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Quantum Meaning 

 

1. Introduction 

On one view of quantum theory1, a quantum state has the role of advising physically situated 

agents rather than representing the condition of physical systems. The advice concerns the 

cognitive significance of a magnitude claim S: σ has (QεΔ), locating the value of magnitude Q 

on system σ in set Δ of real numbers. The quantum state offers advice both on the content of a 

magnitude claim S and on its credibility, provided it has enough content. The advice is 

authoritative—anyone who both accepts quantum theory and agrees on the correct quantum state 

is bound to heed it. 

 On this view, the content of a magnitude claim is a function of its place in a web of 

material inferences connecting it to other claims, and hence to perception and action. A quantum 

state offers advice on the content of a magnitude claim by controlling its place in this inferential 

web. It thereby adds a contextual element to the content even of claims about the properties of 

familiar objects like gross experimental apparatus and the moon. But by modeling the behavior 

of quantum states, quantum theory itself reassures us that only for claims about currently 

unfamiliar objects does the consequent modification of content amount to anything.  

 

2. Two functions of the quantum state 

The quantum state has one universally acknowledged function in quantum theory. When applied 

to a quantum state, the Born Rule yields probabilistic claims of the form Prob(S)=p, where S is a 

claim about a magnitude on a system (such as a component of its position, momentum, or spin). 
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The Born Rule also yields some joint probabilities Prob(S1,S2, ..., Sn )=p where each Si (i = 1, 2, 

..., n) concerns a different magnitude: while different components of position have a well defined 

joint distribution, different components of polarization do not. A variety of “no-go” theorems 

show that, for most quantum systems, not all Born probabilities can be retrieved as marginals of 

any joint probability distribution for the simultaneous real values of all their magnitudes.2 These 

results support the orthodox view that at no time does every magnitude on a quantum system 

have a precise value: in particular, no system ever has a precise position and a precise 

momentum. 

 But a single careful measurement of a magnitude always yields a precise value, and in 

measurements on many similar systems these values are distributed in close conformity to 

corresponding Born probabilities. This supports the orthodox view that the Born Rule specifies 

probabilities of measured values of magnitudes, not of values those magnitudes have whether or 

not some of them are measured. Born probabilities Prob(S1,S2, ..., Sn )=p are then applicable only 

when n magnitudes are actually measured together on a system, in which case each  Si (i = 1, 2, 

..., n) is a claim about the result of measuring the ith magnitude. 

 The problem with interpreting Born probabilities this way is that there is no precise 

specification of what a measurement is and when it happens. One might expect a fundamental 

quantum theory to be able to model, for each magnitude Q on a quantum system σ, a physical 

interaction between σ and a (quantum) measuring apparatus α suitable to serve as a measurement 

of Q as it correlates any initial value qj of Q on σ with a corresponding final value pj of a “pointer 

position” magnitude P on α. But a model of quantum theory merely specifies the behavior of a 

quantum state, whose main function is just to yield Born probabilities for what the orthodox view 

calls measurement results. 
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 Many have been tempted to take a system’s quantum state also to describe its properties. 

In effect they have adopted the semantic rule that system σ has a property that the value of 

magnitude Q lies in set Δ of real numbers (QεΔ) iff application of the Born Rule to its quantum 

state assigns this property probability 1. But this rule establishing truth-conditions for a 

magnitude claim S leads directly to the notorious quantum measurement problem. The semantic 

rule proves to be incompatible with the observation that, no matter the initial quantum state of 

the measured system, an apparatus ready to record the result of a measurement always acquires a 

property recording some result or other.3 

 How else might one appeal to a quantum model to clarify the meaning and application of 

the Born Rule? One may use the quantum state not to determine whether a magnitude claim is 

true, but rather to decide what to do with such a claim. 

 One thing an agent may decide is to believe S. But if the Born probability of S is low that 

would be unwise. The way to conform one’s epistemic state to a Born probability 0.1 of S is to 

form a corresponding partial belief–credence 0.1–in S. But it would be equally unwise to set 

one’s partial beliefs equal to all Born probabilities generated by a particular quantum state: that 

would often render them incoherent.4 A prior decision is required as to which Born probabilities 

are worthy of credence. Orthodoxy recommends restricting any belief to statements reporting 

measurement results. An agent needs guidance on which those might be. The system’s quantum 

state is the only available adviser within a quantum model. But again that advice cannot come in 

the form of a semantic rule stating the truth-conditions of a statement that a measurement of 

specified magnitudes has occurred. Quantum theory neither contains nor accommodates any such 

rule. The needed advice must come in the form of a pragmatic rule for using a system’s quantum 

state to judge when, and to which statements of the form S, it is advisable to apply the Born Rule. 
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 Such a rule might do much more. It could contribute essentially to the general project of 

accounting for the determinateness of physical properties of a host of familiar physical objects 

besides measuring apparatus. To the extent that we are successful in describing these properties 

in terms of a classical state, this would help us to understand why we encounter an objectively 

existing, approximately classical, world. 

