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ABSTRACT1

The Implicit Association Test (IAT) is a reaction time based categorization task that measures the2
differential associative strength between bipolar targets and evaluative attribute concepts as an approach3
to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and4
here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related5
Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early6
(250-450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in7
this time range is known to index processes related to cognitive control and semantic processing. A central8
focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing9
to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down10
modulation of attention/perceptual processing) may be components in the effective measurement of11
IAT effects, as factors such as physical setting or task instruction can change an IAT measurement.12
In this study we further implicate the role of proactive cognitive control and top-down modulation of13
attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between14
D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where15
more rapid word categorisations driving the IAT effect are present, they are in at least partly explainable16
by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we17
identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal,18
insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-19
related activity. The identified brain regions involved with reduced reaction times on congruent blocks20
coincide with those of previous studies.21

Keywords: Event-related potentials, EEG, implicit association test, LORETA, brain regions, inhibition, word association, N20022

1 INTRODUCTION

The implicit-association test (IAT) is a measure of implicit bias based on the principle that if23
a congruent association between two concepts (e.g. target and stereotypical attribute) is readily24
accepted as accurate by a decision maker (e.g. disease → negative), then reaction time (RT) to25
categorizing such associations as equivalent is very rapid. In contrast, if an incongruent association26
between two concepts (e.g. target and counter-stereotypical attribute) is not readily accepted as27
accurate (e.g. disease → positive), then RT is comparatively slower due to inhibitory processes28
required to override an automatic tendency to associate congruent concepts. Response bias toward29
concept-pairings (e.g. fast responding to congruent; slow responding to incongruent) is not only30
influenced by knowledge of concrete characteristics (e.g. perceptual, functional) of bipolar concepts,31
but also by how we encode emotional valence in these concept associations though this is not always32
apparent in explicit self-report attitude measures (Greenwald and Banaji, 1995).33

The IAT effect or measure of implicit bias is based on the standardised difference (D) between the34
mean RT to congruent and to incongruent pairings. A positive D-score indicates that individuals35
are either slow to respond to incongruent pairings, fast to respond to congruent pairings or a36
combination of both (Forbes et al. (2012)). A decision maker’s D-score can be used to measure37
a range of implicit beliefs reflecting social norms (Greenwald et al. (1998), Fazio and Olson38
(2007)), and these measures have proven effective in predicting later decision-making (Glasman39
and Albarracin, 2006).40

Opponents of the IAT argue that issues like the low degree to which implicit IAT measures fail to41
corroborate with explicit measures such as questionnaires, warrants strong consideration to what42
exactly the IAT is measuring (De Houwer et al., 2009). This line of evidence has been used43
to establish that the IAT reflects automatic beliefs through activation of stereotyped associations44
which are often dissociated from self-reported explicit beliefs (Greenwald et al., 1998), especially45
for socially sensitive topics due to factors such as social desirability (Hofmann et al., 2005).46
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Despite reported dissociation between implicit and explicit beliefs, IAT measures show moderate47
correlation with explicit measures (Hofmann et al., 2005) and are known to be sensitive to a48
number of external influences (Boysen et al., 2006). Such studies ultimately indicate that the49
IAT captures meaningful information but its use must be considered with care.50

An implicit measure of personal connectedness to nature based on latency to bipolar mappings51
of targets (‘Me’, ‘Other’) and attributes (‘Nature’, ‘Built’) is known as the n-IAT. Mean RT to52
congruent (e.g. ‘Nature-me’/‘Built-Other’) and incongruent (e.g. ‘Built-Me’/‘Nature-Other’) map-53
pings are associated with emotional concern (e.g. anxiety) about the environment (Schultz et al.,54
2004). Bruni and Schultz (2010) reported strong associations in the n-IAT with natural relative55
to built environments among a sample of environmentalists. Despite observing similar high scores56
on self-reported measures of concern for the environment, significant correlations with explicit mea-57
sures were restricted to a participant pool of college students and not environmental activists or58
children whom had higher n-IAT scores. Bruni et al. (2011) show the n-IAT is robust to framing59
effects and valence of the stimuli. In the n-IAT there are 4 categories of words used (‘Me’, ‘Other’,60
‘Nature’, ‘Built’). In compatible (congruent) trial blocks a participant is instructed to indicate61
by button press to which of the two category pairings (‘Nature-Me’ or ‘Built-Other’) the stimulus62
(word) belongs. In the incompatible (incongruent) trial blocks these category pairing are ‘Built-Me’63
or ‘Nature-Other’. Task switching is understood to exist in both of these block types as partici-64
pants must switch between classifying stimuli as attributes (‘Nature’, ‘Built’) or self-referential65
target categories (‘Me’, ‘Other’).66

The extent to which the IAT effect is caused by involuntary processes independent of the goal to67
inhibit pre-potent IAT responding remains unclear (De Houwer et al., 2009). Although a great68
deal of research has looked at faking IATs by manipulating response times (Verschuere et al.,69
2009), there has also been some success in faking IATs merely by being instructed to respond in a70
certain way. McDaniel et al. (2009) instructed participants to respond as extravertly as possible71
on an IAT which measured personality types and found that participants could successfully fake72
their level of extraversion. van Nunspeet et al. (2014) highlight a related finding where in an IAT73
to measure bias towards muslim woman, framing the IAT task as a measure of competence (the74
participants ability to process new information) vs. morality (a test to measuring their ‘values’)75
resulted in reduced negative-bias IAT scores when the task was framed in terms of morality. Here76
they show how ERPs associated with early perceptual processing, selective attention and social77
categorization (namely N1, P150, and N450) are sensitive to this framing effect, further indicating78
the role of motivational states in modulating aspects of perceptual attention and conflict monitoring.79
In the next subsection we outline previous studies using EEG measures to study the IAT and in80
the following subsection we posit our research aims with respect to gaps in the existing studies.81

1.1 PREVIOUS IAT-EEG WORK

Studies that have examined ERPs in IAT tasks (hereafter referred to as IAT-ERPs), have implicated82
the late positive potential (LPP) as a component of interest (e.g. Hurtado et al. (2009)) or other83
later occurring (> 300ms) ERP components (e.g. O’Toole and Barnes-Holmes (2009)). Those84
focusing on both early and late activity, such as the study by Williams and Themanson (2011)85
investigating the IAT effect in a group bias IAT (gay-straight) reported no differences across IAT86
conditions for early components (N1, P2) but found later component differences (N400, LPP) for87
concept pairings. This is suggestive that early perceptual and attentional processes might not be88
associated with the IAT measurement in their study, but later semantic categorization processes89
are responding to congruent/incongruent concept pairings.90

While many of the previous IAT-EEG studies examine ERP phenomena in response to the IAT91
task stimuli, others have explored ERP measures taken from separate (but related) tasks on the92
same participants in order to understand the time-course of neural processing of stimuli involved93
with implicit bias. He et al. (2009) demonstrated a relationship between the IAT effect on a94

