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Atomism, the view that indivisible atoms are the basic building blocks of physical
reality, has a distinguished history. But it might not be true. The history of physical
science certainly gives many of us pause. Every time some class of objects appeared
to be the entities that Newton had described as “solid, massy, hard, impenetrable,
movable Particles” out of which “God in the Beginning formed Matter” (Newton,
1952, 400), further research revealed that these objects were divisible after all. One
might be tempted to see that history as confirming Leibniz’ dismissal of atomism as
a “youthful prejudice” .1 Perhaps material objects and their parts are always divisible.
There are no extended atoms; nor are there point particles which compose material
beings.2

When first presented with this hypothesis, our imaginations are quickly drawn to
picturing the process whereby a quantity of such matter – call it gunk -- is chopped
up into smaller and smaller pieces. Prima facie, there is nothing problematic here:
insofar as such a process continues without end, the initial quantity gets resolves into
smaller and smaller chunks with no limit to the diminution. But suppose this process
is packed into an hour, as imagined by Jose Bernadete in his 1964 monograph Infinity:

Take a stick of wood. In 1/2 minute we are to divide the stick into two
equal parts. In the next 1/4 minute we are to divide each of the two
pieces again into two equal parts. In the next 1/8 minute we are to divide
each of the four pieces (for there are now four equal pieces) again into
two equal parts, &c. ad infinitum (Bernadete, 1964, 184).

If matter is divisible without end there seems to be no conceptual obstacle to each of
the divisions. Yet how are we to imagine the situation at the end of the hour, when
the super-task (call it ‘super-cutting’) has been performed on a quantity of gunk?3

If there were extended atoms that were never annihilated, it is clear enough what
would happen if some super-being undertook to perform super-cutting: the process
would grind to a halt when insurmountably hard particles resisted the chopper.

If, meanwhile, there were point-sized particles that composed planes that were
as thin as a line, it would be natural to picture the limit of the process as a sea of
separated slivers, each devoid of finite extent along one dimension. As Benardete,

† Penultimate draft only. Please cite published version if possible. Final version published in The
Monist 87 (2004): 339-50.

1See ‘Nature Itself’ in (Leibniz, 1998, 220).
2Cf Leibniz: ‘I hold that matter is essentially an aggregate, and consequently that it always has actual

parts,’ in ‘Third Explanation of The New System,’ (Leibniz, 1998, 193).
3What is important, of course, is that the sequence of separations occur: it does not matter whether

some kind of super-sharp knife is responsible for them. In what follows, descriptions of cutting sequences
can be replaced without loss of content by descriptions of separation sequences, leaving it open whether
repulsive forces or chance events or knives or . . . are responsible for the separation sequence.
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notes, one might then redo super-cutting in order to finally resolve the original stick
into a sea of “metaphysical motes” devoid of finite extent in any direction:

At the end of the minute how many pieces of wood will we have laid out
before us? Clearly an infinite number. If the original stick was twenty
inches in length, one inch in width, and one inch in depth, what are
the dimensions of the metaphysical chips into which the stick has been
decomposed? Each chip will be one inch by one inch by one inch by –
what? So prodigiously thin must each chip be that its value is certifiably
less then any rational (or irrational) quantity. Let us now take up one of
the metaphysical chips and decompose it further into an infinite number
of metaphysical splinters. In 1/2 minute we shall divide the chip into two
equal parts. Each pieces will be one inch by 1/2 inch. In the next 1/4
minute we shall divide each of the two pieces again into two equal parts,
yielding four pieces each being one inch by 1/4 inch. In the next 1/8
minute we shall divide each of the four pieces again into two equal parts,
&c ad infinitum. At the end of the mute we shall have composed the
metaphysical chip into metaphysical splinters. Each splinter will be one
inch in length. Let us now take up one of the metaphysical splinters and
break it down into an infinite number of metaphysical motes (Bernadete,
1964, 184-5)

The number of cuts made on the stick, the chip and the splinter respectively is aleph
zero. The number of chips, splinters and motes left at the end of each cutting process,
meanwhile, is aleph one. (Think of numbering each piece in a super-cutting process
by an infinite expansion of one’s and zero’s as follows: if it lay on the left of the first
cut, the first numeral is a zero, if to the right, the first numeral is a one; it if lay on
the left of one of the pieces that was divided at the second round of cutting its second
numeral is a zero, if to the right a one; and so on. For each decimal expansion of one’s
and zero’s there is a bit and the end with that expansion.). This result is surprising to
some, but poses no deep conceptual confusion. With an ontology of chips, splinters
and motes available to us, there is a natural description available to us of the limit to
the super-cutting processes described.