 The Born Rule can exercise its core function of guiding an agent in forming credences 

concerning a statement only if the statement is meaningful. So we are seeking a pragmatic rule 

for judging the conditions under which a magnitude claim S has sufficient content to be 

incorporated into an agent’s epistemic state, as a partial or even full belief. This prompts the 

general question “What gives content to an empirical statement like S?” One can find a general 

answer in the pragmatist inferentialism of Brandom5, who understands the content of such a 

claim in terms of its place in a web of theoretical and practical inferences. The theoretical 

inferences that contribute to the content of an empirical claim are not restricted to those that are 

formally valid: they importantly include what Sellars called material inferences.6 

 The quantum state, then, has two related functions, neither of which is to represent 

properties or relations of a system to which it is ascribed. Its primary function is to advise a user 

of quantum theory on the content of a magnitude claim attributing a property QεΔ to a physical 

system σ in a situation objectively characterized by quantum state ρ.7 It does this not by 

specifying the claim’s truth-conditions, but by modulating the inferential power of the claim in 

ways I am about to explain. On a traditional model of content, a claim is meaningful if it 

expresses a definite proposition when made in an adequately specified context: otherwise it is 

meaningless. An inferentialist approach to the content of an empirical claim accepts a role for 

context but replaces this “digital” view of content by an “analog” view. While a quantum state 
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specifies the context for a magnitude claim, it does so by specifying the inferential power of 

particular magnitude claims in that context: inferential power comes in degrees, and so, 

therefore, does content. 

 The quantum state exercises its second, core function only for a magnitude claim with 

sufficiently high content. That function is to advise an agent to believe S to degree p iff 

Prob(S)=p is the probability that results from applying the Born Rule to this quantum state. 

 

3. The content of magnitude claims 

I shall consider a number of magnitude claims to show how a quantum state ρ may be taken to 

govern their content. In this section I consider only cases where ρ is ascribed to an independently 

designated physical object σ, and so plays no role in determining what that object is. This is 

particularly obvious in my first example, where σ is the moon! 

 In the 1980's, David Mermin wrote a pair of elegant little papers.8 He had already 

answered the title question of one paper in the third sentence of the other: “We now know that 

the moon is demonstrably not there when nobody looks.” (1981, p.397) Suppose, for the 

moment, that ‘there’ locates the moon within a “moon-sized” region R of space some 250,000 

miles from the earth with cross-section C in a plane at right-angles to a line joining the centers of 

earth and moon. Choose Cartesian coordinates (x,y) in that plane and call D the diameter of C 

along the x-axis. Then the statement 

 S1: The x-component of the moon’s position lies in D 

is of the form S. 

 Taken literally, Mermin’s answer implies that S1 is false when nobody looks (at the 

moon). But I doubt he means it literally: S1 functions as a metaphor for him, suggested by a 
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rhetorical question of Einstein to which I shall return.9 The demonstration Mermin appeals to 

concerns not the moon and its position, but the spin of a spin ½ particle (such as an electron or a 

silver atom). S1 is a metaphor for: 

 S2: The x-component of the particle’s spin is r.  

It is S2 that Mermin designs his demonstration directly to refute (for any x axis and any real value 

r) if no-one measures the x-component of the particle’s spin, even though a measurement of its 

spin x-component always yields one of two real values (about ±0.50 ×10-34 in appropriate units). 

 S1 and S2 don’t just ascribe different magnitudes: they ascribe them to very different 

systems. Mermin could just as well have appealed to a more complex demonstration to argue for 

the falsity of the statement 

 S3: The x-component of the particle’s position lies in d  

(where d is any sufficiently small interval of real numbers) if the x-component of the particle’s 

position is not measured. But while that demonstration also could be given “with an effort almost 

certainly less than, say, the Manhattan project” (Mermin (1981), p. 398), the moon so differs 

from an electron or atom that quantum theory itself gives us overwhelming reason to think a 

similar demonstration that S1 is false unless the moon is “observed” will forever exceed the 

powers of human or any other physically instantiated agents. 

 For quantum theory, the key difference between the moon and an electron or silver atom 

is their disparity not in size but in interactions with their physical environment. Perhaps 

surprisingly, while an electron or atom is sometimes so isolated that its environment can be 

neglected, that is never true of the moon. Newtonian physics gave an excellent model of the 

moon by neglecting all effects of the sun’s illumination and impacts by stray matter and taking 

the moon’s environment to affect its state only through gravitational forces. In classical physics, 



 

 
7

the way to incorporate these effects into an even better model is as additional external forces on a 

system (the moon) that can affect how its state changes, but not what counts as its state at any 

moment—they affect its dynamics but not its kinematics. In quantum theory, taking account of a 

system’s interactions can alter the nature of its momentary state, as well as how its state changes. 