This is a provisional file, not the final typeset article 2



Healy et al. Neural Patterns of the Implicit Association Test

racial IAT and early P2 and N2 categorization of faces (e.g. White, Black, Asian). Here they95
found correlations between ERP amplitudes in a racial face categorisation task with an IAT-based96
measure of implicit racial bias in a group of non-muslim university students. Additionally, a later97
positive component (LPC) was observed for extended same-different race faces. Ibanez et al.98
(2010) has also shown that early ERP components of race-face processing (e.g. N170 component)99
can be modulated by the valence of evaluative attributes used in the IAT such as positive or100
negative valence words, and also by the social face categories such as in-group or out-group. This101
is suggestive of early integration of contextual information related to racial attitude during face102
processing in the IAT.103

A recent study by Forbes et al. (2012) investigating EEG correlates of the IAT effect in an104
attempt to examine causal factors, showed more positive ERPs at frontal and occipital regions105
at automatic processing speeds, as well as occipital regions at controlled processing speeds, when106
responding to congruent versus incongruent pairings. Here they investigate ERP timings as de-107
terminants of automaticy in order to gain insight into the timing at which implicit and explicit108
processes unfold, as these may be less susceptible (in short duration processes) to control. More-109
over, they find higher D-scores (or bias) were identified by greater coherence between frontal and110
occipital regions in time periods as early as 92ms with no significant difference present between con-111
gruent/incongruent conditions. These findings the authors consider could be indicative of top-down112
modulation of attention and perceptual processing. When taken in tandem with lesion study data113
they indicate the potential for the facilitated performance seen on stereotypic-congruent blocks to114
be associated with more efficient neural processing.115

A number of other ERP components have been observed in the IAT-EEG such as the P3 which is116
associated with a range of cognitive processes one of which is attentional focus on novel, salient or117
unexpected to-be attended items or on distractors (unattended items) which produce an orienting118
response (Polich, 2007). The P3 has also been shown to index explicit attention toward self-referent119
material (Tacikowski and Nowicka, 2010), and also to direct implicit attention in an IAT toward120
self-positivity biased words (Chen et al., 2014).121

Williams and Themanson (2011) demonstrate effects surrounding an N400 ERP where larger122
amplitudes are present in incompatible trials compared to congruent trials ‘suggesting greater se-123
mantic congruency in the compatible condition of the IAT’. They note N400 amplitude for both124
congruent and incongruent blocks at FCz is correlated with IAT incongruent-congruent reaction125
times with no apparent statistically strong relationships present with respect to reaction times126
in either block. The N400 ERP (as being distinct from the error-related N450 (Folstein and127
Van Petten, 2008)) is sensitive to semantic anomalies and violations with structures in the ‘im-128
mediate vicinity of the auditory cortex’ (with a left-hemispheric dominance) associated with the129
processing of semantically anomalous sentences (Van Petten and Luka, 2006). While the N400130
was initially thought to reflect linguistic anomalies and violations, further study has identified its131
role in semantic priming (Deacon et al., 2000) and expectancy (Curran et al., 1993). There132
is evidence that it too does not reflect a purely automatic process (Holcomb, 1988) involving133
attentional related factors. Lau et al. (2008) identify a dominant (left-hemispheric) pattern across134
a range of studies utilising EEG and non-EEG imagining modalities investigating the N400, and135
indicate the posterior middle temporal cortex as being the only area to show consistent effects136
across studies.137

A common finding among these studies is that both early and late time regions of the EEG138
signal following stimulus presentation, demonstrate effects related to IAT congruency condition139
and D-score. Earlier effects typically reflect neural mechanisms at work outside of a post-perceptual140
processing time region, namely one that occurs later within a time window following a response141
(van Nunspeet et al., 2014; Guex et al., 2011). There is no clear consensus on what ERPs and142
related morphologies should be found when examining a new IAT task. For instance, Fleischhauer143
et al. (2014) do not find evidence of significant effects in the N2 (as expected by the authors) or144
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N400 time-range but do find relationships for P1/P3b amplitudes relating to early facilitation of145
relevant visual input and efficiency of stimulus categorization.146

An open question remains from the literature as to what extent the IAT-effect can be modulated147
by external and other top-down related factors.148

1.2 IAT & COGNITIVE CONTROL

Hilgard et al. (2014) investigated the relationship between the medial frontal negativity (MFN)149
during an IAT task as it has been identified as linked to proactive cognitive control. This is distinct150
from a neurocognitive process of reactive control due to switching in incongruent and congruent151
block trials in the IAT task indicated by ‘a positive voltage deflection over frontocentral scalp152
locations’ (D-pos). They posit their analysis and hypothesis in terms of a Dual Mechanisms of153
Control (DMC) model (Braver, 2012) where proactive control relates to ‘the sustained maintenance154
of goal information in working memory that serves to bias information in a goal-congruent manner’155
and reactive control ‘a late correction mechanism for dealing with cognitive and behavioural conflict156
as it arises’.157

A common pattern of negatives have been consistently identified in IAT tasks in time regions158
related to the N2, N450 and related ERPs. Broadly, these ERP components are understood to159
be typically implicated in conflict monitoring processes including proactive and reactive cognitive160
control. Such negativities are often referred to as medial frontal negativities (MFNs). Identifying161
the onset/offset latencies of IAT-EEG sensitive ERP components like these is made difficult by162
their overlapping nature (variable latency), IAT-task parameters/stimulus affecting ERP waveform163
characteristics, the multifaceted nature of ACC-generated signals related to cognitive control and164
external (e.g. environmental) effects driving top-down attentional modulation.165

An Error-related Negativity (ERN) typically follows post-error conflict detection between in-166
compatible responses and the N2 has been found to reflect this monitoring and conflict detection167
function (Yeung et al., 2004). N2 amplitude is modulated by the amount of conflict present168
between possible choices prior to response selection and performance. Chee et al. (2000) used169
functional magnetic resonance imagery (fMRI) on participants completing an IAT and found that170
the left dorsolateral prefrontal cortex (dPFC) and the anterior cingulate cortex (ACC) mediate171
response inhibition in the incongruent condition. The ACC is particularly sensitive to response172
conflict in the IAT, and therefore N2 involvement in IAT performance at least ostensibly reflects173
conflict detection/cognitive control processes. Numerous other studies have implicated the ACC as174
being involved in the generation of a broad range of conflict-monitoring related ERP components175
(Bekker et al., 2005). Clayson and Larson (2013) demonstrated the N2 shows reliable conflict176
adaptation and these conflict adaptation indices were stable in a 2-week test-retest. Larson et al.177
(2014) highlight with regard to cognitive control theory and goal-directed behaviour the N2 ‘rep-178
resents an empirical marker of both a control mechanisms to handle conflict’ and relevant to our179
study ‘a reflection of the level of cognitive control implemented during the ... task’. They highlight180
other issues which can confound interpretations of N2 amplitude such as in flanker trials where N2181
amplitude being ‘sensitive not only to the degree of conflict for a given stimulus but also to the182
extent to which task-irrelevant information is processed’. An important distinction between these183
studies (e.g. Eriksen flanker task) is that in IAT-EEG reactive control, conflict related changes184
arise as a result of task switching within condition blocks. Here, a participant is required to change185
between categorisation of stimuli as evaluative (Nature, Built) or target categories (Me, other) with186
no knowledge of the upcoming trial type Hilgard et al. (2014).187

Given the overlapping time regions of these early negative components in existing IAT studies,188
one of the aims of our study introduced later was to disentangle ERP activity in these time win-189
dows using LORETA source analysis to explain patterns of correlated ERP activity with respect190
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to implicated cortical generators of the N2/MFN and N400-related ERPs (cingulate cortex and191
temporal lobe structures).192

