, even when token causation is
asymmetric. For example, an increase in the pressure of a gas can cause an
increase in its temperature, and an increase in the temperature of a gas can
cause an increase in its pressure. To simplify these issues and to keep this essay
to manageable proportions, we shall assume that causal relations are always
asymmetric. This is not as restrictive as it may appear. In the example just
given, for example, one can restore asymmetry to the type-level relations
between temperature and pressure by introducing time references.
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This description of the connection between causation and manipulation is
rough. To exhibit the connection between manipulability and the Causal
Markov Condition requires a more precise formulation. Indeed two are
needed: one for deterministic relations and one for probabilistic relations.
The next sections will pursue the link between manipulability and the
Causal Markov Condition given deterministic relations. Section10 will
pursue the link between manipulability and the Causal Markov Condition
when the relations between cause and effect are indeterministic.

5 Level invariance and modularity in linear
equation systems

To formulate the relations between causation and manipulability more precisely
and to explore the relations between manipulability and the Causal Markov
Condition (especiallyCM2), we shall begin by considering systems of deter-
ministic linear equations and then extend the results to other contexts. We will
maintain that the relation between causation and manipulability should be
formulated as the claim that when such equations have a causal interpretation,
they must satisfy certain requirements concerning invariance under interven-
tions and independence of mechanisms. Consider first a regression equation
of form

(1) Y = aX + U

whereY is some dependent variable of interest (e.g. the height of various
individual plants in some population of plants),X the independent variable
(e.g. amount of water each individual plant receives) andU is here an error
term representing omitted causes. What conditions must be satisfied if (1) is to
have its natural causal interpretation—i.e. for it to be a correct description of
a quantitative causal relationship betweenX andY? A natural thought is this:
(1) is a correct description of the causal relationship betweenX andY if and
only if were one to intervene in the right way to change the value ofX (if one
were to wiggleX appropriately), thenYshould change in the way indicated by
(1)—i.e. the change in the value ofY in response to a change inx of magnitude
dxshould be given byadx. To employ terminology used by Woodward ([1997],
[forthcoming a], [forthcoming b]), the functional relation (1) expresses should
beinvariant—it should remain stable or unchanged under such changes in the
value ofX. When this functional relation is invariant, thenYshould change in
the way indicated by (1)—i.e. the change in the value ofY in response to a
change inx of magnitudedx should be given byadx. If, on the contrary,Y
doesn’t change in this way as a result of an intervention that changes the value
of X—if the result of the intervention is that the relation betweenX and Y
breaks down, then (1) will not be a correct description of the causal relationship
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betweenX andY. When a relationship such as (1) is invariant in this way, we
will say that it is ‘level invariant’—it is invariant under interventions that
change the level (value) of the independent variable(s). Level invariance
captures an intuitive idea about causation that is central to manipulability
theories—that, whatever else may be true of causes, they should at least be
potential handles or means for manipulating effects.

Although this idea is intuitively appealing, it needs to be stated more
carefully. First, just as with the formulation of the relationship between
causation and manipulation in Section4, the claim that a relationship is
invariant under interventions is to be understood as a counterfactual claim
about what would happen to the relationship if interventions (in the sense
sketched above) were to be carried out. We reiterate that we are not claiming
that the interventions in question need to be feasible. Our claim is rather that
when (1) correctly describes a causal relationship betweenX andY, then if one
were to intervene to changeX appropriately, the relationship (1) betweenXand
Ywould remain invariant, and the value ofYwould change in accordance with
it when interventions change the value ofX.

Whenever an equation such as (1) is true of a set of variables, those variables
will be regularly associated in a way that accords with (1). But the claim
that (1) is level invariant says something stronger: Level invariance says that
(1) would continue to hold for some values ofX when those values are set
by interventions. For example, the equation (1) might hold because the values
of X and Y are always determined by a common cause and never by an
intervention. In that case, (1) would break down if an intervention were to
occur onX. Another way to see what level invariance adds to the simple claim
that an equation holds true is to consider equations with more than one
independent (right-hand side) variable. Nothing in an assertion of the truth
of an equation implies that if an intervention were to change the value of one of
the independent variables, then the values of the others would remain
unchanged.

Another caveat reflects a point already noted above: Even if there is a causal
relationship betweenX andY, (1) will correctly describe howYwill change in
response to interventions onX only for some range of values ofX, and not for
all values. For example, even if, as (1) implies, water (X) causes plant height
(Y), it is not true that putting arbitrarily large amounts of water on the plants in
P will cause them to grow arbitrarily tall. It is likely that (1) correctly captures
the causal facts only for a relatively small range of changes in the values ofX,
and it will break down outside this range. Claims about invariance or con-
cerning how one variable responds to interventions that change the value of
another variable thus must be relativized to a range of values of variables that
are set by interventions: Causal relationships such as (1) are invariant—they
correctly describe how the value of a dependent variable changes in response to
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interventions on an independent variable—only for a limited range of the
values of variables set by interventions.13

Let us now consider a slightly more complicated causal structure, repre-
sented by two equations:

(1) Y = aX + U

(2) Z = bX + cY + V

whereU andV are, as before, error terms. We interpret each equation as saying
that every variable on its right-hand side is a direct cause of the variable on its
left-hand side. Thus (1) says thatX is a direct cause ofYand (2) says thatX and
Y are direct causes ofZ. Z might for example be the weight of peas harvested
from a plant in a given population of pea plants, which depends directly both on
the height of the pea plantYand on rainfallX. We can associate (1) and (2) with
the graphical structure shown in Figure 6a. Notice that causal sufficiency plus
CM1 imply that the error terms are uncorrelated both with the other indepen-
dent variables in the equations in which they occur and with each other.

Consider now the following equation (3), formed by substituting the right-
hand side of (1) forY in (2)

(3) Z = dX + W (whered = b + ca andW = cU + V)

This is associated with the graphical structure shown in Figure 6b.
Obviously (3) has exactly the same solutions inX andZ as (1) and (2). None

the less, (3) is associated with a different graphical structure than (1)–(2), and
by the rules given above represents a different system of causal relationships—
(3) says thatX is a direct cause ofZ but omits all mention ofY, while (1) says
that X is a direct cause ofY, and (2) says thatX andY are direct causes ofZ.
From the perspective of (1)–(2), (3) collapses two different mechanisms by
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which X affects Z into a single mechanism. One way of bringing out this
difference is again to appeal to the notion of a hypothetical intervention.

Suppose it were possible to intervene so as to change the value ofY. SinceY
does not causeX, a genuine intervention that sets the value ofY will be
probabilistically independent ofX. (We might imagine, for example, thatY
is changed by some randomizing device that is causally independent ofX.) One
can think of such an intervention as changing or replacing (1) with another
equation (1*):

(1*) Y = k.

This implies that the value ofY is no longer caused byX but is set exogenously
to some valuek (by the intervention).

Implicit in the idea that the system (1)–(2) correctly captures the causal
relations is the assumption that when (1) is disrupted by an intervention that
sets the value ofY, (2) will remain invariant (provided, of course, that the
intervention is truly an intervention and that the change inY is within the
relevant range of values). That is, one assumes that if the value ofY is changed
by an intervention from its original valueY = y by amountgy (so that (1) no
longer holds and the new value ofY is now equal toy + gy= k, as indicated by
(1*)), (2) will continue to hold, andz will change bycgy. Thus the equation
system consisting of (1) and (2) differs from equation (3) in what it claims
about what will or would happen under an intervention or exogenous change in
Y. (1)–(2) makes a determinate prediction about what will happen in this case,
while (3) does not. In this way we can capture the idea that, unlike (3), (1) and
(2) describe two distinct mechanisms that can be separately disrupted.

To say that an equation such as (2) is level invariant with respect to
interventions that setx is to say that when one intervenes and setsx and
measuresy andz, thenx, y, andz satisfy equation (2). It isnot to say that one
can correctly calculate the value ofZ by plugging in the value ofX that is set by
intervention and holding fixed the values of the other variables. This procedure
will yield the correct value forZ only in the special case in which there are no
causal relations among the right-hand side variables in the equation. Because,
as (1) tells us,X causesY, an intervention that changes the value ofX by dx,
will—if (1) is level invariant—change the value ofYby adxand hence—if (2)
is level invariant—will change the value ofZ by bdx + cadx, rather than by
bdx. In other words, what level invariance requires in the case of an equation
like (2) is simply that the values of the variables figuring in (2) should conform
to (2) once those variables have been allowed to assume whatever values they
take as a result of the intervention, where this is understood to include whatever
changes may occur in those variables that are causally downstream of the
variable intervened on.

This point can be made clearer by pointing out the relations between the idea
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that different equations in a system of equations should correspond to distinct
mechanisms that can be changed independently of each other and another idea,
due to Pearl, Glymour and their associates, about how to represent interven-
tions graphically: According to these writers, an intervention on a variable
such asY that sets its value breaks all of the edges in the graph directed intoY
(i.e. all of the arrows whose heads are pointed intoY) and preserves all other
edges in the graph, including all edges directed out ofY (cf. SGS [1993], Pearl
[1995]). The breaking of the arrows represents the idea that the mechanism that
determined the value ofY has been disrupted and the value ofY is now set by
the intervention, rather than by the variables that were previously causes ofY,
such asX. Interventions that set the value of a single variable thus disrupt only
the single mechanism that previously determined the value of that variable.
The preservation of other arrows in the graph, including those directed out ofY,
corresponds to the idea that an intervention that only sets the value ofY leaves
the other mechanisms alone—it does not alter the other causal relations in the
graph, including the relation betweenYandZ indicated by (2). The relationship
represented by the arrow betweenY andZ remains invariant under such an
intervention, just as the relations betweenX andY and betweenX, Y andZ
remain invariant to interventions that set the value ofX. Since each set of
arrows directed into a variable corresponds to a distinct equation, this ‘arrow-
breaking’ interpretation of interventions is an alternative way of expressing the
independent changeability of equations described above. Saying that you can
break the arrows directed into a variable while leaving the arrows directed into
other variables unbroken is just another way of saying that you can disrupt the
equation corresponding to the first set of arrows while leaving the other
equations in the system undisturbed.14

The arrow-breaking interpretation of interventions implies both what we
called above the ‘level invariance’ of each of the individual equations and a
stronger condition that we shall call ‘modularity.’ Level invariance says that
changing the level of the independent variable(s) in an individual equation
(within some range of values) should not disrupt the equation. So if one
changes the value of a variableX via an intervention within a specified
range, whether this involves breaking arrows—as it will unlessX is exogen-
ous—or not, the arrows into the endogenous variables that depend onX will be
unaffected. Modularity involves a stronger invariance condition that also
applies between equations. It says that each structural equation in a system
of structural equations that correctly captures the causal relations among a set
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of variables is invariant under interventions that disrupt other equations in the
system by setting the values of their dependent variables within some limited
range. Thus if the system (1)–(2) is modular, and one intervenes to set the
value of the dependent variableY in (1) or—what comes to the same thing—to
replace (1) with (1*), (2) will continue to hold.

As a further illustration of what modularity means, suppose that we re-write
the system (1)–(2) once again as:

(1) Y = aX + U

(2*) Z = eY+ R, wheree = (b/a + c) andR = V – (b/a)U.

If (1)–(2) is modular, then (1)–(2*) will not be. As noted above when one
disrupts (1) by intervening and setting the value ofY, Y becomes independent
of X—it is no longer a function ofX. One can thus think of this intervention as
changing the coefficienta in (1) to zero and replacing (1) with an equation like
(1*). Under such an intervention (2*) will not be invariant, because the
coefficient e in (2*) is a function of a and changing the value ofa will
changee.

A numerical illustration may clarify matters. Suppose thata = 2, b = 4, and
c = 3, and ignore the error terms. Then (1)–(2) say that

(1e) Y = 2X

(2e) Z = 4X + 3Y,

and (2*) says that

(2e*) Z = 5Y.

So if, for example,X = 1, (1e)–(2e) says thatY= 2 andZ= 10; and ifY= 2, then
(2e*) says of course thatZ = 10. Suppose now that one intervenes and sets
the value ofY equal to 3. Then (2e) says thatZ = 4 + 9 = 13, while (2e*) says
thatZ = 15. Obviously (2e) and (2e*) cannot both be invariant with respect to
this intervention. If (2e) is invariant with respect to the intervention, then (2e*)
is not. If (1)–(2) is modular, then (1)–(2*) is not.

From the perspective of (1)–(2), (2*) entangles distinct mechanisms.
Disrupting the mechanism represented by (1) changes the behavior of the
mechanism which, according to (2*), linksYandZ. According to (2*), there is
a single mechanism linking the variablesY andZ, the operation of which is
represented by the coefficiente. From the perspective of (1)–(2) however,
(2*) really represents the combined impact of two distinct mechanisms, one of
which linksX to Yand one of which linksX andY to Z. This is reflected in the
fact thate is a function ofa, b, andc and hence that (1) and (2*) are not
independently changeable.

