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Abstract

Work on the nature and scope of formal logic has

focused unduly on the distinction between logical and

extra-logical vocabulary; which argument forms a logi-

cal theory countenances depends not only on its stock

of logical terms, but also on its range of grammatical

categories and modes of composition. Furthermore,

there is a sense in which logical terms are unnecessary.

Alexandra Zinke has recently pointed out that proposi-

tional logic can be done without logical terms. By

defining a logical-term-free language with the full

expressive power of first-order logic with identity,

I show that this is true of logic more generally. Further-

more, having, in a logical theory, non-trivial valid

forms that do not involve logical terms is not merely a

technical possibility. As the case of adverbs shows,

issues about the range of argument forms logic should

countenance can quite naturally arise in such a way

that they do not turn on whether we countenance cer-

tain terms as logical.
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1 | INTRODUCTION

First-order logic has greater scope than propositional logic—it recognises all the valid forms
that propositional logic recognises, and more besides. But what determines the scope of
(a) logic? Some have said that the scope of (a) logic is determined by which terms are (counted
as) logical constants.1 Some examples:
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The choice of logical constants determines which sentences are counted as logical
truths. (Warmbr�od (1999), p. 504.)

It is clear that an answer to the question “What is a logical constant?” would pro-
vide us with the means to answer the question “Where are the limits of logic?”
(Došen, 1989, p. 362.)

Philosophically, my goal has been to find out what distinguishes logical from non-
logical terms, and, on this basis, determine the scope of (core) logic. (Sher,
1991, p. 4.)

At least under most views, logic is concerned only with certain kinds of correct
arguments, and in fact only with arguments whose correctness is due to the pecu-
liar properties of the expressions in a certain set. (…) In the most general, least
theory-laden conception of it that seems possible, the problem of logical constants
is the problem of demarcating in some principle-based, non-arbitrary-looking way
the set of expressions that logic should deal with as directly responsible for the logi-
cal correctness of arguments (…). (Gómez-Torrente, 2002, p. 2.)

Some have even suggested that we need logical terms in order to do logic at all:

For if no terms are designated as logical constants, logic will lose the generality that
comes with the ability to isolate and study argument forms. (Hanson, 1997, p. 376.)

All parties agree that permitting all expressions to have variable interpretations
makes formal treatments of validity impossible, since no argument form would pre-
serve truth under all interpretations of the logical “constants”, and all agree that
permitting no expressions to have variable interpretations does not allow for multi-
ple instances of a given logical form, thus precluding the study of formal logic.
Hence, all agree on the need for logically relevant constants. (Bueno & Shalkowski,
2013, p. 2.)

But there are logically correct—that is, formally valid—arguments whose logical correctness
does not depend on the meanings of logical terms. Which argument forms are countenanced in
a logical theory does not depend only on which (if any) logical terms are present in the lan-
guage of the theory. And the problem of the scope of (a) logic does not reduce to the problem of
demarcating the logical terms.

These points have been obscured by certain historical developments. For instance, the popu-
lar Bolzano-Tarski2 explication of logical consequence, which in effect takes a language as given
and then raises the issue of which expressions in that language count as logical, tends to
obscure the fact that decisions affecting the scope of a logic may have already been made by the
time the language has been determined. Also, it happens to be the case that in the most com-
mon presentations of the most common types of logic—classical propositional and first-order
logic—all valid forms, except the identity inference (from A infer A),3 involve logical terms.

There are deeper, but still contingent, reasons for logical terms playing such a prominent
role in the study of logic, having to do with the way human beings are trained or constituted.
As Ramsey noted long ago:
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We might, for instance, express negation not by inserting a word “not”, but by writ-
ing what we negate upside down. Such a symbolism is only inconvenient because
we are not trained to perceive complicated symmetry about a horizontal axis […].
(Ramsey, 1927, pp. 161–162.)

