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Abstract 

Background: The current COVID‑19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have 
resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe 
vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to 
integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important 
role in standard‑based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initi‑
ated the development of the community‑based Coronavirus Infectious Disease Ontology (CIDO) in early 2020.

Results: As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other 
existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO 
has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS‑CoV‑2 protein terms from the 
Protein Ontology, COVID‑19‑related phenotype terms from the Human Phenotype Ontology, and over 100 COVID‑19 
terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents 
variants of SARS‑CoV‑2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and 
methods. CIDO also describes hundreds of host‑coronavirus protein‑protein interactions (PPIs) and the drugs that 
target proteins in these PPIs. CIDO has been used to model COVID‑19 related phenomena in areas such as epidemiol‑
ogy. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has 
been used in various applications such as term standardization, inference, natural language processing (NLP) and 
clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences 
between SARS‑CoV‑2 Delta and Omicron variants. CIDO’s integrative host‑coronavirus PPIs and drug‑target knowl‑
edge has also been used to support drug repurposing for COVID‑19 treatment.
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Background
Coronavirus diseases pose major challenges to public 
health. In addition to the current Coronavirus Disease 
2019 (COVID-19) pandemic, Severe Acute Respiratory 
Syndrome (SARS) [1] and Middle East Respiratory Syn-
drome (MERS) [2] are two other severe human corona-
virus diseases that have arisen in the past two decades. 
The World Health Organization (WHO) declared the 
COVID-19 outbreak as a pandemic on March 11, 2020; 
at that time there were 118,326 confirmed cases and 4292 
deaths globally [3]. As of April 27, 2022, the number of 
COVID-19 confirmed cases has risen to over 500 million 
confirmed cases, resulting in over 6 million deaths glob-
ally. The dramatic increase of COVID-19-related cases 
and deaths over 2 years illustrates the urgent need for 
collaborative research on coronavirus diseases, especially 
COVID-19, by researchers around the world.

Extensive COVID-19 research has been conducted 
since the start of the pandemic. For example, there have 
been over 250,000 COVID-19-related papers recorded 
in PubMed as of April 2022. These research articles 
cover various domains such as etiology, epidemiology, 
and biotechnology. The initial wave of research arti-
cles focused on characterization of the original Wuhan 
strain of SARS-CoV-2 [4], the molecular interactions of 
putative and confirmed SARS-CoV-2 molecules [5], and 
the unique disease phenotype of COVID-19 [6]. Dur-
ing this time, many novel and repurposed medical treat-
ments were developed and authorized to treat or prevent 
COVID-19. This included research to develop effective 
COVID-19 vaccines [7] and COVID-19 drug treatments 
[8]. However, the emergence of new SARS-CoV-2 vari-
ants with unique traits prompted novel research inves-
tigating the fundamental molecular mechanisms of 
virulence and transmission associated with these variants 
[9].

Throughout the COVID-19 pandemic, epidemiologi-
cal data from across the globe has been collected for 
viral sequences and human demographics. In the era 
of Information Technology and big data, biomedical 
research has become data-intensive with the genera-
tion of increasingly large, complex, multidimensional, 
and diverse datasets. The explosion of valuable data and 
knowledge related to COVID-19 fits the 5Vs of big data 
(volume, veracity, velocity, variety, and value) [10, 11] and 
represents a wealth of knowledge related to SARS-CoV-2. 

However, these studies are often stored in non-interoper-
able data repositories which resist integration, creating a 
major bottleneck for COVID-19 research. The resultant 
non-harmonized data and knowledge cannot be easily 
analyzed by standard Artificial Intelligence (AI)/Machine 
Learning (ML) techniques. The development of com-
puter-interpretable, integrative, interoperable ontologies 
can contribute to needed data harmonization.

Such observations led to the development of a com-
munity-based, interoperable Coronavirus Infectious 
Disease Ontology (CIDO) for standardized and efficient 
representation, integration, and analysis of coronavirus 
disease data. CIDO was initiated by He and Yu in early 
2020 when the COVID-19 became endemic in China. 
CIDO was accepted into the Open Biomedical Ontolo-
gies library in March 2020, and was initially reported in 
a Comment article in the journal Scientific Data [12]. In 
that article, CIDO was introduced as a community-driven 
open-source OBO library ontology providing standard-
ized, computer-interpretable terminological content for 
various coronavirus infectious diseases, including their 
etiology, transmission, epidemiology, pathogenesis, host-
coronavirus interactions, diagnosis, prevention, and 
treatment. Additionally, it was shown how host-coro-
navirus interaction mechanisms could be represented 
using CIDO resources and axioms, and how such rep-
resentation could be used to aid in the identification of 
potential COVID-19 treatment options based on exist-
ing knowledge of drug mechanisms of action. Indeed, it 
was reported that CIDO provided instrumental guidance 
during literature mining processes in which 72 chemi-
cal drugs and 27 monoclonal or polyclonal antibodies 
that exhibit anti-coronavirus effects in in vitro or in vivo 
experimental studies were identified. The Scientific Data 
article closed by inviting researchers from across the 
world to contribute to CIDO development and applica-
tion. We are pleased to report that there has been an out-
pouring of community support, and substantial CIDO 
development and application since that time.

CIDO was presented at the 2020 International Confer-
ence on Biomedical Ontology (ICBO-2020) [13]. Sub-
sequently, authors AYL, YQH, SA, and WD organized 
a “Workshop on COVID-19 Ontologies” (WCO 2020) 
in October 2020 (https:// github. com/ CIDO- ontol ogy/ 
WCO), which led to the on-going harmonization of 9 
COVID-19 related ontologies. Of these ontologies, CIDO 

Conclusion: CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on 
COVID‑19. It supports shared knowledge representation, data and metadata standardization and integration, and has 
been used in a range of applications.
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subsumed the COVID-19 Infectious Disease Ontology 
(IDO-COVID-19) and initiated alignment with the Con-
trolled Vocabulary for COVID-19 (COVoc). The ontology 
harmonization effort was also presented in ICBO-2021 
[14]. Since then, CIDO has been further developed to 
include more terms and relations in many areas, such as 
host responses to SARS-CoV-2 infection [15], host-cor-
onavirus protein-protein interactions, and COVID-19 
diagnosis and vaccines. This journal manuscript provides 
a comprehensive introduction to the current version of 
CIDO, its development, and representative applications.

Methods
Coronavirus disease‑related data collection
Supplemental Table  1 provides a summary of our coro-
navirus disease-related data repository, comprising 
data collected from literature (primarily PubMed and 
PubMed Central) and from openly available databases. 
The classifications of viral variants and amino acid vari-
ants were obtained from GISAID (https:// www. gisaid. 
org/), NextStrain (https:// nexts train. org/), and WHO. 
Anti-coronaviral drug information was taken primarily 
from DrugBank [16] and from data annotated using the 
Chemical Entities of Biological Interest (ChEBI) ontology 
[17], COVID-19 diagnostic testing data in this reposi-
tory are derived from five major sources: (i) the FDA 
EUA diagnostic testing website (https:// www. fda. gov/ 
medic al- devic es/ coron avirus- disea se- 2019- covid- 19- 
emerg ency- use- autho rizat ions- medic al- devic es/ in- vitro- 
diagn ostics- euas); (ii) the AdveritasDx database (http:// 
adver itasdx. com/); (iii) the LOINC In  Vitro Diagnostic 
(LIVD) Test Code Mapping for SARS-CoV-2 Tests pro-
duced through the collaboration of the FDA, CDC, IICC, 
Regenstrief Institute, and APHL (https:// www. cdc. gov/ 
csels/ dls/ sars- cov-2- livd- codes. html), and (iv) COVID-
19 diagnostic testing kits authorized for use in China 
(provided by YT). These resources are developed inde-
pendently and are integrated and are annotated in incon-
sistent ways. One major task of our work is to use CIDO 
to support COVID-19 data integration through consist-
ent annotations.