To forestall any possible confusion, we want to emphasize that we are not
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claiming that one can determine whether a system of equations is modular
simply from its syntactic form. We are not claiming that the mere fact thatecan
be written as a function ofa, b andc shows that (1)–(2*) is not modular. After
all, it is equally true that each ofa, b andc in (1)–(2) could be written as a
function ofeand other variables. As the example above illustrates, it is nature
and in particular facts about what happens or would happen under inter-
ventions that determine whether a given system of equations is modular. If
(1)–(2*) fails to be modular then the result of an intervention onY that disrupts
the mechanism represented by (1) will be a change in the relationship between
YandZ—that is, there will be a change in the value of the coefficiente. In the
example, an intervention that sets the value ofY to 3 results inZ = 13, notZ =
15. It looks as though the intervention on the mechanism represented by (1)
also changes the allegedly distinct mechanism represented by (2*)—which is
really just to say that these two mechanisms are not distinct and that the rule
that each equation should represent a distinct mechanism has been violated. Of
course it might turn out instead that one could intervene to disrupt (1) without
changing (2*) and vice-versa. This would then show that the system (1)–(2*)
is modular, in which case an argument parallel to the one given above would
show that (1)–(2) is not modular.

Modularity provides a natural explication of what it is for a variable to be a
direct rather than an indirect cause. Consider again the difference between the
equation system (1)–(2) and the equation system (1)–(2*). If (1)–(2*) is
modular (and thus correctly represents the causal structure), then if one were to
intervene and set the value ofX (within the relevant range of values), equations
(1) and (2*) would remain invariant, and the values of bothY andZ would
change. So in (1)–(2*)—as in (1)–(2)—X is a cause of bothY andZ. But in
(1)–(2*), unlike (1)–(2), the value ofX affects the value ofZ only via Y. If one
intervenes and sets the value ofY, then, according to (1)–(2*), one breaks the
connection betweenX andZ. Under this intervention, changes inX should no
longer affectZ. However sinceX appears on the right-hand-side of (2), it is not
true, according to (1)–(2) that under an intervention that setsY, changes inX
will have no impact on changes inZ. Thus the difference between claiming, as
(1)–(2*) do thatX is an indirect cause ofZ, the influence of which is entirely
mediated by Y and claiming, as (1)–(2) do, thatX is a direct cause ofZ corre-
sponds to the different predictions these two systems of equations make about
whetherX andZ would be independent under a hypothetical intervention onY.

In the examples so far, systems of equations that are not modular are also not
level invariant, but this is not always the case. Given any system of equations,
one can always derive the associated set of what econometricians call
‘reduced-form’ equations. This set is observationally equivalent to the original
system in the sense that it has exactly the same solutions for measured
variables. One forms the reduced form equations by writing each endogenous
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variable in the original system solely as a function of exogenous variables, with
each endogenous variable appearing as a dependent variable on the left-hand
side of exactly one equation. For example, sinceX is the only exogenous variable
in (1)–(2), the reduced form equations associated with (1)–(2) are (1)Y= aX+
U and (3)Z = dX + W (whered = b + ac, andW = cU + V). In general, each
reduced form equation will be level invariant—that is, invariant under inter-
ventions on the variables on its right-hand side—if the equations in the original
system are level invariant. If (1) and (2) are level invariant and modular, then
(1) and (3) are level invariant, too. But the system (1)–(3) is not modular. This
is because an intervention on the dependent variableY in (1) will change the
value ofa and in doing so will change the value ofd, sinced depends ona. If
one intervenes and changes the value ofY, then according to (1)–(2), the value
of Z will change, while according to (1)–(3) it will not. So if (1)–(2) is
modular, (1)–(3) cannot be. As this example shows, modularity is not implied
by the requirement that each equation in a system be level invariant.

Like level invariance, modularity is not absolute—when one intervenes and
sets the value ofX (thereby disrupting the equation (mechanism) that deter-
mined the value ofX), the other equations will remain invariant only for some
range of values ofX. We represent what modularity claims as follows:

MOD For all subsetsZ of the variable setV, there is some non-empty
rangeR of values of members ofZ such that if one intervenes and sets the
value of the members ofZ within R, then all equations except those with a
member ofZ as a dependent variable (if there is one) remain invariant.

WhenX is endogenous—that is, whenX appears on the left-hand-side of some
equation, then an intervention that sets the value ofXdisrupts that equation and
MOD asserts the invariance of the other equations—which is what we called
‘modularity’ above. We emphasize thatMOD requires that this be true only for
interventions that set values of variables within some range of values, not for
all possible interventions. However,MOD does require that every intervention
that sets the value of a variableX within this relevant range leaves every
equation invariant (except the one, if there is one, withX as a dependent
variable).MOD implies in addition that all equations are invariant with respect
to interventions that (within the relevant range) change the values of exogen-
ous variables. WhenX is exogenous, there is no equation in which it appears as
a dependent variable (though, of course, if one wished, one could add dummy
equations stating that the value ofX depends on some parameter). We thus
have definedMOD so that it entails both what we called ‘level invariance’ and
what we called ‘modularity,’ and we shall from here on meanMOD when we
speak of ‘modularity.’MOD is how we propose to make precise the idea that if
one breaks the arrows into one variable in a graph by setting its value (within
some range), then if the graph correctly represents causal relationships, all the
arrows directed into other variables in the graph remain as they were.
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One further implication of modularity is worth making explicit. If (1)–(2)
satisfies modularity, then (2) is invariant both with respect to interventions that
set the value ofX and with respect to interventions that set the value ofYwithin
the relevant range. It does not matter for the invariance of (2) (as long as we are
within the range of values ofX andY for which (2) is invariant) whether the
value ofYvaries as the result of an intervention that sets the value ofYor as the
result of an intervention that sets the value ofX and permits the value ofY to be
determined by (1).

A system of equations that lacks modularity will be difficult to interpret
causally. Suppose, for example, that when one intervenes to change the value
of Y (i.e. to disrupt the relation (1) betweenX andY), equation (2) breaks down
in such a way that the value ofZ does not change. One would normally
associateZ’s remaining unchanged when interventions change the value of
Ywith the absence of any causal relationship betweenYandZ, but on a causal
interpretation, equation (2) and the associated graphical representation assert
that there is such a relationship. In this case, (1) and (2) do not fully capture the
causal relationships in the system we are trying to model. In so far as
modularity fails, the asserted causal structure fails to mirror what will
happen under hypothetical interventions and, on a conception that connects
causal claims to predictions about what will happen under such interventions,
fails to represent correctly the causal structure of the system. Similarly,
suppose that interventions onZ that disrupt (2) also disrupt (1), so that the
value ofYchanges for a fixed value ofX. Again this is just the sort of behavior
that one would ordinarily take to show thatZ causesY, but (1) denies this. As
these examples illustrate, when modularity does not hold for a system of
structural equations, the equations will fail correctly to describe the causal
structure of the system they purport to represent.

A similar point can be made about the use of causal graphs. Modularity says
that it should be possible to break the arrows into one variable, thereby
changing its value within some range (or—within a similar range—to
change the value of an exogenous variable) without changing the other
arrows directed into any other variable in the graph. Like level invariance,
which it subsumes,MOD implies that it should be possible to change the value
of a variableX (within some suitable range) without making arrows into
variables that depend onX appear or disappear. If these requirements are
violated, then the graph does not represent the causal structure correctly.

6 Modularity, linearity and mechanisms
So far we have argued that, for systems of equations like those considered
above, modularity holds—that is, disrupting the relations expressed by one
equation by setting the value of its dependent variable leaves the other
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equations alone—if and only if breaking the arrows into any vertex in the
associated graph leaves the arrows into all other vertices undisturbed. Only in
this case will the equations and the graph provide clear and correct answers to
questions about what will happen under hypothetical interventions.

In the case of linear, or more generally additive relations, one can impose an
even stronger invariance condition. One can require that the individual coeffi-
cients beseparatelyinvariant under interventions that change the value of
other coefficients. Let us call this ‘coefficient invariance.’ Coefficient invar-
iance should hold if eachterm in each equation represents a distinct causal
mechanism (and thus acts independently of the mechanisms registered by other
terms). For example, in a linear equation such as (2), coefficient invariance
requires that the coefficientb—the direct effect ofX onZ—be invariant under
some suitable range of interventions that alter howYaffectsZ—that is, change
the coefficientc and vice versa. If the mechanism by whichX affectsZ is
genuinely distinct from the mechanism by whichYaffectsZ, then the mechan-
isms should operate independently and it should be possible to interfere with
one without interfering with the other. Like modularity, the coefficient invar-
iance condition has a simple graph-theoretic interpretation: When one has
additive relations, one can interpret individual edges as representing separate
causal mechanisms. Breaking any single arrow anywhere in the graph, leaves
all the other arrows undisturbed, including other arrows directed into the same
variable as the broken arrow.

Coefficient invariance is a restrictive condition: it will be violated whenever
additivity is, or when the causal relationship between two variables depends on
the level of a third variable. If one thinks of individual causes of some effectY
as conjuncts in a minimal sufficient condition forY (or the quantitative
analogue thereof)—that is, as ‘conjunctive causes’—then the relationship
between an effect and its individual causes will not satisfy coefficient invar-
iance. Removing the arrow between an individual causeX and one of its effects
Y will not leave the coefficients relatingY to its other causes unaffected.
Coefficient invariance can be expected to hold only when the vertices in a
graph that represent causes ofY in fact represent (components of)separate
minimal sufficient conditions—i.e. ‘disjunctive causes.’ Thus, for example, one
would expect coefficient invariance to hold in (2) if the mechanism by which
rainfall directly influences the pea harvest is independent of the mechanism by
which plant height influences the harvest. Otherwise one would expect coeffi-
cient invariance to fail. Notice that (unlike models that explicitly represent the
functional form of the relationship between variables by means of equations)
the graphical representation is insensitive to the difference between conjunctive
and disjunctive causes. Consider, for example, the graph shown in Figure 7.

X andYare both causes ofZ. Suppose that the graph represents the relation-
ship between the acceleration of a falling steel ball bearing (Z), the strength of
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the magnetic field (X) and the strength of the gravitational field (Y). In this case
(which, like a linear structural model, involves ‘disjunctive causes’), changing
the value ofX or disrupting the relationship betweenX andZ leaves the arrow
betweenYandZ unaffected. But in the causal modeling literatureZ might also
represent the illumination of a light that is controlled by a dimmer switch that
pushes in to turn the light on and rotates to control its intensity.X could be a
binary variable representing whether the switch is pushed in or not.Ywould be
a continuous variable representing how far the switch is rotated. With such
‘conjunctive causes,’ changes in the value of one variable or disruption of the
relationship between one variable and the effect, may break the other arrow.
Nothing in Figure 7 indicates which sort of causal relations is being depicted.
Coefficient invariance is an implication of the independence of distinct
mechanisms in the special case of additive relations, in which case the
individual terms in an equation can be taken to represent separate mechanisms.
It is not a general condition that one would expect causal relations to satisfy.
‘Interaction effects’—that is, failures of coefficient invariance—are in fact
common. Coefficient invariance obviously implies modularity, but modularity
permits the causal factors appearing in any single equation to interact. Mod-
ularity only requires that the mechanism described by each individual equation
be distinct from the mechanisms described by the others.15

Modularity thus does not presuppose linear or additive relations. Suppose
that, instead of (1) and (2) above, one had

(10) Y = F(X) + U

(20) Z = G(X, Y) + V

whereF andG are arbitrary functions. In the case of (10)–(20), MOD says that
F andG are invariant to interventions that set the value ofX within some range
of values ofX and thatG is invariant to interventions that set the value ofY
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15 Although we speak of the mechanism an equation captures, we do not interpret modularity as
ruling out the possibility that a single structural equation might describe the operation of more
than one mechanism. In the case of additive relations a single structural equation may express
several mechanisms that are distinct from one another and which can be separately disrupted.
When coefficient invariance does not hold, the mechanisms an equation describes will not be
distinct in this way, and we treat them as one. See below, Section7.



within some range of values ofY. Whether this condition is satisfied is
completely independent of whetherF and G are linear. Equations (10) and
(20) still assume that the contribution of the error terms is additive, and this
assumption might not be dispensable, but since it is always possible to expand
the graph and incorporate more variables, this restriction on the generality of
our claims concerning modularity would be a mild one.16

The central presupposition underlying this discussion of modularity and
coefficient invariance is that if two mechanisms are genuinely distinct it ought
to be possible (in principle) to interfere with one without changing the other.
Conversely, if there is no way, even in principle, to decouple mechanisms—to
interfere with one while leaving another alone—then the mechanisms are not
distinct. We take this as a criterion for counting mechanisms. The mechanisms
by which gravitation and friction influence the acceleration of a block sliding
down an inclined plane are distinct. By greasing the plane one can alter the
relation between the velocity of the block and the frictional force that resists its
movement without altering the relation between gravitation and acceleration.
There are thus two mechanisms involved. Greasing the plane changes the
equation or term relating velocity and frictional force without changing the
equation or term relating acceleration and gravitational force. By contrast, it is
plausible that the mechanism by which water influences plant growth is not
distinct from the mechanism by which fertilizer influences growth. Probably,
the relationship between water and plant height varies depending on the level
of fertilizer, so that an intervention on the latter will alter the former relation-
ship. If this is the case, there is a single mechanism mediating the combined
influence of both water and fertilizer on height and to express that relation with
a linear equation would be misleading about the true causal structure: the
equation would not be invariant to an intervention that changed the level of one
of the variables.

