
Interactive Theorem Proving with Tasks

M. Hübner1 S. Autexier2 C. Benzmüller2 A. Meier2

1Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany
2Department of Computer Science, Saarland University,

and DFKI Saarbrücken,
66041 Saarbrücken, Germany

Abstract

Interactive theorem proving systems for mathematics require user interfaces which allow for user
interaction that is as natural as possible. However, this interaction is often limited by the traditional
calculi underlying most theorem proving systems. This is particularly problematic with respect to
the application of assertions and intuitive presentation of proof states. In this paper we show how a
more flexible user interaction can be realized when traditional calculi for classical logic are replaced
by a less restrictive reasoning engine, the recently developed CORE [2] system. We describe the task
level which is built on top of the CORE system and combines the Proof by Pointing approach [5]
with a flexible mechanism for the application of assertions that avoids decomposition and abstracts
from the syntactical form of an assertion. We demonstrate how proof steps that are difficult to
implement in other systems, like forward application of assertions, are quite naturally supported
by the underlying CORE system and are therefore straightforward to realize at the task level.

Keywords: Interactive Theorem Proving, Tasks, Proof by Pointing, Assertion Application

1 Introduction

Interactive theorem provers (ITPs) are used in a variety of domains, ranging
from proof assistants for formal methods to mathematical assistant systems
for tutoring mathematics. Successful application of ITPs in these domains re-
quires to support a human oriented reasoning style. Most ITPs are therefore
based on natural deduction (ND) or sequent calculus (SK) reasoning engines

1 Email:huebner@mpi-sb.mpg.de
2 Email:chris@ags.uni-sb.de,{autexier|ameier}@dfki.de

Electronic Notes in Theoretical Computer Science 103 (2004) 161–181

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.021

http://www.elsevier.com/locate/entcs

which match the human reasoning style better than calculi developed for auto-
mated reasoning (e.g. the resolution principle). However, because these calculi
have been invented for proof-theoretic purposes there are still many problems
inherent to interactive proof frameworks based on these calculi. Two particu-
larly prominent problems with respect to interactive theorem proving are the
presentation of proofs and the application of assertions

These problems become immediately apparent when we look at a sample
sequent calculus proof (Fig. 1). We see that the original goal formula becomes

P ⇒ Q, Q ⇒ R, P � P P ⇒ Q, Q ⇒ R, P, Q � Q

P ⇒ Q, Q ⇒ R, P � Q P ⇒ Q, Q ⇒ R, P, R � R

P ⇒ Q, Q ⇒ R, P � R

P ⇒ Q, Q ⇒ R � P ⇒ R

(P ⇒ Q) ∧ (Q ⇒ R) � P ⇒ R

� (P ⇒ Q) ∧ (Q ⇒ R) ⇒ P ⇒ R

Fig. 1. A sequent calculus proof.

decomposed throughout the proof which makes proof presentation difficult.
For the same reason it is difficult to support the application of assertions
(formulas on the left hand side of a sequent) in an intuitive manner. In
particular, the application of an assertion depends on its syntactical structure.
For example, the steps necessary to apply P ⇒ Q and ¬P ∨ Q are different
in a sequent calculus although P ⇒ Q and ¬P ∨ Q are logically equivalent.
Similar problems arise when proofs are constructed in the ND calculus.

To improve user interaction with systems relying on the SK or ND calculus
much work was undertaken to present proofs in a more user friendly way and
to hide the calculus as much as possible from the user.

Bornat [6] describes a system in which linearized versions of sequent cal-
culus proofs are presented in a Box-and-Line form to the user. Proof steps
can be expressed at the Box-Line level and are then mapped into a sequence
of SK rule applications. However, in this approach, the disadvantages of the
underlying SK show trough to the level of proof presentation. For example, to
enable the user to carry out forward steps every such step has to be painstak-
ingly mapped into the SK calculus via the application of a cut-rule 3 .

The Proof by Pointing approach by Bertot et al. [5] also tries to hide the
inconveniences of the SK from the user. They use an annotated set of SK rules
to enable the user to select a subformula of a sequent. The system is then
able to extract this subformula by automatic application of the appropriate

3 In Bornat’s system cuts are introduced by a tactic.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181162

SK rules. However, in this approach, manipulating a subformula still requires
the decomposition of the overall formula.

It can be seen that user interaction in the above approaches is severely
restricted by the calculus on which they are based. In this paper we show how
a more flexible user interaction can be realized when the underlying ND or
SK calculus is replaced by a less restrictive reasoning engine.

We use the recently developed CORE [2] system as a logical basis. CORE al-
ready supports flexible reasoning at the assertion level in a contextual rewriting
proof style. In this paper we develop a communication layer, the so called task
layer, on top of the system. This layer exploits COREs strength in the appli-
cation of assertions and provides an additional mechanism for the structuring
of proofs. The task layer consists of a datastructure to reference subgoals, to-
gether with a set of inference rules defined over this datastructure. In addition
the layer provides a proof datastructure which represents the proof history.

The task level serves as a common interface between various proof con-
struction components (e.g. an interactive user or automated proof procedures
such as the proof planner Multi [14] of the Ωmega mathematical assistant
system [17]) and the CORE system. This common interface makes it possible
to interleave automated and interactive proof planning. For example, cur-
rently inactive subproblems can be tackled by an automated proof planner,
while the planning methods are also available to the interactive user who tries
to close an active subgoal 4

Here we focus on the user interaction aspect of the task layer. We show
that user-interaction at the task layer is related to the Box-Line approach or
the focus windows of [15] but also provides a uniform mechanism for the appli-
cation of assertions that abstracts from the logical details like the syntactical
form of an assertion.