This evidence would suggest ERP activity manifesting negatively in the 250ms-450ms time range193
indexes a range of distinct neural processes related to cognitive control. Moreover, as activity in194
this time range is understood to be involved in proactive control processes, we posit the relation-195
ships observed to D-score (without an apparent explanation based purely on reaction time) may196
be indicating participant variability with regard to enhanced motivational/attentional aspects to197
perform the task ‘as quickly as possible’, thus engendering the measurement of an IAT-effect. Jodo198
and Kayama (1992) show that the N2 amplitude is enhanced by reaction time constraints in a199
go/no-go task varying in amplitude depending on the neuronal activity required for response in-200
hibition, indicating increased amplitudes are related to a ‘greater effort’ needing to be employed201
in tasks where response inhibition is constrained by reaction-time constraints. Such reaction-time202
constraints are integral to the measurement of the IAT effect where faster responding is presumed203
to be less susceptible to being faked.204

Given evidence that groups typically have positive IAT scores on the n-IAT, we suspected those205
participants with lower D-scores (less standardised difference in reactions times) might be engag-206
ing in the a with different (less) motivational effort and consequently not engendering conditions207
needed to capture reaction time effects underlying implicit associations. Other authors highlight208
issues suggesting IAT effect measurement is potentially related to the ‘degree of involvement of209
the participants’ (Vargo and Petroczi, 2013). Agosta et al. (2013) suggest a neutral D-score210
window for scores between -.2, .2 where results are ‘inconclusive’ i.e. have low accuracy.211

1.3 AIMS AND RESEARCH QUESTIONS

In summarising previous related work on IAT-EEG issues we see that an open question exists as212
to what exactly the IAT measures given its susceptibility to be sometimes difficult to relate to213
explicit measures of attitude. In the study reported in this paper, we highlight a potential issue214
here, namely that successful measurement of an IAT effect likely involves factors of participant215
motivation to engage in the task such that some participants might be more likely than others to216
produce an IAT effect.217

Accordingly, in this study we examine how ERP measures in the IAT might offer insight into218
the neural mechanisms underlying the more rapid associations that drive IAT effects. Of primary219
interest to our work was examining how ERP measures underlying both congruent and incongruent220
block types could offer evidence on the neural mechanisms underlying more rapid associations221
driving the IAT effect. Our hypothesis is that such a shared relationship would exist, further222
implicating proactive cognitive control and top-down modulation of attention/sensory processing223
(involved with potential motivational factors) in biasing the IAT measurement.224

In summary, the aim of our study was 1) to examine how ERP measures in the IAT might offer225
insight on the neural mechanisms underlying the more rapid associations that drive the IAT effect226
and 2) given such relationships, to investigate potential sources of correlated brain-activity using227
LORETA as previous IAT research has implicated a range of early negativities overlapping in time228
and scalp topography serving arguably different processes in the IAT.229

2 MATERIAL & METHODS

2.1 PARTICIPANTS

30 participants aged between 18 and 45 years were recruited through advertisement using Dublin230
City University staff and undergraduate/postgraduate email lists. In total, 8 participants were231
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excluded due to noisy EEG, high error response rates, or to ensure a counter-balanced block232
design for the order of congruent/incongruent IAT blocks (i.e. same number of congruent first and233
incongruent first block orderings). The 22 remaining participants were predominantly right handed.234

2.2 APPROVAL BY UNIVERSITY ETHICS COMMITTEE

This study was carried out in accordance with the Declaration of Helsinki - Ethical Principles235
for Medical Research Involving Human Subjects, and also Dublin City University’s guidelines on236
Best Practice in Research Ethics with informed written consent from participants. The study237
was approved by Dublin City University’s Research Ethics Committee (DCU REC/2013/205). All238
participants gave written informed consent.239

2.3 IMPLICIT ASSOCIATION TASK

Participants in this study completed a modified version of the IAT outlined by Bruni and Schultz240
(2010). The purpose of this was to measure the strength of the association between the ‘Me’241
target category and two evaluative attribute categories (‘Nature’, ‘Built’) relative to the associa-242
tive strength of the ‘Other’ target and attribute categories. The experiment consisted of 7 blocks243
with 2 blocks (of 32/48 trials respectively) measuring congruent association RTs (e.g. ‘Nature-244
Me’, ‘Built-Other’), and another 2 blocks (of 32/48 trials respectively) measuring incongruent245
association RTs (e.g. ‘Nature-Other’, ‘Built-Me’). The remaining blocks were practice blocks.246
Congruent/Incongruent ordering was counter-balanced across participants. In total, 80 trials were247
collected for each of the congruent and incongruent mappings respectively.248

Participants were required to sort stimuli into category pairings of ‘Me-Nature’, ‘Other-Built’ in249
the congruent case and ‘Me-Built’, ‘Other-Nature’ in the incongruent case. Each participants’ name250
was used in conjunction with the ‘Me’ category and a random list of other names for the ‘Other’251
category. ‘Tree’, ‘Mountain’, ‘Butterfly’ and ‘Flower’ were used as stimuli for the ‘Nature’ category.252
‘Boat’, ‘Car’, ‘Chair’, ‘Truck’ were used as stimuli for the ‘Built’ category. Category pairings (e.g.253
‘Me-Nature, Other-Built’) appeared in the upper left and right corners of the screen respectively.254
Participants indicated the category to which stimuli belong by pressing keys ‘1’ (pairing appearing255
on left side of screen) or ‘2’ (pairing appearing on right side of screen) on the keyboard with their256
dominant hand.257

Stimuli were preceded with a 1 second central fixation located centrally on-screen. A word stim-258
ulus was presented on screen (centrally) until a response was given. A feedback screen appeared259
post-response based on correct/incorrect categorization. Participants were not required to cor-260
rect response errors. In Figure 2 we show an example of this trial structure within a compatible261
(congruent)-mapping block.262

D-score was calculated for each participant as the difference in mean reaction time between263
trials from pooled incongruent and pooled congruent blocks (incongruent-congruent) divided by264
the pooled standard deviation of trials from both block types (Greenwald et al., 2003).265

2.4 EEG RECORDING AND ANALYSIS PRELIMINARIES

EEG was recorded using a 32-channel ActiCHamp recording system with a 10-20 ActiCap. A266
virtual ground was used as an online reference and later re-referenced offline to a digitally linked-267
mastoids reference (TP9 + TP10). Prior to this, signals were filtered with an FIR sinc hamming268
window filter to between 0.1 Hz and 30Hz. ICA (Independent Component Analysis) was used to269
remove artifacts such as eye-blinks and eye-blink related components in particular those described270
by Plöchl et al. (2012) as CRD (corneo-retinal dipoles), eyelid and eyelid-CRD artefacts. These271
were identified from scalp topography and amplitude characteristics and similarily confirmed using272
EOG (Electrooculogram) channels VEOG and HEOG. ICA weights were trained on 1Hz to 30Hz273
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filtered data and then applied to the 0.1Hz-30Hz band-passed signals. Analysis revealed strong pre-274
stimulus activity related to block conditions. Subsequently, ERP averages were generated on epochs275
extracted from signals band-passed to between 4Hz and 30Hz (we explain this in the next section).276
Epochs were extracted from -200ms to +1,000ms with respect to the onset of word stimuli to be277
categorised for compatible and incompatible blocks. Trials (post ICA clean-up) which exceeded278
70mV or contained other noise-like artifacts were discarded. This resulted in a maximum of 7.5%279
trial loss across participants with one subject exceeding this at near 20%.280