CIDO ontology development
CIDO development followed OBO Foundry ontology 
development principles (e.g., openness and collaboration) 
(4), and utilized the eXtensible Ontology Development 
(XOD) strategy, which prescribes: ontology term reuse, 
semantic alignment, use of ontology design patterns for 
new term generation, and community effort [18]. CIDO’s 
development started with the reuse and alignment of 
terms and relations from existing ontologies using the 
Ontofox tool [19]. We used reference ontologies such as 
the Ontology for Biomedical Investigations (OBI) [20], 

Chemical Entities of Biological Interest (ChEBI) [17], 
Human Disease Ontology (DOID) [21], Human Pheno-
type Ontology (HP) [22], and Infectious Disease Ontol-
ogy (IDO) [23] (Supplemental Table 2). CIDO terms are 
aligned under Basic Formal Ontology (BFO) [24], a top-
level ontology conformant to the ISO/IEC 21,838 stand-
ard (https:// www. iso. org/ stand ard/ 74572. html). BFO 
is a domain-neutral framework that has been adopted 
by more than 450 ontologies as starting point for the 
creation of terms and definitions in specific domains. It 
thereby provides a mechanism for overcoming interop-
erability issues which arise when the attempt is made to 
integrate ontologies deriving from different sources.

For the generation of terms from domains ranging from 
amino acid variants to diagnostic medical kits, we devel-
oped relevant ontology design patterns and then used the 
Ontorat tool [25] to automate term generation. For man-
ual term generation and editing, we used the Protégé-
OWL editor [26], providing new CIDO specific terms 
with International Resource Identifiers that start with 
“CIDO_” followed by 7 automatically generated digits.

We worked closely with ontology development com-
munities to support coronavirus related ontology 
development. For example, we worked with the Pro-
tein Ontology (PR) on generating PR representations of 
SARS-CoV-2 proteins which were subsequently imported 
into CIDO. We also periodically submitted issue trackers 
to other related ontology efforts, for example requests for 
over 40 specimen-related terms submitted to the Ontol-
ogy for Biomedical Investigations (OBI) (https:// github. 
com/ obi- ontol ogy/ obi/ issues/ 1176, also: https:// github. 
com/ CIDO- ontol ogy/ cido/ issues/7). The relevant terms 
with OBI identifiers and definitions were then imported 
back into CIDO. Additionally, we have generated many 
new relations in CIDO to meet our needs, some of which 
have been proposed for inclusion in the OBO Relation 
Ontology (RO) [27].

CIDO is designed to support COVID-19 data FAIR-
ness (i.e., findability, accessibility, interoperability, and 
reusability) [28, 29]. Our ontology development is pri-
marily task-focused and use-case driven. For COVID-19 
diagnosis modeling, for example, a team of clinical doc-
tors, diagnosticians, and ontologists, was formed to study 
COVID-19 diagnosis background [30, 31], collect and 
annotate available diagnosis kits, focus on specific diag-
nosis use cases such as [32], design the relevant ontology 
patterns, and then implement the latter in CIDO.

CIDO status, source code, deposition, and license
CIDO source code is freely available with the CC-BY 
license on the GitHub website https:// github. com/ CIDO- 
ontol ogy/ cido. CIDO has been deposited to the Ontobee 
ontology repository (http:// www. ontob ee. org/ ontol ogy/ 
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CIDO) the BioPortal repository (https:// biopo rtal. bioon 
tology. org/ ontol ogies/ CIDO), and the OLS repository 
(https:// www. ebi. ac. uk/ ols/ ontol ogies/ cido).

Visual analysis of CIDO by summarization network
The Ontology Abstraction Framework (OAF) tool [33] 
was used to generate a color image of the layout of the 
ontology hierarchy (Fig.  1 in Supplemental File  1). To 
provide a more comprehensible visualization of the most 
recent version of CIDO, we used the Weighted Aggregate 
Partial-Area Taxonomy (WAT) summarization network 
analysis method [34]. By comparing this version with 
older versions of CIDO we were able to track the evo-
lution of the ontology, as summarized in Supplemental 
File 1.

CIDO applications
In the present communication we describe several appli-
cations of CIDO. One use case is the comparative analy-
sis of the shared and different amino acid variants found 
in the Delta and Omicron variants, with the purpose 
of better understanding the mechanisms of coronavi-
rus evolution, transmission, and virulence. Another use 
case is a SARS-CoV-2 drug repurposing study. Using 
the knowledge represented and classified in CIDO, we 
systematically queried the host-coronavirus protein-
protein interactions, anti-coronavirus drugs, and protein 

targets of different drugs, with the goal of identifying and 
designing possible drugs with a potential for optimized 
treatment performance.

Results
The upper level structure and design pattern of CIDO
Figure 1 lays out the high-level hierarchical structure of 
CIDO and shows the various imported external ontolo-
gies. Areas related to the coronavirus infectious disease 
represented by CIDO include: coronavirus taxonomy, 
coronavirus variants, genes and proteins and their muta-
tions, phenotypes, diseases, epidemiology, diagnosis, 
host-coronavirus protein-protein interactions, vaccines, 
and drugs. All the terms are aligned under the top-level 
Basic Formal Ontology (BFO) (7) (Fig. 1). CIDO imports 
terms from over 20 reference ontologies from the OBO 
ontology library, with the representative ontologies intro-
duced in Supplemental Table 2 and Fig. 1.

In addition to importing terms from existing ontolo-
gies, we have also generated many CIDO-specific terms 
e.g., resources for SARS-CoV-2 viral variants, amino 
acid mutations, and diagnostic medical device kits. New 
axioms, such as those linking different types of proteins 
and other molecules that are related to host-coronavirus 
protein-protein interactions (PPIs) and drug-target inter-
actions, have also been developed for CIDO. In the ver-
sion released on August 1, 2022, there are 370 relations 

Fig. 1 Top level hierarchical structure of class terms represented in CIDO. Abbreviations in parentheses indicate an entity’s source ontology 
(Supplemental Table 2)
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used in CIDO, including 87 relations newly generated 
with “CIDO_” prefix. Admittedly, some of the newly 
generated relations in CIDO may be more suitable for 
the more general level Relation Ontology (RO) [27]; 
future research will involve further refinement of these 
relations.

Our previous Comment paper in Scientific Data [12] 
describes the general CIDO design pattern that lays out 
the relationships among selected major entities modeled 
in the ontology. In the next sections, we provide details 
of specific ontological modeling and representation pro-
vided in CIDO.

Ontological classification of coronaviruses and coronavirus 
variants
CIDO imports resources from the NCBITaxon to rep-
resent various coronaviruses and their relations [13]. 
SARS-CoV and SARS-CoV-2 belong to the Sarbecovi-
rus, a subgenus of the genus Betacoronavirus. MERS-
CoV belongs to Merbecovirus, a sibling to Sarbecovirus. 
Four human coronavirus strains (229E, NL63, HKU1, and 
OC43) cause mild common colds in humans, where 229E 
and NL63 belong to Alphacoronavirus, and HKU1 and 
OC43 belong to Embecovirus under Betacoronavirus.