But what to say when gunk is subjected to super-cutting? If each quantity of
matter has proper parts, then a sea of metaphysical motes is not, it would seem, an
available outcome. In what follows, we unpack this puzzle, providing along the way
some a priori physics for gunk-lovers. The problem is only well formed when we
make explicit some of the assumptions that drive it. We do so below:

(1) Gunk
Every quantity of matter has proper parts.

(2) Conservation of Matter:

No mereological sum of quantities of matter can be destroyed by any
sequence of cuts (though it may be scattered)4.

4The ‘can’ here is one of nomological possibility.
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(3) Occupation

If a quantity of matter occupies a point of space, then there is some vol-
ume, extended in all dimensions, to which that point belongs which that
quantity of matter occupies.

(4) Super-cutting

The laws of the world permit super-cutting.

Note that (1), the thesis that every quantity of matter has parts does not, by itself,
entail any of the other theses. One might also think that matter sometimes vanishes
as a result of some sequence of cuts, denying (2). One might hold that there are meta-
physical splinters (and perhaps even chips), denying (3). One might hold that any
given quantity of matter does have point sized pieces but that those pieces themselves
have parts (the parts being of the same size as the whole in this case), denying (3).
One might hold that some pieces of gunk can occupy, say, a spherical region and also
a single isolated point at some considerable distance from the spherical region (while
maintaining that no part of it merely occupies the point), also denying (3). One
might imagine that while always having parts, the parts below a certain thickness are
inseparable, denying (4). One might think there is a minimum amount of time that
any event of separation takes, also denying (4) and so on.

If the gunk hypothesis is maintained, but one or more of (2) to (4) is jettisoned,
there is no problem left to solve. For example: If we are allowed to suppose that
gunk may vanish, then it will be perfectly consistent to say that nothing is left at
the limit of super-cutting. If we are allowed parts that lack finite extent, then it will
be consistent to adopt Benardete’s picture of the outcome. And so on. Our puzzle,
properly formulated is: What would happen if super-cutting occurred in a world
where (1) to (4) are true?

In order to answer that question, we need to supplement Bernadete’s brief discus-
sion of the super-cutting process. It is not immediately clear from what he says that
super-cutting a piece of wood will turn an object into chips, even assuming the wood
to be composed of point particles. That is a natural description of the limit of the
process, but it is hardly one that is forced upon us by the barebones description of
the process that Benardete provides. When we divide the stick into two pieces, and
then into four pieces, where are we to put these pieces? Presumably we must ensure
that they are separated. If not, it will not be clear that we really have splinters left
at the end. If the stick is cut into four, but the four pieces are then stored so closely
together that they are not scattered any more, then we will not have four scattered
objects after two rounds of cutting. By extension, unless we separate the pieces suf-
ficiently after each round (or at least after sufficiently many of them) then even in a
world where matter is composed of point particles, it is not clear that there will be
infinitely many chips left at the end. Note in this connection that there are limits
as to how far we can separate the objects. In a world where super-cutting produces
chips, we could not, from left to right, put a one inch gap between each chip and any
other, since there are aleph one chips and not aleph one inches of space along any
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vector. Nor is it even clear what kind of spacing will do the trick: how we are to keep
aleph one chips separated from each other? What we need is a formal model showing
how super-cutting is to be performed. Only then can we answer with any precision
what would happen were super-cutting to be performed on gunk.

Assume, for simplicity, that we have a stick that is exactly one inch long. At the
first stage, cut the stick into two 1/2 inch long pieces, move the left-hand one 1/4
inch leftwards and the right hand one 1/4 inch rightwards. This can be accomplished
in 1/2 second without moving the objects at a speed of faster than 1 inch per second,
or accelerating or decelerating the objects at a rate higher than 4 inches per second per
second.5 At the second stage, cut each piece into two, and move each of the left-hand
pieces 1/16 of an inch leftwards, and each of the right-hand pieces 1/16 of an inch
rightwards. So if the original piece occupied the interval [0, 1) on a particular axis,
the four pieces will now occupy the intervals: [-5/16, -1/16), [1/16, 5/16), [11/16,
15/16), [17/16, 21/16). (The reason we are using these half-open intervals is to avoid
questions about whether the objects that are separated by the cut used to overlap.)
This cutting and moving can be accomplished in 1/4 of a second, without any piece
attaining a velocity higher than 1/2 inch per second, or an acceleration higher than 4
inches per second per second.