The paper is structured as follows. First, we briefly introduce the CORE
system before we describe the task layer in Sec. 2. Sec. 4 shows how the task
layer is used in practice.

2 The CORE System

The main characteristic of the CORE system is the contextual rewriting tech-
nique in which proofs are constructed. This means that the system is able to
determine the logical context of a subformula F inside a goal formula G[F].
The logical context gives then rise to a number of replacement rules which

4 This is easy in case of independent subgoals, i.e. subgoals that do not share variables.
The problem of how to deal with subgoal that share variables is still an open research
problem.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 163

can be used to rewrite the formula F to some formula F ′, yielding the new
goal G[F ′]. By making use of the contextual rewriting technique the system
supports a natural way of reasoning in which formula decomposition is dealt
with implicitly and which operationalizes Huang’s [9] reasoning on the asser-
tion level. We illustrate this at hand of the following theorem (see also Fig.
1):

(P ⇒ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ R)(1)

In CORE we can use the implication Q ⇒ R (underlined in (1)) in the context
of the rightmost R to replace R by Q. This is realized with the help of
the replacement rule R →< Q > which is generated from the respective
implication. Application of this replacement rule to R thus yields

(P ⇒ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ Q)(2)

In a similar manner, it is possible to rewrite the newly obtained Q to P by
applying the replacement rule Q →< P > which is justified by the implication
(P ⇒ Q) in the context of Q. Thus, we have

(P ⇒ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ P)(3)

which CORE simplifies to True.

This small example illustrates COREs key characteristics: Reasoning at
the assertion level is made possible through the generation of replacement
rules from the assertions in the context of a subformula. Furthermore, the
proof problem is always represented and maintained in its entirety instead of
being decomposed into smaller pieces as in sequent- and natural deduction
style calculi.

2.1 Technical Description

The key technique underlying the CORE-calculus is to view formulas as trees
and to annotate each subtree with proof theoretic information. The proof theo-
retic information are polarities and uniform types introduced by Smullyan [19]:
intuitively the polarity of a formula is positive, if the formula is a goal, i.e.
occurs in the succedent of a sequent in some sequent-style calculus, and other-
wise negative. As a result we obtain signed formulas. Types can be assigned to
signed formulas, α for disjunctive formulas, β for conjunctive formulas, γ for
universally quantified formulas and δ for existentially quantified formulas with
an Eigenvariable condition. For instance, indicating polarities in superscripts
and uniform types as subscripts, the positively signed formula

(∀x . P (x) ⇒ Q(x) ∧ ∃y . Q(y) ⇒ R(y)) ⇒ ∃z . P (z) ⇒ R(z)

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181164

is canonically annotated as follows:

(((∀x . (P (x)+ ⇒ Q(x)−)−β)−γ ∧ (∃y . (Q(y)+ ⇒ R(y)−)−β)−δ)−α

⇒ (∃z . (P (z)− ⇒ R(z)+)+
α)+

γ)+
α

(4)

Viewing that formula as a tree we obtain:

⇒+
α

∧−
α

∀x . −
γ

⇒−
β

P (x)+ Q(x)−

∃y . −
δ⇒−

β

Q(y)+ R(y)−

∃z . +
γ

⇒+
α

P (z)− R(z)+

We denote this representation as an indexed formula tree (Ift) and observe
that it represents a proof state in matrix calculi [21]. Thus, we can reuse the
rules from these calculi to construct a matrix proof. In particular, it provides
us with an efficient representation of variable dependencies.

In order to enable the assertion level reasoning style, we first derive a free
variable representation from such an (initial) Ift which we denote by a free
variable indexed formula tree (Fvift) to obtain:

⇒+
α

∧−
α

⇒−
β

P (X)+ Q(X)−
⇒−

β

Q(y)+ R(y)−

⇒+
α

P (Z)− R(Z)+

Thereby we introduce variables in capital letters if they are bound at γ-type
positions in the Ift, and lower-case letters for those from δ-type positions.
The assertion-style reasoning is enabled by exploiting the preserved polarities
and uniform types as follows:

• First, the uniform types allow to statically determine the logical context for
any subformula, i.e. those formulas that can be applied on that subformula.
The sufficient criterion for this is that the minimal subtree containing both
subformulas is of uniform type α, i.e. they are α-related. For instance, the
signed subformulas (P (Z)− ⇒ R(Z)+)+

α and R(y)− are α-related by the
top-level connective ⇒+

α .

• For each subformula in the logical context all rules operationalizing the
possible applications of that formula can be derived by (1) fixing the left-
hand side of the rule and (2) determining the subgoals by collecting all
β-related subformulas. For instance, fixing R(y)− as the left-hand side of
a rule, the β-related formulas form the singleton list 〈Q(y)+〉, which we
denote by

R(y)− −→ 〈Q(y)+〉

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 165

Note that we agree to denote an occurrence which has at least one β-related
subtree as a dependent occurrence.

The above so-called replacement rule encodes the fact that we can replace
the occurrence of a resolution partner for R(y)− by Q(y)+. This allows
for instance to apply that rule to the occurrence R(Z)+ by applying the
substitution {y/Z} to rewrite the whole Fvift to

⇒+
α

∧−
α

⇒−
β

P (X)+ Q(X)−
⇒−

β

Q(y)+ R(y)−

⇒+
α

P (y)− Q(y)+

Note that we use the original Ift in order to check the admissibility of the
substitution using the matrix-calculi techniques developed for this purpose.