This understanding of distinctness of mechanisms plus the assumption that
each equation expresses a distinct mechanism implies modularity: it is, in
principle, possible to intervene and to disrupt the relations expressed by each
equation independently. Similarly, this convention concerning distinctness of
mechanisms plus the assumption that the whole set of arrows into each vertex
represents a distinct mechanism implies that an intervention that breaks an
arrow into one vertex should leave arrows into other vertices unchanged. In the
case in which each arrow (or each term in the equations) represents a distinct
mechanism, the convention concerning the distinctness of mechanisms implies
coefficient invariance.17

The view that mechanisms are distinct if and only if it is in principle possible
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to interfere to disrupt one while leaving the other alone is not an arbitrary
stipulation on our part. On the contrary, it is implicit in the way people think
about causation, and, in different contexts, both of us have argued that this sort
of independence is essential to the notion of causation. Causation is connected
to manipulability and that connection entails that separate mechanisms are in
principle independently disruptable. Causes could not be levers for moving
their effects if the linkages betweenX and the set of its (conjunctive) causes
could not in principle be disentangled from the linkages between other effects
and their causes.

For example, when one thinks of atmospheric pressure as a common cause
of barometer readings and storms, one supposes that the mechanism by which
atmospheric pressure influences the barometer reading is distinct from the
mechanism by which it influences the onset of the storm—this appears to be
part of what it means to say that atmospheric pressure has two joint effects
rather than just one.18 If these mechanisms were not distinct, it would be more
appropriate to think of atmospheric pressure as producing a single composite
effect, of which barometer readings and storms are components. If these
mechanisms are distinct, there must in principle be some way of bringing on
or impeding storms without interfering with the mechanism by which atmo-
spheric pressure causes barometer readings. Such interference may not be
feasible, but if it were not even conceivable, there would be only one mechan-
ism, not two. Similarly, there must be some way to set the barometer reading
without interfering with the mechanism whereby atmospheric pressure causes
storms. Manually moving the barometer dial to a new position constitutes such
a interference: This operation alters the relation between the atmospheric
pressure and the barometer reading without altering the relation between
atmospheric pressure and storms. To count as a distinct mechanism at all, a
putative mechanism must exhibit some degree of robustness or insensitivity to
context in its operation, and this includes insensitivity to changes in other
mechanisms.

As additional motivation for this idea, we should also note that without some
such specification of what it is for mechanisms and causal relationships to be
distinct, it is easy both to trivialize the Markov Condition and to generate
spurious counterexamples to it, as the following examples show. First, suppose
that X andY are correlated, withX caused byX* and Y caused byY*. The
correlation betweenX andYresults from the fact thatX* andY* are themselves
correlated. Even if there is no variable that, intuitively, would count as a
common cause ofX and Y, one can always preserve the Causal Markov
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Condition by taking the composite eventX*Y* as the common cause ofX and
Y. However, this trivializes the condition. IfCM is to have any substance, one
needs some way of capturing the idea thatX*Y* is not a genuine common
cause. One can avoid this sort of trivialization and capture what it means to say
that X*Y* is not really one event but rather two events by noting that it is
possible to intervene to change the value ofY* independently of the value ofX*
and hence independently of the mechanism by whichX* causesXand similarly
possible to changeX* independently ofY* and hence of the mechanism that
links Y* to Y. Since it is in principle possible to intervene to set the value ofY*
without changingX* and since the intervention leavesX unchanged,X*Y* is
not a single composite event which is a common cause ofX andY.

Related remarks can be made about events or variables that are logically or
analytically rather than causally connected. Suppose thatX andY are statisti-
cally independent. From these variables one can always construct other vari-
ables—for example,Z = X + Yor W= X – Y—that are statistically dependent
onXandY. However, we do not want to interpret the Markov Condition in such
way that this sort of dependence establishes thatX andYcauseZ or W. It is, of
course, easy enough—and perfectly reasonable—to stipulate that causal rela-
tions obtain amongdistinct events or variables; but logical or conceptual
distinctness may not always be as easy to judge as it is in this case. The
analytical connection betweenX, YandZ or Wwill, however, also show itself
in the fact that there is no conceivable way to intervene to change the value ofZ
or W that is not simultaneously an intervention to change the value ofX or to
change the value ofY, and there is no way to intervene to change the value ofX
or to change the value ofY that is not simultaneously an intervention to change
the value ofW or Z. A similar sort of analysis may be applied to the cases of
logical or conceptual dependence, described in Section2, which have been
advanced as counterexamples toCM .

As a final illustration consider the following putative counterexample toCM .
Suppose that radium atoms have a probability of 0.5 of emitting an alpha particle
(composed of two protons and two neutrons) during a certain time interval. Call
the decay eventC and consider the eventA consisting of the emission of two
neutrons and the eventB consisting of emission of two protons during this time
interval. Pr(A/C) = 0.5, and Pr(B/C) = 0.5, but Pr(A&B/C) is also 0.5 rather than
0.25. Does this represent a failure ofCM? Intuitively,A andB are not distinct
events, produced by distinct mechanisms. There is just one event here—the
emission of the alpha particle, produced by just one causal mechanism. This is
again reflected in the fact that there is no conceivable way of interfering in the
mechanism that producesA while leaving the mechanism that producesB
undisturbed orvice versa. Since this is thus a case in which a single stochastic
cause produces a single effect, it is not a counterexample to the Markov
Condition.
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On the other hand, if this treatment is not allowed, then violations of the
Markov Condition will be ubiquitous—all cases of stochastic causality,
whether microscopic or macroscopic, in which the effect event is decompo-
sable into parts (which is to say virtually all cases of stochastic causality) will
count as counterexamples. Again we see that sensible application of the
Markov Condition rests on prior assumptions about when variables and
mechanisms are distinct. We will return to this theme in Section9 when we
discuss the EPR phenomenon.

We conclude these remarks with a final observation. The central ideas
described in this section and the previous one—modularity and distinctness
of mechanisms—are strongly modal or subjunctive. They have to do with
whether equations or arrowswouldremain unchanged if onewere tointervene
to disrupt equations or break arrows. When we say that equations in a system of
equations are modular we are making claims about relationships between
different systems of equations or between different graphs and probability
distributions. Thus if the system (1)–(2) and the corresponding graph capture
the causal relations among rainfall (X), plant height (Y), and harvest (Z)
correctly, this tells one not just how to represent the situation in whichY
directly depends onX, andZ directly depends on bothYandX, but also how to
represent the new situation that would result if an intervention were set the
value ofY and break the arrow betweenX andY.

7 Modularity, mechanisms, and an argument for the
Causal Markov Condition

This long discussion of level invariance, modularity, and the distinctness of
mechanisms may appear to have strayed far from the Causal Markov Condition,
but in fact modularity turns out to bear a close and suggestive relationship to
CM . Given determinism, modularity (MOD ), and causal sufficiency, the value
of any variableY in V can change with an intervention with respect to a distinct
variableX in V, only if the value of one of the parents ofYchanges. The value
of one ofY’s parents can change only if the value of one of its parents changes,
and so forth. SinceV is a finite set,MOD implies that eitherX is an ancestor of
Y or the value ofY does not change with an intervention with respect toX. In
other words, ifXdoes not causeY, then thevalueof Yremains unchanged given
an intervention that setsX. This (of course) restates the fundamental principle
relating causation and manipulation that we introduced above.

Assume in addition that an interventioniX that sets the value of a variableX
can be treated as a random variable. Since this intervention is not an effect of
any variable inV and is causally related to variables inV only by virtue of
being a direct cause ofX, CM1 implies that it is probabilistically independent
of all other interventions and of everything that is not an effect ofX. Rather
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than referring to intervention variables explicitly, we shall make use of some
useful terminology proposed by Pearl ([1995]) and represent the random
variable whose values are the values ofX when these are set by intervention
as ‘set-X.’ So an intervention that sets the value ofX at x is treated as the
random variable set-X assuming the value set-[X = x].

GivenCM1 and the assumption that interventions can be treated as (inde-
pendent) random variables,MOD thus implies by the argument given
immediately above:

MOD* For all distinct variablesX andY in V, if X does not causeY, then
Pr(Y&set-X) = Pr(Y).Pr(set-X).

MOD* formulates the basic principle relating causation and manipulation as
the claim that wheneverX does not causeY, thenY and set-X are probabil-
istically independent. To recapitulate, we get to this claim in the following
way. Modularity (MOD ) implies that theequationsfor all variables other than
X are invariant to interventions that set-X. This implies that thevaluesof
all variables that are not effects ofX are not changed by interventions with
respect toX. If interventions can be treated as random variables, one arrives at
MOD*, the probabilistic independence of set-X of all variables that are not
effects ofX.

We shall now argue that, givenCM1, causal sufficiency and the assumption
that there are unrepresented causes,MOD* holds if and only if CM does.
(Given causal sufficiency, the unrepresented causes cannot of course be
common causes.) The independent disruptability of each mechanism turns
out to be the flip side of the probabilistic independence of each variable
conditional on its direct causes from everything other than its effects. Here
is the argument. Suppose thatX is a dependent variable. By assumption, in
addition to its represented direct causes (Parents(X)), it has some unrepre-
sented causes whose effect is summarized by the error termUX in the equation
for X. By definition, these are direct causes, and, given causal sufficiency,
they bear no causal relationship to any variable other thanX apart from those
which result from their being direct causes ofX. UX thus satisfies the definition
of an intervention with respect to theX, and givenCM1, UX has no prob-
abilistic relations to any variables, except for those that arise from its being
a direct cause ofX. In particular, UX is probabilistically independent of
Parents(X).

Since, conditional onParents(X), the only source of variation inX is UX,
any variableY in V distinct fromX can covary withX conditional onPar-
ents(X) if and only if it covaries (unconditionally) withUX. (To see that this is
true, recall that the distribution ofX conditional on any set of variablesW is
the distributionX would have if the variables inW were fixed. SinceX =
f(Parents(X)) + UX, the conditional distribution ofX/Parents(X) would
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be degenerate—X would have an unvarying value—were it not for the varia-
tions caused byUX. So Pr(X/Parents(X & Y) = Pr(X/Parents(X)) if and only if
Pr(Y & UX) = Pr(Y).Pr(UX).)

Since UX satisfies the definition of an intervention, one can infer the
following claim:

(=) Pr(Y& set-X) = Pr(Y) . Pr(set-X) if and only if Pr(X/Parents(X) & Y) =
Pr(X/Parents(X)).

(=) says thatY is independent of set-X if and only if it is independent ofX
conditional on the set of direct causes ofX. Given causal sufficiency, the
existence of unrepresented causes,CM1,19 the definition of an intervention,
and the assumption that interventions can be represented as random variables,
the independence ofX and Y conditional onParents(X) is a proxy forY’s
independence of interventions that set the value ofX. One can ‘read off’ which
variables are independent of interventions and which are not by examining
the probabilities conditional on the direct causes. For example, if, as Fisher
hypothesized ([1959]), smoking does not cause cancer but is related to it only
as an effect of a common cause, then if one brought about people’s smoking by
intervention, one should find no more lung cancer than among a control group
who are not subject to the intervention. For moral reasons, this experiment
cannot be performed. Given (=), one can find out whether cancer is indepen-
dent of set-smoking (and thus whether it is caused by smoking) by determining
whether cancer is independent of smoking conditional on the direct causes of
smoking.

The rest of the argument for the equivalence ofMOD* and CM (condi-
tional, of course, on the assumptions used to derive (=)) is trivial.MOD* says
that the left-hand side of (=) is satisfied wheneverY is not an effect ofX. CM
says that the right-hand side of (=) is satisfied wheneverY is not an effect ofX.
So if one accepts (=), then one can acceptMOD* if and only if one accepts
CM . In relying on (=), one is of course implicitly invoking the assumptions
used in the proof above:CM1, causal sufficiency, the existence of unrepresented
causes, and the treatment of interventions as random variables. Given these
assumptions, the Causal Markov Condition states how probability distributions

Daniel Hausman and Jim Woodward554

19 One might object that we are here relying on something stronger thanCM1, which only applies
to unconditional dependencies. It is arguable that we are here supposing that ifX andY are
dependent conditional on some setVX of variables, then this conditional dependency must itself
have a causal explanation in the sense that eitherX causesY, Y causesX or the conditional
dependence is due to some common cause ofX andY that is not inVX. But all claims about
causal relations at the type level must be relativized to some set of circumstances. So it seems
fair to consider whatCM1 implies in circumstances in which (for example) the members of
Parents(X) are unchanging. Alternatively, consider the variable setV\Parents(X). If V is
causally sufficient, then in the circumstances in which there is no variation in any of the
variables inParents(X), V\Parents(X) must be causally sufficient as well.CM1 can then be
used to infer unconditional probabilistic dependencies and independencies among the variables
in V\Parents(X).



reflect invariance conditions such as modularity. The Causal Markov Condition
translates the relation between causation and manipulability into a claim about
the relation between causation and probability distributions.