Gil Sagi and Alexandra Zinke are two recent authors who have argued that the scope of
(a) logic is not always a matter of logical terms. Sagi (2014) develops a formal theory of “seman-
tic constraints” on a language, designed to offer a way of theorising about logical form more
general and flexible than focusing only on the issue of logical versus extra-logical terms. Zinke
(2018) notes—in passing, really—that propositional logic can be done without logical terms,
and that therefore the logical/extra-logical distinction outruns the distinction between logical
and extra-logical terms. (However, we will see that Zinke treats this as little more than a
“strictly speaking” sort of point, and–in my view at least—pulls back from appreciating its full
significance.)

It is the purpose of this paper to further develop these insights. First, I extend Zinke's tech-
nique for avoiding logical terms in propositional logic to first-order logic with identity. Second,
I consider the case of adverbs, which highlights the importance of not letting the issue of logical
termhood hog the limelight by making it clear that it is not even contingently the case that
issues about (a) logic's scope generally appear as issues about logical termhood.

Zinke (2018, pp. 133–134) notes that we can do propositional logic without having any terms
for truth-functions. It is well known that there are two binary connectives, the Sheffer stroke
and the Peirce dagger, both of which are functionally complete all by themselves. Zinke points
out that if we only have one connective, we might as well omit it: to form a truth-functional
compound, we could just write two sentences next to each other, using brackets as usual for
scope distinctions. She writes:

In such a language, there are no logical constants in the narrow sense, i.e., there
are no elements of the alphabet which are classified as logical. The only logical
notion there is, is not represented by a sign of the alphabet, but by the particular
way the terms are arranged. (Zinke (2018), p. 134.)

Lest it be thought that this is a trick which stops working in a less basic setting, it is worth
noting that we do not need to stop at propositional logic.4 We can without much trouble devise
a language with the full expressive power of standard first-order languages which is free of logi-
cal terms. Contemporary presentations of first-order logic typically involve two or three kinds
of logical terms: propositional connectives, one or two quantifier symbols, and perhaps an iden-
tity predicate. As we just saw, we don't need propositional connectives. Second, we don't need a
special quantifier symbol either: we may take universal quantification as basic and use the old-
fashioned “(x)” style of notation (e.g., instead of “8xFx” write “(x)Fx”). Third, we may express
identity by simply putting two terms together and adding brackets. (See the Appendix for a for-
mal specification of the language just sketched.) Finally, in case anyone is tempted to count
brackets as logical terms on the grounds that they are symbols whose significance is in some
sense the same in all interpretations of the logical language, note that brackets may be avoided
in a two-dimensional notation: instead of writing a left bracket, move up, and instead of writing
a right bracket, move down. (The strategy of Polish notation, another well-known means of
avoiding brackets, is unavailable in the present setting since we don't have a connective to sig-
nal the beginning of our truth-functional compounds.) Similar two-dimensional techniques
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may be employed to permit more truth-functions, and the existential quantifier, to be taken as
basic if desired.

The eliminability of a symbol for identity is, I think, particularly instructive, since it suggests
that at least some issues about logic's scope could quite easily have arisen in a guise other than
that of an issue about logical termhood. People have differed over whether the theory of identity
is part of logic proper, with some maintaining that while first-order logic without identity is
pure logic, first-order logic with identity is a first-order logical theory about a particular subject-
matter, namely identity.5 Since we typically represent identity claims in formal languages using
a special symbol, “=,” this issue typically appears as an issue about logical termhood. But this
could quite easily have been different. In English, we often express identity claims using “is.”
And just as the “is” of predication disappears upon logical regimentation, so too would the “is”
of identity if we did things slightly differently as described above. The issue of whether identity
falls under logic's scope then appears as an issue about whether to countenance a particular
form of wff.

Now, what does all this show? About the propositional logic case, Zinke draws the following
moral:

We are unable to classify a term as logical in a case like this, but this does not mean
that there are no logical constants in a wider sense in such a language. In the lan-
guage just described, a grammatical construction rule has to be characterized as
logical. Strictly speaking, the problem of logical constants should therefore not be
understood as restricted to drawing a line between the logical and the non-logical
terms of the alphabet. (2018, p. 134.)