 Schrödinger10 introduced the term ‘entanglement’ to make this point as follows: 

 

When two systems, of which we know the states by their respective representatives, enter 

into temporary physical interaction due to known forces between them, and when after a 

time of mutual influence the systems separate again, then they can no longer be described 

in the same way as before, viz. by endowing each of them with a representative of its 

own. I would not call that one but rather the characteristic trait of quantum mechanics, 

the one that enforces its entire departure from classical lines of thought. By the 

interaction the two representatives have become entangled. (op. cit, p. 555) 

I have used the symbol ‘ρ’ to stand for a quantum state without saying what kind of 

mathematical object that is. In this quote, the author of wave-mechanics used the term 

‘representative’ to refer to a wave-function ψ(r1,..., rn)—a (paradigmatically) complex-valued 

function of the positions of the n particles in a system. It is often more convenient to regard a 

wave-function as a vector |ψ, in an abstract vector space. Schrödinger’s point, then, is that 

almost any interaction between two quantum systems with vector quantum states will result in a 

joint state in which neither system has a vector state. 

 But a system may have a different kind of quantum state. When a composite of two or 

more quantum systems has vector state |ψ,, each of its subsystems may still be assigned a state, 

since there is a distinct mathematical object—a density operator—qualified to be its quantum 
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state. Suppose a composite system Σ has vector state |ψ,. Then, for each subsystem σ of Σ, |ψ, 

defines a unique density operator ρ with the following property: when applied to ρ, the Born 

Rule gives the same probability distribution for every magnitude on σ as it does when applied to 

|ψ,. In so far as generating Born probabilities is the core function of a quantum state, this makes 

the density operator the quantum state of σ. The notation ρ subsumes vector states as a special 

case, since each vector state |ψ, uniquely corresponds to a density operator state ρ=|ψ,+ψ|. An 

electron or atom is sometimes sufficiently isolated from its environment to be ascribed a vector 

state, at least for a while. The moon’s constant interactions with sunlight and stray matter may be 

weak, but they ensure that the moon always has only a density operator quantum state. 

 We are almost in a position to see why quantum theory permits an agent to claim S1 

whether or not anyone is looking, while forbidding any claim of the form S2 or S3 for an atomic 

or subatomic particle except while it is subjected to the right kind of measurement. Very roughly, 

the answer is that the moon’s position is constantly being measured by its environmental 

interactions with sunlight and stray matter, while a measurement of the particle’s spin or position 

occurs only under very specific circumstances which don’t always obtain. But we need to 

explicate such talk of “looking” and “measurement” to re-express this answer in kosher 

quantum-theoretic terms. This requires a quantum model of measurement. Section 2 noted that 

attempts to model measurement quantum-theoretically that give the quantum state a descriptive 

role founder on the quantum measurement problem. So the quantum state in the model must be 

understood to function non-descriptively. 

 It is natural to model the moon’s interaction with its environment as a continual series of 

collisions with small particles.11 Even if the moon and each of these particles had a vector state 

before the collision, that would not be so afterwards. Detailed models of this type use plausible 
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assumptions to show that whatever its hypothetical initial quantum state, the moon would 

extremely rapidly assume a density operator state ρ of a particular form, and then stay in such a 

state.12 This is not a state in which the semantic rule of section 2 assigns the moon a precise 

position. But at every moment t, ρ(t) will define a set of vector states |ψx(t), (x εԹ) with several 

special features:  i) It is stable―if |ψx(t1), is an element of the set ρ(t1) defines at t1 then |ψx(t2), is 

an element of the set ρ(t2) defines at t2; ii) |ψx(t), approximates a classical state in the following 

sense: the Born probability distributions it yields for x-components of position and momentum 

are each concentrated around precise values (x, px respectively) and are consistent with the 

corresponding marginal probability of a joint probability distribution on a space of classical 

states for a system of precise but unknown position and momentum; iii) the classical state with 

values x, px obeys classical equations of motion. 

 These features suggest the following pragmatic rule for assigning content to each 

statement S1x that locates the moon’s center of mass not within D but at position x: Assign a high 

content at t to each statement S1x if the |ψx(t), have features i-iii. Applied to ρ(t), the Born Rule 

generates a probability distribution over the statements S1x. Given their high content, quantum 

theory now advises an agent applying the model to believe S1 to the degree corresponding to its 

probability under this distribution. Since this probability will be indistinguishable from 1, an 

agent is certainly entitled to claim S1, whether or not (s)he is looking at the moon. 

 Whether an agent is similarly entitled to make a claim of the form S2 or S3 concerning a 

particle depends on how it interacts with its environment. For Mermin’s demonstration to work, 

the particle’s interaction with its environment cannot significantly affect the spin aspect of its 

quantum state before it is measured. But that state does not define a set of vector states with the 

special features that would justify application of a pragmatic rule for assigning significant 
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content to a statement of the form S2. Bluntly put, an agent should regard S2 as devoid of 

empirical content when the particle has such a quantum state. Even though a mechanical 

application of the Born Rule to its quantum state will associate a number between 0 and 1 with 

S2, an agent should not base partial belief in S2 on this number. 