Formally, this resolution style concept of a replacement rule is defined as
follows 5 :

Definition 2.1 (Admissible Resolution Replacement Rules) Let R0, R be nodes
in some Fvift. Then R0 −→ 〈R1, . . . , Rn〉 is an admissible resolution replace-
ment rule for R, if, and only if

(i) R0 and R have opposite polarities and are α-related by a node c,

(ii) and (R1, . . . , Rn) are the subtrees that are below c and β-related to R0.�

In short, the CORE-calculus relies on proof states consisting of an Ift rep-
resenting quantifier and substitution dependencies and a Fvift, which is a
kind of working copy that is actively manipulated by replacement rule appli-
cations. The calculus consist of 12 rules, including a cut rule, that transform
a proof state into exactly one derived proof state. A proof state is proved if
the Fvift is a propositionally trivially valid formula, such as, for instance,
True+. The calculus is sound and complete for a variety of logics.

The framework provided by CORE so far is that the complete status of a
proof is always represented as a single formula, which was one of the design
goals. The system is augmented by the possibility to focus the reasoning pro-
cess on arbitrary subformulas, without actually enforcing the decomposition
of the formula, i.e. the Fvift. To this end we add the possibility to in-
troduce windows on arbitrary subformulas, which are explicit representations
of the focus. For instance in the example above, without windows the com-
plete formula is visible, i.e. the focus of the reasoning process is on the entire

5 The general concept of replacement rules encompasses the treatment of primitive equality
and equivalences giving rise to so-called rewriting replacement rules. However, for the
purpose of this paper the resolution style replacement rules are sufficient. For more details
we refer the interested reader to [2].

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181166

formula

(((P (X)+ ⇒ Q(X)−)−β ∧ (Q(y)+ ⇒ R(y)−)−β)−α ⇒ (P (Z)− ⇒ R(Z)+)+
α)+

α

To support focusing the reasoning process, we annotate nodes of the Fvift
by windows, as for instance in

⇒+
α

∧−
α

⇒−
β

P (X)+ Q(X)−
⇒−

β

Q(y)+ R(y)−

⇒+
α

P (Z)− R(Z)+

The content of a window is the (signed) subformula contained in the sub-
tree rooted at the node denoted by the window. For instance, the content of

the window R(Z)+ is R(Z)+ and the content of ⇒−
β is (P (X)+ ⇒ Q(X)−)−β .

Note that we allow windows to occur below other windows. Windows below
which there are no more windows are so-called active windows. The intuition
of focusing is that the content of active windows are those objects that can
be manipulated by rule applications. To this end the pure CORE-calculus is
extended to Fvift with windows to obtain a reasoning mechanism similar to
window inference [16].

2.2 Interactive Theorem Proving with CORE

Within CORE the user currently works with the window inference mechanism.
This means that when he invokes CORE in interactive mode on a goal G with
axioms Ax1, . . . , Axn it assembles an Ift for the formula (Ax1 ∧ . . .∧Axn ⇒α

G)+ and creates a Fvift for it together with an initial window on G which
is presented to the user. The content of this window can then be altered by
applying the window versions of COREs calculus rules. Typically this will
be an application of a replacement rule. Proof search in CORE is therefore
characterized by two major kinds of choices:

(i) Focus choice: The selection of a subformula in the active window on
which the user wants to focus the proof search.

(ii) Rule choice: The selection of a replacement rule.

Because of its strength in the application of assertions CORE is well suited
for interactive proof construction. However, optimal support for focus and
rule choice is still challenging. One challenge is related to rule choice since
the context of a formula is currently available only as a usually long and un-
structured list of replacement rules. To make things even worse, there are
already dozens of replacement rules even for rather trivial problems. In par-
ticular, the number of replacement rules that can be generated from a subtree

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 167

of a Fvift is exponential in the number of nodes in that tree. Although this
is an effective sign of the flexibility in proof construction provided by CORE
this flexibility must be controlled during automatic and semi-automatic proof
construction. A further difficulty for automatic proof search is the choice of
the focus. Because the focus of a proof can be changed arbitrarily it is hard
to search for a proof in a systematic and goal directed way. In the following
section we describe the task layer which supports the user in the structuring
of the proof.

3 Tasks – Organizing Proof Search

Fvifts as introduced in Sec. 2 represent all conjunctive and disjunctive sub-
goals of a proof state simultaneously. However, while individual subgoals can
be highlighted with the window inference mechanism the system does not
support the user in systematically splitting the proof into smaller subgoals.
Furthermore, a Fvift can grow significantly during a proof which makes the
presentation of a proof state difficult.

It is therefore a challenge to present a proof state to the user as a set of
subgoals (tasks) while maintaining the advantages that arise from the fact that
a proof state is represented as a single formula. This is what is addressed by
our task layer. At this layer, we use the window structure to reference parallel
subgoals within an Fvift. These subgoals (tasks) structure the proof at the
task layer where additional rules are provided to manipulate these subgoals.
Reasoning steps at the task level are mapped into reasoning steps in the CORE
system which automatically guarantees soundness.

To describe the task layer we proceed as follows. First, we give a formal
definition of the task data structure. Then, we provide a set of implemented
task manipulation rules. The inferences realized by these rules comprise simple
decompositions of compound formulas, compound steps such as applications
of assertions, and human-oriented steps such as lemma introduction.