The third stage of the cutting is to take each of these four pieces, cut them in
two, move the left-hand part of each of the four 1/64 of an inch to the left, and the
right-hand part 1/64 of an inch to the right. So the eight pieces now occupy the inter-
vals: [-21/64, -13/64), [-11/64, -3/64), [3/64, 11/64), [13/64, 21/64), [43/64, 51/64),
[53/64, 61/64), [67/64, 75/64), [77/64, 85/64). Again, this cutting and moving can
be accomplished within 1/8 of a second, without any piece attaining a velocity higher
than 1/4 inch per second, or an acceleration higher than 4 inches per second per sec-
ond.6

In general, at stage n, we take the 2n-1 pieces, divide each of them in two, move
the left-hand piece 1/22n inches leftward, and the right-hand piece 1/22n inches right-
ward. This can all be done in 1/2n seconds without any piece attaining a velocity
higher than 1/2n-1 inches per second, or an acceleration higher than 4 inches per sec-
ond per second. So the whole super-cut can be performed in 1 second: the first stage
in 1/2 second, the second stage in 1/4 second, the third stage in 1/8 second, and so
on. Note, moreover, that the whole super-cut can be performed in a second with-
out the pieces ever moving at any huge velocity. If readers doubted the possibility of
super-cutting because they believed it to be a necessary truth that no matters travels
at or beyond the speed of light, their doubts were misplaced: no piece of matter in
the super-cutting process approaches a superluminous velocity.

5The idea is that in the first quarter second we accelerate the object at 4 inches per second per second.
This will raise its velocity to 1 inch per second, and move the object 1/8 of an inch. In the second quarter
second we decelerate it at 4 inches per second per second, so its velocity ends up at zero, and it ends up
having moved 1/4 of an inch.

6Note that, interestingly, if we moved the pieces 1/2 inch after the first round, 1/4 inch after the second
round, 1/8 inch after the third round and so on then at the limit, each left and right edge that was once
attached will have moved back together again. The process we have chosen preserves separation in a way
that the aforementioned process does not.
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Further, in this kind of procedure, a quantity of matter that is scattered during
the super-cutting process remains scattered during the process. To see this, first con-
sider a particular example. We noted above that at the second stage there were pieces
occupying the intervals [-5/16, -1/16) and [1/16, 5/16). Before this, the point 0 had
been occupied; at this stage a gap of 1/8 inch around 0 had been opened. This gap
keeps being closed at each stage. After the third stage there were pieces occupying the
intervals [-11/64, -3/64), [3/64, 11/64), so the gap is now only 3/32 inch. After the
fourth stage, there will be pieces at [-27/256, -11/256), [11/256, 27/256), so the gap
is now only 11/128 inch. This process will make the gap ever smaller, but will not
lead to its closure. As the process continues, the size of the gap will approach 1/12
of an inch, but never cross that boundary. To see this, note that the size of the gap
in inches after stage n (n ≥ 3) is 1/8 - 1/25 - 1/27 - . . . - 1/22n-1. The sum of the series
1/25 + 1/27 + . . . is 1/24. Hence the gap at stage n is greater than 1/8 - 1/24 = 1/12.
So once the pieces around 0 have been separated, they will never be rejoined.

This result applies generally to all of the separated pieces in the super-cut. Once a
gap is created, parts of pieces from either side of the gap are moved ever closer to the
centre of the gap at every subsequent stage of the super-cut. But since we decrease the
distance moved by each piece at each stage of the cut, and in particular decrease it by
a factor greater than 2, the pieces, once disjointed, will never be united.

How is the matter arranged at the end of the super-cut? To answer this question
we need to assume that motion is continuous. For each part of the object we can
calculate its position function, the function from the length of time the super-cut has
been in progress to the position of the part. At least, we can calculate this for all times
until the end of the super-cut. With the continuity assumption in place we can infer
that its position at the end of the cut is the limiting value of its position function. So
we make this assumption.