EEG recording was carried out in an electrically shielded environment. Participants were seated281
approximately 70cm from the screen and reported no issues reading word associations.282

EEGLAB 13.32 was used for EEG pre-processing and clean-up. Scalp and statistical scalp plots283
including grand average ERP plots were generated in IPython. SPSS 21 was used for conduct-284
ing repeated-measures ANOVA. sLORETA 20081104 was used for source localization measures285
(Pascual-Marqui, 2002).286

2.4.1 Baselining A baseline of −200ms to 0 pre-stimulus was initially planned for stimulus-287
locked epoch extraction. However, upon analysis of the EEG it was found that a CNV (Continent288
Negative Variation)-like component was present surrounding stimulus onset for many participants,289
and upon further inspection differentiated between congruent and incongruent conditions.290

Baselining serves to remove noise sources like inter-subject differences and slow-drifts, thus allow-291
ing inter-subject measures to be comparable as ERP amplitudes align relative to a zero measure292
(baseline) across electrodes and participants. An expectation here is that pre-stimulus baseline ac-293
tivity is not systematically affected with respect to factors or conditions being measured. Herein294
the issue exists with the IAT experimental structure, that is, a participant is aware of the upcoming295
condition type and thus may, through the recruitment of different cognitive preparatory mecha-296
nisms for that stimulus type (congruent/incongruent), introduce it into the baseline period activity297
which could systemically affect the correct baselining of later ERP components. This is particularly298
relevant as pre-stimulus activity diminishes during the epoch window. One such ERP component299
typically seen, a CNV-E (Contingent Negative Variation), is present following a warning stimulus300
(S1) such as a fixation cross indicating upcoming stimulus (S2) and results in an expectant pattern301
of activity locked to S2.302

In our study, when examining ERP activity in these early time regions in individual participants’303
data plots (without baselining across a range of incrementally high-pass filtered signals) we found304
there was a general trend of pre-stimulus activity extending into early periods of the ERP waveform,305
overlapping notably with the P1. Other IAT-ERP studies might not have considered or encountered306
such issues with some studies not citing whether a baseline was used (Hurtado et al., 2009;307
Barnes-Holmes et al., 2004; Egenolf et al., 2013), others where a prestimulus baseline was308
used (O’Toole and Barnes-Holmes, 2009; Williams and Themanson, 2011; Hilgard et al.,309
2014) and others where a prestimulus baseline was used but measures were taken to lessen the310
impact of pre-stimulus activity such as post-movement ERP activity related to previous trials311
Forbes et al. (2012).312

We found ERP average waveforms from participants without pre-stimulus baselining indicate313
these differences in some instances do not degrade until 1̃50ms and would suggest these differences, if314
included in the baseline measurement, could systematically affect later ERP components, resulting315
in these component time-windows containing ostensible effects.316

Time-frequency decomposition of epochs and related ITC (Inter-Trial Coherence) (Makeig et al.,317
2002) revealed that pre-stimulus activity is comprised of contributions across a wide range of318
frequencies. Inspection of stimulus-locked ICA components revealed these patterns are not well319
captured by a single set of ICs that are not entangled with other post-stimulus trial-locked ERP-320
related activity. Ultimately we felt this precluded us from meaningfully interpreting earlier ERP321
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component time-windows that overlap with this potential systematic bias. Later ERP components322
are subsequently increasingly affected if a pre-stimulus baseline is used if differentiating CNV ac-323
tivity stemming from condition type (congruent vs. incongruent) is present during this baselining324
period.325

One strategy to reduce confounding systematic differences in this late CNV component is not326
to allow the participant to be aware of the upcoming stimulus type/task, that is, by not having327
blocks with consistent conditions allowing for different neural preparatory mechanisms to affect328
pre-stimulus time regions where baselines are typically extracted from. This strategy would deviate329
somewhat from the typical IAT task structure as it would require adding another dimension of task330
switching in the IAT (compared to just between attribute and target categories). Furthermore, in331
this instance at the time of stimulus onset, a participant would need to be aware of the condition332
type, thus further introducing deviations of the IAT experiment structure. Merely changing the333
corner labels to inform the participant would not likely be perceptible until foveation, further334
introducing confounds related to required eye-movements and very likely degrading time-locking335
characteristics of the ERP components being studied. Other strategies include varying the S1-S2336
difference timings to mitigate consistent pre-stimulus-locked activity but this process may merely337
serve to obscure the level to which preparatory-related EEG signals and other time-locked within-338
block ERP activity might be affecting baselines.339

A primary reason for baselining is to remove slow drifts present in the EEG, which when removed340
by high-pass filtering can result in obscured ERP amplitude/latency characteristics (Rousselet,341
2012), particularly so when the ERP is generated as a result of lower frequency band activity.342
An issue with this is comparability with other studies as some ERP components may have lost343
contributing stimulus-locked and phase-coherent related activity in lower frequencies. However,344
doing this allows us to overcome some of the problems for which we use baselining in the first345
place, that is to remove slow drifts and other noise sources which complicate comparison of ERP346
amplitude activity across participants.347

The restrictions imposed by the IAT experimental design give rise to a number of confounds348
when adopting a typical ERP processing strategy. This does not reflect a fundamental flaw in the349
IAT task itself, but rather a characteristic of it that does not fit the typical ERP processing. In350
this study we high-pass filter EEG signals in order to overcome these limitations at some cost to351
the comparability of amplitude characteristics to other EEG studies. By not doing so, however, we352
introduce systematic confounds across the analysis time-window. Examination of the impact of this353
high-pass filtering on ERP waveforms would indicate it is largely non-detrimental to activity in early354
ERP-component time-windows (N1, P2, N2, P3) but does largely affect (attenuate) stereotyped355
late P3b activity, which is notably comprised of lower EEG frequencies in the delta band (0-4Hz)356
(see Demiralp et al. (2001b)). We focus our analysis on time regions where activity related to357
N1, P2, N2 and early P3 contributions are present.358

Bidet-Caulet et al. (2012) outline similar issues encountered pre-stimulus with regard to the359
baselining and CNV activity, and they use an approach of high-pass filtering at 4Hz in order to360
effectively analyze early ERP stimulus-locked ERP components.361

ERP plots (including a range of other scalp plots and graphs) used in this study are given in362
the supplementary data for this paper using a variety of frequency and baselining methods to363
further highlight this problem and how our solution results in earlier ERP waveform characteristics364
being largely retained, both in amplitude and timing. Time-frequency wavelet analysis too indicates365
there are different frequency and spatial topographies for the ERP components of interest and their366
correlative relationship to D-score, indicating high-pass filtering artefacts do not contribute to this367
result.368

2.4.2 Electrode Reference Choice Other ERP studies investigating the IAT have typically used369
an averaged (linked) mastoid reference (TP9 + TP10). EEG reference choice is known to affect the370
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spatial, temporal and polarity characteristics of ERP waveforms and hence the chosen reference site371
should be carefully considered not only to allow comparability of results to other studies but also372
such that it is not affected by activity related to the factors being investigated in the experiment.373