3.1 Tasks

Intuitively, a task denotes a subgoal together with all the formulas (assertions)
that can be used to derive this subgoal (all formulas that are α-related to the
subgoal). Accordingly, a task is defined as a list of windows that all occur in
the same context. However, before we make this intuition formal, we transfer
the notion of dependent occurrences to windows.

Definition 3.1 (Conditional Window) Let w be a window on a subformula F
in a Fvift R. We say that the window w is conditional in R iff the occurrence

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181168

F is dependent in R. Otherwise we call w unconditional in R.

Definition 3.2 (Task) Let R be the Fvift of the current proof state. A task
T is a set of windows T = w1, . . . , wn � g for R with exactly one goal window
g and support windows w1, . . . , wn. Additionally we require that the following
holds: if R′ is the smallest subtree in R that contains all windows in T :

(i) the subtrees denoted by the w1, . . . , wn are α-related to each other,

(ii) all support windows of T are unconditional in R′.

We distinguish between goals and support windows to explicitly represent the
focus of attention within a task. However, technically there is no difference
between the support windows and the goal window. In particular, since in
CORE the information on the polarity of each formula is explicitly held, the
windows of a task can be freely exchanged. Thus, task manipulations (see
the Shift rule in Sec. 3.2) can exchange the goal window of a task. This is
a notable difference to the sequent calculus, in which formulas occurring left
and right of � cannot be freely exchanged and have to be treated differently.
In particular, a task Σ, ap � aq does not necessarily correspond to an initial
sequent in the sequent calculus because the a′s might have the same polarity
(i.e. p = q).

The decision to forbid conditional support windows in a task was also
driven by the interactive reasoning we envision. The content of support win-
dows will be presented to the user as directly available knowledge that can be
used to derive the formula in the goal window of the task. If the content of the
support windows would be β-related to subtrees that lie outside the respec-
tive window, then these trees would automatically become conditions for any
replacement rule that is generated from this window (compare to Def. 2.1).
That is, the β-related subtrees would represent implicit “knowledge”, which
would be introduced in form of new proof obligations. We assume this to
be less suited for interactive proof construction as it would result in subgoals
whose origins are not directly obvious for a user.

Because tasks are basically representations of subgoals, we next define
when a task is closed.

Definition 3.3 (Closed task) A task Σ � G is closed iff there exists a w ∈
Σ ∪ {G} such that w denotes a proved subtree; that is, w is either True+ or
False−.

The initial problem to derive a goal G from axioms Ax1, . . . , Axn is repre-
sented in the system as a Fvift for the signed formula (Ax1 ∧ . . . ∧ Axn ⇒α

G)+. The corresponding initial task consists of a goal window for G and
support windows for each of the axioms:

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 169

Definition 3.4 (Initial Task) Let G be a formula and Ax1, . . . , Axn formulas
that represent axioms from which G should be derived. Let further R be an
Fvift for (Ax1 ∧ . . .∧Axn ⇒α G)+, wi a window on Axi and g a window on
G, then w1, . . . , wn � g is the initial task for G.

Henceforth, when presenting tasks, we will not distinguish between a win-
dow in the task and the formula it contains. For instance, instead of w1, . . . , wn�

g in the definition above we will write Ax1, . . . , Axn � G. 6

3.2 Task Manipulation Rules

Tasks describe goals that have to be achieved during a proof process. The
current tasks are stored in a so-called agenda. The proof process starts with
an agenda that contains only the initial task. We can refine a task on the
agenda to simpler tasks by the application of task manipulation rules. The
proof process terminates, when all tasks in the agenda are closed.

Task manipulation rules may vary from low-level, basic rules that perform
simple logic manipulations, to complex rules and speculative rules. In the
following, we shall give examples of three different kinds of task manipulation
rules and their realization in CORE: (1) Simple rules to split tasks for a con-
junctive goal into subtasks, or to decompose disjunctive goals (Sec. 3.2.1). (2)
Complex rules to apply assertions via the replacement rules and rules, which
provide a functionality similar to the Proof by Pointing approach (Sec. 3.2.2).
(3) Speculative rules, such as lemma introduction (Cut), which can be used
to model human reasoning steps more closely (Sec. 3.2.3). In fact, these rules
are motivated by the data that Benzmüller et al. [4] have collected to exam-
ine how undergraduate students carry out proofs in the domain of naive set
theory. Although these data have so far only been analyzed with respect to
linguistic phenomena, a preliminary analysis of emerging proof patterns shows
that students frequently apply lemmata that are not explicitly represented in
the context but can be derived in a few steps from the available assumptions.

3.2.1 Decomposition Rules

Fig. 3.2.1 shows the rules for the decomposition of tasks with a compound
goal formula. These rules resemble the usual rules of the ND and SK calculus.
However, by making use of the α- and β-annotation of formulas, we can rep-
resent the rules in a compact manner. To distinguish between SK rules and
the task manipulation rules, we give the rules in a top-down manner. That is,

6 Nevertheless, we can encounter tasks of the form Σ, Ap, Ap � G. Although both Ap are
syntactically equal formulas, they are different entities since they occur in different windows.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181170

the rules read as follows: Tasks below the line replace the task above the line
on the agenda.

Σ � α(ApA, BpB)p

Σ, BpB � ApA
αL

Σ � α(ApA, BpB)p

Σ, ApA � BpB
αR

Σ � α(A−p)p

Σ � A−p
α¬

Σ � β(ApA, BpB)p

Σ � ApA Σ � BpB
β

Σ � ζ(Ao, Bo)+

Σ, B− � A+ Σ, A− � B+
⇔

Fig. 2. The basic decomposition rules for tasks.