We assumed above that there is a Cartesian axis running along the object; say that
a part a covers a point x just in case a occupies some region [y, z), and y≤ x and z> x.
When we say a occupies [y, z), we do not mean to imply it occupies only that region,
just that it occupies at least that region. Assume then that a part a occupies a point x
(0 ≤ x < 1), and that the binary representation of x is 0.x1x2. . . xn. . . , where for each
xi, xi equals 0 or 1, and for all i, there exists a j > i such that xj equals zero.7 If x1 = 1,
then x ≥ 1/2, so the some part of a, a small part that originally covered x, will be
moved rightward at the first stage. It is possible that a itself may be split by the cut,
but there will be a small part around x that is not split, and it will move rightward. If
x1 = 0, then x < 1/2, so some part of a, a small part that originally covered x, will be
moved leftward at the first stage. Indeed, in general some part of a, a small part that
originally covered x, will be moved rightward at the n’th stage if xn = 1, and some
part of a, a small part that originally covered x, will be moved leftward at the n’th
stage if xn = 0.

7The final condition is important to rule out numbers having two possible representations. For ex-
ample, we have to choose whether the representation of 1/2 should be 0.1000. . . or 0.0111. . . , and we
somewhat arbitrarily, choose the former.
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Using the fact that a part gets moved 2-2n inches at stage n, we can infer that after
n stages, a small part that originally covered x and has not been split by the cuts will
cover the following point after n cuts.

x +
(−1)x1+1

4
+
(−1)x2+1

16
+ · · ·+

(−1)xn+1

22n

Assuming continuity of motion, we can assume that a will end up with a part that
eventually covers the following point, which we will call f (x).

f (x) = x +
∞
∑

i=1

(−1)xi+1

22i

From this, it follows immediately that for all x in [0, 1), f (x) will end up being oc-
cupied. It turns out that these are the only points that are occupied at the end of the
super-cut.

Assume that a point y is occupied at the end of the super-cut. We will construct
a number c such that y = f (c). Recall that we noted above that whenever two pieces
were separated, a gap was created between them that would never be completely
filled. While parts of the stick would move closer and closer to the centre of that
gap during the super-cut, the middle two-thirds of the gap would never be reoccu-
pied. That interval, that would never be reoccupied, would be liberated. The interval
[1/3, 2/3) is liberated at the first stage, the intervals [-1/24, 1/24) and [23/24, 25/24)
are liberated at the second stage, the intervals [-37/192, -35/192), [35/192, 37/192),
[155/192, 157/192) and [227/192, 229/192) are liberated at the third stage, and so on.
If y is occupied, then y must not be in any liberated interval. Therefore it must be
either to the left or to the right of any interval that is liberated.

Let c1 equal 0 if y is to the left of the first liberated interval, [1/3, 2/3), and 1
otherwise. Given the value of c1, it is already determined which side y is of one of
the intervals liberated at the second stage. If y is to the left of [1/3, 2/3), for example,
then it is to the left of [23/24, 25/24). But the value of c1 does not determine which
side y is of the other interval. Let c2 equal 0 if y is to the left of that interval, and
1 otherwise. The values of c1 and c2 determine which side y is of three of the four
intervals liberated at the fourth stage, but leave open which side it is of one of these
four. Let c3 equal 0 if y is to the left of that interval, 1 otherwise. If we repeat this
procedure for all stages, we will get values of ci for all i. Let c be the number whose
binary expansion is 0.c1c2. . . cn. . . . It follows that y = f (c). The reason once it is
determined which side y is of each of the liberated intervals, y has been determined
to fall in an interval that is exactly one point wide, and f (c) is in that interval, so f (c)
must equal y. So y is occupied iff for some x, y = f (x). Say S = {y: ∃x (y = f (x))}; the
conclusion is that all and only the points in S are occupied.

Could a piece of gunk occupy the points in S? Not given the assumptions we have
made so far. S has two properties that might not seem consistent at first glance. It is
dense in the sense that for any point y in S, and any distance δ, there is another point
z in S such that |y - z| < δ. But it is disconnected in the sense that for any two points
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y and z in S, there is an extended region r between y and z that is wholly unoccupied.
The proofs of density and disconnectedness are given in the appendix.

Given (3), disconnectedness is inconsistent with gunk occupying S. If a material
object occupies S, it must occupy the points in S. Let y be any one of these points.
By (3), S must occupy some extended region containing y, say, [y1, y2). Two cases
to consider. First case: y1 < y. If [y1, y2) ⊂ S, then y1 and y are in S, and so are all
the points in between them. Since the object occupies S, it follows that these points
are occupied. Hence there is no extended region between y1 and y that is wholly
unoccupied, which is inconsistent with disconnectedness. Second case: y1 = y. Again,
[y1, y2)⊂ S, and since this interval is non-empty, y2 > y1. Hence (y1 + y2) / 2 is greater
than y1, and all the points between it and y1 are occupied. This is also inconsistent
with disconnectedness. So given (3), no material object could occupy S.

