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Application of conformable fractional calculus in nonlinear dynamics is a new topic, and it has received increasing interests in
recent years. In this paper, numerical solution of a conformable fractional nonlinear system is obtained based on the
conformable differential transform method. Dynamics of a conformable fractional memcapacitor (CFM) system is analyzed by
means of bifurcation diagram and Lyapunov characteristic exponents (LCEs). Rich dynamics is found, and coexisting attractors
and transient state are observed. Symbol complexity of the CFM system is estimated by employing the symbolic entropy
(SybEn) algorithm, symbolic spectral entropy (SybSEn) algorithm, and symbolic C0 (SybC0) algorithm. It shows that
pseudorandom sequences generated by the system have high complexity and pass the rigorous NIST test. Results demonstrate
that the conformable memcapacitor nonlinear system can also be a good model for real applications.

1. Introduction

In 1971, Chua postulated the concept of memristor that
describes a relationship between flux and charge [1]. In
2008, researchers in Hewlett-Packard announced that a
solid-state implementation of memristor has been success-
fully fabricated [2]. Since then, designing memory circuits
has received significant attention of researchers, and many
different kinds of memristor-based circuits have been
designed [3–5]. In 2009, Ventra et al. [6] reported memcapa-
citors and meminductors. Compared with memristors, mem-
capacitors and meminductors have received much less
attention. Currently, memcapacitor and meminductor can
be designed based on the memristor. For example, Biolek
and Biolkova [7] designed a memcapacitor model based on
memristor by means of off-the-shelf circuits. As a matter of
fact, memory electronic elements are usually designed nonli-
nearly. Thus, chaos can be easily found in those memory

electronic element-based circuits [8–16]. Bao et al. [8–11]
presented many valuable works on chaotic memristor cir-
cuits. For instance, their most recent work reported quasipe-
riodic behavior and chaotic busting in a third-order
autonomous memristive oscillator [11]. Moreover, Mou et
al. [12] designed a memory circuit with two memcapacitors
that exhibited complex phenomena of state transition and
transient chaos accompanied with time evolution and coex-
isting states. Fractional calculus has been studied for about
300 years, and there are a large number of literatures reporting
chaos in the fractional-order nonlinear systems [17–20].
Moreover, fractional-order memory electronic element-based
systems increasingly attracted attention of scholars [21, 22].
Since not much research exists about the fractional-order
memcapacitor system, a fractional-order system with two
memcapacitors is considered in this paper.

All of the abovementioned systems are integer-order
systems or fractional-order chaotic systems under Caputo
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definition or Riemann-Liouville (R-L) definition [23]. In
2014, Khalil et al. [24] proposed a new fractional derivative,
and it is called the conformable fractional (CF) derivative.
Since the CF definition is prominently compatible with the
integer-order derivative, it has been widely studied in differ-
ent research fields [25–28]. For example, İskender Eroğlu et
al. [26] proposed an optimal boundary temperature control
for a time-conformable fractional heat conduction equation.
However, to our best knowledge, there are only two litera-
tures reporting numerical analysis of CF chaotic systems.
He et al. [29] firstly solved the nonlinear CF equations by
the conformable Adomian decomposition method (CADM)
and found chaos in the CF simplified Lorenz system. Later,
Ruan et al. [30] investigated dynamics of a CF memristor sys-
tem based on CADM, and rich dynamical behaviors were
found. It shows that the CF nonlinear systems also generate
chaos, and it is an interesting topic to explore complexity in
these systems. Recently, Ünal and Gökdoğan [31] modified
the differential transform method (DTM) and applied this
method to solve CF nonlinear equations. But it has not been
used to solve CF chaotic systems. Thus, in this paper, we will
use conformable DTM to solve the CF memcapacitor system
and analyze this system numerically.

Meanwhile, measuring complexity is also an important
method to analyze dynamics of chaotic systems. It reflects
the security of the system to some extent. When a system
has higher complexity, it means that the time series generated
by the system is more random. Currently, there are several
methods to measure complexity of time series, such as the
permutation entropy (PE) [32], sample entropy (SampEn)
[33], spectral entropy (SE) [34], and C0 algorithms [35]. It
should be noted out that complexity of chaotic systems is
mainly estimated based on the original time series, and com-
plexity analysis of nonlinear symbol sequence has aroused
interests of researchers [36, 37]. Meanwhile, there are many
kinds of pseudorandom sequence generation algorithms.
How complexity and dynamics of a chaotic system are deter-
mined by the pseudorandom quantization algorithms should
be investigated. And whether the CFM system can be actually
used in real applications should be verified.