Some readers may not find this argument from modularity to the Causal
Markov Condition compelling, because they find the assumptions it requires,
such asCM1, causal sufficiency, and the existence of unrepresented causes, as
questionable as the Causal Markov Condition itself. It might seem particularly
odd that we need to assume that the setV does not include all the causes of any
variable. The reason this assumption is needed is that with deterministic rela-
tions, probabilities would otherwise become one or zero. Under determinism the
‘only if’ part of (=) would fail, since one would have Pr(X/Parents(X) & Y) =
Pr(X/Parents(X)) = 1 even ifX causesY andY and set-X are not independent.
The ‘only if’ part of (=) requires that there be an unrepresented source of
variation. When we retrace this argument in indeterministic circumstances, we
will not need this assumption. Even readers who question our assumptions,
should find this long discussion of modularity and its relations toCM of interest
for the tight links it reveals betweenCM and the view that causes can be used
to manipulate their effects. If conditional independencies echo independencies
given interventions, thenCM follows from the view that causes can be used to
manipulate their effects.

8 Strong independence and the Causal Markov Condition
Although the relations between a manipulability view of causation and the
Causal Markov Condition developed in the last three sections are central to this
essay, there are easier ways of arguing forCM . For example, consider what
SGS call ‘pseudo-indeterministic’ systems, where the values of left-hand side
variables are determined by the values of the variables on the right-hand side
and error variables. SGS claim that in pseudo-indeterministic systems,CM
must hold ([1993], p. 57). If one assumes that there are unrepresented causes of
all the variables, then causal sufficiency andCM1 imply that each error
variable, which summarizes the effects of the unrepresented causes is prob-
abilistically independent of the variables on the right-hand side of the equation
in which it appears and of all other error variables. The Causal Markov
Condition then follows trivially. Any variableY in V distinct from X can
covary withX conditional onParents(X) if and only if it covaries (uncondi-
tionally) with the error term in the equation forX. Since the error term is
independent of all variables that are not effects ofX, X must be independent of
everything except its effects conditional on its parents.

Like all the other arguments in defense ofCM , this one depends on very
strong independence assumptions. The causes that are not represented in the
graph have to be probabilistically independent of one another, and they have to
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be independent of all the represented causes of the same variable. Such
assumptions are not always plausible—for example, they may fail to hold
when the situation under investigation is represented by a non-recursive model.
Consider, for example, the causal structure represented by the following two
equations,X = aY + U and Y = bX + V, with U and V as error terms. This
corresponds to the graphical structure shown in Figure 8. BecauseU is a direct
cause ofX andX is a direct cause ofY, U will be correlated with the variableY,
which is a cause ofX in the first equation. For systems of this sort, the Causal
Markov Condition as formulated here does not hold, although related condi-
tions can be defended (see Spirtes [1995], and Koster [1996]).20

In Chapter 12 ofCausal Asymmetries, Hausman offers a more elaborate
argument forCM which relies on the notion of a ‘non-accidental connection’
rather than on the notion of invariance to intervention. If, as we believe, the
understanding of causation requires some sort of counterfactual or modal
notion, which bears no simple relation to observation, then (as Cartwright
[1989] has argued) it is by no means obvious that the best way to proceed is to
follow neo-Humeans and to take the notion of a law of nature as one’s only
primitive. One possibility, explored above and developed in more detail in
Woodward ([1997], [forthcoming b]) is to rely on the notion of invariance
under intervention. Another possibility, which Hausman explores, is to take the
notion of a non-accidental dependency or connection as a modal primitive.
Both the notion of a non-accidental dependency and the notion of a relationship
that is invariant under interventions represent different attempts to rehabilitate
the idea, repudiated by Hume, that causation involves ‘necessary connections.’
Although we disagree about which of these alternatives is the most promising
path to follow, we both maintain that the modal component in the notion of
causation is not best understood in terms of the notion of a law of nature.

The strategy of this section is to begin with Hausman’s notion of a non-
accidental dependency and show howCM1 arises naturally from the rough
correspondence between non-accidental dependencies and probabilistic
dependencies. We will then show howCM2 can be deduced fromCM1 and
an independence condition that Hausman maintains is a boundary condition for

Daniel Hausman and Jim Woodward556

20 David Papineau ([1985], p. 283) has also sketched an argument for binary variables that strong
independence assumptions imply that deterministic common causes screen off their separate
effects.

Fig. 8



the applicability of causal explanations, but which also derives from assump-
tions we have already made.

On Hausman’s approach, the key notion is that of a ‘non-accidental’ depen-
dency or connection between properties or between property instantiations. Non-
accidental connections are not directly observable, but they are not ineffable
either. They are fallibly—but reliably—indicated by sample correlations. Just
as empiricists are prepared to accept the existence of unobservable entities
when their postulation makes an observable difference, so they should be
prepared to accept the existence of non-accidental connections between prop-
erties, because these too make an observable difference. The discovery of
mechanisms linking apparently correlated variables often elucidates the nature
of postulated non-accidental connections. For example, the non-accidental
connection between pressing keys on a keyboard and characters appearing
on a computer screen can be associated with a complicated mechanism. But
unlike Cartwright ([1997], p. 344) we deny that non-accidental dependencies
can always be linked to mechanisms. Those between variables in fundamental
laws may, in contrast be ‘brute.’21

Unconditional sample dependencies fallibly indicate non-accidental con-
nections. Most of these non-accidental connections among properties or vari-
ables obtain because their instances (or located values) are related as cause and
effect or as effects of a common cause. When two light bulbs are wired in
parallel into the same circuit, so that they both go on when a switch is thrown,
the correlation between the switch position and the lighting of either bulb and
the correlation between the lighting of the two bulbs both arise because the
switch position and the bulb lightings are linked by causal mechanisms. In
contrast, when two switches are wired in serial into the same circuit, so that
they both must be closed for a bulb to light, no mechanism connects the switch
positions and no (unconditional) dependency is forged between their positions.
Quantum mechanics apparently presents us with additional (symmetrical) non-
accidental connections. Coincidence is a fourth variety of sample dependency.
When one has a sample dependency that is not coincidental, then one has a
probabilistic dependency as well as a non-accidental connection. The notion of
a probabilistic dependency and of a non-accidental connection thus largely
coincide.22 In this way one arrives back atCM1. But it seems that one has
merely followed a long detour to arrive back where one began. There is no
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22 The coincidence is not perfect because causal influences along different pathways can cancel
out. See Hausman ([1998], Chs 10 and 12).



independent argument here forCM1. The discussion merely restates the
intuition behindCM1 in a different way.

With the help of two additional elements, this framework does, however,
permit an argument forCM2. The first of these two additional elements is a
strong independence condition: Every variableX in V has some cause that is
not inV, which is distinct from everything inV and bears no causal relations to
any variable inV apart from those that result from its being a direct cause ofX.
Although the formulation of this condition is different, it obviously is closely
related to the claim that every variable inV has an intervention variable
directed into it—i.e. that interventions are possible with respect to every
variable. The strong independence assumption is a basic axiom for Hausman,
but it may also be derived from (a) the assumption that variables inV have
unrepresented causes and (b) causal sufficiency. Causal sufficiency implies
that the unrepresented causes ofX can have no causal relations to any other
variables except those that result from their being causes ofX. Since the graph
represents only the members ofV, the graph does not represent this indepen-
dent source of variation.CM1 implies that the unrepresented causally inde-
pendent source of variation inX is probabilistically independent of all ofX’s
represented causes. Although this account does not rely explicitly on any
claims concerning the relations between manipulability and causation, there
are important implicit connections (see Hausman [1998], Chs 5, 7). Hausman
maintains that a more general formulation of the strong independence condi-
tion is a boundary condition for the applicability of causal concepts and for the
possibility of specifically causal explanation. When it apparently breaks
down—as it does in the case of the EPR phenomena—then causal explana-
tions are out of place.23

Second, we shall rely on the assumption that a conditional sample depen-
dency or partial correlation operationalizes a counterfactual concerning what
non-accidental connections would obtain if the condition were met. The
existence of a sample partial correlation betweenX and Y conditional on
some value ofZ (not conditional on an intervention that sets the value ofZ)
is evidence that in circumstances in whichZ does not varyX andY would be
probabilistically dependent.CM1 then justifies the conclusion that they would
be related as cause and effect or as effects of a common cause—that is that
there would be a non-accidental connection betweenX andY if the value ofZ
were observed to remain unchanged atz.

Two examples may help clarify what is meant. Suppose that a switch is
connected in parallel to two light bulbs,B1 andB2, so that when it is thrown
they both go on. By the strong independence assumption, each of the two
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variables representing whether the bulbs are illuminated has its own indepen-
dent source of variation (such as, for example, frayed wiring or a battery
backup). So in a possible world in which the switch was held fixed in its ‘on’
position, the illumination ofB1 would depend only on causes that are inde-
pendent of the causes ofB2. So there would be no non-accidental dependency
between the illumination of the two bulbs—just as there is no conditional
probabilistic dependency.

Consider next a light controlled by two switches, like the light in the upstairs
hallway of many houses. If only one of the two switches is ‘up,’ then the light is
on. If both of the switches are up or both down, the light is off. There is no
unconditional correlation between the position of the switches. Consider then a
world in which the light is always on. In this world, the positions of the
switches must be perfectly negatively correlated, and byCM1 the negative
correlation in this world must have a causal explanation. There would have to
be some sort of mechanism linking the switch positions so that any variation
affecting the position of one influenced the position of the other, too.24

Given strong independence and this way of operationalizing counterfactuals
about what non-accidental connections would obtain, one can argue as follows
in defense ofCM2. Assume first that the causal graph under consideration is
causally sufficient and that causation is deterministic. Suppose then thatX and
Y are probabilistically dependent conditional onParents(X)—that is, condi-
tional on all the direct causes ofX that are in the setV. From the counterfactual
operationalization, it follows thatX and Y would be non-accidentally con-
nected if all the parents ofX were unchanging. So if all the parents ofX were
unchanging, then (byCM1) XandYwould be connected as cause and effect, or
they would be connected as effects of a common cause, or they would be
connected in that remarkable way that the spins of electron pairs are connected
in EPR phenomena. If all the represented direct causes ofX were unchanging,
thenX andYwould not be effects of a common cause because the only source
of X’s variation, by the strong independence condition, bears no causal relation
to Y except via causingX. Nor could Y causeX, because all the causal
influences onX apart from its unrepresented independent cause have been
frozen. So either one has EPR-like phenomena orX causesY. The EPR
correlations are symmetrical, and so the first possibility can be eliminated if
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two switches cannot beprobabilistically independent of one another if the positions of the
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the counterfactual operationalizing assumption or the strong independence condition. We believe
that it shows that the counterfactual operationalizing assumption must be revised before it applies
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either strong independence or the counterfactual operationalizing assumption when the relations
are acyclic. In order to represent a system that includes a device that ties the switches together so
that whenever one is thrown the other is too, a causal graph would have to contain a cycle, even
though at the token level the causal relations are asymmetric. We do not have space here to
discuss the appropriate probabilistic conditions to impose on graphs containing cycles.



X andY are not correlated conditional on all the parents ofY. Thus one can
derive the claim that ifX andY are probabilistically dependent conditional on
all the parents ofX, and they are probabilistically independent conditional on
all the parents ofY, thenX causesY. This condition is logically weaker than
CM2 andCM . If one sets aside the possibility of EPR-like phenomena (as one
should in deterministic circumstances), one derivesCM from CM1.

Many readers may feel thatCM and CM2 are more plausible than the
metaphysical assumptions in the arguments in this section in support of them.
This is not the occasion to assess this framework, which is developed at length
in Hausman’sCausal Asymmetries. The critical role played by the indepen-
dence assumption is, however, worthy of some comment. Because every
variable has a strongly independent cause, one could in principle intervene
independently with respect to each variable. If one intervenes with respect only
to X, andYwiggles, too, and wiggling has a causal explanation, thenYcannot
causeX andX andY cannot be related only as effects of a common cause. If
the joint probability distribution over the variables in the graph was generated
by deterministic processes that include such ‘wiggling,’ thenCM should
hold. As the last section demonstrated, the connection betweenCM and a
manipulability conception of causation is very close.

9 Cartwright’s objection
The long arguments given thus far forCM suppose that causation is a
deterministic relation. But some causal relations in fundamental physics
appear to be indeterministic, and (at least at the level of analysis at which
they are stated) so do many causal relations in the social, behavioral, and bio-
medical sciences. Suppose, for example, that one is interested in the relation-
ship between schooling and earnings in the contemporary US. Even if this
system is deterministic at some sufficiently fine-grained level, it is unlikely that
there exist deterministic relationships between education, earnings and other
variables such as social class or family background. Is there any reason to
believe that indeterministic causal relations should also satisfyCM?

Nancy Cartwright has argued that the answer is ‘no.’ She offers the follow-
ing example:

Two factories compete to produce a certain chemical, which is consumed
immediately in a nearby sewage plant. The city is doing a study to decide
which to use. On Mondays, Wednesdays and Fridays chemicals are
bought from factory Clean/Green. On Tuesdays, Thursdays and Satur-
days, from Cheap-but-Dirty. Cheap-but-Dirty employs a genuinely prob-
abilistic process to produce the chemical: the probability of actually
getting it on any day the factory operates is only about 80%. So on
some days the sewage does not get treated, but the method is so cheap
the city is prepared to put up with that. What they object to are the terrible
pollutants that are emitted as a by-product.
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That’s what’s really going on. But Cheap-but-Dirty will not admit to it.
They suggest that it must be the use of the chemical in the sewage plant
itself that produces the pollution. Their argument relies on the ‘common-
cause condition’. If therewerea common cause (C), producing both the
chemical (X) and the pollutant (Y) then conditioning on the information
about which factory was employed (that is looking separately at the
data from Mondays, Wednesdays and Fridays and that from Thursdays,
Thursdays and Saturdays) should screen off the chemical from the pollutant.
We should then expect

P(X/C.Y) = P(X/C).