 Measurement of a particle’s spin requires an external interaction. This will change its 

quantum state in a way that can be modeled quantum-theoretically. A suitable interaction will 

transform the spin aspect of the particle’s quantum state so it defines a set of vector states with 

special features that justify application of a pragmatic rule for assigning a statement of the form 

S2 a high degree of empirical content. Application of the Born Rule to the particle’s quantum 

state now yields a non-zero probability for two statements of the form S2. An agent who accepts 

quantum theory but does not know the result of the measurement should use these as an 

authoritative guide in forming a partial belief in each statement. If the probability of one 

statement is near 1, an agent may feel entitled to make that claim: if not, the agent should 

suspend judgment concerning a fact of which (s)he is currently ignorant. 

 Some recent experiments on fullerene molecules nicely illustrate the role of the 

environment in giving content to claims of the form S3. A fullerene is a form of carbon in which 

a large number of carbon atoms bond together in the shape of a football—soccer for C60, rugby 

for C70. While a fullerene is a fairly large molecule with considerable internal structure, it seems 

reasonable to call it a particle since its diameter of around 1 nanometer makes it over ten 

thousand times smaller than any visible speck of dust. But if passed through a carefully aligned 

array of narrow slits, a beam of fullerenes can display behavior typical of a light or water wave 

that passes through a number of slits (so that the parts going through different slits either cancel 

or reinforce each other) by forming an interference pattern on a detection screen. Such behavior 
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may be understood quantum-theoretically by assigning the same quantum wave-function to each 

beam molecule and then using the Born Rule to calculate the probability of statements of the 

form S3 locating a fullerene in a small region of the screen, where the x-axis is at right-angles 

both to the slits and to the beam axis. 

 This assumes such statements have a high degree of empirical content here. The 

assumption is justified since interaction with the screen changes the fullerene’s quantum state 

into a form suited for applying basically the same pragmatic rule that assigned high empirical 

content to the statements S1x about the position of the moon. In one recent experiment, the 

positions of C60 molecules on the screen were indirectly observed after they had landed on it and 

adhered to the screen like a fly on fly paper. Their positions were imaged using a scanning 

tunneling electron microscope, thereby providing strong evidence for many claims of the form S3 

about fullerenes in which d is an interval of only a few nanometers 

 But a fullerene usually interacts in this way only with the screen. The beam passes 

through a dark, high vacuum in the apparatus so hardly any fullerenes interact with gas 

molecules or light, while the material in which the slits are cut just constrains the fullerenes’ 

vector quantum state to produce interference at the screen. So at no time before reaching the 

screen is a fullerene’s quantum state of the right form to assign high empirical content to any 

statement of the form S3, if d is an interval comparable to the separation between the slits. No 

statement that a fullerene passed through a particular slit has any empirical content. 

 Feynman said this about an electron as it passes through an analogous 2-hole interference 

experiment:     

if one has a piece of apparatus which is capable of determining whether the electrons go 

through hole 1 or hole 2, then one can say it goes through either hole 1 or hole 2. 



 

 
12

[otherwise] one may not say that an electron goes through either hole 1 or hole 2. If one 

does say that, and starts to make any deductions from the statement, he will make errors 

in the analysis. This is the logical tightrope on which we must walk if we wish to describe 

nature successfully.13 

In the C60 experiment there was no piece of apparatus capable of determining which slit each 

fullerene goes through. But one cannot say which slit it goes through for a different, though 

related, reason: the environmental conditions for such a statement to be empirically significant 

are not met for these fullerenes. Such conditions are relevant to the possibility of determining 

which slit a fullerene goes through because if they were met, the environment itself could be so 

affected by its interaction with the fullerene as to incorporate a “record” that it went through one 

slit rather than the others. The presence of such a “record” in the environment would be a marker 

for the kind of environmental conditions required for a statement of the form S3 to be empirically 

significant for a fullerene at the slits, whether or not any apparatus is capable of “reading” it. 

This is shown by another experiment in which a beam of C70 molecules was sent through a 

similar array of slits after first passing through a series of laser beams to heat the molecules to a 

high temperature.  

 A molecule that has absorbed energy from a laser may later radiate that energy as light. 

Just as one can track a firefly from the light it emits, the light emitted by a hot fullerene might be 

used to try to find out which slit it went through. But the slits are very closely spaced, so the 

emitted light would need to have a short enough wavelength to resolve the distance between 

them. A hotter fullerene emits more light and of a shorter wavelength than a cooler fullerene. 

Whether or not one sets up apparatus to collect any light to try to see through which slit a heated 
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fullerene passes, the emitted light produces a “record” of its passage in the environment. As the 

beam is heated, the interference pattern a cold beam would produce gradually disappears. 