We have generated 39 CIDO specific classes to rep-
resent specific COVID-19 viral variants. CIDO defines 
distinct viral variants of SARS-CoV-2 based on 3 classi-
fication methods: GISAID clades [35], PANGO lineages 
[36], and WHO clades [https:// www. who. int/ en/ activ 
ities/ track ing- SARS- CoV-2- varia nts/]. A viral variant is 
defined as a virus that has undergone variation such that 
there is a characteristic set of mutations in comparison 
to the reference virus sequence. These variants include 
various genetic mutations resulting in changes in trans-
mission, infectivity, and virulence as compared to the 
original Wuhan reference strain. The GISAID clades and 
PANGO lineages both utilize the same data set but uti-
lize different clustering algorithms to designate specific 
variants. PANGO lineages also differ by defining char-
acteristic mutations that occur in a majority of specific 
SARS-Cov-2 variants while GISAID variants define uni-
versal mutations. The following examples illustrate these 
three hierarchies:

‘SARS-CoV-2 Delta virus’: ‘is a’ some ‘SARS-CoV-2 
based on WHO classification’
‘SARS-CoV-2 BA.5 virus’ ‘is a’ some ‘SARS-CoV-2 
based on PANGO lineage’
‘SARS-CoV-2 clade G virus’: ‘is a’ some ‘SARS-
CoV-2 based on GISAID clades’

WHO utilizes GISAID clade and PANGO lineage rep-
resentations as synonyms for epidemiologically relevant 
variants, designated either as a Variant of Concern (VoC) 

or as a Variant of Interest (VoI) [15]. VoIs are variants 
that are identified as having the potential to become 
VoCs through causing increased transmission or worse 
disease processes. VoCs remain designated as such until 
they are no longer prevalent.

Ontological representation of SARS‑CoV‑2 proteins 
and genes
CIDO imports terms for SARS-CoV-2 proteins from the 
Protein Ontology (PR) and terms for SARS-CoV-2 genes 
from the Ontology of Genes and Genomes (OGG), a sim-
plified representation of which is shown in Fig. 2. Gene 
terms are based on those found in the NCBI Gene data-
base [37] while proteins are as given by UniProtKB [38] 
[https:// www. unipr ot. org/ unipr ot/? query= prote ome: 
up000 464024], with cross-reference information from 
NCBI RefSeq [https:// www. ncbi. nlm. nih. gov/ prote in? 
term= (sars- cov-2% 20Wuh an- Hu-1% 20AND% 20ref seq% 
5Bfil ter% 5D)]. CIDO represents only those genes that 
are described in NCBI Gene, and only those proteins 
(and their derivatives) that are described in UniProtKB. 
There are other protein open reading frames (ORFs) such 
as ORF2b (aka S.iORF1) [39], ORF-Sh and ORF-Mh [40], 
which are held in reserve, but they will be added should 
they gain experimental or database support. A full com-
parison between PR, RefSeq, and UniProtKB is given in 
Supplemental Table 3 with respect to accessions, genes, 
and names used (protein length and evidence for exist-
ence are also presented).

In general, PR uses SARS-CoV-2 protein names as 
given in UniProtKB and gene names as given in RefSeq, 
wherever these are available. A key difference between 
the PR representation and those of RefSeq and Uni-
ProtKB is that the former has a single record for each 
proteolytic cleavage product of the ORF1ab (aka rep) 
gene, while each of the latter resources has two records 
for the subset of products that are encoded by both the 
polyprotein 1a (pp1a, aka ORF1a) and the polyprotein 
1ab (pp1ab, aka ORF1ab) transcript (where the latter is 
the result of -1 ribosomal frameshifting). Both polypro-
teins are further processed by proteolytic cleavage; pro-
cessing of either will yield ten identical chains (Fig.  2A, 
light blue box), while one additional chain is unique to 
ORF1a and five additional chains are unique to ORF1ab 
(green boxes). In addition, PR unites each of the poly-
proteins under the grouping term ‘rep gene translation 
product’ (the synonym is used here to prevent confusion 
with the ORF1ab transcript-derived polyprotein). Several 
proteins are translated from alternative ORFs within or 
overlapping transcripts that also produce longer proteins 
(red boxes). One of these, ORF9b, has been demonstrated 
(in SARS-CoV-1) to use leaky ribosome scanning [41]; 
potentially this mechanism applies to the others as well, 

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.uniprot.org/uniprot/?query=proteome:up000464024
https://www.uniprot.org/uniprot/?query=proteome:up000464024
https://www.ncbi.nlm.nih.gov/protein?term=(sars-cov-2%20Wuhan-Hu-1%20AND%20refseq%5Bfilter%5D)
https://www.ncbi.nlm.nih.gov/protein?term=(sars-cov-2%20Wuhan-Hu-1%20AND%20refseq%5Bfilter%5D)
https://www.ncbi.nlm.nih.gov/protein?term=(sars-cov-2%20Wuhan-Hu-1%20AND%20refseq%5Bfilter%5D)
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though the existence of the ORFs labeled ‘putative’ is 
questionable [42]. All SARS-CoV-2 proteins are grouped 
under ‘severe acute respiratory syndrome coronavirus 
2 protein’. In total—not counting the grouping terms—
there are forty SARS-CoV-2-related PR terms. Currently, 
none of these represent proteoforms with amino acid 
modifications; these will be added in the future.

Ontological representation of SARS‑CoV‑2 amino acid 
variants
In addition to the representation of viral variants, CIDO 
also defines and represents various amino acid (AA) vari-
ants. Similar to the viral variant definition, an AA vari-
ant is defined in CIDO as “An amino acid in a protein 
that varies from another amino acid in comparison to 
the reference protein”. CIDO further defines the object 
property ‘is characteristic AA variant’ to describe a rela-
tion between an AA variant and a protein where the AA 

variant is a characteristic AA variant of a specific viral 
variant. An AA variant is defined as characteristic when 
the presence of the AA can be used to identify the AA 
variant. We characterize these variants by comparing the 
amino acid at a given position to the reference wild-type 
strain. For example, the D614G mutation in the spike 
polyprotein (S:D614G) is well known for emerging in sev-
eral VoCs and has been proven to increase SARS-CoV-2 
infectivity [43]. The CIDO class ‘D-614G in SARS-CoV-2 
S protein’ (where S protein is just as the spike protein) 
has the following axioms (Fig. 2):

‘D-614G in SARS-CoV-2 S protein’:

– ‘characteristic AA variant of ’ some ‘SARS-CoV-2 
Omicron variant’

– ‘is a’ some ‘AA variant in SARS-CoV-2 S protein S1 
RBD region’

Fig. 2 SARS‑CoV‑2 proteins and genes. A PR modeling of SARS‑CoV‑2 proteins. B OGG modeling of SARS‑CoV‑2 genes. Black lines represent the 
‘has gene template’ relation connecting proteins to genes. Red boxes denote proteins translated from ORFs that are internal to or overlap with 
those of the longer indicated gene (red arrows). The light blue box indicates proteins that are produced by proteolytic processing of either replicase 
polyprotein 1a or replicase polyprotein 1ab, while green boxes indicate those that derive specifically and uniquely from pp1a or pp1ab
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– ‘has amino acid position’ value 614
– ‘has part’ some ‘glycine residue’
– ‘has mutated from’ some ‘aspartic acid’

However, the above framework does not work well for 
describing characteristic deletions or other mutation 
events. As the amino acid that was deleted does not exist, 
this leads to issues where the ontology asserts that some-
thing holds of ‘all coronaviral amino acids’. To address 
this issue, we define the AA deletion as a process. Moreo-
ver, this variation process can be generalized to include 
any mutation event. The relationship between the dele-
tion process and a resulting AA variant, is defined as:

‘A888- deletion in SARS-CoV-2 S protein’: ‘is AA 
mutation of ’ some ‘SARS-CoV-2 S protein’

as shown in Fig. 3.