But it does not.

We knowwhyit does not. Cheap-but-Dirty’s process is a probabilistic one.
Knowing that the cause occurred will [not] tell us whether the product
resulted or not. Information about the presence of the by-product will be
relevant since this information will tell us (in part) whether, on a given
occasion, the [producing] cause actually ‘fired’ [ . . . ]

What has gone wrong? [ . . . ] My own hypothesis is that our intuitions are
still too deterministically schooled. For a deterministic case, the occurrence
of the cause is co-extensive with its operation to produce its effect. So a
very important question concerning the total set of causes and effects is
concealed. That is the question of what the relationships are amongst the
operations to produce the different effects . . .

Consider a simple case of a causeC with two separate effectsX andY [ . . . ]
Looking at the effects, we have an event space with four different outcomes:

+X,+Y; ¬X,+Y; +X,¬Y; ¬X,¬Y.

If causality is to be fully probabilistic, nature must set probabilities for
each of these possible outcomes to result. That is, conditional onC, nature
must fix a joint probability over the whole event space [. . . ] Nothing in the
concept of causality or probabilistic causality constrains how it should be
done. The so called ‘common cause condition’ is satisfied only for a very
special case, the one in which:

Pc(+X+Y).Pc(¬X¬Y) = Pc(+X¬Y).Pc(¬X+Y).

Put in my earlier informal language, what is being fixed here is the
relationship betweenC’s operation to produceX and its operation to
produceY (Cartwright [1993], pp. 115–6).

These remarks raise a number of issues. Conditioning on the day of the week
is tantamount to conditioning on factory type (Clean/Green or Cheap-but-
Dirty). This is presumably coarser-grained than a variable that reflects the full
details of the operation of the specific chemical processes in the two factories
involved in the production of X and Y. (It is essential to distinguish between
the chemicals and the events of their production and between the factory-type
and the details of the operation of the production process employed in the
two factories. Let C be factory-type and X and Y the chemicals, whileC is
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the operation of the production process,X, the production of chemical X, andY
the production of chemical Y.) One possible interpretation of Cartwright’s
example is then that the common causeChas been characterized in insufficient
detail. Understood in this way the example illustrates a point to which we have
already agreed: In many practical applications researchers may be forced to
work with variables that are imprecisely defined or measured and because of
this, the Causal Markov Condition may fail with respect to those variables.
However, it seems that Cartwright intends the example to motivate a more
fundamental objection to the Causal Markov Condition. She denies that there
is any screening-off common cause, regardless of how the variables are
designated or measured.

As an initial observation, note that this denial sits uneasily with the sort of
probabilistic theory of causation that Cartwright advocated in her ([1979]) and
that many others have since advocated. According to these theories, the causes
of an event of kindYare those prior factors that are probabilistically relevant to
Y in causally homogeneous background conditions. In Cartwright’s example,X
remains probabilistically relevant toYeven after one conditions onC—which
by hypothesis is the only cause ofX andY.So, if X andYare not simultaneous
or if one relaxes the requirement that causation requires the temporal priority
of the cause, it follows within the framework of standard probabilistic theories
of causation thatX is a cause ofY or vice versa.25

Consider now a significant feature of Cartwright’s description of this
example. She speaks of C’s ‘operation’ or ‘firing’ to produce X and Y. This
description plays an important rhetorical role in making it seem intuitively
plausible that there is no reason why the firings to produce chemicals X and Y
must be uncorrelated when one controls for the common cause. However, on
closer examination, the description seems to undermine Cartwright’s treatment
of the example. If the firing of C is an event of some kind (and what else could it
be?), one is faced with the question of its relationship toC, X, and Y. For
example, if one conceives of the firing of C as a single eventF, then does the
event variableC causeF, which in turn causesX andY, as in Figure 9a? If so,
then there is no counterexample to the Markov Condition, since by hypothesis
F is a deterministic cause ofX andY (once the firingF occursX andY will
occur). It is true thatCdoesn’t screen offX from Y, butC is not a direct cause of
X andY—F is the direct cause, and it does screen off. A similar conclusion
follows if one thinks ofF not as an effect ofC but rather as a more precise
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specification of the state of the factory. Now the problem is that the variableC
was not specified correctly or in sufficient detail. It should be replaced with the
more informative variableF, and when one does so, screening off is restored.

Suppose, on the other hand, there are two firings—the firingF1 of the
factory C to produce chemical X and the firingF2 of C to produce chemical
Y. If F1 andF2 are more precise specifications of the state of the factory, it
again seems thatC is simply an insufficiently specified variable which should
not be regarded as a cause ofF1 andF2. Instead, the relevant specification of
the state of the factory should replaceCwith F1 andF2. Suppose instead thatF1

and F2 are distinct but correlated events that are not merely more precise
specifications of the state of the factory. In this case the causal structure is as in
figure 9b. Now there is no direct common cause ofX andYand the correlation
betweenX andY derives from the correlation betweenF1 andF2. But where
doesthat correlation come from? PresumablyF1 andF2 are not themselves
related as cause and effect. If they also do not have a common cause,CM1 is
violated. If they have a screening-off common cause, one again does not have a
counterexample to the Causal Markov Condition. IfF1 and F2 have a non-
screening-off common cause, then one has simply replicated the structure of
the original example. In this last case, on pain of a vicious regress, one had
better not invoke the ‘firing’ of their common cause to give some intuitive
sense to how it is thatF1 andF2 can be correlated even after one controls forC.
We suspect that Cartwright would simply denyCM1 and defend the possibility
of non-causal correlations among purely chance occurrences.

In Cartwright’s example, the correlation betweenX andYarises because of
their common causeC, yet that correlation does not disappear when one controls
for the action ofC, even though one ordinarily thinks that controlling forC
mimics a situation in which they have no common cause at all. To see more
clearly what is so strange about this, consider what happens if one intervenes to
bring aboutY. One possibility is that intervention is impossible—not merely
infeasible for human beings or impossible because of special physical con-
tingencies (see fn. 12), but that there is no way, even in principle, to disrupt the
mechanism linkingC to Ywithout also disrupting the mechanism linkingC to
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X—that is, the mechanisms are entangled, inseparable, or identical. Perhaps
this is what Cartwright has in mind, because she goes on to write:

The crucial point is that nature needs to set the joint probabilities; and the
case that satisfies the ‘common-cause condition’ is just one very special
way of doing so [ . . . ] For it is the case in which there is as little overlap as
possible betweenC’s operation to produceX and its operation to produce
Y. By contrast, my example of Cheap-but-Dirty’s process was one of
complete overlap—the cause operated to produce the intended productX
just in case it also operated to produce the unwanted by-productY([1993],
p. 117).

One way of interpreting this passage is thatX and Y and the mechanisms
linking them toC ‘overlap’ in the sense that they are not fully distinct—there is
no possibility in principle of disrupting the mechanism connectingC to one of
the effects without disrupting the link to the other. This would certainly make it
intelligible how the correlation between Cheap-but-Dirty’s production of
chemical X and its production of chemical Y is accomplished, but it also
means that the example is not correctly described as one in whichC is a
common cause ofX and Y. Given the connection between causation and
manipulation (which Cartwright might, of course, deny), for this description
to apply,C must be linked to two distinct eventsX and Y via two distinct
mechanisms. Recall the example used in Section7: if storms and barometer
readings are both effects of atmospheric pressure, then there must in principle
be a way to interfere with the mechanism connecting atmospheric pressure to
the barometer reading without interfering with the mechanism linking the
pressure to the occurrence of storms. If interventions that disrupt theC-X or
C-Ymechanisms separately are not possible in Cartwright’s example (as they
are not possible in the EPR experiment—see below), then the case is not a
counterexample to the Markov Condition.

In principle there seem to be two possible ways in which independent
disruptability might fail. One is thatX andY are not distinct events. Consider
again the example from Section7 in which a radioactive atom emits an alpha
particle. The eventE consisting of the emission of two protons and the eventF
consisting of the emission of two neutrons are not related as cause and effect
and are not independent conditional on the decay event. Yet it would be a
mistake to view this as a counterexample to the Markov Condition, because
there is really just a single effect, which is the emission of a particle consisting
of two protons and two neutrons and a single mechanism which associated with
the decay. A similar point applies to macroscopic indeterministic phenomena
which are produced by a single causal process, if there are any.

A second possibility, which some would argue is illustrated by the EPR
phenomenon, is thatX and Y are distinct events, but they are not prob-
abilistically dependent on one another in virtue of being cause and effect or
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effects of a common cause. Instead they bear a different kind of non-causal (but
non-accidental) relation to one another.26 If this view of the measurement
results as distinct and non-accidentally, but non-causally connected events is
the correct interpretation of EPR, then—as noted in Section8 in the argument
from strong independence to the Causal Markov Condition—the Causal
Markov Condition needs to be reformulated. Rather than saying thatX
causesY if Y is probabilistically dependent onX conditional on all the direct
causes ofX, one should say thatX causesY if this condition obtains and it is
also not the case thatX is probabilistically dependent onYconditional on all the
direct causes ofY. Notice that this involves a revision ofCM1. However, this is
not the sort of case that Cartwright has in mind. She intends to present a case in
whichC is an indeterministic commoncause, and does not argue thatX andY
bear the sort of relationship to one another that measurements in the EPR
experiments do. Moreover, Cartwright has argued elsewhere ([1989], Ch. 6;
Chang and Cartwright [1993]) that the separated particles in the EPR experi-
ment are (or at least may be) causally related. She does not make the analogous
claim aboutX andY in the chemicals example.

Since the EPR experiment has loomed large in recent discussions of the
Markov Condition and since many philosophers regard the measurement out-
comes in the EPR experiment as related as cause and effect or as effects of a
common cause (or both), we should say a little more about why we believe that
these interpretations of the EPR phenomenon are mistaken. Our two main
reasons have to do with the impossibility of carrying out an intervention that
sets or influences the value of one measurement result independently of the
other or that interferes with one of the arrows or mechanisms characterizing the
common cause structure independently of the other. First, as a number of
writers have observed (e.g. Skyrms [1984]), once the orientation of the
measurement apparatus is determined, there is no physically possible way to
alter or fix the value of either measurement result. Indeed it is not even possible
to intervene to change separately the probability distribution of either measure-
ment. The experimenter can manipulate the orientation of the measurement
apparatus, but neither she (nor any possible causal process) can, for a given
orientation of the apparatus, manipulate the measurement outcome or its
probability distribution. So it is impossible to produce a change in one
measurement outcome by literally setting the other.

Second, as we noted in our discussion in Section4, for the notion of an
intervention onXwith respect to some set of variablesV to be well defined, it is
essential that there be a contrast between on the one hand intervening with
respect toX only and changingY if at all only through this change inX and on
the other hand directly changing bothXandY, so that the change inY is brought
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about directly and not as a result of the change inX. The reason for this is that if
the putative intervention process that changesX also directly changesYbut not
throughX, the direct effects of the process onYand the effects if any ofX onY
will be confounded. For example it is a familiar concern that, in an experi-
mental investigation of the effect of a drug on recovery, the very act of
administering the drug may exert a direct influence on recoveryvia a placebo
effect that will be conflated with the pharmacological effects of the drug. The
point of administering a placebo to a control group is to allow us to separate out
these two effects and to measure the treatment effect alone.

The notion of an intervention with respect to one of the measurement events
is not well-defined in the EPR phenomena, because the distinction between
intervening with respect toX and acting directly on bothX andY cannot be
drawn. The reason given for this within the standard interpretation is that the
correlated particles are in a so-called non-separable or entangled state. In some
way that is difficult to understand, the two particles constitute a single
composite object, even though they may be at spacelike separation from
each other. The measurement result on one wing is not really a distinct
event from the result on the other wing but rather both comprise a ‘single,
indivisible non-local event’ (Skyrms [1984], p. 255).27 For this reason, it is
wrong to think of the measurement process performed on one particle as
directly affecting only the state of that particle and affecting the other particle
if at all only through the change it produces in the first particle. Because the
particles are in a non-separable state and because there is no well-defined
notion of directly interfering with either of the particles without directly
interfering with the other (or of disrupting the mechanism governing the
behavior of one particle without disrupting the other) it is inappropriate to
think of the EPR experiment as involving a causal structure in which there is a
common cause of the measurement results and/or a direct causal link between
the measurement results.28

This explanation for why it is that the notion of an intervention with respect
to either of the measurement results is not well defined is controversial,
although it is worth remarking that it is widely accepted among physicists.
Moreover, because it allows one to avoid the conclusion that the measurement
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conditioning and intervening (cf. Glymour and Meek [1994]). As we noted above, the prob-
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results are related as cause and effect, it allows one to avoid positing super-
luminal causal connections, symmetric or frame-dependent causal connections
and other sorts of causal pathologies that are frequently appealed to in discus-
sions of the EPR experiment.