We distinguish between tasks with a conjunctive goal window (type β) and
tasks with a disjunctive goal window (type α).

α-Decomposition

Disjunctive goal windows can be decomposed with the rules αR, αL and α¬,
where the rule αR corresponds to the ⇒E rule in the ND calculus. It is crucial
that (at least for the α-rules) decomposition at the task level is simulated
in CORE by a change of the window structure of the corresponding Fvift.
More precisely, the decomposition of a formula α(ApA, BpB) is simulated in
CORE by the opening of new subwindows on the ApA and BpB . In the case
of the αR rule the new window on ApA is added to the support windows of
the corresponding task, while the BpB replaces the goal window. The other
α-decomposition rules are realized accordingly. This has the advantage that
decomposition steps can easily be undone (see the FocusClose rule).

β-Decomposition

The β-decomposition rule reduces a task with a conjunctive goal formula
β(ApA, BpB) to new subtasks for the goals ApA and BpB respectively. However,
mapping the application of the β-decomposition rule into the CORE system
requires a little more effort than was the case for α-decomposition. The reason
is that according to Definition 3.2 there must be no conditional support win-
dows in a task. Hence, if the β-rule would be mapped into the CORE-system
similar to the α-decomposition rule, the goal windows of the tasks introduced
by this rule would be conditional and consequently, it would not be permit-
ted to apply the Shift-rule to these tasks to change the goal window. To
avoid these restrictions, the formulas ApA and BpB in β(ApA, BpB) are made
unconditional when the β-rule is applied.

This can be done by splitting up the goal formula β(G1, G2) while retaining
the context ϕ around it. We can achieve this by applying a rule of the form

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 171

Σ � G[ApA]

Σ1 � ApA Σ2 � G1, . . . , Σn � Gn
Focus

Σ � G G′ = Parent(G)

Σ � G′ Subwindows(G′) = ∅ FocusClose

Σ, F � G
Σ, G � F

Shift
Σ � �
∅ Close where � ∈ {True+, False−}

Σ � i
Σ, i � v1 . . .Σ, i � vn

Apply(i →< v1, . . . , vn >)

Fig. 3. Assertion application and focusing rules.

ϕ(β(A, B)) → β(ϕ(A), ϕ(B)) which is described in [18] and [2]. Autexier [2]
shows that this Schütte-rule is admissible in the CORE calculus.

Positive Equivalence Expansion

Finally, we introduce a rule ⇔ to expand the definition of equivalences
A ⇔ into A ⇒ B and B ⇒ A for tasks where the goal window contains a
positive equivalence formula.

3.2.2 Assertion Application and Proof by Pointing

As opposed to the rules introduced in the preceding section, we shall next in-
troduce manipulation rules that extend the inferences at the task layer beyond
the usual scope of the ND and the SK calculus. Figure 3 shows the five rules
that – among others – makes CORE’s flexibility available for the applications
of assertions and also enable the Proof by Pointing approach at the task layer.

Compound Decomposition Steps with Focus

The rule Focus combines the decomposition rules from Sec. 3.2.1. By
applying Focus the user can directly focus on a particular subformula Ap

inside a goal window G. The uniform types of the nodes in a Fvift that
occur on a path between the selected subformula Ap and the root G[Ap] of
the goal window uniquely define a sequence of decomposition steps that need
to be applied in order to obtain the chosen formula as a goal window in a
single step. The Focus rule carries out these decomposition steps and keeps
track of the subgoals Σ1 � G1, . . . , Σn � Gn that are generated whenever a β-
decompositions is carried out. Essentially, this is the Proof by Pointing idea,

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181172

which is integrated by the Focus rule into the task layer. We call the Focus
rule a macro-rule because it applies a sequence of basic decomposition rules.

FocusClose

The FocusClose-rule is the inverse rule to the decompositions described by
the α, β and the Focus rule. It closes the window on the goal formula and
simultaneously all other foci below the parent of G. Therefore, decomposition
steps can be undone one after another.

Applying Assertions with Apply

To apply replacement rules at the task layer we introduce the Apply-rule.
The idea is that in order to apply an assertion (i.e. a formula in a support
window) the user merely needs to select an assertion by clicking at it at the
user interface. The system then creates a list of all replacement rules that are
justified by this assertion. In case there is only a unique applicable rule it is
applied automatically via the Apply-rule. In the more likely case that there is
more then one rule applicable the user has to select the replacement rule that
describes the appropriate application direction of the assertion. At this point
heuristics will be used to narrow down the choice for the user.

Hübner[10] describes how replacement rule selection can be supported by
the agent-based suggestion mechanism ΩAnts which was until now only used
in conjunction with the Ωmega [17] theorem proving system. 7

Closing tasks with Close

Tasks are removed from the agenda in case they are closed. This is done
by the Close rule, which deletes any task Σ � � such that � ∈ {True+, False−}
from the agenda.

Shifting the goal of a task with Shift

The Shift-rule changes the goal window of a task. This is particularly
important because the other manipulation rules work only on the goal window
of a task. For instance, consider that a window with formula Ap and a window
with (A ⇔ B)− are amongst the support windows for a goal G; that is,
Σ, (A ⇔ B)−, Ap � G.

7 Note that in the way the Apply rule is defined here it can only be applied to the topmost
occurrence i in a goal window and not to subformulas of i. However, this is no problem
since we can always focus on a subformula with the rule Focus first.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 173

Σ � Gp

Σ � H Σ, G−p � Hp LemBW
Σ � G

Σ, A− � G Σ � A+ LemFW

Σ � G
Σ, A− � G Σ, A+ � G

Case

Fig. 4. Assertion application and focusing rules.