Host phenotype modeling in CIDO
CIDO contains terms for 18 symptoms and 22 comor-
bidities commonly found in COVID-19 patients [44]. 
These symptoms and comorbidities are mapped to phe-
notypes in the Human Phenotype Ontology (HP) from 
where they are imported back into CIDO. To link these 

symptoms and comorbidities as they occur in relation to 
COVID-19, we have also generated new relations ‘disease 
susceptibly has phenotype’ and ‘disease susceptibly severe 
with comorbidity’. The first relation represents the rela-
tion between a disease process and a phenotype where 
the person with the disease is susceptible to having that 
phenotype. The second is a shortcut relation between a 
disease process which is susceptible to becoming more 
severe when the patient has the comorbidity. Examples of 
usage of these relations are:

SARS-CoV-2 disease process: ‘disease susceptibly has 
phenotype’ some Fever.
SARS-CoV-2 disease process: ‘disease susceptibly 
severe with comorbidity’ some hypertension.

CIDO also represents the relation between SARS-
CoV-2 variant and specific phenotypes, for example, the 
relation between the Delta variant and the formation of 
syncytia in lungs [45]:

‘Delta variant disease process’: ‘bearer of disease 
susceptible to phenotype’ some syncytia

Fig. 3 CIDO modeling of AA variants and mutations. CIDO represents AA variants as material entities if they are substitutions and AA mutations as 
processes to represent deletions in SARS‑CoV‑2 microbial variants. Both AA variants utilized analogous axioms due to differences in continuants and 
occurrents
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We are in the process of evaluating and submitting some 
of our newly generated relations to the OBO Relation 
Ontology (RO) as they may be more appropriate for 
inclusion there. For example, we have submitted two 
new relation terms ‘evolves into’ and ‘evolves from’ to the 
RO issue tracker (https:// github. com/ oborel/ obo- relat 
ions/ issues/ 620). If these relations are added to RO, we 
will then obsolete our original CIDO relation terms and 
replace them with the new RO terms.

Ontological modeling of epidemiology and public health
CIDO includes many terms related to the epidemiol-
ogy of COVID-19, derived primarily from the Infectious 
Disease Ontology (IDO) [23] and the Virus Infectious 
Disease Ontology (VIDO) [14]. Recent research [46, 47] 
highlights the importance of viral load to SARS-CoV-2 
transmission rates. Indeed, Wuhan, Delta, and Omicron 
strains are associated with distinct peak viral loads with 
respect to different demographics. VIDO character-
izes ‘viral load’ as the proportion of virions to volume of 
a given portion of fluid in which the virions are located. 
VIDO provides a datatype property ‘has viral load meas-
urement’ which supports representation of viral load val-
ues. For example, an instance of OBI’s class blood plasma 
specimen from an instance of a host infected by SARS-
CoV-2 can be (partially) represented as having a viral 
load value in the following manner:

‘blood plasma specimen 1’ rdf:type ‘blood plasma 
specimen’
and ‘has part’ some ‘SARS-CoV-2’
and ‘has viral load measurement’ value 108

Additionally, VIDO provides virus-specific terminologi-
cal content that can be extended in CIDO to represent 
other important epidemiological terms, such as COVID-
19 prevalence, SARS-CoV-2 infectivity, and COVID-19 
mortality rate.

Moreover, CIDO includes resources needed for com-
parison of transmission differences among SARS-CoV-2 
variants. The Omicron variant is significantly more 
transmissible than the reference Wuhan strain and Delta 
strain. The transmission rate is often represented using 
R0, the basic reproduction number that measures the 
transmissibility of infectious agents [48]. The average R0 
values for the Wuhan reference strain, Delta strain, and 
Omicron BA.1 strain are 2.69 [49], 5.02 [50], and 9.05 
[51], respectively. Accordingly, we have generated a data 
property relation ‘has average R0’, which can be used to 
represent the R01 value of each variant:

‘SARS-CoV-2 reference strain: ‘has average R0’ value 
2.69

‘SARS-CoV-2 Delta variant’: ‘has average R0’ value 
5.02
‘SARS-CoV-2 Omicron BA.1 variant’: ‘has average 
R0’ value 9.05

COVID‑19 diagnosis testing modeling in CIDO
During a pandemic, the availability of fast and accurate 
diagnostic testing is essential to control the situation. 
Because SARS-COV-2 is a novel virus, the traditional 
pathway to approve a testing kit to be used in the market 
will not satisfy the urgent demand in a timely manner. In 
the US, an Emergency Use Authorization (EUA) under 
Section 564 of the Federal Food, Drug, and Cosmetic Act 
(FD&C Act) allows the special authorization and use of 
drugs and other medical products during emerging infec-
tious disease threats such as the COVID-19 pandemic. 
From 2020 March until now, the US Food and Drug 
Administration (FDA) has authorized hundreds of dif-
ferent types of in  vitro diagnostic tests under the EUA 
authorizations. To make those EUA diagnostic testing 
data Findable, Accessible, Interoperable, and Reusable 
(FAIR) [28], it is important that the testing kits used are 
registered in a structured and machine-readable manner.

CIDO comprises representations of 345 molecular and 
serological diagnostic tests authorized by the FDA. We cre-
ated a term ‘COVID-19 diagnostic testing device’ and its 
child term ‘FDA EUA authorized COVID-19 diagnostic test-
ing device’, where the latter is to be the home of all FDA EUA 
authorized In Vitro Diagnostics (IVD) tests for COVID-19.

An example representation of the TaqPath COVID-19 
Combo Kit from Thermo Fisher Scientific, Inc., which 
was authorized under an EUA authorization (https:// 
www. fda. gov/ media/ 136113/ downl oad) is shown in 
Fig.  4, which lays out the current CIDO representation 
of device, assay, diagnostic process and genes that the 
test is designed to detect. A device ‘TaqPath COVID-19 
Combo Kit’ is ‘capable of ’ a ‘COVID-19 RT-PCR assay’. 
This test detects the existence of N, S and ORF-1ab gene 
regions that are part of the corresponding genes of the 
SARS-CoV-2 reference strain. We created a short-cut 
relation  ‘PCR kit detects gene’ to represent a direct rela-
tionship between a diagnostic testing kit and the target 
gene/sequence fragments. Another short-cut relation 
‘device utilizes material’ was created to link the diagnos-
tic testing and the tested specimen. This relation can be 
logically represented as a property chain (https:// github. 
com/ oborel/ obo- relat ions/ issues/ 497):

This particular diagnostic testing kit can utilize 6 speci-
men types, as again shown in Fig. 4. The following axiom 
represent the ontological arrangement of such a relation 
using a union of 6 specimen terms:

https://www.github.com/oborel/obo-relations/issues/620
https://www.github.com/oborel/obo-relations/issues/620
https://www.fda.gov/media/136113/download
https://www.fda.gov/media/136113/download
https://www.github.com/oborel/obo-relations/issues/497
https://www.github.com/oborel/obo-relations/issues/497
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‘device utilizes material’ some (‘nasopharyngeal 
swab specimen’ or ‘oropharyngeal swab specimen’ 
or ‘anterior nasal swab specimen’ or ‘mid-turbinate 
nasal swab specimen’ or ‘nasopharyngeal aspirate 
specimen’ or ‘bronchial alveolar lavage’)

Using the strategy defined here, we systematically col-
lected and used CIDO to model and represent over 300 
molecular and serological diagnostic tests, including 225 
SARS-CoV-2 RT-PCR assays, authorized by US FDA. All 
the 343 tests are annotated with a total of ten COVID-19 
diagnostic technologies, such as RT-PCR, LAMP, Next 
Generation Sequencing, a CRISP-based method, ELISA, 
lateral flow immunoassay, chemiluminescent, and so on.