 At first sight, emission of light into a vacuum may seem not to involve interaction with a 

fullerene’s environment. But this is not true in a quantum-theoretic model of the fullerene’s 

environment as the vacuum state of a quantized electromagnetic field. The effect of this 

electromagnetic environment is to change the fullerene’s quantum state so that while each 

statement of the form S1x about its position at the screen still has high empirical content, the Born 

probability density of that statement corresponds not to the low temperature interference pattern, 

but to the pattern observed at a higher temperature. As the beam’s temperature is increased, this 

approaches the “smoothed” shape one would expect to observe if each molecule passed through 

just one slit. At the same time, the fullerenes’ increased interaction with their environment 

affects their quantum state so as to increase the empirical content of a claim of the form S3 for a 

fullerene at the slits, where d is an interval comparable to the slit separation. One is entitled to 

claim that each sufficiently hot fullerene passes through just one slit, and to apply the Born Rule 

to its quantum state to form credences about which slit the fullerene goes through. 

 I anticipate two objections to this account of the content of a claim of the form S3 and 

other claims of the form σ has (QεΔ) in which σ is an independently designated object such as 

the moon, an electron, an atom or a molecule. 

First objection: A claim has significant content iff it expresses a determinate proposition. While 

what content a claim expresses may depend on the context to which it relates (loosely, to the 

context in which it is made), context merely determines what proposition a claim expresses. Any 

variation of content with context can be represented by a function from context into proposition 

expressed. An adequate analysis of a claim’s content must then supply an account of the content 
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of each proposition in the range of that function in a referential semantics that provides its truth-

conditions: if the function is only partial, the claim has no content in a context in which it 

expresses no determinate proposition. So an adequate analysis of the content of a magnitude 

claim S will either assign it some specific content (varying from context to context) or no content 

at all (in other contexts). No analysis is adequate according to which what varies with context is 

not simply the specific content of the claim but also how much content it has. 

Reply: One can give an account of the truth-conditions of a claim of the form S: σ has (QεΔ) but 

this is trivial. For example: S is true iff the system to which ‘σ’ refers has a value for the 

magnitude to which ‘Q’ refers that lies in the set of real numbers to which ‘Δ’ refers.14 These 

truth-conditions are independent of context, since the claim contains no indexical elements. The 

problem with this referential approach is not that it is wrong but that it is too shallow to be 

helpful: it fails to illuminate the different ways a claim of the form S functions in different 

contexts. The claim functions within a web of inferences, and the extent of its content depends 

on the context provided by the presence of other claims in the web—in this case, a claim about 

the quantum state of σ is critical to determining the content of a claim of the form S about σ. 

Second objection: The proposed inferentialist alternative seeks to specify the empirical content 

of a claim of the form S by locating it in a web of material inferences—what other claims would 

entitle one to claim S, and what other claims one would be committed to by claiming S. But this 

would qualify as a serious analysis only if backed up by a complete specification of these 

inferences, and none has been offered. Indeed, it is doubtful that any such complete specification 

could be given, and even more doubtful that different agents could come to share the same web 

and so associate the same content with any particular claim of the form S. 
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Reply: To understand the function of a claim of the form S within quantum theory, it is not 

necessary to undertake the quixotic task of fully specifying a web of material inferences in which 

it is located. Claims of this form were used and understood well enough by scientists and others 

prior to acceptance of quantum theory. The task is merely to clarify the changes in use and 

understanding accompanying acceptance of quantum theory. We can rely on our previous 

understanding while characterizing these changes by showing how acceptance of quantum theory 

alters patterns of inference that grounded that understanding. 

 This second reply sets a task without accomplishing it. I begin that task in the next 

section by showing how acceptance of quantum theory affects the inferential function of 

analogous pairs of incompatible claims about three kinds of physical systems. 

 

4. Some conceptual mutations15 

How does quantum theory displace key material inferences that contribute to the content of 

magnitude claims? 

 These statements are readily recast as magnitude claims like S2: 

 Sred: The red traffic light is on.  Sgreen: The green traffic light is on. 

 Sone: The computer memory bit stores one. Szero: The computer memory bit stores zero. 

If a traffic light and computer are operating normally, exactly one of each pair is true (assuming 

the traffic light has no orange, and neglecting the brief period during which the lights and 

memory record are changing). A driver may defend his entitlement to claim Sgreen by appeal to 

his current visual experience or his memory of how the light looked a moment ago. Such 

inferences are fallible: someone may have secretly covered the illuminated red light with opaque 
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material while strong reflected sunlight makes the green light appear to be on when it is off, or 

the driver’s eyesight, memory or cognitive functioning may have been rendered unreliable. 

 Conclusively to establish the truth, either of Sred or of Sgreen, one would arrange close 

examination of the condition of the traffic lights by multiple observers with sense organs, 

cognitive skills and measurement equipment subjected to rigorous testing. An examination could 

include direct visual and tactile inspection of the bulbs and filters, measurement of the intensity 

and spectral profile of the emitted light, measurement of the bulbs’ temperature, of the current 

flow through the bulbs and the rest of the circuit, and so on. 