I take the point that if by “logical constants” we just mean something like “logical features
of the language,” then none of what we have seen above shows that we don't need these. But I
think we should demur from extending the meaning of “logical constants” in this way. In this
connection, it is interesting to note that although in the phrase “logical constants,” the empha-
sis for present purposes is really on the “logical”–logical constants as opposed to extra-logical
ones—the connotation of the phrase easily shifts so that the emphasis falls on “constants”: logi-
cal constants as opposed to expressions in logical languages whose meanings vary. This shift
also fits with the fact that “constant” tends to be used in logic nowadays only for individual con-
stants, and not in a way that would naturally cover connectives or quantifier symbols. Indeed,
this terminology of “logical constants,” euphonious and entrenched as it may be, has arguably
been outdated ever since the Tractatus, where, while so influentially rethinking the nature of
formal logic, Wittgenstein declares that the so called “logical constants” are not
representatives.6

Terminology aside, there is a deeper point that needs to be made here. Above, we eliminated
symbols which, in the development of logical theories, normally and naturally get used–
although in the case of identity, it seems as though it could have easily gone either way—in
favour of an alternative way of accomplishing the same thing. This invites the thought that
logic, while technically it could be done without logical terms, is for us human beings a matter
of studying how our logical terms work. Something like this thought may be behind what Zinke
goes on to say after the above-quoted passage:

While it is important to keep this in mind, I will nevertheless continue to speak of
the problem of logical constants and say that it focuses on drawing and justifying
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the line of demarcation between the logical and the non-logical terms. This not
only helps keep the discussion simple, it is also legitimate as far as one is solely
concerned with natural language where we indeed have terms representing the log-
ical notions. (2018, pp. 134–135.)

In my view, this is an unfortunate retreat, and the final thought above about how things are
in natural language is importantly misguided. A good way to see this is to consider the case of
adverbs. Consider the following natural language arguments:

Deletion:
Socrates is running quickly.
Therefore, Socrates is running.
Addition:
Socrates is not running.
Therefore, Socrates is not running quickly.

Both arguments are necessarily truth-preserving. Furthermore, there seems to be a clear
sense in which they are both necessarily truth-preserving in virtue of their forms. Their being
necessarily truth-preserving does not turn on the specific meanings of “running” and “quickly,”
but rather has to do with the fact that “quickly” belongs to a certain category of expressions—
factive, or intersective, adverbs—all members of which can be deleted from atomic statements
and added to negated atomic statements while preserving truth (among other inferential behav-
iours, such as compounding and permutation). Indeed, such arguments are naturally
formalised by augmenting first-order logic with an extra category of expressions7 so that they
get translated as follows:

Rsq

∴ Rs
~Rs
∴ ~Rsq

These arguments may then be determined to be necessarily truth-preserving in virtue of
their forms. Some may think that logic should countenance such adverb-involving valid forms,
while others may maintain either that the natural language arguments which motivate such a
view are not formally valid after all, or that such arguments should be analysed or regimented
into non-adverb-involving valid forms. I am not taking a stand on this issue; the point is that
here we have an issue about the scope of logic—about the range of valid forms it should
countenance—which does not turn on which expressions are counted as logical constants.
Rather, the issue in this case naturally occurs at the level of which grammatical categories and
modes of composition should be included in (a) logic.8

We are now in a position to see what might be wrong with Zinke's thought that, while
strictly speaking it isn't generally correct, to speak nevertheless as if the bounds of logic were a
matter of the distinction between logical and extra-logical terms is “legitimate as far as one is
solely concerned with natural language where we indeed have terms representing the logical
notions.” The talk of “logical notions” here rather stacks the deck against a case like that of
adverbs, resulting in a subtle non sequitur. For aspects of logic that are naturally dealt with
using logical terms, it is natural enough to talk of “notions”: the notion of identity, the notion
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of all, the notion of or, and so on. But with arguments like Addition and Deletion above, there
is no analogous use of “notions” which fits very well as a way of talking about what is responsi-
ble for their apparent validity.