CIDO modeling and representation of host‑coronavirus 
protein‑protein interactions and drugs
CIDO represents over 300 experimentally verified 
host-coronavirus protein-protein interactions (PPIs), 
over 300 anti-coronaviral chemicals and/or their cor-
responding drugs, and over 400 drug targets. Here 
the coronaviral proteins may derive from SARS-CoV, 
MERS-CoV, or SARS-CoV-2. In early 2020, we per-
formed literature mining and identified 110 chemi-
cal drugs and 26 antibodies effective, either in vitro or 
in  vivo, against at least one human coronavirus infec-
tion, where the human coronaviruses involved are 
primarily SARS-CoV and MERS-CoV [52]. Our onto-
logical representation, classification, and analysis of 
these drugs yielded many potentially valuable scien-
tific insights. Since early 2020, we have collected more 
drugs and chemicals with a focus on those against 

SARS-CoV-2. Furthermore, we have collected and 
annotated representations of further PPIs and chemi-
cal-drug interactions.

All CIDO-represented host-coronavirus PPIs are 
experimentally verified and reported in the literature. 
For example, CIDO has recorded 332 physically asso-
ciated PPIs identified by the affinity-purification mass 
spectrometry assay [5]. These PPIs involve both pro-
teins from the SARS-CoV-2 side and the host side, and 
many of these coronaviral and host proteins are also 
targets of multiple drugs.

In CIDO, each host-coronavirus PPI is defined to 
have at least two participants, including one protein 
from a coronavirus and one from its host. For example, 
the ‘host-SARS-CoV-2 protein-protein interaction’ is 
defined as:

(‘has participant’ some ‘SARS-CoV-2 protein’) and 
(‘has participant’ some (organism and ‘has role’ 
some ‘host role’))

Figure  5 illustrates how CIDO represents hundreds of 
host-SARS-CoV-2 PPIs, drug active ingredients, and 
chemical-protein interactions. Specifically, there are 
three specific PPIs under the class ‘SARS-CoV-2 nsp5 
protein interaction with host protein’, such as ‘SARS-
CoV-2 nsp5 protein binding to human HDAC2’. This 
example PPI has two participants:

‘has participant’ some ‘3C-like proteinase (SARS-
CoV-2)’
‘has participant’ some ‘histone deacetylase 2 
(human)’

Fig. 4 Modeling of COVID‑19 diagnostic testing using CIDO. *, only two out of six specimen terms are shown in this figure
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Note that 3C-like proteinase, another name for nsp5, can 
be inhibited by the chemical nirmatrelvir, a component 
of the Pfizer drug Paxlovid. Human histone deacetylase 
2 (i.e., HDAC2), can be inhibited by a chemical ‘Valp-
roic Acid’, which has been found valuable against SARS-
CoV-2 [53]. These relations are logically defined in CIDO 
as follows (Fig. 5B and C):

’nirmatrelvir’: ‘chemical inhibits protein’ some 
‘3C-like proteinase (SARS-CoV-2)’
‘Valproic Acid’: ‘chemical inhibits protein’ some ‘his-
tone deacetylase 2 (human)’

Anti‑coronavirus vaccine representation in CIDO
As the developers of the Vaccine Ontology (VO) [54], we 
(YH, AL, AH, PH) first represented a total of over 100 
COVID-19 vaccines at different stages (licensed, author-
ized, in clinical trials, or verified with laboratory animal 
models) in VO, and then imported these terms from VO 
to CIDO (Fig. 1, Supplemental Table 2). In total, we have 
imported over 300 terms from the VO to CIDO. Fur-
thermore, we have developed Cov19VaxKB, a web-based 
Integrative COVID-19 vaccine knowledge base, which 
has used ontologies including the VO to represent, clas-
sify, and analyze various COVID-19 vaccines and vaccine 
components (e.g., vaccine adjuvants), and vaccine adverse 
events [55]. We have also developed reverse vaccinology 
and machine learning methods to predict vaccine anti-
gen candidates [56]. The functions and immune mecha-
nisms of these candidates are being further analyzed 

using ontology-based approaches [15]. Furthermore, we 
have been using CIDO and other ontologies including 
the Ontology of Adverse Events (OAE) to systematically 
examine adverse events associated with SARS/MERS/
COVID-19 vaccine candidates.

Clinical metadata type representation in CIDO
To support classification and analysis of clinical data, 
CIDO includes representations of many clinical metadata 
types. Metadata is the data that provides information 
about other data. In our study of COVID-19 related clini-
cal data, we have focused on two use cases: the analysis of 
vaccine adverse events using the VAERS data resource as 
described above and the analysis of the clinical data from 
the National COVID Cohort Collaborative (N3C) pro-
gram [57]. The N3C system is a collection of harmonized 
clinical data on COVID-19 from contributing data part-
ners. N3C data is represented using the OMOP common 
data model (CDM). From the OBO ontology point of 
view, OMOP has its issues such as the lack of semantics, 
ambiguities, and hidden assumptions [58]. In our N3C 
related clinical data study, we have focused on the map-
ping of the OMOP CDM elements and OBO ontologies 
and adding semantic relations among terms.

Table 1 lists the representative clinical metadata types 
that are primarily mapped to the OMOP CDM ele-
ments. These are general clinical data types applicable to 
studies not only of COVID-19 but also of other human 
diseases. As a result, all these terms are imported from 
other reference OBO ontologies. The Ontology of Preci-
sion Medicine and Investigation (OPMI) [59, 60], another 

Fig. 5 Host‑coronavirus protein‑protein interactions (PPIs) and drugs targeting the viral or host proteins. A The hierarchy of PPIs, including 
‘SARS‑CoV‑2 nsp5 protein binding to human HDAC2’. B The chemical nirmatrelvir (a component of the Pfizer drug Paxlovid) is an inhibitor of the 
virus protein nsp5 (i.e., 3C‑like proteinase), which is critical for viral replication. C A chemical ‘Valproic Acid’ is an inhibitor of the HDAC2 (i.e., histone 
deacetylase 2). Valproic acid is also a valuable candidate against SARS‑CoV‑2



Page 11 of 21He et al. Journal of Biomedical Semantics           (2022) 13:25  

OBO library ontology, has been used as a major reference 
ontology to represent those clinical data types not found 
in other OBO ontologies (Table 1). After the mapping of 
OMOP CDM elements to OBO ontologies, we imported 
these mapped terms to CIDO to support COVID-19 clin-
ical data annotation and analysis.

In the OMOP / N3C data structure, each concept set 
groups terms into what are called value sets. A value set 
is a set of codes selected from those defined by one or 
more code systems to specify which codes can be used 
in a particular context. However, their grouping is heu-
ristic and not ontology-based. The ontology support is 
an ongoing project. OMOP2OBO is the first health sys-
tem-wide integration and alignment system that system-
atically maps over 23,000 concepts from OMOP standard 
clinical terminologies to OBO concepts [61]. While 
OMOP2OBO is more focused on the value set mapping, 
our mapping and further term generation (Table  1) is 
more focused on the small set of the core OMOP CDM 
concept set meta elements. The two complementary 
systems can be used together to support robust clinical 
COVID-19 data annotation, integration, and analysis.

Visual evolution analysis of CIDO
To provide a condensed and comprehensive visualization 
of CIDO, we have previously developed a new Weighted 
Aggregate Partial-Area Taxonomy (WAT) summariza-
tion network method and used it to analyze an early 
version (version 1.0.108) of CIDO with a total of 5138 
concepts [34]. Since then, newer versions of CIDO that 
include more concepts have been generated. To evalu-
ate these new additions to CIDO, we have generated a 
new WAT summarization network that visualizes CIDO 

version 1.0.306 with 10,853 concepts (Fig.  6). As shown 
in Fig. 6, major branches of CIDO include infectious dis-
eases, genes, vaccines, chemicals, and COVID-19 testing 
devices.