Note that we realized β-decomposition with the Schütte-rule. Therefore,
we can ensure that goal windows are always unconditional, which is a prereq-
uisite for the above definition of the Shift-rule.

3.2.3 Speculative Proof-Steps

The introduction of new lemmata or case splits are speculative proof steps
that are often crucial to accomplish a proof. It is not surprising that such
steps play also an important role in both automated – and interactive the-
orem proving. The application of speculative steps is difficult to control in
automated theorem proving they open a Pandora’s box (the possible lemmata
and case splits are a priori not restricted). Bundy and Ireland [12] as well as
Meier [14] describe the exploitation of failures in automated proof processes
in order to guide the introduction of lemmata and case splits.

To be able to model this reasoning at the task-level we augment the infer-
ence rules by the rules LemFW, LemBW, and Case shown in Fig. 4.

The LemFW rule corresponds to the forward application of a lemma and
replaces a goal formula G by another formula H . This then leads to the
generation of an additional task which encodes the obligation to show that
the proof step described by the replacement was actually valid. The related
LemBW rule allows to insert a new lemma A into the supports of a task which
can then be applied via the Apply rule.

The Case rule reduces a task with goal G to two new tasks with goal G.
One of the new tasks has a new support window A− whereas the other new
task has the support A+.

3.2.4 Tasks and Proof Presentation

So far, we have described the inferences that can be carried out at the task
layer. These inferences enable the structured application and exploitation of
CORE’s functionalities and flexibility. Another motivation for the invention of
the task layer on top of CORE was proof presentation. With the proof structure
provided by the tasks, subgoals can be displayed together with the available
assertions in a suggestive manner. In fact, using the structure provided by

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181174

tasks, we can display subgoals in the Box-Line representation, which is well
known from introductions to the ND calculus (e.g., see [11]) and which has
also been suggested as an appropriate visualization for interactive proofs by
Piroi and Buchberger [15].

In the Box-Line representation, a goal formula is presented below the avail-
able assertions, which are displayed in a Box (see Sec. 4). We realize this
presentation style in the user interface by presenting the support windows of
a task on top of the goal window. This facilitates the application of assertions,
which can be applied in a uniform way by making use of the Apply rule. The
Box-Line presentation enables the user to apply an assertion by clicking on
the corresponding support window. The replacement rules corresponding to
the appropriate application direction of the assertion can then be applied with
the help of the Apply rule.

4 Tasks - A Worked Example

In this section, we prove the theorem from Fig. 1 at the task layer. This
permits us to illustrate the communication between user and the system as
well as to compare our approach to the one of Bornat and Bertot 8 . We
use a syntactically different, but logically equivalent formula to point out the
advantages of our approach.
The initial task of our proof problem is:" #

((P ⇒ Q) ∧ (¬Q ∨ R) ⇒ (P ⇒ R))+

(1)

The application of the focus to extract the rightmost R results in the following
situation: 2

64
(P ⇒ Q)−

(¬Q ∨ R)−

P−

3
75

R+

(2)

Then, we can reason backwards by applying the assertion (¬Q ∨ R)− with
the Apply rule to the goal window. Internally, Apply carries out this proof
step by the application of the replacement rule (R+ →< Q+ >) to the goal.
Similarly, we could reason forward by applying the assertion (P ⇒ Q)− (i.e.,
the replacement rule (P− →< R− >)) to the support P−. The application of

8 For a more detailed example we refer to [10].

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 175

the backward step results in the task:2
66664

(P ⇒ Q)−

(¬Q ∨ R)−

P−

R+

3
77775

Q+

(3)

Similarly, we can continue to reasoning backwards by applying the assertion
(P ⇒ Q)− to the goal window of the task or reason forward by applying the
same assertion to the support P−. This time we decide in favor of the forward
step, which we realize on the task-level by the aforementioned application of
the Apply rule with the replacement rule (P− →< R− >). The resulting task
is 2

6666664

(P ⇒ Q)−

(¬Q ∨ R)−

P−

R+

Q−

3
7777775

Q+

(4)

which can be closed by the application of the Apply rule with the replacement
rule (Q+ →< True+ >) to the goal.

Discussion

By building the task layer on top of the CORE system both concepts benefit
mutually. Tasks allow to structure and display a CORE proof state in a user-
oriented way (Box-and-Lines) while the underlying CORE systems allows for
flexible reasoning at the task-level. This flexibility manifests itself in the
integration of the Proof by Pointing approach with a uniform mechanism for
the application of assertions. Both concepts can be improved at the task layer.
Forward and backward application of assertions can be naturally carried out
at the task layer and do not have to be mapped into a sequence of cut-steps.

Furthermore, at the task layer, assertions can be applied independently
from their syntactic structure. By looking at the sample proof it can be seen
that the interactions necessary for the application of P ⇒ Q and ¬Q ∨R are
the same. In the pure SK and ND calculus the corresponding steps would be
different for both assertions.

The user interaction as well as the presentation of tasks at the user interface
we presented here is similar to the the TkWinHOL-system ([13]). However, the
approaches differ in the underlying reasoning system. While the TkWinHOL-
system is built on top of Grundy’s [8] window inference system. In this system

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181176

rewriting steps on the content of the active window result in a local lemma
that needs to be tackled afterwards. This also holds for the window inference
approach of Robinson and Staples [16]. In the CORE system underlying the
task layer introduced here transformations that are realized by application of
replacement rules are guaranteed to be sound and hence do not introduce new
subgoals.