The spatial dispersion of statistical activity seen in statistical scalp plots in our study suggests374
that the linked-mastoid reference choice may not be entirely optimal and should at least war-375
rant consideration as these electrode sites are located near to temporal-lobe regions implicated in376
language-processing. While there is generally high agreement in our study for the locus points of377
statistical activity between linked-mastoid and common average reference schemes, differences are378
evident notably in terms of higher spatial dispersion of statistical activity for the linked-mastoid379
reference to a common average reference scheme. In the supplementary appendix to this paper, we380
provide grand average ERP waveforms using a common average reference scheme to highlight the381
potential contribution of activity at the TP9 and TP10 reference sites. Similar issues surrounding382
EEG referencing schemes are also considered by Dien (1998), Hagemann et al. (2001) and Luck383
(2005).384

2.5 ANALYSIS OF NEURAL DATA

2.5.1 ERP time-windows and Channel Selection : ERP time-windows were determined by385
inspecting grand-averaged ERP plots across participants irrespective of condition type. ERP time-386
windows were selected so as to include within the window a primary, and any secondary, troughs387
or peaks characteristic of ERP activity of that type. An important point to note is that peaks in388
ERP averages are not the same as ERP components, as ERP components contributing to averaged389
activity can have varying latencies and overlap. In this work we refer to ERP time-windows as time390
periods known to contain stereotyped underlying ERP activity. A further discussion of this can be391
found in Luck (2005).392

There are topographic variations of ERP activity in the IAT literature implicating a number of393
fundamental ERP components active in time regions corresponding to the P1, N1, P2, N2 and394
P3. To our knowledge, as we are first to investigate ERPs in the nature-IAT, we did not preselect395
explicit channel-ERP mappings in our study. Instead, we identified these channels and time regions396
from visual inspection of ERP time-topographies on grand-averaged epochs - averaging across397
participants and conditions. With respect to time regions and channels, the literature identifies a398
variety of stereotyped ERP morphologies that can be present in the IAT. Importantly here, there399
are variations in expected ERP channel × time morphologies determined by the IAT task itself400
and the stimulus content used (pictures vs. words) introducing uncertainty with regards to what401
the expected ERP patterns will be in an untested IAT.402

In our study, the N100 was identified as being present in the 110ms-150ms time window, the403
P200 in the 160ms-230ms time window, a pattern of fronto-central tending negativity hereafter404
referred to as N200 in the 250ms-310ms time window and a frontal P300-like component in the405
330ms-450ms time-window.406

From the existing IAT (and EEG) literature we know a broad range of ERP components are to407
be expected such as the P1, N2, P2, P3, and N400 in the IAT-EEG. From N200 studies, we know408
variations of this component can manifest with anterior (Fz), central (Cz) and posterior (Pz) scalp409
distributions. Similarly, N400 ERP effects are described occurring in overlapping time periods on410
these electrode locations. Given our focus investigating early negative ERPs (N2, N400, MFN)411
electrode sites Fz, Cz and Pz were chosen as regions of interest (ROIs) with regard to the IAT and412
key electrode sites for comparisons.413

2.5.2 Repeated-Measures ANOVA : Repeated-measures ANOVAs were used to identify signifi-414
cant neural activity during ERP time regions. Channels for each repeated-measures ANOVA were415
identified from grand-average ERP plots without differentiating trials based on D-score type or416
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condition (congruent/incongruent), selecting those that displayed stereotyped ERP activity of the417
N1, P2, N2 and P3.418

Repeated-measures ANOVA models were used for each identified ERP time frame examining419
electrode site × Condition (Congruent/Incongruent) as within-participant factors and a between-420
participant factor of ‘D-score range’ identifying high, medium and low D-scorers (a 7/8/7 split, 22421
in total). Greenhouse-Geisser corrected p-values and statistics are reported.422

2.5.3 Repeated-Measures ANOVA Post-hoc Analysis : Correlation based measures are used as423
part of our post-hoc RM-ANOVA analysis given the presence of between-subject effects of D-score424
magnitude. These are presented both in terms of contrast, explaining significant effects found in425
our ANOVAs and in parallel as measures to capture a type of statistical relationship not readily426
captured by repeated-measures ANOVA analysis.427

Correlations are examined using EEG time-window average amplitudes. In Table 2, we show428
Pearson-r correlational coefficients for behavioural measures and ERP time-window activity across429
selected electrode sites Fz, Cz and Pz, and for electrodes of peak correlation.430

2.5.4 The LORETA Approach : eLORETA is used alongside correlation analysis with D-score,431
to identify potential functionally and spatially distinct brain regions that are active in ERP time432
ranges. Given the complexity of the resulting relationships, either temporal or spatial in nature,433
which are introduced by utilizing reference channels that are not electrically silent (i.e. located434
near to language areas), scalp plots of ERP or statistical activity can be misleading as activity at a435
particular site might be indicative of two or more channels (and/or ERP components) interacting436
in a complex way.437

In this study, LORETA is used to identify, within the precision of LORETA’s localization error,438
brain regions and structures involved with early ERP component activity which gives a better sense439
of cortical regions that are involved. Both approaches are carried out here as they are considered440
complimentary in understanding brain activity driving early IAT-ERP effects.441

Reported LORETA correlation p-values are adjusted for multiple comparison and presented in442
the format [r=.51, p=.005].443

2.6 CONVENTIONS USED IN THE ANALYSIS DESCRIPTION

Further references to congruent and incongruent EEG and reaction times will be described in a444
format of measure-type(measure-src): RT (C) = congruent reaction time, RT (I) = incongruent445
reaction time, RT (I −C) = RT (I)−RT (C), E(C) = congruent EEG amplitude measure, E(I) =446
incongruent amplitude measure and E(I − C) = E(I)− E(C).447

Significant trends are reported for alpha < 0.05 and weakly significant trends for alpha < 0.10.448

Statistics for both multivariate and univariate are reported inside square brackets e.g. [r(21) =449
0.8, p = 0.001].450

2.6.1 Other methods : There is evidence for the presence of non-linear relationships surrounding451
ERP measures with regard to IAT-effect in our experiment as has been found in other studies452
Williams and Themanson (2011). Although we do not explore these relationships in the paper,453
we include them in the supplementary materials.454
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3 RESULTS

3.1 BEHAVIOURAL IAT ANALYSIS

Analysing the behavioural RT data for participants between congruent (M = 731.73 ms, s.e. =455
296.13) and incongruent (M = 822.96 ms , s.e. = 338.2) conditions, there was a significant difference456
found in reaction times. Reaction times for each condition for each subject submitted to a Wilcoxon457
signed-rank test revealed significant differences in reaction time [Z=19, p = 0.000483]. This confirms458
our group shows a pro-nature bias.459

In Figure 1 we can see that a significant correlation exists between a participant’s D-score and460
reaction time in congruent (Pearson-r p = 0.01023) conditions compared to incongruent (Pearson-r461
p= 0.74158) conditions. This indicates our measured IAT-effect is being driven by reduced reaction462
times in congruent blocks without corresponding related increases in incongruent block reaction463
times.464