 Suppose that such test results always provide overwhelming evidence for one of Sred, 

Sgreen, but a skeptic objects that this shows only that one or other of these claims is true whenever 

tests are performed, but that neither Sred nor Sgreen is true when no test is performed—in fact the 

traffic lights are red or green only when “someone looks”. In response one can appeal to an 

account of how the lights work, according to which the tests performed have no effect on 

whether the lights are on or off.16 Call a measurement of the lights’ status non-invasive if it has 

no effect on their subsequent on/off status. 

 The skeptic may press his objection by questioning the evidence for this account. But 

then his skepticism becomes global in form as well as content. The account is embedded in 

general theories of how devices like light bulbs shine when an electrical current is passed 

through them, and how devices as diverse as human eyes and hands, thermometers, spectro-

photometers and ammeters function. Our confidence in those theories rests on much more than 

their ability to account for the operation of the traffic lights. To question those theories, the 

skeptic must indulge in a general inductive skepticism, either about the support relation between 

the evidence and these theories, or about that evidence itself. The former kind of “merely 
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philosophical” skepticism may be set aside as irrelevant here. But a skeptic may question the 

account because he doubts whether observations or measurements on a system ever provide 

evidence as to how it is when unobserved: his doubt that the traffic lights are red or green “when 

no-one looks” is simply an instance of this general kind of philosophical skepticism.  

 One can reply to such a skeptic who questions a claim Sgreen about an unmeasured traffic 

light by asking him what he takes to be the content of his doubt. We can at least begin to give a 

detailed account of evidence justifying an inference to the statement Sgreen that entitles one to 

make that claim: and we can embark on a detailed account of what is materially implied by Sgreen 

and so to what one is committed by claiming it. The latter might involve inferences, e.g. from 

only the green light’s being on at time t1 to only the red light’s being on at t2, but only the green 

light’s being on at t3, regardless of whether the lights are measured at or between any of those 

times. Observations confirming the inferences’ conclusions lend support both to particular claims 

Sred, Sgreen at those times and to the general claim G: either Sred or Sgreen is true at any time the 

lights are operating. Indeed, on an inferentialist account of content, its place in such a smoothly-

functioning web of belief is what gives G its content. To simply replace G by the claim G*: 

either Sred or Sgreen is true at any time the lights are observed but neither Sred nor Sgreen is true at 

other times, will cut so many inferential connections as to render the web useless. The 

alternative, of restoring all the inferential connections by making compensating modifications in 

the statements they connect, would simply produce a functionally equivalent web within which 

G* mimics the role of G in the original web and so has essentially the same content. Neither 

option yields a genuine skeptical rival to the original account incorporating G. 

  Our unaided sense-organs do not help us observe the status of a particular bit of static 

random access memory in a contemporary electronic computer. But there are many ways of 
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measuring and recording whether it stores one or zero, and it is essential to the efficient 

functioning of the computer both that it always stores one or the other and that some of these 

measurements are non-invasive in the sense defined earlier. According to an inferentialist, each 

of Sone and Szero gets its content from an inferential web connecting it to evidence for the claim 

and to what the claim commits one, and the general “shape” of the web is closely analogous to 

that which confers content on Sred and Sgreen. The conferred content warrants the exclusive 

disjunction G†: Sone or Szero at any time the computer is operating. There is likely less reason to 

doubt that G† is true when the bit status is unmeasured than to question whether the traffic light 

is red or green “when no-one is looking”. 

 While the operation of traffic lights and memory elements in digital computers can be 

understood quite well (at least in general terms) without quantum physics, that is certainly not 

true of the analog to a single memory element in a quantum computer. The set of values 

available to a logical bit in a classical digital computer has two elements {0,1}. But the set of 

values available to a logical qubit in a quantum computer corresponds to the infinite set of 

elements of a 2-dimensional complex vector space in which the vector quantum state of a system 

(such as an electron’s spin) may be represented. However, a measurement of the contents of a 

qubit always gives one of two values {0,1} of a magnitude Q. 

 A qubit must be realized physically in a quantum computer, just as a bit must be realized 

physically in a classical computer. One candidate for realizing a single qubit memory element is 

the focus of an experimental program designed to test what is called macro(scopic)-realism.17 A 

key tenet of macro-realism (for a two-state system) is macro-objectivity 



 

 
19

(MO) Any system which is always observed to be in one or the other of two macroscopically 

distinguishable states is in one of those two states at any time t, even if no measurement 

on that state is performed at time t. 

The system in question is a kind of superconducting quantum interference device (SQUID). 

When operating, measurements on this device always find it in one of two states:18 in one state a 

small current is flowing clockwise around a ring, while in the other state the same current is 

flowing anti-clockwise around the ring. This small current is readily measurable: it is associated 

with the coordinated motion of a very large number (well over a million) of electrons. So these 

two states are plausibly considered macroscopically distinguishable—perhaps no less so than the 

one, zero states of a classical computer memory element. 

 We can define a magnitude Q for the SQUID as taking value 0 if the current is circulating 

clockwise and 1 if it is circulating anticlockwise. For this SQUID to realize a qubit, there are 

times at which one must be able to associate with it one of a variety of vector quantum states. 