5 Conclusion and Future Work

We have introduced a task layer for the CORE system and described the impli-
cations of this layer for interactive proof construction. We were able to point
out how the task layer helps to structure and display CORE proofs. Further-
more, by exploiting the contextual reasoning paradigm of the CORE system we
were able to combine and extend existing concepts like the Proof by Pointing
approach in a single interaction layer.

In this paper, we gave a bottom-up description of the task layer serving
as interface to CORE. Such a bottom-up approach to enrich the logic layer by
more abstract level reasoning tools is the standard approach in many proof
assistants to support abstract level proof development. A drawback of the
bottom-up approach, however, is that it usually causes an unnecessarily strong
dependence of the abstract layer upon the logic layer. Therefore, we are actu-
ally developing the task layer as independent as possible from the underlying
logic layer, such that, in the ideal case, the logic layer becomes exchangeable.
However, we do not propose proof assistants lacking a sound logical basis.
Instead, our aim is to distinguish better between abstract level reasoning and
expansion into verifiable proofs at the logic layer.

At the task layer we are interested to allow for mathematics-oriented, in-
tuitive proof development steps. Thus, the task layer will be enriched by
further task manipulation operators that can be domain-specific and have to
be acquired and designed in a knowledge engineering process as known from
tactical theorem proving and proof planning. Alternatively, the human may
embody the role of an operator by declaratively describing the refinement of a
task into successor tasks; such oracle steps adapt the idea of interactive island
proofs as introduced in [17]. Thus, the concretely available task manipulation
operators may vary from rather “safe” ones (those who directly guarantee log-
ical soundness at the logic layer, e.g., traditional tactics constructed on top
of the logic layer) to highly “unsafe” ones (those with non-sharp application
constraints causing frequent failing logic layer expansions, e.g., human con-
structed oracle steps). However, in order to classify the task-level proof as
sound, all proof steps at the task-level have to be successfully expandable and

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 177

verifiable at the logic layer.

How “expensive” the expansion of a task manipulation step to the logic
layer is depends on the concrete steps used at the task layer as well as on the
chosen logic layer. In the Ωmega proof assistant [17] the logic layer consists of
a higher-order natural deduction calculus and the distance from abstract proof
plans via expansion to this particular basic logic is in many case studies very
huge (e.g., see [17]). We are currently beginning with a re-implementation of
Ωmega with CORE as the logic layer and the task layer as separated layer
for abstract proof development. Due to this move from higher-order natural
deduction calculus to CORE we are able to drastically reduce the expansion
distance from the abstract layer to the basic logic layer in Ωmega

CORE .

The task manipulation rules we present in this paper are all “safe”, i.e.,
they directly guarantee logical soundness in CORE. 9 They are very “close” to
the chosen logic level and serve as the interface rules to work directly on top of
CORE. We tested them at hand of relatively simple logical problems such as the
one described in Fig. 1. The ΩmegaCORE system is envisaged as platform for a
mathematical assistant system as well as for a tutoring tool for mathematics.
As opposed to our current applications and tests, these applications require
the specification of domain-dependent and “unsafe” operators at the task layer
as well as their expansion to CORE.

In this paper, we gave a bottom-up description of the task layer serving
as interface layer to the user on top of CORE. Such a bottom-up approach to
enrich the logic layer by more abstract level reasoning tools is the standard
approach in many proof assistants to enable (ideally) abstract level proof
development. A drawback of the bottom-up approach, however, is that it
usually causes an unnecessarily strong dependence of the abstract layer upon
the logic layer. Therefore, we are actually developing the task layer in a
top-down approach to keep it as independent as possible from the underlying
logic layer, such that, in the ideal case, the logic layer becomes exchangeable.
However, we do not propose proof assistants lacking a sound logical basis.
Instead, our aim is to distinguish better between abstract level reasoning and
expansion into verifiable proofs at the logic layer.

At the task layer we are interested to allow for mathematics-oriented, in-
tuitive proof development steps. Thus, concrete task manipulation operators
can be domain-specific and have to be acquired and designed in a knowl-
edge engineering process as known from tactical theorem proving and proof
planning. Alternatively, the human may embody the role of an operator by
declaratively describing the refinement of a task into successor tasks; such

9 Speculative steps such as case splits and lemmas may not result in proof objects at the
task level. However, their expansion into CORE is straightforward.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181178

oracle steps adapt the idea of interactive island proofs as introduced in [17].
Thus, the concretely available task manipulation operators may vary from
rather “safe” ones (those who directly guarantee logical soundness at the logic
layer, e.g., traditional tactics constructed on top of the logic layer) to highly
“unsafe” ones (those with non-sharp application constraints causing frequent
failing logic layer expansions, e.g., human constructed oracle steps). How-
ever, in order to classify the task-level proof as sound, all proof steps at the
task-level have to be successfully expandable and verifiable at the logic layer.

How “expensive” the expansion of a task manipulation step to the logic
layer is depends on the concrete steps used at the task layer as well as on the
chosen logic layer. In the Ωmega proof assistant [17] the logic layer consists of
a higher-order natural deduction calculus and the distance from abstract proof
plans via expansion to this particular basic logic is in many case studies very
huge (e.g., see [17]). We are currently beginning with a re-implementation of
Ωmega with CORE as the logic layer and the task layer as separated layer
for abstract proof development. Due to this move from higher-order natural
deduction calculus to CORE we are able to drastically reduce the expansion
distance from the abstract layer to the basic logic layer in Ωmega

CORE .