Comparing the old version (Fig.  2 in Supplemental 
File 1) with the new, we can identify which nodes had a 
considerable increase in the number of new descendant 
terms. For example, “COVID-19 vaccine” (120){48} [72] 
has been added to the ontology visualization (Fig. 6). The 
number (120) means that the term “COVID-19 vaccine” 
includes 120 descendant terms, with 48 of those aggre-
gated from 48 descendant nodes of “COVID-19 vaccine,” 
each of which has only one term (less than b = 42), and 
72 representing all other descendant terms of the large 
partial-area “COVID-19 vaccine” before the aggrega-
tion. By expanding this node in the manner supported 
by the OAF tool, we can see some interesting newly 
added vaccine terms such as “Pfizer–BioNTech COVID-
19 vaccine”, “Moderna COVID-19 vaccine”, “Oxford–
AstraZeneca COVID-19 vaccine”, and “Nanocovax”. 
In contrast, the old version includes only one term for 
“COVID-19 vaccine” without any descendant term. 
Another example is “FDA EUA authorized COVID-
19 diagnostic testing device” (345){229}[116] in Fig.  6 
including terms “COVID-19 Nucleic Acid RT-PCR Test 
Kit” and “BinaxNOWTM COVID-19 Ag Card Home 
Test” for which there are no corresponding terms in the 
old version.

Use cases of CIDO
CIDO has been proposed and used in many applications 
by us or the  wider community as exemplified by refer-
ences [15, 44, 52, 62–67]. Five use cases of our own appli-
cation of CIDO are introduced here.

Table 1 Representative clinical metadata types covered in CIDO. All listed examples are considered classes in the ontology

Metadata types Metadata Examples

person (NCBITaxon_9606) person ID (OPMI_0000470), gender (PATO_0001894), year of birth (OPMI_0000473), race (NCIT_C17049), 
ethnicity (NCIT_C16564), care site (OPMI_0000479), geographic location (GAZ_00000448)

specimen (OBI_0100051) specimen ID (OBI_0001616), date of specimen collection (OBIB_0000714), anatomical structure 
(UBERON_0000061)

visit occurrence (OPMI_0000482) visit occurrence identifier (OPMI_0000483), visit start date (OPMI_0000487), visit end date (OPMI_0000488), 
preceding visit occurrence (OPMI_0000492), ER visit (OPMI_0000486)

procedure occurrence (OPMI_0000505) procedure (NCIT_C25218), procedure start date (OPMI_0000508), procedure end date (OPMI_0000510), care 
provider (OPMI_0000163)

drug exposure (OPMI_0000572) and 
device exposure (OPMI_0000554)

drug (CIDO_0000167), drug exposure start time (OPMI_0000565), drug exposure end time (OPMI_0000567), 
medical device (NCIT_C16830), diagnostic kit (CIDO_0000453)

clinical measurement (CMO_0000000) clinical measurement identifier (OPMI_0000582), care provider (OPMI_0000163), measurement time 
(OPMI_0000579), measurement unit label (IAO_0000003), measurement date (OPMI_0000580)

observation period (OPMI_0000575) observation period start date (OPMI_0000577),
observation period end date (OPMI_0000578),
provenance of observation record (OPMI_0000522)
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(1) Ontology-based coronavirus-related knowledge and 
data standardization, annotation, mapping, integra-
tion, and inferencing, supporting advanced COVID-
19 data analysis

As a reference ontology in the field of coronavirus 
infectious disease, CIDO provides a standard representa-
tion and definitions of terms and axioms in various areas 
related to COVID-19 and other coronavirus diseases. 

Fig. 6 The weighted aggregate taxonomy (WAT) for CIDO (version 1.0.306) with 10,853 concepts (b = 42). A white node inside a colored 
rectangular box represents a partial‑area, which is a group of concepts having the same set of nonhierarchical (lateral) relationships and similar 
semantics denoted by the concept listed inside the white node. Relationships are listed inside the colored box (inherited ones are not shown). The 
boxes are color‑coded by cardinalities of their sets of lateral relationships. Upward arrows are the hierarchical relationships connecting partial‑areas. 
The weight of a partial‑area is defined as the number of descendant concepts. A partial‑area with a weight less than b is small and is aggregated 
into its closest ancestor large partial‑area. A large partial‑area having no aggregated partial‑areas is represented as a rectangle white box with one 
number indicating the number of summarized concepts. A large partial‑area having aggregated partial‑areas is represented as a rectangle with 
rounded corners and with three numbers. The first number inside () is the number of summarized concepts including concepts aggregated from 
small partial‑areas, the second number inside {} is the number of small partial‑areas aggregated into it, and the third number inside [] is the number 
of concepts of the partial‑area before the aggregation. See more details in Supplemental File 1
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The above sections have provided details on how CIDO 
standardizes and classifies terms and relations in differ-
ent domains related to coronavirus diseases. Usage of the 
CIDO standard representation enhances data FAIRness, 
annotation, and integration.

The COVoc Controlled Vocabulary for COVID-19 is 
an application ontology developed by the European Bio-
informatics Institute (EMBL-EBI) and the Swiss Institute 
of Bioinformatics (SIB) in March 2020 [14]. The primary 
usage of COVoc is to enable seamless annotation of bio-
medical literature to core databases and tools at ELIXIR 
(a European-wide intergovernmental organization for life 
sciences). COVoc utilizes existing OBO ontologies and 
other vocabularies to augment connections to other use-
ful resources such as the COVID-19 Data Portal (https:// 
www. covid 19dat aport al. org/), as well as assisting in the 
curation and annotation of COVID-19 literature. CIDO 
has been working with COVoc to ontologize many terms 
in COVoc for better COVID-19 data annotations.

In addition to the USA and Europe, CIDO has also 
been applied in many other countries including China. 
CIDO has also been recommended as one of the seman-
tic standards in areas related to clinical data integration 
and annotations by the National Population Health Data 
Center in China (NPHDC). It is included in their popula-
tion health data archive (PHDA) [68] and provides ontol-
ogy services in MedPortal [69]. And it has been also used 
for the construction of knowledge graphs about COVID-
19 [70].

Since CIDO incorporates multiple different types of 
knowledge about coronavirus diseases, it can be used 
both to query and infer new scientific insights and to 
reason from analysis of clinical data. This reasoning is 
enabled by the structure of the knowledge base used by 
CIDO. CIDO provides a T-box vocabulary, i.e., a general 
terminological constraints for representing COVID-19 
phenomena. CIDO’s vocabulary can then be used to gen-
erate new data once instance-level data, the set of which 
in the knowledge base is called the A-box, has been 
ingested into the knowledge base. Data organized by 
CIDO is multiplied in value through the inferences ena-
bled by the ontological axioms included within it.

An example in our ontology-based clinical COVID-
19 data analysis is our analysis of differential COVID-19 
symptoms during the early pandemic [44]. In this study, 
we classified different symptom phenotypes in relation to 
pandemic locations, time periods, and comorbidities. The 
18 most common COVID-19 symptoms were mapped 
to the HPO terms and imported to CIDO. Based on the 
HPO classification, we grouped these symptoms into 
further categories. For example, we grouped 4 COVID-
19 related symptoms (nausea, vomiting, abdominal pain, 
and diarrhea) under abdominal system symptoms, and we 

grouped three symptoms (headache, loss of smell, and 
loss of taste) under nervous system symptoms. In addi-
tion, CIDO provides semantic representation of knowl-
edge learned from clinical data analysis. An example is 
our representation of how symptoms and comorbidi-
ties are linked to COVID-19 disease [44]. Note that we 
emphasize the use of ‘susceptibility’ (a subclass of ‘dispo-
sition’) to represent this knowledge, for example when 
dealing with clinical phenotypes, vaccine/drug adverse 
events, and immune deficiency association.