Given its instantaneous vector state, the Born Rule specifies a probability p for value 0 of Q, and 

probability (1-p) for 1. Much of the time, the Born Rule applied to its vector state yields a p-

value between 0 and 1. But according to (MO), exactly one of these statements is true at any time 

the device is operating: 

 Sc: The current is circulating clockwise. Sɔ: The current is circulating anticlockwise. 

Even if we assume that a measurement of Q at t reveals the value Q has at t, any apparent tension 

between this consequence of (MO) and Born probabilities outside {0,1} for Sc, Sɔ is easily 

relieved by recognizing that the value of Q may change in an unknown and even objectively 

random way between measurements. But if one makes a further assumption of non-invasive 

measurability, one can show that the exclusive disjunction ScṿSɔ is inconsistent with certain 
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consequences of the Born Rule as applied to the vector states quantum theory prescribes for the 

SQUID at various times. Here that assumption is 

(NIM) Consider a system which is always observed to be in one or the other of two 

macroscopically distinguishable states. No matter what quantum state that system is 

ascribed at t, there exists a non-invasive procedure for measuring which of its two 

macroscopically distinguishable states it is in at t: i.e. a procedure that does not disturb 

the system’s subsequent behavior, at least as far as concerns which of these states it is in. 

  

 This does not demonstrate the falsity of (MO) for two reasons. Since no practicable 

experiment has yet collected statistics to test the relevant consequences of the Born Rule, this 

application may prove to be quantum theory’s Achilles heel. But even if such statistics accord 

with quantum theory, one could consistently uphold (MO) by rejecting (NIM). Leggett (1998) 

argues that the dilemma as to which of these assumptions to jettison is a false one: 

Frankly I am not sure that this question is really very meaningful. The everyday language 

we use to describe the macroscopic world is based on a whole complex of implicit, 

mutually interlocking assumptions, so that once the complex as a whole is seen to fail it 

may not make much sense to ask which particular assumption is at fault. I am not sure, 

myself, that I could give a lot of meaning to [(MO)] under conditions where I had to 

admit that [(NIM)] fails. (op. cit. p.20) 

As I understand him, Leggett does not claim that (MO) logically implies (NIM), but rather that 

by rejecting (NIM) one cuts key links in the inferential web that gives (MO) its content, with no 

clear way to patch up the web and imbue (MO) with any consequent new content. 
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 Accepting quantum theory commits one to rejecting (NIM). (MO) does not logically 

imply (NIM), so one may try to retain (MO). But what could be the content of (MO) without 

(NIM)? How could one try to insert (MO) into the inferential web quantum theory weaves? 

Quantum theory here predicts probabilistic correlations between measured values of Q at two 

times, provided no measurement occurs in the interim. A natural way to make (MO) relevant to 

these values is to assume that a careful measurement of Q at t reveals which of Sc, Sɔ was true at 

t. But rejecting (NIM) blocks inferences from the direction of the current at t either to its 

direction at any later time or to the result of measuring Q at any later time. So even if one does 

assume that a careful measurement of Q at t entitles one to claim that a particular one of Sc, Sɔ 

was true at t, that claim commits one to nothing to which one is not already committed by 

applying quantum theory’s probabilistic correlations between the measured values of Q at t and 

at a later time. For one who accepts quantum theory as applied to this SQUID, there is simply no 

content to the claim that one of either Sc or Sɔ is true at any time. By contrast with the traffic 

lights and (classical) computer memory bit, in this case it is the “skeptic” who insists on the truth 

of this exclusive disjunction in the face of quantum theory who has failed to give content to his 

claim. 

 This section has shown in some detail how acceptance of quantum theory affects the 

content of some claims of the form S by altering the inferential web that gives them content. I 

followed Leggett in making use of a binary distinction between times when a system is 

undisturbed and times when it is measured. That idealization employs the problematic term 

‘measurement’. In a quantum model not using that term, the SQUID’s quantum state is briefly 

affected by some external device suited to record the result of this interaction as a value of Q at 

some time t. It is the form of this quantum state that governs the content of claims about the 
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value of Q. In the SQUID qubit that content “crystallizes” then “redissolves” extremely rapidly 

during the brief external interaction. Quantum theory justifies the assumption that a classical 

computer memory element always reliably stores either a 0 or a 1 because constant strong 

interaction with its environment maintains the content and warrant of the claim that it does.   

 

5. The content of denoting terms 

Einstein did not ask Pais whether he believed the moon is there when nobody looks, but whether 

he believed the moon exists only when he looks at it. Taking Einstein’s reported question 

literally, he was worried that Pais’s understanding of quantum theory would remove the 

empirical credentials of every claim about the moon by undermining the objectivity of the 

moon’s existence. 

 In an inferentialist account it is claims or statements that serve as the primary vehicle of 

content. I have so far assumed that the variation of content with quantum state for a magnitude 

claim σ has (QεΔ) afflicts only the property QεΔ of a fixed system σ as it interacts with other 

quantum systems. But the forms of quantum theory currently considered fundamental—

relativistic quantum field theories—raise questions about the content of the term ‘σ’ in a 

magnitude claim.  