To sum up, the ubiquity of logical terms in the valid forms of standard logical theories is not
an essential feature of formal logic. The work done by logical terms in some logical languages
may in others be taken over by various aspects of syntax—categories of symbol, modes of com-
position of symbols, or even modes of appearance of symbols (italicization, writing upside
down, or in different colours, etc.). In the case of identity it seems reasonable to think that this
could quite easily have gone either way. Furthermore, the issue of how or whether (a) logic
should accommodate a case like that of adverbs naturally occurs in such a way that no question
arises about whether certain logical terms should be countenanced. Accordingly, philosophers
of logic should beware of attaching too much (of the wrong kind of) importance to the notion
of logical terms.

ENDNOTES
1 The parentheses are there because I want to stay neutral on, to use the terminology of Sagi (2014), the issue of
“principled” versus “relativistic” accounts of the scope of logic.

2 See Tarski (1936/1956).
3 Thanks to an anonymous referee for another journal for pointing out to me the need for this exception.
4 The ideas which follow were arrived at independently; thanks to an anonymous referee for another journal for
making me aware that Zinke (2018), after quoting Ramsey's remark about negation quoted above, anticipated
the propositional part.

5 See Quine (1986, pp. 61–64) for discussion.
6 See Wittgenstein (1922, §4.0312). From the point of view of our present concerns, it is quite important that
“logical constants” appears in scare-quotes in this remark. While the ancestor of this remark in Wittgenstein's
early Notebooks (Wittgenstein (1969)) does not have the scare-quotes, the scare-quotes appear even in the noto-
riously buggy first edition, in German, of the Tractatus, and persist in both the German and English texts of
the Ogden-Richards edition (Wittgenstein (1922)), as well as the Pears-McGuiness translation (Wittgenstein
(1961)). They do however tend to go missing when the remark is quoted—for instance in Biletzki & Matar
(2018, §2.2) (the main Stanford Encyclopedia of Philosophy entry on Wittgenstein), Armstrong (2004, p. 54,
f.n. 1), and Sellars (1962, p. 39). (Ironically, the title of Sellars' paper is “Truth and ‘Correspondence’”—another
significant use of scare-quotes!)

7 See my (ms.) for a development of this approach to the logic of adverbs, including a model-theoretic semantics
and a sound and complete proof system. For an approach to handling the logic of adverbs with specially aug-
mented languages, see Thomason and Stalnaker (1973) and Pörn (1983). For an approach in which adverbs dis-
appear on analysis or regimentation see Davidson (1967).

8 Gareth Evans highlights the case of adverbs (and adjectives) in a related context:

The validity of some inferences is said to be explained by reference to the meanings of the particu-
lar expressions occurring in them, while that of other inferences is due, rather, to the way in
which the sentences are constructed out of their parts. The inference from ‘John knows that snow
is white’ to ‘Snow is white’ is given as an example of the first type (…). The inferences from ‘John
ran breathlessly’ to ‘John ran’ and from ‘John is a large man’ to ‘John is a man’ may, tentatively,
be taken to be examples of the second type. (Evans (1976), p. 49.)

We might expect Evans to put the inference from “Snow is white and grass is green” to “Snow is white” in the
former category, on the grounds that its validity may be explained by reference to the meaning of “and.” But
Evans seeks to assimilate this with the second type. He continues:
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The distinction I have gestured towards is not without its intuitive appeal, and for many years phi-
losophers have been trying to provide a basis for it in harmony with what they took to be its
importance. The debate centred upon, and eventually ran aground upon, the problem of identify-
ing a set of expressions as the logical constants. For if we are determined to say that the inference
from ⌜P and Q⌝ to P is valid in virtue of structure, then the distinction between it and the detach-
ment inference with ‘knows’ must reside in some difference between ‘knows’ and ‘and’ (Evans
(1976), p. 49.)