A point which is less controversial and which we take to be illustrated by the
preceding remarks is this: the application of the Markov Condition to any
system, quantum mechanical or otherwise, requires a prior understanding of
how that system should be segmented into distinct components or mechanisms.
Those who have regarded the EPR experiment as a counterexample toCM
have reasoned in the following way: since the measurement results are not
related as cause and effect and are not independent conditional on any common
cause, the Causal Markov Condition must be false. If the measurement results
were distinct, the EPR experiment would be a genuine counterexample, but
one needs a reason to accept the antecedent of this conditional and we have
argued that there is none. If the measurement results are not distinct events or
do not result from distinct mechanisms, then it must be mistaken to think of the
EPR experiment as having a common cause structure or as having a structure in
which the measurement results are related as cause and effect. This general
point should survive any uncertainty the reader may feel about the right way to
understand what is going on the EPR experiment.

We conclude that both in Cartwright’s example and in the EPR experiment,
if the causal relationships linking the supposed joint effects to their common
cause are not independently disruptable, the system in question does not have a
common cause structure and hence does not represent a counterexample to the
Causal Markov Condition. We turn now to the alternative possibility, which is
that it is possible to intervene and set the value ofY without disrupting the
relationship betweenC andX. There are then three cases. Either 1. Pr(X/C &
set-Y) = Pr(X/C & Y), 2. Pr(X/C & set-Y) = Pr(X/C), or 3. Pr(X/C & set-Y) has
some other value. Since case 3 raises no issues that do not show up in cases 1
and 2, we shall discuss only the first two cases.

Case 1: Pr(X/C & set-Y) = Pr(X/C & Y). Since in Cartwright’s example Pr(X/C
& Y) > Pr(X/C), it follows that Pr(X/C & set-Y) > Pr(X/C) and given the
connection between causation and manipulation,Y turns out to be a cause ofX.
Again the case does not have the structure intended by Cartwright, in which
there is no causal connection betweenX andY.29 The case is closely analogous
to the deterministic example, described in Section6 above, in which an
intervention on one of the joint effectsA produced by a common causeC
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alters the relation betweenC and the other effectB, in violation of modularity.
Similarly, in the case under discussion, the probability with whichC produces
X varies depending on whether or not an intervention is carried out onYand on
what valueY is set to under the intervention, despite the fact that the mechanism
linking C to Y is supposedly distinct from the mechanism linkingC to X and
that supposedly the only causal relationships are betweenC andX andC andY.
Just as in the deterministic case, it is reasonable to take this sort of behavior as
an indication that the causal structure of the example is misspecified—either
there is a causal link fromY to X or perhaps the causal relationships betweenC
andYandC andX are not really distinct (in which case the example collapses
into the sort of analogue to the EPR phenomena already discussed above). On
either interpretation, one does not have an example of a common cause
structure that violates the Markov Condition.

Case 2: Pr(X/C & set-Y) = Pr(X/C). Ydoes not count as a cause ofX, and it only
carries information concerning the occurrence ofX when it occurs as a
consequence ofC. Unlike case 1, one cannot manipulate Pr(X) or Pr(X/C)
by intervening onY. Informally the case might be described as one in whichC
producesX with the same probability both when it is allowed to produce Y and
when the production of Y instead is suppressed or disrupted or due to some
event distinct fromC, and in which it also somehow happens thatC causesX
when and only when it causesY. Nonetheless, there is no causal connection
betweenY andX—this is shown by the fact that one cannot manipulate Pr(X)
(or Pr(X/C)) by intervening onY. What we have is a kind of epistemic or
informational relevance betweenY andX (knowing the value ofY provides
information that is relevant to the probability ofX even after the value ofC is
taken into account) but no causal dependence.

The first thing to note is that the only real-life cases that appear to have this
sort of structure involve coarse macro variables and are consistent with the
satisfaction of the Causal Markov Condition at a more refined level of descrip-
tion. In particular, the possibility envisioned under (3) isnot a macroscopic
analogue of the EPR phenomenon since in the former but not in the latter it is
possible to carry out an intervention that disrupts the correlation between the
joint effects. This fact by itself provides reason to dismiss the example, absent
some further argument for taking it seriously.

Nonetheless, it is worth trying to isolate more precisely what makes this
example seem so at variance with ordinary causal intuitions and expectations.
We begin by considering the nature of the dependence betweenX andY that
remains after one conditions onC. This is not supposed to be a sample
coincidence but rather to be stable under repeated experiments in whichC is
allowed to produceX and Y—it is somehow the result of the causal or
nomological structure of this system. Moreover, the conditional dependence
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is also not the result of a primitive nomological connection betweenX andY,
because it is disrupted by interventions onY. (Thus, for example, it is not like
the conservation law that governs the results of the spin measurements in the
EPR experiment.) How, then, is the coordination betweenX andYeffected?Ex
hypothesi, it does not arise by accident and it is hard to understand the
suggestion that it arises in some spontaneous but non-accidental way. (At
the very least, spontaneous coordination in the behavior ofC to produceX and
Y would seem to violate the spirit ofCM1.) The only remaining alternative
appears to be that this dependence must be produced by means of some
common state ofC that affects bothXandY. But then shouldn’t the dependence
betweenX andYdisappear when one conditions on this common state? If one
conditions on some candidate for this state and the dependence does not
disappear, why isn’t this just an indication that one has picked the wrong
candidate?

A slightly different way of putting the point is this: The fact that the
correlation betweenX andY is only present whenC causes both of them and
disappears when one intervenes to set the value ofY means that what is
informationally relevant toX is not the value ofY per sebut rather howY
came to have that value. WhenY is produced by an intervention,Y carries no
information about whetherX will occur, but whenY is produced byC it does
carry such information. Thus knowing thatY is produced byC provides
information aboutX over and above any information that is contained in the
full specification ofC and of Y itself. It is hard to understand how this is
possible. If what is informationally relevant toX is the fact thatY has been
caused byC, and this is not a fact represented in the state ofY, then it looks like
it can only be a fact about some feature of (the causal structure or behavior of)
Cand hence a fact that one ought to take account of when one conditions on the
common cause.30 But when one does this, shouldn’t one expectX andY to be
independent conditional onC? It is easy to understand how whenY is caused by
C, it can provide information aboutC and howY can thereby also provide
information about the state ofX, but how canY tell us more aboutX than full
knowledge ofC can?

Whatever the intuitive force of these considerations, they are little more
than a re-assertion of the naturalness of the Markov Condition and do not
constitute an independent argument. But their intuitive force places the onus on
Cartwright to explain why one should take seriously the possibility that there
are real-life cases in whichX and Y are joint effects ofC, X and Y are not
independent conditional onC, and yet an intervention with respect toY leaves
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Pr(X/C) unchanged. After considering in the next section how the connection
between causation and manipulability should be formulated in indeterministic
circumstances, we will make an additional attempt to identify rigorously what
it is about this case that is in tension with how people ordinarily think about
causation.

Cartwright is certainly not the only writer who claims that the Markov
Condition often fails in indeterministic contexts. Similar claims have been
made by Salmon and Arntzenius. However, these writers appeal to examples,
like those discussed in Section2, in which the wrong variables are measured or
in which the variables are not distinct. Such examples can be dealt with along
the lines described in Section2.

10 Indeterminism and the Causal Markov Condition
Although the last section answers Cartwright’s critique, it does not address
directly the question of whether the Causal Markov Condition should hold in
indeterministic circumstances. Does the Causal Markov Condition break down
when causation is not deterministic? Do any of the arguments for the Causal
Markov Condition presented above in Sections7 and8 carry over to indeter-
ministic circumstances? In this section, we shall make two arguments for the
conclusion thatCM holds in indeterministic circumstances. The first attempts
to show that if CM holds in deterministic circumstances, then, given a
plausible assumption about what indeterministic causation consists in, it
must hold in indeterministic circumstances as well. The second retraces
essentially the argument given above in Section7 in a form that is appropriate
for indeterministic causal relations.

One way to extend the arguments we have already made to indeterministic
relations is to maintain that probabilistic causation is deterministic causation of
probabilities. By this we mean thatX is a probabilistic cause ofY if and only if
X is a deterministic cause of the chance ofY, ch(Y), where this is identified with
the objective probability ofY. In other words, the full set of probabilistic causes
of Y are the full set of variables that deterministically cause the objective
probability ofY. This view is defended at length by Hausman ([1998], Ch. 9)
and has also been defended by David Papineau ([1989], p. 320) and Paul
Humphreys ([1989]). It is also arguable that it is implicit in most probabilistic
theories of causation. As such theories are usually understood, a probabilistic
causeX is a variable that causally contributes to the chance ofY (or a variable,
changes in the value of which change the chance ofY) and this contribution to
or change in the chance ofY is thought of as determined byX. This is not the
occasion for an extended defense of this view. We are interested instead in how
one can use this view to argue that the Causal Markov Condition should hold
when causation is not deterministic.
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In this essay, as in the causal modeling literature generally, we have been
concerned with causal relations among the variables in some specified setV.
When one assumes that the relations among variables are deterministic, one
assumes that there are other causal factors that are not inV that explain why the
value ofX is not a constant when the values of the parents ofX are unchanging,
or that explain why it is that Pr(X) is not equal to one for some particular value
of X and zero for all other values. If causal relations are indeterministic, one
does not have to assume that there are causes ofX that are not contained inV in
order to get non-degenerate probabilities, but, in many cases, it will reasonable
to suppose that variation in the value ofX conditional on its direct causes
represented inV is due to causes that are not represented inV in addition to
pure chance variation. Recall thatParents(X) was defined to be a subset ofV.
Parents(X) thus consists only of the direct causes ofX that are represented in
V. X may have other direct causes that are not represented inV and are not
members ofParents(X).

As we have argued, to take probabilistic causation to be deterministic
causation of probabilities is to say that ch(Y) is determined by the probabilistic
causes ofY. To say this does not commit us to saying that ch(Y) is determined
by Parents(Y). (In just the same way, in treating causation as a deterministic
relation, one does not have to takeY to be determined byParents(Y).) Since
Parents(Y) is a subset ofV, there may be direct causes of ch(Y) that are not
contained inParents(Y). So ch(Y) may be determined by all the direct causes
of Y, even though it is not determined byParents(Y).

To conclude thatCM holds when causation is indeterministic if it holds
when causation is deterministic, notice first that some changes in the values of
X andYmay be deterministically caused, and some may involve chance.CM1
says that unlessX andYare related as cause and effect or have some common
cause, they will be probabilistically independent. This implies (plausibly) that
to the extent that variations inX andY are due purely to chance, they will not
be correlated. Suppose then thatX andY bear probabilistic rather than deter-
ministic causal relations to one another and that

(1) X is not a cause ofY.

Then from the claim that probabilistic causation is deterministic causation of
probabilities, one can infer that

(2) X is not a cause of ch(Y).

If CM holds for deterministic relations, it follows that

(3) Pr(X/[Parents(X) & ch(Y)] = Pr(X/Parents(X)).)

Since (byCM1) Ywill be independent of everything that ch(Y) is independent
of, one can conclude for indeterministic variablesX andY, that if X does not
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causeY, then Pr(X/[Parents(X) & Y] = Pr(X/Parents(X)).) So if CM holds for
deterministic causal relations, it holds for indeterministic relations as well.

One way to avoid this conclusion is to reject the assumption that probabilistic
causation is deterministic causation of probabilities. However this assumption
is rather deeply entrenched in the way philosophers have thought about
probabilistic causation. Indeed, it appears to be presupposed in Cartwright’s
([1979]) discussion of the relationship between probability and causation and
by her well-known unanimity conditionCC, in which all and only those factors
that uniformly increase the chance of an event, conditional on the various
possible combinations of other causal factors for the event, are taken to be
probabilistic causes of the event. This brings out how deeply violations of the
Markov Condition conflict with standard assumptions about probabilistic
causation. Once these assumptions are accepted, one cannot consistently
maintain thatCM breaks down only in indeterministic circumstances.31

We do not know how much weight to place on this argument, because some
critics of the Causal Markov Condition would find the construal of probabil-
istic causation as deterministic causation of probabilities as questionable as the
Causal Markov Condition itself. Notice, however, that the argument only relies
on the claim that ifX is not a probabilistic cause ofY, then it is not a
deterministic cause of ch(Y), not the full equivalence of probabilistic causation
and deterministic causation of probabilities. Once this claim is accepted (and
once one grants that ch(Y) can be an effect of other variables), this argument
poses a serious challenge to those who maintain thatCM breaks down only in
indeterministic circumstances.

A second line of argument emerges if one considers what a manipulability
view of causation implies in indeterministic circumstances. This argument
closely follows the argument given above in Section7. The only differences
are that the relation between manipulability and causation needs to be refor-
mulated, and the assumption that each variable has an unrepresented cause is
replaced by the assumption that either it has an unrepresented cause or its value
varies spontaneously. The reformulation of the relation between manipulabil-
ity and causation is basically just that instead of claiming that whenX does not
causeY, the value ofY would remain unchanged given an intervention with
respect toX, we shall claim that whenX does not causeY, then the probability
distribution ofY will remain unchanged given an intervention with respect to
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X. As before, we assume causal sufficiency,CM1, and that interventions can
be treated as independent random variables.