 In discussing the meaning of a term like ‘electron’ or ‘photon’ one commonly 

distinguishes its denotation (the extension of a general term or the referent of a singular term) 

from its sense, intension or stereotype. From this point of view, the inferential role in a quantum 

theory of a magnitude claim containing a term ‘σ’ would affect neither the reference of ‘σ’ nor 

the truth-conditions of S. But the ontological status of “elementary particles” like electrons and 

photons in a relativistic quantum field theory is problematic. 
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 This may seem surprising, since the relativistic interacting quantum field theories of the 

Standard Model provide our deepest current understanding of phenomena involving the detection 

of elementary particles including electrons and photons when beams of electrons or protons from 

a particle accelerator collide at high energies. Nevertheless 

The notion that QFT can be understood as describing systems of point particles has been 

all but refuted by recent work in the philosophy of physics.19 

and ...because systems which interact cannot be given a particle interpretation, QFT does not 

describe particles.20 

Such recent arguments by philosophers support the views of some, though not all, physicists: 

Quantum field theory is a theory of fields, not particles. Although in appropriate 

circumstances a particle interpretation of the theory may be available, the notion of 

“particles” plays no fundamental role, either in the formulation or interpretation of the 

theory.21 

Wald suggests here that while particles are not included in the fundamental ontology of a 

quantum field theory they somehow emerge in certain circumstances from the theory’s 

fundamental ontology of fields. But this suggestion fares no better. 

If the particle concept cannot be applied to QFT, it seems that the field concept must 

break down as well.22 

So what does a quantum field theory describe? What are the systems that interact in an 

interacting quantum field theory if they are neither fields nor particles? We seem to have arrived 

at an impasse. 

 I believe there is a way to break the impasse on this view of quantum theory. In serving 

as a source of sound advice to a physically situated agent on the content and credibility of 
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magnitude claims about physical systems, a quantum state does not describe these physical 

systems, and need not be ascribed to them. In a quantum field-theoretic model, a quantum state is 

ascribed to some abstract mathematical system, such as a quantized electromagnetic field or an 

electron field. By ascribing a quantum state to such a system, one undertakes no commitment to 

the physical existence of that system. So while one can say that quantum field theory is about 

quantum fields, accepting a quantum field theory does not mean believing the world contains 

such things. 

 Quantum fields and their quantum states function within a mathematical model whose 

application is funneled through the Born Rule, which assigns probabilities to statements of the 

form S: σ has (QεΔ): call σ the target of S. The primary function of the quantum state of a 

quantum field is to provide advice on when a statement S has enough empirical content to be an 

appropriate object of an epistemic state of partial belief: only then should an agent base credence 

on the Born probability of S. No statement of the form S whose target system is a quantum field 

has any empirical content, since quantum fields are not physical systems. But the quantum state 

of a quantum field sometimes assigns a high degree of empirical content to a claim of the form S 

about particles, such as the claim that a high energy positron and electron with equal and 

opposite momenta will be converted into an oppositely charged muon pair with equal and 

opposite momenta. In other circumstances the quantum state of a quantum field assigns a high 

degree of empirical content to a claim of the form S about classical fields. 

 As in section 3, it is the “interactions” between a quantum field and its “environment” in 

a model that determines whether the state of that quantum field licenses claims about particles, 

about classical fields, or about neither.23 In quantum optics, some models of systems involving 

the quantized electromagnetic field license claims of the form S about photons, such as a claim 
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that two photons have the same energy but opposite polarizations: other models license claims of 

the form S about classical electromagnetic fields, such as a claim about the frequency of 

electromagnetic radiation emitted by a laser. These models of quantum theory neither describe 

nor represent interactions between physical systems. Even when a model involves quantum 

fields that are said to interact, it neither describes nor represents a physical interaction between 

physical systems. Though they form the basis for our deepest understanding of “elementary” 

particles and “fundamental” force fields, the interacting quantum field theories of the Standard 

Model in fact describe neither. 

 One can believe that some claims about electrons, electric fields or photons sometimes 

have a high degree of empirical content without believing those claims. If no quantum field 

theory describes such things (or anything else that could constitute them) one may wonder how it 

can give us any reason to believe claims about them, including claims that they exist. Such 

reasons are provided by applications of the Born Rule in circumstances that assign probability at 

or close to 1 to a significant claim of the form S about things like electrons, electric fields or 

photons. But just as this sometimes gives us no reason to entertain a claim locating an electron or 

photon in some small region or roughly specifying the value of an electric field, there are 

circumstances in which we can have no reason to form a belief about whether electrons, photons 

or electric fields are present. So while accepting a quantum field theory can justify one in 

believing that things like electrons, electric fields and photons exist, on the present view it also 

gives one reasons to deny that a specification of their features could constitute a complete and 

fundamental description of the world. 
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