In summary, (1) through (4) plus continuity of motion cannot be true together.
From (1), (2), and (4), we inferred that our super-cutting process was possible, and
that it would not destroy any quantity of matter (though of course it would scatter
it). Assuming continuity of motion, we calculated which points would be occupied
after the super-cut. By (3) we concluded that no piece of gunk could occupy those
points, or indeed any subset of them, yielding an inconsistent result. Suppose that
the continuity of motion thesis is dropped. We can then maintain (1) to (4) with
consistency. One should note, however, that a world where (1) to (4) holds would be
a strange world indeed: if super-cutting is performed, the pieces of gunk would have
to jump location at the limit. The gunk cannot occupy S: but in order to occupy a
different set of points, various quantities of matter would have to jump position at
the limit.

If one believes in gunk one has a choice: Abandon one or more of (2) to (4)
or else deny that it is nomologically necessary that motion be continuous. Which
assumption should be dropped? We leave it to the gunk lover to select the most
tolerable package. The choice for the gunk lover is a little unenviable. Those who
are attracted to the view that the actual world is gunky are very much wedded to (1)
and (3). When philosophers take seriously the idea that that matter has parts all the
way down8, they do not imagine conjoining that thesis with point sized parts, or else
immaterial parts9, or else quantities of matter that are as thin as a plane, and so on.
With a commitment to (1) and (3) in place, super-cutting will be loaded with physical
significance. Accept that the laws of nature permits super-cutting and one will be
committed to either denying the conservation of matter or the continuity of motion.

Appendix
To prove density, note that if y is occupied, there is a point x with binary representa-
tion 0.x1x2. . . such that y = f (x). For any positive δ, there is an integer n such that
δ > 2-2n-1. Let v be the number represented by 0.x1x2. . . xnxn+1

′xn+2xn+3. . . , where
xn+1

′ = 1 iff xn+1 = 0, and xn+1
′ = 0 otherwise. The difference between f (x) and f (v)

8See, for example, Zimmerman (1996).
9Leibniz, with his monads, is an exception of course. No contemporary gunk lover wants a monadol-

ogy, however.
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will be exactly 2-2n-1. Since f (v) is occupied, and y = f (x), there is an occupied point
exactly 2-2n-1 inches from y, so there is a point less than δ inches from y, as required.

To prove disconnectedness, let y and z be any two distinct occupied points. So
for some distinct v, x, y = f (x) and z = f (v). Say that the binary representation of
x is 0.x1x2. . . , and the binary representation of v is 0.v1v2. . . Let j be the lowest
number such that xj 6= vj. (Since x and v are distinct, there must be at least one value
j.) Without loss of generality, assume that xj = 0 and vj = 1. (There is no loss of
generality because we are just trying to show that between any two occupied points
there is a gap, so it does not matter which of the two points is the rightward one.) Let
k be the number with binary representation 0.x1x2. . . xj-11, and let l2 be f (k). Finally,
define l1 by the following equation:

li =
j
∑

i=1

(−1)xi+1

22i
+

∞
∑

i= j+1

1

22i

It is easy enough to see that f (x), that is y, must be less that l1. For l1 is the value
that f (x) would take were every digit in the binary expansion of x after j be 1. But by
definition there must be some value j′ > j such that xj ′ = 0. From this it follows that:

∞
∑

i= j+1

1

22i
>

∞
∑

i= j+1

(−1)xi+1

22i

And from that it follows that l1 > f (x). Indeed, by similar reasoning, it follows that
for all u < k, f (u) < l1. Since f is monotone increasing, it also follows that for all
u ≥ k, f (u) ≥ l2. And from those facts, it follows that there does not exist a u such
that f (u) ∈ [l1, l2). And since y < l1 < l2 ≤ z, this implies that there is an extended
unoccupied region between y and z, as required.

References
Bernadete, Jose. 1964. Infinity: An Essay in Metaphysics. Oxford: Clarendon Press.

Leibniz, Gottfried Wilhelm. 1998. Philosophical Texts. Oxford: Oxford University
Press.

Newton, Isaac. 1952. Opticks. New York: Dover Press.

Zimmerman, Dean. 1996. “Could Extended Objects Be Made Out of Simple Parts:
An Argument for Atomless Gunk.” Philosophy and Phenomenological Research 56:1–
29.


	Chopping Up Gunk