The assumption that the probability distribution ofYwill remain unchanged,
given an intervention with respect toX plus the assumption that interventions
can be treated as random variables can be restated formally as:

PM (Probabilistic modularity) Pr(Y/Parents(Y)) = Pr(Y/Parents(Y) &
set-Z) whereZ is any set of variables distinct fromY, and the values to
which the variables inZ are set lie within the relevant range.

PM expresses the idea that each conditional probability Pr(Y/Parents(Y))
corresponds to a distinct mechanism that expresses itself in a determinate
conditional probability32 and in addition that it should be possible to disrupt
each such mechanism independently, without affecting the other mechanisms
in the system. Thus it should be possible to intervene to set the values of the
variables in any set of variablesZ that does not containYand hence to disrupt
the mechanism that connects those variables to their parents without disturbing
Pr(Y/Parents(Y)). PM states roughly the same condition for indeterministic
relations thatMOD states for deterministic causal relations (and indeed it
holds under pseudo-indeterminism as well as in genuinely indeterministic
circumstances).MOD says every equation relatingY to its direct causes
remains invariant with respect to interventions that set any subsetZ whose
members are distinct fromY. PM says that each conditional probability, Pr(Y/
Parents(Y)) is invariant with respect to interventions that setZ (whereY is not
in Z)—in other words, thatY and set-Z are probabilistically independent
conditional onParents(Y).

It is worth explicitly noting that it is not true in general that Pr(Y/Parents(Y))
& set-Z) = Pr(Y/Parents(Y) & Z) or that Pr(Y/Parents(Y)) = Pr(Y/Parents(Y)
& Z) for all Z, even in systems that satisfy the Markov Condition. For example
this equality will not hold forZ that contain descendants ofY—the values of
such descendant variables may convey information aboutY even if one
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conditions onParents(Y). Again, the equalityPM holds because of the special
features possessed by interventions and the set-Y operation. By definition an
intervention onY rendersY independent of its causes inV. Hence even whenZ
contains descendants ofY, set-Z will be independent ofYeven thoughZ itself
will not be.

Since Pr(Y/Parents(Y) & set-Parents(Y)) = Pr(Y/set-Parents(Y)), PM
implies:

PLI (Probabilistic level invariance) Pr(Y/Parents(Y)) = Pr(Y/set-Parents(Y)).

(Given the way that ‘set-Z’ is defined, Pr(Y/Z & set-Z) = Pr(Y/set-Z).) PLI
expresses the idea that ifParents(Y) genuinely represents the causes ofY, then
the conditional probability Pr(Y/Parents(Y)) should be invariant under inter-
ventions that change the value of any of the variables inParents(Y). It
corresponds, for indeterministic contexts, to the requirement that for (1)Y =
aX+ U correctly to represent a causal relationship betweenXandY, (1) must be
invariant under interventions that set the value ofX within some range. Note
that it is not in general true that for any two variablesX andY, Pr(X/Y) = Pr(X/
set-Y). For example, as we have noted, this equality will not hold ifX andYare
the correlated effects of a common cause, since intervening onYwill make the
correlation betweenX andY disappear. Probabilistic level invariance claims
that this equality will hold in the special case in whichY is the only direct cause
of X.

As an intuitive illustration ofPM and its implicationPLI , suppose thatC is
the only parent—i.e. the only cause—ofX andY. Corresponding to the causal
relationship or mechanism betweenC and X there will be a characteristic
conditional probability Pr(X/C) and another conditional probability Pr(Y/C)
will correspond to the causal relationship betweenC andY. PM implies in this
special case in whichC is the sole cause ofX andY that intervening to increase
the frequency ofC from Pr(C) to Pr*(C) should not change the conditional
probabilities Pr(X/C) or Pr(Y/C), but these should instead remain invariant
under this change, so that the new distributions Pr*(X, C), Pr*(Y, C) are now
given by Pr*(X, C) = Pr*(C). Pr(X/C) and Pr*(Y,C) = Pr*(C). Pr(Y/C).33

Similarly, PM says that since the term Pr(X/C) describes the mechanism
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the possibility of using the invariance of conditional probabilities to intervention as a practical
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linking C to X and since this is distinct from the mechanism, described by Pr(Y/
C), linking C to Y, it should be possible to interfere with the former mechanism
without affecting the latter andvice versa. Thus, for example, one might set the
value ofX via an intervention to some valueX = x0 so that the value ofX is no
longer influenced byC and Pr(X/C) is disrupted. The result of this should be
that Pr(Y/C), as well as Pr(C) is unaffected. If instead we had said that Pr(C/XY)
was invariant under interventions on Pr(X) or Pr(Y), this would be a way of
encoding or representing a different set of claims about causal structure—that
X andY are causes ofC, and that Pr(C/XY) represents a distinct mechanism.

It is important to distinguish the claim that a probability distribution can be
factored in a certain way fromPM. PM says instead that certain terms (and the
variables or mechanisms corresponding to them) can be changed without
disrupting other terms (variables and mechanisms). Any probability distri-
bution can be factored in many different ways but at most one of these factor-
izations will consist of terms, any one of which may be changed independently
of the other terms in accordance withPM. As an illustration, consider the
simplest possible case. Given the definition of conditional probability and
some elementary mathematics, the joint distribution Pr(A, B) can be written as
either Pr(A). Pr(B/A) or as Pr(B). Pr(A/B). However, this fact does not show
which if either of these factorizations consists of terms that may be changed
independently of the others. If, for example,A is the sole cause ofB, then from
PM one should expect that Pr(B/A) will be stable under interventions that
change Pr(A), but that Pr(A/B) will not be stable under interventions that
change Pr(B). Similarly if B is the sole cause ofA, then PM implies that
Pr(A/B) but not Pr(B/A) should be stable under interventions on Pr(B), while
if neitherA norB is a cause of the other, neither conditional probability should
be invariant under interventions on either Pr(A) and Pr(B). Indeed it is easy to
show that if Pr(B/A) and Pr(B/-A) are not zero and are invariant in this way to
interventions that setA, then the inverse conditional probabilities Pr(A/B) and
Pr(A/-B) cannot be invariant. By Bayes’ theorem, Pr(A/B) = [Pr(A) . Pr(B/A)]/
[Pr(A) . Pr(B/A) + Pr(-A) . Pr(B/-A)]. If Pr(B/A) and Pr(B/-A) are invariant under
interventions that change Pr(A), then Pr(A/B) must change for different values
of Pr(A). Alternatively, if it is not true that eitherA causesB or thatB causesA,
then an intervention that changes the value of either leaves the distribution of
the other unchanged and hence disrupts the conditional probabilities Pr(A/B)
and Pr(B/A) (for a similar argument, see Sober [1994], pp. 234–7; Hoover
[forthcoming], Ch. 8).

Implicit in this way of looking at matters is the more general idea that there
is more content to claims about the causal structure of some set of variables
than that the joint distribution of those variables factors in a certain way. One
way of capturing this additional content in both deterministic and indeter-
ministic causal relations is by requiring that one of these factorizations satisfies
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an invariance requirement such asPM. It is that factorization, if any, in which
the terms are independent in the sense that each is invariant under changes in
the other, that represents its causal structure. In a similar way, although
different systems of equations may be compatible with the same probability
distribution over the measured variables, it will be those equations (if any) that
satisfy modularity that will capture the causal structure of the system under
investigation.

We are now ready to argue forCM in much the same way as in §7. IfX is
distinct fromY, then fromPM one can infer that Pr(Y/Parents(Y) & set-X) =
Pr(Y/Parents(Y)). If, in addition,X does not causeY, PM implies that for all
ancestorsZ of Y Pr(Z/Parents(Z) & set-X) = Pr(Z/Parents(Z)). So if X is
distinct fromY and not a cause ofY, then an intervention with respect toX
leaves invariant (a) the distribution of the exogenous variables thatY depends
on, (b) the conditional and hence the marginal distribution of the ancestors of
Y that have only exogenous variables as direct causes, and, hence (c) the
marginal distribution ofY itself. SoPM and the assumption that interventions
can be treated as random variables imply the condition that in Section7 we
calledMOD*:

MOD* For all distinctX andY in V, if X does not causeY, then
Pr(Y & set-X) = Pr(Y). Pr(set-X).

Not only doesMOD* hold in indeterministic as well as deterministic circum-
stances, so does (=). Consider the circumstances in which all the direct causes
of X are observed to be unchanging. In those circumstances, (by assumption)
the value ofX varies either spontaneously or because of causes ofX that are not
represented inV. Given causal sufficiency, none of the unrepresented causes of
X can cause any other variable by a path that does not go throughParents(X)
and none of the causes of any other variables can causeXby a path that does not
go throughParents(X). So in the circumstances in whichParents(X) is
unchanging, eitherX varies spontaneously or because of causes that have no
causal relation to any other variables except in virtue of causingX. In both
cases, givenCM1, changes inX count as interventions with respect toY. Since
changes inX conditional onParents(X) count as interventions with respect to
Y, changes inX conditional onParents(X) must be independent of the same
things that set-X is independent of. This is what the condition (=), which was
proven in Section7, says:

(=) Pr(Y& set-X) = Pr(Y) . Pr(set-X) if and only if Pr(X/(Y& Parents(X)) =
Pr(X/Parents(X)).

Since, as we just argued, in the conditions in which the direct causes ofX in V
are unchanging, the spontaneous variation ofX or the unrepresented causes of
X satisfy the definition of an intervention, (=) must hold.MOD * says that the
left-hand side of (=) holds whenX does not causeY, and (=) then implies that
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the right-hand side must hold whenX does not causeY, which is exactly what
CM says. SoPM plus the assumptions needed to derive (=) implies and is
implied byCM . In indeterministic as well as deterministic circumstances, the
link between causation and manipulability implies and is implied byCM .

Given this argument whyCM should hold in indeterministic circumstances,
we can now say more precisely what is peculiar about the interpretation of
Cheap-but-Dirty’s production process in which Pr(X/C) and Pr(Y/C) = 0.8,
Pr(X/(Y& C)) = 1, and Pr(X/(set-Y& C)) = Pr(X/C). Since Pr(X/(set-Y& C)) =
Pr(X/C) andYdoes not causeX, the argument above forMOD* establishes that
Pr(X & set-Y) = Pr(X) . Pr(set-Y). Since in addition Pr(X/(Y & C)) Þ Pr(X/C),
one has a violation of (=). Since (=) follows fromCM1, causal sufficiency, the
assumption that interventions can be treated as random variables, and the
existence of unrepresented causes or spontaneous variation, this interpretation
of Cartwright’s case must violate one of these conditions. In particular, in the
circumstances in which Clean-but-Dirty’s process is constantly in operation,X
andY have only a 0.8 chance of occurring, but whenever one occurs, so does
the other. Since by assumption, there is no other common cause, it must be that
the purely chance occurrences happen invariably to line up—in violation of
CM1.

We earlier described this interpretation of Cartwright’s example as a case in
which informational and causal relevance fail to coincide—the value ofY(when
caused byC) is informationally relevant toX, after conditioning onC, but there
is no causal connection betweenX andY. But givenCM1, it is not possible for
informational and causal relevance to come apart in this way. On reflection this
conclusion ought to be unsurprising. Someone who thinks that causal and
informational relevance can fail to coincide in cases like Cartwright’s should
also believe that they can come apart in the sort of case directly covered by
CM1—that it is possible forX andY to be correlated even though they are not
related as cause and effect or as effects of a common cause. In other words, the
connection between causal and informational relevance is built intoCM1 and
once we accept this connection,PM and other plausible assumptions imply
CM .

There is yet another way to diagnose what it is about Cartwright’s case that
is so at odds with common beliefs about causation. Return for a moment to the
deterministic case, and consider again the equations:

(1) Y = aX + U

(2) Z = bX + cY + V

Modularity says that it should be possible to set the value ofY by an inter-
vention and hence to disrupt (1) without disrupting (2). Indeed, for a given
value ofY, (2) should hold regardless of whether that value is produced by
settingYor by lettingX produceY in accord with (1). A constraint on the causal

Independence, Invariance and the Causal Markov Condition577



interpretation of (1)–(2) is that it should not matter to the value ofZ whether a
particular value ofYwas fixed via an intervention or whether it came aboutvia
the mechanism described in equation 1. If this were not the case—if one found
that the observed value ofZdepended not just on the values ofX andY, but also
on whether the value ofY was caused by the value ofX, then one would take
this to indicate that the system (1)–(2) is misspecified or incomplete in some
way. Z would behave as though it were a function ofX and of some more
complex variableY+ that takes different values depending on howY is
produced.

It is natural to impose a condition in the probabilistic case that is analogous
to this implication of modularity. IfX is a probabilistic cause linked toYby one
mechanism and there is a distinct mechanism linkingX andY as probabilistic
causes toZ, then the probability ofZ given an intervention onX (which results
in a new value ofY in accordance with equation (1) should be just the same as
it would be if an intervention had setY to that value. This aspect of modularity
is not captured byPM, which concerns the independence ofX and set-Y
conditional onParents(X).

How can we express this additional condition? We propose

(PM2) WhenX andY are distinct, Pr(X/set-[Parents(Y)] & Y) =
Pr(X/set-[Parents(Y)] & set-Y).34

In other words, it should make no difference to the value ofX whether we setY
or observeY, once we set parents(Y). Moreover, this should be the case even if
Y is a descendent or parent ofX.