3.2 NEURAL IAT ANALYSIS (ANOVA)

3.2.1 Repeated Measures ANOVA analysis Amplitude averages across participants for ERP time-465
windows were submitted to a repeated measures ANOVA with congruency conditions and channels466
as within-subject factors, and D-score range as a between-subject factor. D-score ranges were467
acquired by using a 7/8/7 split (by D-score) of available participants. Effects with a significance of468
alpha < 0.10 are reported.469

N100470
471

The N100 was examined across electrode sites Fz, Cz, Pz, F3, F4, C3, C4, P3, P4, CP1, CP2,472
FC1 and FC2. A significant main effect was found for channels [F (2.914, 55.357) = 37.682, η2 =473
0.665, p < 0.001].474

P200475
476

The P200 was examined across electrode sites Fz, Cz, F3, F4, C3, C4, FC1 and FC2. A significant477
main effect for channels was found [F (2.562, 48.683 = 35.202, η2 = 0.478, p < 0.001].478

N200479
480

The N200 was examined across electrode sites Fz, Cz, Pz, F3, F4, C3, C4, P3, P4, CP1, CP2, FC1481
and FC2. Main effects were found for channels [F (2.588, 49.171) = 24.279, η2 = 0.561, p < 0.001],482
conditions [F (1, 19) = 3.252, η2 = 0.146, p = 0.087] and D-score range [F (2, 19) = 4.866, η2 =483
0.339, p = 0.02]. A weakly significant interaction effect for condition × D-score range was found484
[F (2, ) = 1.34, η2 = 0.124, p = 0.079].485

P300486
487

The P300 was examined across electrode sites Fz, F3, F4, FC1, FC2, Pz, P3, P4, C3, C4, Cz,488
CP1, CP2, CP5 and CP6. Main effects were found for channels [F (2.580, 49.023) = 15.586, η2 =489
0.451, p < 0.001] and D-score range [F (2, 19) = 7.529, η2 = 0.442, p = 0.004]. No main effect was490
found for congruency condition.491
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3.3 NEURAL CORRELATES OF D-SCORE

3.3.1 N100, P200492
493

As neither the N100 or P200 time windows emerged with significant effects (i.e. p<.10) we do494
not report them further in this study.495

3.3.2 N200496
497

Repeated-measures ANOVA revealed a number of significant effects for the N200 for between-498
subjects (i.e. D-score is predictive of ERP amplitudes) and of within subject-effects, such that N2499
amplitudes congruent (M = -1.983 mV, s.e. = .274) were enhanced (more negative) compared to500
incongruent (M = -1.798 mV, s.e. = .25) conditions. There was an effect for between-subjects for501
D-score range indicated mean amplitudes more negative for high D-scores (M=-3.037 mV, s.e. =502
.456) compared to low D-scores (M=-1.339 mV, s.e. = .456) and different form medium D-scores503
(M=-1.295 mV, s.e. = .426).504

Condition× D-score emerged as a significant interaction where medium D-scores displayed greater505
mean amplitude differences between congruent (M=-1.537 mV, s.e. = .486) and incongruent con-506
ditions (M=-1.053 mV, s.e. = .414) compared to differences between conditions for high D-score507
congruent (M=-2.978 mV, s.e. = .486) and incongruent (M=-3.095 mV, s.e. = 443), and low D-score508
congruent (M=-1.433 mV, s.e. = 486) and incongruent (M=-1.245 mV, s.e. = .443) conditions.509

Significant linear relationships were present for the N200 time-window examining Pearson-r cor-510
relation between D-score congruent [CP6, r = -.54, p = .009] and incongruent conditions [C4, r =511
-.54, p = .009] (Table 2).512

Examining Table 2 we see see these linear relationships are primarily constrained with respect to513
D-score × amplitude with no significant (univariate) correlations present at electrode sites (matched514
for the electrode site with the most significant correlation) comparing other behavioural measures.515
Here we can see stronger patterns of correlation across electrode sites for congruent reactions times516
to neural measures than incongruent reactions times. Similarly, we see increased correlations for the517
standardised reaction differences between congruent blocks (D-score) compared to non standardised518
differences (i.e. rt(I-C)).519

LORETA analysis shown in Figure 3 (a and b) reveals characteristic shared activations between520
congruent and incongruent conditions in similar brain structures with these outlined in Table 1 and521
Figure 4. Broadly, most significant correlations with D-score were found in areas extending from522
anterior, inferior, and insular regions of the left temporal lobe (BA13) and postcentral gyrus (BA523
43) Table 1 (BA42, BA13, BA43 and BA22).524

3.3.3 P300525
526

Repeated-measures ANOVA for the P300 time-window revealed a significant relationships for527
between-subjects effect for D-score range such that mean ERP amplitudes were larger in high528
(M=.763 mV, s.e. = .140) compared to medium (M = .119 mV, s.e. = .131) and low (M=.087 mV,529
s.e. = .130) groups.530

LORETA revealed significant patterns of activation revealed as correlated with D-score for congru-531
ent and incongruent conditions. Figure 3(c and d) show the respective congruent and incongruent532
correlated activations.533

More prominent differences emerge, differentiating correlated neural activity of the congruent534
and incongruent conditions for regions surrounding: Medial Frontal Gyrus (BA 10) being more535
correlated with D-score in congruent [r = .605, p = .0732] v. incongruent conditions [r = .459, p =536
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.333], and for Postcentral Gyrus (BA 3) in congruent [r = .0, p = .99] v. incongruent conditions [r537
= .627, p = .037](Table 2).538

Non-standardised reaction time differences here (rt(I-C)) seem to show increased patterns of539
correlation to neural measures respective to D-score (compared to the case for the N2) suggest-540
ing that differences in reaction times (related to response-locked activity) are more likely driving541
contributions here for the IAT measurement.542
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Table 1. LORETA-derived regions of peak correlation of D-score across congruent and incon-
gruent conditions. Rows marked with * are provided to allow comparison of matched MNI (x,y,z)
coordinates between respective maximima of peak correlation between congruent and incongruent
conditions.

Component Condition Area Brodmann Side R P X Y Z
Area

N200 C Temporal Lobe - STG 42 L .619 .0530 -55 -30 15
Temporal Lobe - STG 22 L .6 .0734 -45 5 -5
Insular - Sub-Lobar 13 L .595 .0786 -40 5 -5
Postcentral Gyrus* 43 L .598 .075 -65 -20 20

Insular - Sub-Lobar* 13 L .550 .144 -45 0 -10
I Postcentral Gyrus 43 L .643 .041 -65 -20 20

Insular - Sub-Lobar 13 L .605 .0812 -45 0 -10
Temporal Lobe - STG* 42 L .541 .190 -55 -30 15
Temporal Lobe - STG* 22 L .521 .230 -45 5 -5
Insular - Sub-Lobar* 13 L .560 .149 -40 5 -5

P300 C Cingulate Gyrus 24 R .645 .033 10 -20 45
Insular - Sub-Lobar 13 L .623 .0548 -45 -25 20

Medial Frontal Gyrus 10 R .605 .0732 15 60 5
Superior Temporal Gyrus* 22 L .534 0.1842 -50 5 -5

Cingulate Gryus* 31 R 582 .103 20 -25 40
Postcentral Gryus* 3 R 0 .99 30 -25 40

I Superior Temporal Gyrus 22 L .645 .0244 -50 5 -5
Cingulate Gryus 31 R .627 .037 20 -25 40

Postcentral Gryus 3 R .627 .037 30 -25 40
Cingulate Gyrus* 24 R .570 .095 10 -20 45

Insular - Sub-Lobar* 13 L .501 .231 -45 -25 20
Medial Frontal Gyrus* 10 R .459 .333 15 60 5
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Table 2. Pearson-r correlation coefficients across behavioural and EEG activity measures. Corre-
lated variable pairs presented in the first column as Behavioural Measure, EEG Measure. * indicates
univariate p-value < .05 and ** indicates univariate p-value < .1. D=D-score, C = Congruent, I =
Incongruent, rt() = Reaction Time. Max columns represent the electrode site with smallest p-value
for D-score correlated with EEG measure (first 4 rows) where electrode site for each EEG measure
type (C+I, I-C, C, I) is maintained across subsequent comparisons as a way to interpret the source
of EEG activity driving correlations with D-score at that site.