Another use case is the CIDO modeling of the molecu-
lar mechanisms of acute kidney injury (AKI) [71]. AKI 
is a commonly found phenotype among hospitalized 
COVID-19 patients. Our extensive literature mining 
and analysis of the BioGRID COVID-19 interaction data 
identified 3 key physiological processes (i.e., RAS activa-
tion, complement activation, and systemic inflammation) 
and many interactors like CD147, CD209, CypA, and 
MASP2 that are heavily implicated in these processes. 
CIDO was used to represent our analyzed results, lead-
ing to further understanding of the COVID-19 associated 
AKI mechanisms [71, 72].

(2) CIDO queries for Delta and Omicron differences for 
better mechanistic understanding of virulence and 
transmission

Among many SARS-CoV-2 variants, the Omicron 
strain is more transmissible but less virulent than the 
Delta strain, and both strains are more transmissible 
than the Wuhan reference strain [73–75]. We hypoth-
esized that these differences reflect underlying differ-
ences in amino acid (AA) variants. CIDO includes 92 
specific CIDO terms representing characteristic muta-
tions and 35 further mutations that are not considered 
as characteristic. CIDO allows for easy comparison of 
coronaviral AA variants that are associated with specific 
SARS-CoV-2 variants. To address the above hypothesis, 
we can perform specific queries to compare the AA vari-
ants in the two strains with the aim of uncovering the 
molecular mechanisms underlying the different pheno-
types (Fig. 7).

Figure 7A shows a DL query that searches CIDO for the 
characteristic amino acid variants shared between SARS-
CoV-2 Delta strain and Omicron strain. The results 
show four such variants: D614G and T478K in S protein, 
K856R in pp1a [nsp3] protein, and P314L in pp1b [nsp12] 
protein. S:D614G increases infectivity by allowing for 
a greater binding ratio of the S-protein trimer units to 
hACE2 [76]. T487K has similarly shown to increase 
the actual binding affinity to SARS-Cov-2 [77]. While 
the specific effects of K856R and P314L are unknown, 
both mutations are located in proteins responsible for 

https://www.covid19dataportal.org/
https://www.covid19dataportal.org/
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viral replication [78, 79]. K856R is located in the region 
responsible for cleaving the non-structural proteins from 
pp1ab [78]. P314L however, is part of the RNA polymer-
ase which is responsible for viral replication [79].

Considering the significant role of S protein in binding 
and entry to the host cells, we hypothesize that Omicron 
has AA variants located in S protein that can explain 
the high transmission rate and high immune evasion of 
Omicron. Using the DL query, we found 45 AA variants 
in Omicron (Fig.  7B), including 33 in S, 4 in pp1a, 3 in 
M, 2 in each of E and pp1b proteins, and 1 in N protein. 
Among these AA variants, many have been associated 
with changes in antibody recognition and consequently 
evasion. These include: S:E484K, S:N501Y, S:H69-, and 
S:144Y [76, 80–82] and are predominantly located on the 
N-Terminal Domain (NTD) of the S protein. The riboso-
mal binding domain of the S protein, however, has AA 
variants that affect binding to the S protein, and thus cell 
entry into SARS-CoV-2.

As further evidence of how inferencing with CIDO 
may be used to generate novel information, a Description 
Logic (DL)-query further found 18 AA variants in the 
Delta strain (Fig. 7C), including 10 in S protein, 3 in each 
of pp1b/nucleocapsid (N) proteins, and 1 in each of E/M/
pp1a proteins. Compared to one AA variant (RG203KR) 
in the Omicron N protein, 3 AA variants (D377Y, D63G, 
and R203M) exist in the Delta N protein. The SARS-
CoV-2 nucleocapsid (N) protein is an RNA-binding pro-
tein critical for viral genome packaging [83], and it is also 
involved in the coronavirus pathogenesis [84]. Delta was 
found to have reduced pathogenicity due to altered cell 
tropism but less transmissibility and immune evasion 

ability [74]. The fact of more variants in the N protein in 
the Delta variant likely contributes to the differences in 
transmission and virulence.

(3) CIDO-supported NLP for clinical and basic mecha-
nism research

Given the large volumes of COVID-19 related text in 
the literature and in electronic health records (EHRs), it 
is impossible for humans to extract useful information 
from what is available in a short period of time. In such 
cases, Natural Language Processing (NLP) is required, 
and ontology can be used to significantly enhance the 
performance of NLP [85–87].

Understanding how pathogen and host genes inter-
act during infection can help to identify critical targets 
of intervention or prevention. In this connection CIDO 
has been used to support literature mining in relation to 
the molecular host-coronavirus interactions. SciMiner, 
our in-house tool for mining scientific literature using 
dictionary- and rule-based methods [88], has been inte-
grated with biomedical ontologies and applied to the 
study of vaccine-associated gene interaction networks 
[89, 90]. Using coronavirus-specific genes and proteins 
covered in CIDO and in the Interaction Network Ontol-
ogy (INO) [91], we have applied SciMiner to perform 
literature mining on host-coronavirus interactions. Fig-
ure  8 illustrates a gene-gene interaction network we 
constructed in February 2022 using a subset of SciMiner 
mining results from > 220 K COVID-19-related articles 
in LitCovid [92]. Two noticeable subclusters were iden-
tified, largely related to viral invasion (right), involving 

Fig. 7 Query CIDO amino acid (AA) variants for Delta and Omicron strain comparison and basic transmission and virulence mechanism 
understanding. A DL query for AA variants shared by Delta and Omicron strains. B DL query for amino acid variants that belong to Omicron. C DL 
query for amino acid variants that belong to Delta. Current AA variants for Omicron and Delta strains are also characteristic AA variants
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S protein and host genes such as ACE2 and TMPRSS2, 
and host immune response (left), including cytokines and 
proinflammatory responses. This network summarizes 
the major host-pathogen interactions of SARS-CoV-2 
virus and host and can be further expanded with other 
vaccine components and serve as the foundation for min-
ing analyses.

CIDO has also been used in EHR mining from clinical 
COVID-19 patient data in a recently proposed open NLP 
development framework that addresses the issues of NLP 
process heterogeneity and human factor variations [93]. 
A COVID-19 NLP algorithm was developed under the 
open NLP development framework. Specifically, the algo-
rithm shared through the Open Health NLP (OHNLP) 
(https:// github. com/ OHNLP), was first used to identify 
COVID-19-associated terms including various signs and 
symptoms (e.g., cough and fever) from the EHR notes of 
COVID-19 patients from three N3C participant institu-
tions, including Mayo Clinic, the University of Kentucky, 
and the University of Minnesota at Twin Cities. The iden-
tified terms were then mapped to the codes represented 
in CIDO. These codes are primarily imported from refer-
ence ontologies such as HPO and also cross-referenced 

to other ontologies or terminologies including UMLS 
[94], SNOMED-CT [95], MeSH [96], and MedDRA [97]. 
The usage of CIDO in the open NLP development frame-
work supports the normalization of clinical NLP results 
from different N3C participant sites, leading to enhanced 
data integration and analysis in the future.

(4) CIDO-based machine learning and drug cocktail 
design for COVID-19 treatment

Anti-coronaviral drug design has been our first CIDO 
use case since the beginning of CIDO development 
[12] and we have systematically collected SARS/MERS/
SARS-2 drug data for this purpose [52, 62], along with 
SARS-CoV-2 specific drug and host-coronavirus PPI 
data. These data have been used for machine learning 
and cocktail drug design as detailed below.