The interpretation of Cartwright’s example in which Pr(X/C) = Pr(X/(C &
set-Y)) violatesPM2. The two joint effectsX and Y have one parentC but
Pr(X/(Y & set-C)) is not equal to P(X/(set-C & set-Y)). In violation ofPM2, it
makes a difference to the probability P(X/(set-C & Y)) whether the value ofY
is produced exogenouslyvia an intervention that disrupts its connection toC
or endogenously throughC, even when one setsY’s parent (C). We think this
captures at least part of the sense in which, without simply assuming the
Markov Condition, one can say that the behavior in Cartwright’s example
seems to violate a widely accepted intuition about causality.

It is worth mentioning one other argument here. Consider, in place ofPM2
the following condition:

PM3 If X does not causeY, then Pr(X/(Parents(X) & set-Y)) =
Pr(X/(Parents(X) & Y)).

PM3 says that whenX does not causeY, then, conditional onParents(X), set-Y
andYhave the same probabilistic impact onX. UnlessX causesY, it should not
matter to the probability distribution ofX conditional onParents(X), whether
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one merely observes some value ofY or whether one sets it by intervention.
The interpretation of Cartwright’s example we have been considering obviously
violatesPM3, since Pr(X/(C & Y)) > Pr(X/(C & set-Y)). SincePM3 is closely
related toCM , we doubt that this point represents any additional strong criticism
of Cartwright, but it is worth mentioning both because of the plausibility of
PM3 and becausePM andPM3 jointly provide a short and simple proof of
CM . (SincePM implies that forYdistinct fromX, Pr(X/(Parents(X) & set-Y))
= Pr(X/Parents(X)), the proof is trivial.

11 Conclusion
In its simplest garb, our central argument for the Causal Markov Condition
begins with a counterfactual sufficient condition for causation:

I. If one were to intervene with respect toX and the value ofY were to
change, thenX causesY.

An intervention here is a direct cause ofX that is not an effect of any variable in
V, does not cause any variable inV by a path that does not go throughX first,
and has no cause that causes a variable inV by a path that does not go through
the intervention. If one supposes:

1. that the value ofX when it is set by intervention—that is, set-X—can be
treated as a random variable,

then I implies:

II. If X does not causeY, thenY is probabilistically independent of set-X.

If one assumes in addition

2. that causal independence implies probabilistic independence (CM1).
3. that there are no unrepresented common causes—that is, causal suffi-

ciency—and
4. that variables have unrepresented causes,

then one can conclude:

III. Y is probabilistic independent of set-X if and only if Y and X are
independent conditional on the direct causes ofY.

II and III then imply that ifX does not causeY, thenY andX are independent
conditional on the direct causes ofY—which is essentially what the Causal
Markov Condition maintains. In indeterministic circumstances, the general
outline of the argument is just the same.

Although in Section8 we explored other arguments in defense of the Causal
Markov Condition, the one summarized above is at the core of this paper. Once
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one accepts the connection between unconditional probabilistic dependencies
and causation stated byCM1, the sufficient condition for causation proposed
by those impressed by the link between causation and manipulability maps
directly on to the Causal Markov Condition. That condition holds if causes are
levers for moving their effects and probabilities are generated by processes in
which causes that possess the structural properties of interventions are at work.
For the reasons we have already canvassed, causal inferences based on the
Markov Condition may readily go awry, but the condition itself follows from
deep intrinsic features of causation.

The real problem with the Markov Condition is not, as Cartwright claims,
that there are circumstances in which it breaks down, but rather that in order
to apply the condition to a system of interest, one needs a great deal of
knowledge—indeed much more knowledge than may be available. It is
often far from obvious how to divide some system of interest into distinct
causal mechanisms or networks of causal relationships. When the Markov
Condition appears to lead one astray, one has evidence that either one has not
succeeded in correctly segregating the system into distinct mechanisms, or one
has failed to measure the full set of causally relevant variables with sufficient
accuracy. The Markov Condition thus can play an important heuristic role
in discovering causal structure, in the sense that its apparent failure suggests
that one has left out causally relevant information. This may be its least
contentious role, because in practice it is often immensely difficult to identify
the mechanisms and to determine all the factors that are relevant to the
operation of each mechanism, and these limitations to our knowledge often
make it problematic to assume that the Markov Condition is satisfied for some
system of interest. But to recognize that causal inference requires a great deal
of knowledge is not to say that there are causal structures in which the Causal
Markov Condition is violated.

Department of Philosophy
University of Wisconsin-Madison

Madison, WI 53706, USA
dhausman@facstaff.wisc.edu

Division of Humanities and Social Sciences
California Institute of Technology

Pasadena, CA 91125, USA
jfw@hss.caltech.edu

Acknowledgements
We are grateful to Nancy Cartwright, Ellery Eells, Malcolm Forster, Clark
Glymour, Alan Hajek, Chris Hitchcock, Judea Pearl, Elliott Sober and anony-
mous referees for extremely generous and helpful comments.

Daniel Hausman and Jim Woodward580



References
Arntzenius, Frank [1993]: ‘The Common Cause Principle’, inPSA 1992, Vol. 2, pp. 227–

37.

Bell, John [1964]: ‘On the Einstein–Podolsky–Rosen Paradox’,Physics, 1, pp. 195–200.

Bell, John [1966]: ‘On the Problem of Hidden Variables in Quantum Mechanics’,
Reviews of Modern Physics, 38, pp. 447–52.

Bickel, Peter, Hammel, Eugene and O’Connell, J. William [1977]: ‘Sex Bias in
Graduate Admissions: Data from Berkeley’, in William Fairley and Frederick
Mosteller (eds), Statistics and Public Policy,Reading, MA: Addison-Wesley.

Cartwright, Nancy [1979]: ‘Causal Laws and Effective Strategies’,Nous, 13; rpt. and
cited fromHow the Laws of Physics Lie,Oxford: Oxford University Press, pp. 21–43.

Cartwright, Nancy [1989]:Nature’s Capacities and Their Measurement, Oxford:
Clarendon Press.

Cartwright, Nancy [1993]: ‘Marks and Probabilities: Two Ways To Find Causal
Structure’, in F. Stadler (ed.), Scientific Philosophy: Origins and Development,
Dordrecht: Kluwer.

Cartwright, Nancy [1997]: ‘What Is a Causal Structure?’ in McKim and Turner (eds),
pp. 343–57.

Cartwright, Nancy and Jones, Martin [1991]: ‘How to Hunt Quantum Causes’,Erkenntnis,
35, pp. 205–31.

Chang, Hasok and Cartwright, Nancy [1993]: ‘Causality and Realism in the EPR
Experiment’,Erkenntnis, 38, pp. 169–90.

Collingwood, R. G. [1940]:An Essay on Metaphysics,Oxford: Clarendon Press.

Cushing, James and McMullin, Ernan (eds) [1989]:The Philosophical Consequences of
Quantum Theory,Notre Dame: Notre Dame University Press.

Fisher, Ronald [1951]:The Design of Experiments, Edinburgh: Oliver and Boyd.

Fisher, Ronald [1959]:Smoking: The Cancer Controversy,Edinburgh: Oliver and
Boyd.

Forster, Malcolm [1988]: ‘Sober’s Principle of Common Cause and the Problem of
Comparing Incomplete Hypotheses’,Philosophy of Science, 55, pp. 538–59.

Gasking, Douglas [1955]: ‘Causation and Recipes’,Mind, 64, pp. 479–87.

Glymour, Clark [1997]: ‘A View of Recent Work on the Foundations of Causal
Inference’, in McKim and Turner (eds), pp. 201–48.

Glymour, Clark and Meek, Christopher [1994]: ‘Conditioning and Intervening’,British
Journal for the Philosophy of Science, 45, 1001–21.

Hausman, Daniel [1998]:Causal Asymmetries,New York: Cambridge University
Press.

Hausman, Daniel [1999]: ‘Lessons from Quantum Mechanics’,Synthese.

Hoover, Kevin [forthcoming]:Causality in Macroeconomics, Cambridge: Cambridge
University Press.

Humphreys, Paul [1989]:The Chances of Explanation,Princeton: Princeton University
Press.

Independence, Invariance and the Causal Markov Condition581



Kiiveri, H. and Speed, T. [1982]: ‘Structural Analysis of Multivariate Data: A Review’,
in S. Leinhardt (ed) Sociological Methodology, San Francisco: Jossey-Bass.

Koster, J. [1996]: ‘Markov Properties of Nonrecursive Causal Models’,The Annals of
Statistics, 21, pp. 2148–77.

Lemmer, John [1996]: ‘The Causal Markov Condition, Fact or Artifact’,SIGART
Bulletin, 7 (3), pp. 3–16.

McKim, Vaughn R. and Turner, Stephen P. (eds) [1997]:Causality in Crisis? Statistical
Methods and the Search for Causal Knowledge in the Social Sciences, Notre Dame:
Notre Dame University Press.

Menzies, Peter and Price, Huw [1993]: ‘Causation as a Secondary Quality’,British
Journal for Philosophy of Science, 44, pp. 187–203.

Orcutt, Guy [1952]: ‘Actions, Consequences and Causal Relations’,Review of
Economics and Statistics, 34, pp. 305–13.

Papineau, David [1985]: ‘Causal Asymmetry’,British Journal for the Philosophy of
Science, 30, pp. 273–89.

Papineau, David [1989]: ‘Pure, Mixed and Spurious Probabilities and the Significance
for a Reductionist Theory of Causation,’ in P. Kitcher and W. Salmon (eds), Scientific
Explanation, Minnesota Studies in the Philosophy of Science, 13, pp. 307–48.

Papineau, David [1991]: ‘Correlations and Causes’,British Journal for the Philosophy
of Science, 42, pp. 397–412.

Pearl, Judea [1995]: ‘Causal Diagrams for Empirical Research’,Biometrika, 82,
pp. 669–88.

Pearl, Judea [1998]: ‘Graphs, Causality and Structural Models’,Sociological Methods
and Research, 27, pp. 226–84.

Price, Huw [1991]: ‘Agency and Probabilistic Causality’,British Journal for Philoso-
phy of Science, 42, pp. 157–76.

Price, Huw [1992]: ‘Agency and Causal Asymmetry’,Mind, 101, pp. 501–20.

Price, Huw [1993]: ‘The Direction of Causation: Ramsey’s Ultimate Contingency’, in
PSA 1992, pp. 253–67.

Reichenbach, Hans [1956]:The Direction of Time,Berkeley: University of California
Press.

Salmon, Wesley [1985]:Scientific Explanation and the Causal Structure of the World,
Princeton: Princeton University Press.

Simpson, C. [1951]: ‘The Interpretation of Interaction in Contingency Tables’,Journal
of the Royal Statistical Society, Series B,13, pp. 238–41.

Skyrms, Brian [1984]: ‘EPR: Lessons for Metaphysics’,Midwest Studies in Philosophy,
9, pp. 245–55.

Sober, Elliott [1987]: ‘Discussion: Parsimony, Likelihood, and the Principle of the
Common Cause’,Philosophy of Science, 54, pp. 465–9.

Sober, Elliott [1988]: ‘The Principle of the Common Cause’, in J. Fetzer (ed.), [1988],
pp. 211–28.

Sober, Elliott [1994]: ‘Temporally Oriented Laws,’ inFrom a Biological Point of View,
Cambridge: Cambridge University Press.

Daniel Hausman and Jim Woodward582



Sober, Elliott [1998]: ‘Physicalism from a Probabilistic Point of View’, typescript.

Spirtes, P. [1995]: ‘Directed Cyclic Graphical Representation of Feedback Models’, in
Philippe Besnard and Steve Hanks (eds), Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence, San Mateo: Morgan Kaufmann Publishers, Inc.

Spirtes, Peter, Glymour, Clark and Scheines, Richard [1993]:Causation, Prediction,
and Search,New York: Springer-Verlag.

Teller, Paul [1989]: ‘Relativity, Relational Holism, and the Bell Inequalities’, in
Cushing and McMullin (eds), pp. 208–23.

Van Fraassen, Bas [1982]: ‘The Charybdis of Realism: Epistemological Implications of
Bell’s Inequality’, Synthese, 52, pp. 25–38.

Von Wright, G. H. [1971]: ‘On the Logic and Epistemology of the Causal Relation’, in
Ernest Sosa and Michael Tooley (eds) [1987],Causation and Conditionals,Oxford:
Oxford University Press, pp. 105–24.

Woodward, James [1993]: ‘Capacities and Invariance’, in J. Earman, A. Janis, G.
Massey and N. Rescher (eds), Philosophical Problems of the Internal and External
Worlds: Essays Concerning the Philosophy of Adolph Gru¨nbaum,Pittsburgh: Uni-
versity of Pittsburgh Press, pp. 283–328.

Woodward, James [1997]: ‘Explanation, Invariance and Intervention’,Philosophy of
Science, 64, pp. S26–41.

Woodward, James [forthcoming a]: ‘Causal Interpretation in Systems of Equations’,
Synthese.

Woodward, James [forthcoming b]: ‘Explanation and Invariance in the Special
Sciences’,British Journal for the Philosophy of Science,51.

Yule, G. [1903]: ‘Notes on the Theory of Association of Attributes in Statistics’,
Biometrika, 2, pp. 121–34.

Independence, Invariance and the Causal Markov Condition583