N200 P300
Fz Cz Pz Max Fz Cz Pz Max

D,I-C -0.21 -0.14 -0.08 0.39(P8) 0.35 0.40 0.50** 0.50**(Pz)
D,C+I -0.46** -0.47** -0.42 -0.54**(C4) 0.57** 0.52** 0.34 0.62**(C4)
D,I -0.48** -0.49** -0.44** -0.54**(C4) 0.61** 0.57** 0.47** 0.64**(C4)
D,C -0.44** -0.45** -0.39 -0.54**(CP6) 0.51** 0.42 0.13 0.54**(F4)
rt(I-C),I-C -0.17 -0.11 -0.04 0.36(P8) 0.29 0.34 0.37 0.37(Pz)
rt(I-C),C+I -0.26 -0.32 -0.36 -0.38(C4) 0.51** 0.46** 0.37 0.57**(C4)
rt(I-C),I -0.29 -0.33 -0.37 -0.39(C4) 0.55** 0.51** 0.44** 0.60**(C4)
rt(I-C),C -0.25 -0.30 -0.34 -0.41(CP6) 0.48** 0.39 0.22 0.50**(F4)
rt(C),I-C 0.14 0.15 0.10 -0.09(P8) -0.11 -0.10 -0.17 -0.17(Pz)
rt(C),C+I 0.35 0.36 0.35 0.27(CP6) -0.32 -0.33 -0.13 -0.28(F4)
rt(C),I 0.35 0.37 0.36 0.40(C4) -0.30 -0.30 -0.15 -0.27(C4)
rt(C),C 0.33 0.32 0.30 0.23(CP6) -0.29 -0.30 -0.03 -0.24(F4)
rt(I),I-C 0.05 0.10 0.09 0.11(P8) 0.04 0.08 0.03 0.03(Pz)
rt(I),C+I 0.22 0.20 0.16 0.19(C4) -0.05 -0.09 0.07 0.01(C4)
rt(I),I 0.21 0.20 0.17 0.19(C4) -0.01 -0.03 0.08 0.05(C4)
rt(I),C 0.21 0.17 0.13 0.01(CP6) -0.04 -0.09 0.09 0.02(F4)
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4 DISCUSSION

The aim of the study reported here was to examine how ERP measures in the IAT might offer an543
insight into the neural mechanisms underlying the more rapid associations that drive IAT effects.544
Of primary interest in our work was examining how ERP measures underlying both congruent and545
incongruent block types might offer evidence of the neural mechanisms involved with these rela-546
tively more rapid associations. In our results from behavioural measures we find average congruent547
reaction times are significantly correlated with participant D-score, while the reaction times in in-548
congruent conditions are not. From this we would expected neural activity predictive of D-score to549
be present only in congruent blocks. Similarly, we would expect ERP measures for time-windows550
during the incongruent blocks to be largely unpredictive of D-score, however, we find this is not551
the case.552

Our hypothesis was positioned such that in a situation where the measurable IAT effect is pri-553
marily modulated by reduced congruent reaction times, in the respective incongruent blocks we554
should find shared patterns of ERP activity correlated with the size of IAT effect, given the in-555
volvement of proactive cognitive control and other top-down control processes. This is related to556
the motivational/attention aspects in the IAT affecting the level to which an implicit bias might be557
measured. Given evidence that groups typically have positive IAT scores on the n-IAT, we suspected558
those participants with lower D-scores (a lower standardised difference in reactions times) might559
be engaging in the task differently due to factors like less motivational effort thus not engendering560
conditions necessary to capture IAT effects.561

The aim of searching for such evidence was to disentangle cortical generators involved with the562
production of an IAT effect in early time periods of the ERP (early negativities between 250-450ms)563
following stimulus presentation that have been previously implicated in other studies to be sensitive564
to the IAT effect size, such as cognitive control or error monitoring.565

In our study we identified an N2-like ERP component in the 250-310 ms range. While we have566
labelled activity in this time-region as indicative of an N2 ERP, there is close overlap in time regions567
of an N400 described in other related EEG-IAT studies. Importantly, some of these studies iden-568
tify correlational relationships between congruent, incongruent and incongruent-congruent activity569
ERP measures and D-score (Williams and Themanson, 2011). The N400 has been widely used570
as a measure of semantic congruency for words (Kiefer, 2002) and statements (Kutas and Hill-571
yard, 1980). Williams and Themanson (2011) report a significantly smaller N400 for congruent572
conditions compared to incongruent conditions in an IAT suggestive that the N400 is an indicator573
of semantic (integration) congruency where greater incongruency results in larger (more negative)574
amplitudes. LORETA analysis estimating the source of correlated neural activity and D-score for575
both block types in our study implicate a number of left-temporal cortical regions, known gener-576
ators in the N400 and more widely understood to be involved with language processing (Maess577
et al., 2006). Lau et al. (2008) identify a dominant (left-hemispheric) pattern across a range of578
studies utilising EEG and non-EEG imaging modalities investigating the N400, and indicate the579
posterior middle temporal cortex as being the only area to show consistent effects across studies.580
It would seem that although no apparent N400 ERP component is present in our averaged wave-581
forms, there is evidence overlapping ERP activity from the N400 time-frame might present during582
our N200 analysis window.583

Forbes et al. (2012) suggest that a number of brain regions surrounding the left temporal lobe584
(as indicated by integrating both EEG source localisation and lesion studies) are implicated as585
being important in the production of reduced congruent reaction times in the IAT. Interestingly,586
they find patients (lesion) vs. controls show no significant difference on incongruent reaction times587
or D-scores but show statistically significant differences where patients were slower to respond in588
congruent conditions. Similarly, they identify that volume loss in large regions of the left insula589
exhibit robust associations with slower reaction times in congruent blocks. In the context of our590
results, these findings support the role of left temporal/insular brain regions as being important in591
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the production of an IAT effect. Another similarity in results is a strong indication that a number592
of shared brain structures are recruited across both congruent and incongruent conditions, but593
importantly there are differences associated with activations, suggesting different recruitment of594
brain regions based on condition.595