The drug-target linkage knowledge recorded in CIDO 
has been used to support candidate COVID-19 drug 
prediction (Smaili et  al., WCO-2020: https:// github. 
com/ CIDO- ontol ogy/ WCO). Specifically, the OPA2Vec 
machine learning method [98] was used to transform 
the CIDO knowledge and other related information to 

Fig. 8 Host‑SARS‑CoV‑2 gene‑gene interaction network using SciMiner on the litCovid paper abstracts. Color represents the type of genes: pink 
(viral), green (host gene directly co‑cited with pathogen genes at the sentence level), and cyan (host gene co‑cited with the green host genes in 
at least 30 or more COVID‑19 papers). Node size corresponds to the number of connections and edge thickness corresponds to the number of 
co‑citing papers

https://www.github.com/OHNLP
https://www.github.com/CIDO-ontology/WCO
https://www.github.com/CIDO-ontology/WCO
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vectors, which were further used as the input to predict 
the drugs targeted for COVID-19. Our preliminary study 
found that the drugs against SARS-CoV-2 exhibit pat-
terns which overlap with but are yet different from exper-
imentally identified drug candidates against SARS-CoV 
and MERS-CoV [99]. More detailed information is being 
produced and analyzed.

It is still a major challenge to develop a fully effective 
drug for COVID-19 treatment. Hundreds of chemicals 
and drugs have been experimentally verified to have 
anti-coronavirus function [52, 100]. Paxlovid from Pfizer, 
Molnupiravir from Merck, and Remdesivir [101] have 
been authorized for emergency usage; however, their 
effectivity remains low. In our previous paper, we pro-
posed a host-coronavirus interaction (HCI) checkpoint 
cocktail that would interrupt the important checkpoints 
in the dynamic host-coronavirus interaction (HCI) net-
work [62]. We hypothesized that such a cocktail of drugs 
would be more effective than the current COVID-19 vac-
cines. The question is then how to design this cocktail 
by identifying the HCI checkpoints and inferring how to 
interrupt them.

CIDO provides a solution to support rational HCI 
checkpoint classification and cocktail drug design as laid 
out in the above cocktail hypothesis. As earlier described 
and shown in Fig. 5, CIDO logically represents host-cor-
onavirus protein-protein interactions (PPIs) and drugs 
targeting the viral or host proteins in the PPIs. Different 
proteins and PPIs have different roles in the HCI lead-
ing to disease outcomes. Major checkpoints such as the 
coronavirus entry (through S-ACE2 binding) and rep-
lication can then be defined. Interestingly, all the three 
drugs, Paxlovid (consisting of nirmatrelvir and ritona-
vir), Molnupiravir, and Remdesivir function by inhibiting 
enzymes responsible for coronavirus replication. Specifi-
cally, nirmatrelvir inhibits SARS-CoV-2 3C-like protease 
(i.e., nsp5) to stop the virus from replicating (Fig.  5), 
and ritonavir slows down nirmatrelvir’s breakdown to 
help keep it in the body for longer at higher concentra-
tions. This 3C-like protease is responsible for cleaving 
polyproteins 1a and 1ab of SARS-CoV-2 into nonstruc-
tural proteins that are critical for viral replication. Mol-
nupiravir and Remdesivir interfere with the action of 
RNA-directed RNA polymerase (RdRp), which is critical 
to viral replication as well. Based on our HCI checkpoint 
cocktail hypothesis, we would propose to include a drug 
targeting the viral entry, which can be used together with 
one of the existing drugs targeting the viral replication. A 
deeper CIDO-based study is ongoing to apply CIDO for 
the cocktail drug design.

We (authors: ZW and YH) have implemented the cock-
tail strategy in our newly developed DrugXplore program 
(http:// medco de. link/ drugx plore/), which extends the 

OmicsViz program [8, 64]. Specifically, we used the host-
coronavirus PPI and drug-target interaction data repre-
sented in CIDO and other resources such as BioGRID 
[102] to find drugs targeting different HCI processes. Fig-
ure 9 shows one result of our DrugXplore data analysis. 
A total of 232 drugs were identified to target three coro-
navirus processes (i.e., viral entry, genome replication, 
and viral release) and/or one host anti-coronaviral pro-
cess (i.e., cytokine activity), and two drugs (i.e., copper 
and artenimol) were shared to target all four processes 
(Fig. 9). Many reports have found copper and artenimol 
and their derivative drugs are potent potential drugs for 
COVID-19 treatment [103–108].

Discussion
This manuscript provides a comprehensive update on 
the development and applications of the community-
based Coronavirus Infectious Disease Ontology (CIDO). 
Our study demonstrates that CIDO provides an ideal 
platform to integrate important data needed to research 
different coronavirus disease-related entities such as cor-
onavirus and host taxonomy, coronavirus proteins and 
genes, protein variants, epidemiology, diagnostic medi-
cal devices, phenotypes, host-coronavirus interactions, 
drugs, and vaccines. The ontological representation of 
CIDO supports integrative representation and analysis 
of COVID-19 and other human coronavirus diseases. A 
visual evolution analysis of CIDO was performed. Five 
groups of CIDO applications are introduced, including 
COVID-19 data annotation and inferencing, Delta and 
Omicron comparisons, clinical data analysis, NLP, and 
COVID-19 drug repurposing.

Given intensive coronavirus research  during the 
COVID-19 pandemic, we have conducted very active 
CIDO development and applications. Within a lit-
tle more than 2 years, CIDO has grown to include over 
10,000 terms, of which over 1500 terms are CIDO spe-
cific. Meanwhile, we acknowledge that CIDO has not yet 
covered all related areas and some areas of representa-
tion (e.g., host-coronavirus interactions, epidemiology, 
and public health) are still not fully covered. Many appli-
cations (e.g., machine learning, N3C data analysis, and 
drug repurposing design) have started but still need more 
time to achieve breakthrough outcomes. However, we 
have demonstrated many progresses and achievements in 
different applications in this manuscript.

An ongoing CIDO development effort is to actively 
model and represent various mechanisms of the molec-
ular and cellular interaction between the hosts and 
coronaviruses. Such modeling will provide the foun-
dation for our rational drug repurposing and vaccine 
development. For example, in our previous drug stud-
ies [52, 62], we extracted and analyzed the interactions 

http://www.medcode.link/drugxplore/
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between anti-coronavirus drugs and their target pro-
teins. These anti-coronavirus drugs were identified to 
be effective against coronavirus infections in  vitro or 
in vivo. It is likely that some of the drug targets partici-
pate in active host-SARS-CoV-2 interactions leading to 
severe COVID-19 disease outcomes. Deeper modeling 
and representation of the intricate host-virus-drug 
interactions would help us in better drug repurposing 
analysis.

We will continue our ontology harmonization effort 
to harmonize different COVID-19 related ontologies 
[14]. We will continue to update CIDO to handle the 
description of coronaviral variants. This is to account 
for immune escape and for previously designed treat-
ments and vaccines losing efficacy. We will keep using 
CIDO as a platform to standardize different corona-
virus-related metadata types and apply them for the 
standardization and enhanced analysis of specific con-
ditions defined in different experimental and clini-
cal studies, and how these conditions would affect the 
disease outcomes. We will also identify and develop 

more applications that implement CIDO for different 
purposes.

Being a community-based ontology, CIDO is com-
mitted to serving the community and to drawing on 
contributions from the community. CIDO is created 
to be open and freely available for use. It is an inter-
operable ontology that reuses and interlinks to existing 
ontologies and resources. We are always ready to accept 
new ideas and critiques. More researchers and develop-
ers are welcome to join our community-based effort to 
advance CIDO and its applications.
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