This sends Evans in search of a notion of “structurally valid inference” under which fall the adverbial and
“and”-involving inferences, leaving the “knows”-involving inference on the non-structural side. Having such a
notion may be all to the good, but from the present point of view, on which we are happy to say that many for-
mally valid inferences turn on the meanings of particular expressions (albeit logical ones), Evans's way of moti-
vating his search runs together two distinctions which cross to yield four categories of deductive inferences:

(i) Logical inferences which turn on the meanings of particular terms (e.g., from “Snow is white and grass is
green” to “Snow is white”).
(ii) Logical inferences which do not so turn (e.g., from “Socrates ran quickly” to “Socrates ran” (perhaps), or
from “AB” to “A” in a logical notation where conjunctions are formed by putting conjuncts side-by-side).
(iii) Extra-logical inferences which turn on the meanings of particular terms (e.g., from “John knows that snow
is white” to “Snow is white”).
(iv) Extra-logical inferences which do not so turn (e.g., from “John Snow is white” to “Snow is white” in a hypo-
thetical language where knowledge attributions are made by writing a statement in italics next to someone's
name).

Why did Evans write as if he wanted to find a principled way to avoid saying that the validity of instances of
“and”-elimination and the like “is to be explained by reference to the meanings of the particular expressions
occurring in them?” We find a clue in an idea, derived from Davidson (1973, p. 81), which Evans pursues but
finds difficulties with: that in a (broadly Davidsonian) theory of meaning, a word like “and” is treated via a
recursive clause rather than a base clause. We might say that “and”, so treated, is syncategorematic—that is, that
it does not have a meaning by itself. But that doesn't mean it doesn't have a meaning in a broad sense.

(Thanks to an anonymous referee for making me aware of Evans (1976) and for a suggestion about how to think
about it.)
9 The style of presentation used here is modelled on that of Smith (2012, p. 280 and preceding), which uses a
standard language involving logical terms.
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APPENDIX: FOL WITHOUT LOGICAL TERMS

Vocabulary9:

Names:
a, b, c, … t.
If we need more, we use subscripts (i.e., a2, a3, …, b2, b3, …).

Variables:
x, y, z, u, v, w
As with names, we use subscripts if we need more.

Predicates:
A1, B1, C1, …, A2, B2, C2, …
Superscripts indicate the number of argument places, and may be omitted for convenience.
As with names and variables, we use subscripts if we need more.

Brackets:
(,)
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Definition of term:
(i) Names are terms.
(ii) Variables are terms,
(iii) Nothing else is a term.

Wffs:

(i) Where Pn is an n-place predicate and t1… tn are terms, the following is a wff:
Pnt1… tn

A wff of this kind is called an atomic wff.
(ii) Where α and β are wffs, x is a variable, and t and u are terms, the following are wffs:
(αβ)
(tu)
(x)α

(iii) Nothing else is a wff.

A model may be thought of as consisting of a domain D, a mapping from names to members
of D (their referents), and a mapping from n-place predicates to (possibly empty) sets of n-tuples
(the predicates' extensions).

Truth in a model M may then be defined as follows (for the quantification clause, we
use α[x] to stand for an arbitrary wff with no free occurrence of any variable other than x, and
α[a/x] to stand for the wff resulting from α[x] by replacing all free occurrences of x in α[x] with
the name a):

1. A wff Pn a1…an, where Pn is an n-place predicate and a1… an are names, is true in M iff
the ordered n-tuple consisting of the referents in M of a1 through an in that order is in the
extension of Pn.

2. A wff (no), where n and o are names, is true in M iff n and o have the same referent.
3. A wff (αβ), where α and β are wffs, is true in M iff α and β are both false in M.
4. A wff (x)α[x] is true in M iff for every object o in the domain D of M, α[a/x] is true in Ma

o,
where a is some name not assigned a referent in M, and Ma

o is a model just like M except that
in it the name a is assigned the referent o.
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