The N2 has been found to reflect a conflict detection function (Yeung et al., 2004) between596
possible choices prior to response selection and performance. Hilgard et al. (2014) show that597
the medial-frontal negativity (MFN) ERP between 250-450 ms post stimulus at midline regions is598
larger for incongruent mappings, compared to congruent mappings, indicating increased proactive599
control is required during incongruent blocks. Although we find congruent (instead of incongruent)600
mappings in our IAT generated seemingly more negative going waveforms in this time region,601
their study highlights how the involvement of reactive control in the IAT (due to task switching)602
generates a similar temporal and spatially overlapping positive ERP (D-pos) in this time region603
which might be one explanation for the relationship we found. Importantly, as relative differences604
in these ERP measures between congruency conditions have been to understand congruency effects605
with respect to semantic integration and cognitive control, we find absolute measures here to be606
involved as well. There is other evidence that for early ERP negativities being sensitive to task607
constraints, for example Jodo and Kayama (1992) show that the N2 amplitude is enhanced by608
reaction time constaints on a go/no-go task.609

One important difference in our study is that we find an N2 component where other studies610
have not, in the IAT task. A possible explanation for this is the stimuli used in the n-IAT task;611
differences exist when comparing waveforms as a function of content used in the task, i.e. pictures612
versus words (Williams and Themanson, 2011). Fleischhauer et al. (2014) do not find evidence613
of significant effects in the N2 (as expected). Although the authors here are considering implicit614
measures of neuroticism, the stimuli and experimental structure are similar to ours.615

Caution is warranted in interpreting the P3-like activity identified in our study as it differs616
from the more classical and response-locked P3b found in other IAT-EEG studies. The P3 has617
been shown to index attention towards self-referent materials in an IAT (Chen et al., 2014)618
so our discovery of the involvement of this component in an IAT responding to both congruent619
and incongruent self-referent mappings was somewhat expected. The P3b component (the more620
common P3 variant identified in existing IAT studies) is notably comprised of lower-frequency621
EEG activity (0-4 Hz). As we use high-pass filtering, P3-related ERP activity is highly attenuated622
in our ERP measures. Also, the timecourse of this P3-like activity in our study overlaps with623
time regions where other studies have found N400 to be present. Importantly, the N400 is not624
necessarily characterised by a negative deflection in the ERP waveform, as it is measured relativity625
as a more negative going signal with respect to other experimental conditions. The P3a is a frontal-626
central tending ERP and is seen in target detection tasks to novel and infrequent stimuli, and it also627
reflects attention mechanisms during task processing (Polich, 2007). Wavelet analysis indicates this628
component is partly comprised of theta band (4-8 Hz) activity (Demiralp et al., 2001a) and source629
localisation analysis reveals a wide range of cortical generators. Our preprocessing strategy - using630
high-pass filtering to avoid the use of pre-stimulus baselining confounds - compromises a robust631
interpretation of this frontal P3-like activity with respect to existing ERP literature. Although632
we find, however, in a variety of alternatively explored filtering strategies this earlier occurring633
frontal P3-like activity remains present particularly in conjunction with its posterior counterpart634
(P3b). As other IAT-ERP indices have been implicated in this time-region we choose to retain635
this time-region in our analysis. There is strong suggestion of overlapping cortical generators of636
IAT-sensitive ERPs in both our N2 and P3 analysis time windows as can be seen in our LORETA637
analysis particularly for the incongruent block conditions. This would indicate ERP activity might638
not only be modulated by differences in amplitude of underlying components but also latency.639
We do find, however, significant patterns of correlated activity using LORETA of brain-regions640
typically implicated in the generation of the P3 (notably cingulate cortex and medial frontal gyrus)641
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(Volpe et al., 2007). Egenolf et al. (2013) similarly examine covarying relationships of brain-642
region activation to the magnitude of behavioural IAT effect and find differences in a time window643
of 510ms to 710ms between incongruent and congruent ERP activity that is proportional to the644
IAT effect, a time region largely corresponding to the P3 ERP.645

Given previous results of the n-IAT we would expect averaged D-score across participants to be646
more positive (i.e. groups of participants in previous studies tended to show a stereotypic pro-nature647
IAT effect like we similarly have). These results might indicate the nIAT-effect cannot be measured648
reliably on all participants, due to differences such as motivation during the task and/or different649
patterns of top-down control employed in the task. The presence of such an effect is important in650
understanding instances where the IAT might be failing to measure an expected bias and would be651
a potential source of detrimental noise in measuring relationships to explicit measures.652

This is a provisional file, not the final typeset article 18



Healy et al. Neural Patterns of the Implicit Association Test

5 CONCLUSIONS

The results presented in this paper indicate that EEG is informative in understanding cognitive653
processes behind the n-IAT. Our results both confirm patterns of activity seen in other IAT studies654
and also extend these by showing novel behavioural-ERP predictive relationships. Importantly, we655
identify that N2-/MFN- related amplitudes in our ERP analysis time window show a correlational656
relationship with D-score, highlighting the potential involvement of participant motivation via657
proactive cognitive control and top-down attention related mechanisms as a source of noise in the658
successful measurement of an IAT-effect. This has broad implications for other studies utilising the659
n-IAT (and other IATs in general) in that it might offer explanation as to why IAT measures can660
often fail to correlate with explicit measures. Such a line of evidence would indicate other secondary661
measures (including EEG) alongside the IAT may be useful in measuring these motivational related662
factors so as to enable an experimenter to disqualify participants who may be IAT averse.663

One notable difference between this study and other studies is how the data is preprocessed due664
to the presence of pre-stimulus locked ERP activity related to the CNV. Although this potential665
problem of the IAT-ERP and it confounds introduced by standard baselining exists, there is little666
reported in the IAT literature that it has been at least taken account of.667

One area of future work to be explored next is to examine predictive relationships and func-668
tional/structural brain differences that emerge within, and across, participants for a variety of IAT669
tasks.670
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Figure 1: Reaction times across subjects broken down across congruent and incongruent conditions
(y-axis) with calculated D-scores (x-axis)

FIGURES

(a) Fixation Cue

−→

(b) Word Stimulus

−→

(c) Feedback

Figure 2: Depiction of trial structure within a congruent block. From left to right: a fixation cross
is presented on screen for 1 second, then a word is presented for categorisation and following a key
press a feedback screen is presented for 1 second indicating whether the response was correct. 80
were recorded for each congruency condition.
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(a) N200 (Congruent) - p = .0512

(b) N200 (Incongruent - p = .035)

(c) P300 (Congruent) - p = .0332

(d) P300 (Incongruent) - p = .0238

Figure 3: Correlated LORETA voxel activity and D-score. D-score is correlated with congruent and
incongruent ERP time-window averages across participants localising activity driving correlated
scalp EEG measures. Multiple comparison corrected p-values for peak correlations are presented
on top of each condition × ERP plot.

This is a provisional file, not the final typeset article 28



Healy et al. Neural Patterns of the Implicit Association Test

(A) N200 (Incongruent): BA42 Left

(B) N200 (Incongruent): BA13 Left

(C) P300 (Congruent): BA24 Right

(D) P300 (Congruent): BA10 Right

(E) P300 (Incongruent): BA22 Left

(F) P300 (Incongruent): BA31 Right

Figure 4: Selected ROIs revealed through LORETA D-score regressions.
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Figure 5. ERP averages across electrode sites for high, medium and low D-scorers across con-
gruent/incongruent conditions using a linked-mastoids reference. Signals are filtered in the range
4Hz-30Hz.
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