The task manipulation rules we present in this paper are all “safe”, i.e.,
they directly guarantee logical soundness in CORE. 10 They are very “close”
to the chosen logic level and serve as the interface rules to work directly on
top of CORE. We tested them at hand of relatively simple logical problems
such as the one described in Fig. 1. The Ωmega

CORE system is envisaged as
platform for a mathematical assistant system as well as for a tutoring tool
for mathematics. As opposed to our current applications and tests, these
applications will need the specification of domain-independent and “unsafe”
operators at the task layer as well as their expansion to CORE.

References

[1] S. Autexier. A proof-planning framework with explicit abstractions based on indexed formulas.
In Maria Paola Bonacina and Bernhard Gramlich, editors, Electronic Notes in Theoretical
Computer Science, volume 58. Elsevier Science Publishers, 2001.

[2] S. Autexier. Hierarchical Contextual Reasoning. PhD thesis, University of the Saarland, 2003.
to appear.

[3] C. Benzmüller, A. Fiedler, M. Gabsdil, H. Horacek, I. Kruijff-Korbayova, M. Pinkal,
J. Siekmann, D. Tsovaltzi, B. Quoc Vo, and M. Wolska. Discourse phenomena in tutorial
dialogs on mathematical proofs. In In Proceedings of AI in Education (AIED 2003) Workshop
on Tutorial Dialogue Systems: With a View Towards the Classroom, Sydney, Australia, 2003.

10 Speculative steps such as case splits and lemmas may not result in proof objects at the
task level. However, their expansion into CORE is straightforward.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 179

[4] C. Benzmüller, A. Fiedler, M. Gabsdil, H. Horacek, I. Kruijff-Korbayova, M. Pinkal,
J. Siekmann, D. Tsovaltzi, B. Quoc Vo, and M. Wolska. Tutorial dialogs on mathematical
proofs. In In Proceedings of IJCAI-03 Workshop on Knowledge Representation and Automated
Reasoning for E-Learning Systems, Acapulco, Mexico, 2003.

[5] Y. Bertot, G. Kahn, and L. Thery. Proof by pointing. In Theoretical Aspects of Computer
Science (TACS), 1994.

[6] R. Bornat. Interactive Disproof: Rendering Tree Proofs in Box Form In D. Aspinal & C. Lüth,
Proceedings of UITP03, Rome, Italy, September, 2003.

[7] G. Gentzen. Untersuchungen über das logische Schließen II. Mathematische Zeitschrift, 39:572–
595, 1935.

[8] Grundy, J., Window inference in the hol system, in: Proceedings of the 1991 International
Workshop on the HOL Theorem Proving System and its Applications (1991), pp. 177–190.

[9] X. Huang. Reconstructing proofs at the assertion level. In A. Bundy, editor, Proc. 12th
Conference on Automated Deduction, pages 738–752. Springer-Verlag, 1994.

[10] Hübner, M., Interactive Theorem Proving with Indexed Formulas, SEKI Technical Report SR-
03-04, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany (2003).

[11] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge Univ. Press, 2000.

[12] A. Ireland and A. Bundy. Productive Use of Failure in Inductive Proof. Journal of Automated
Reasoning, 16(1-2):79–111, 1996.

[13] L̊angbacka, T., R. Ruksenas and J. v. Wright, Tkwinhol: A Tool for Window Interference in
HOL, , 971 (1995), pp. 245–260.

[14] A. Meier. Proof-Planning with multiple strategies. PhD thesis, University of the Saarland,
2003. forthcoming.

[15] F. Piroi and B. Buchberger. Focus windows: A new technique for proof presentation. In J.
Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial Intelligence,
Automated Reasoning and Symbolic Computation, number 2385 in LNAI, pages 337–341.
Springer, 2002.

[16] P. J. Robinson and J. Staples. Formalizing a hierarchical structure of practical mathematical
reasoning. Journal of Logic Computation, 3(1):47–61, 1993.

[17] J. Siekmann, C. Benzmüller, A. Fiedler, A Meier, I. Normann, and M. Pollet. Proof
development in OMEGA: The irrationality of square root of 2. In F. Kamareddine, editor,
Thirty Five Years of Automating Mathematics, Kluwer Applied Logic series. Kluwer Academic
Publishers, July 2003.

[18] K. Schütte. Proof Theory. Springer Verlag, 1977.

[19] R. R. Smullyan. First Order Logic. Springer, 1968.

[20] Q. B. Vo, C. Benzmüller, and S. Autexier. Assertion application in theorem proving and
proof planning. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), Acapulco, Mexico, 2003. (poster description).

[21] L. A. Wallen. Automated Proof Search in Non-Classical Logics. Efficient Matrix Proof Methods
for Modal and Intuitionistic Logics. MIT Press, Cambridge, Massachusetts;London, England,
1990.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181180

A Screenshots

Fig. A.1. GUI of the CORE system. The right window displays the current task. Here we show
the task corresponding to (2) on page 15.

M. Hübner et al. / Electronic Notes in Theoretical Computer Science 103 (2004) 161–181 181

	Introduction
	The CORE System
	Technical Description
	Interactive Theorem Proving with CORE

	Tasks -- Organizing Proof Search
	Tasks
	Task Manipulation Rules

	Tasks - A Worked Example
	Conclusion and Future Work
	References
	Screenshots