The rest of the article is organized as follows. In Section 2,
definitions of conformable fractional derivative and a numer-
ical solution algorithm are proposed. Solution of the CFM
system is obtained. In Section 3, dynamics of the CFM system
is analyzed by means of Lyapunov characteristic exponents
(LCEs), bifurcation diagram, and phase portraits. In Section
4, three different symbol complexity measuring algorithms
are designed and the complexity of the CFM system is ana-
lyzed. Meanwhile, the NIST test is carried out. Finally, we
summarize the results in Section 5.

2. Definitions and Numerical
Solution Algorithm

In this section, the system model and definitions about con-
formable fractional derivative are presented. A numerical
solution algorithm for conformable fractional nonlinear sys-
tems is designed based on the differential transform method.

2.1. The Conformable Fractional Memcapacitor System. Mou
et al. [12] proposed a circuit with memcapacitor, and it is
denoted by

x = cf 1 z ,
y = d − e f2 y + ef 1 z ,
z = e f2 y − f1 z − x,

1

where c, d, and e are the system parameters, x, y, and z are the
state variables, and f1 z = a1z + b1z

3 and f2 y = a2y + b2y
3

represent the two memcapacitors in the circuit in which a1,
b1, a2, and b2 are the intrinsic parameters of the two memca-
pacitors. In [12], c = 8 96, d = 4, and e is the bifurcation
parameter. Moreover, there are three different sets of intrin-
sic parameters for different types of attractors. The three sets
of intrinsic parameters are shown in Table 1.

By introducing the conformable fractional derivative to
the system, the conformable fractional memcapacitor
(CFM) system is defined as

Tq1
t0
x = cf 1 z ,

Tq2
t0
y = d − e f2 y + ef 1 z ,

Tq3
t0
z = e f2 y − f1 z − x,

2

where Tq
t0
is the conformable fractional derivative and 0 <

q1, q2, q3 ≤ 1. Definitions and characteristics of the conform-
able fractional derivative are given as follows.

Definition 1 [24]. For a given function f 0,∞ → R, its
conformable fractional derivative of order α is defined by

Tq
t0
f t = lim

ε→0

f t + εt1−q − f t

ε
, 3

where t > t0 ≥ 0 and q ∈ 0, 1 .
Let q ∈ 0, 1 and f , g be q-differentiable at a point t > t0 ≥ 0.
Then,

(1) Tq
t0
af + bg = a Tq

t0
f + b Tq

t0
g , for all a, b ∈ℝ;

(2) Tq
t0
tp = ptp−q, for all p ∈ℝ;

(3) Tq
t0
λ = 0, for all constant functions f t = λ;

(4) Tq
t0

f g = f Tq
t0
g + g Tq

t0
f ;

(5) Tq
t0

f /g = g Tq
t0
f − f Tq

t0
g /g2;

(6) Tq
t0
f t = t1−q df /dt t .

Table 1: Parameters for the three kinds of chaotic attractors.

Type (a1, b1) (a2, b2)

I (−0.17, 10) (0.25, 0.6)

II (0.15, 10) (−0.2, 0.6)
III (−0.17, 10) (−0.2, 0.6)
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Definition 2 [24]. The conformable fractional integral of
function f q,∞ →ℝ is defined by

Iqt0 f t =
t

t0

f x

x − t0
1−q dx, 4

where t > t0 ≥ 0, q ∈ 0, 1 , and f is q-differentiable at t0, t .

2.2. Conformable Fractional Differential Transform Method.
The differential transformmethod is one of the most effective
methods for semianalytic analysis of differential equations.
Here, the conformable fractional differential transform
method (CFDTM) is introduced to solve the conformable
fractional chaotic system.

Assume that f is an infinitely q-differentiable function,
for 0 < q ≤ 1 at a neighborhood of a point t0. Then, f has
the fractional power series expansion [31].

f t = 〠
∞

k=0

Tq
t0
f t0 t − t0

qk

qkk
, 5

where t0 < t < t0 + R1/q, R > 0, and Tq
t0
f k t0 denotes the

conformable fractional derivative for k times. Define the con-
formable fractional differential transform of f t as

Fq k = 1
qkk

Tq
t0
f k t

t=t0
, 6

where Tq
t0
f

k
t denotes the application of the fractional

derivative for k times. Thus, the inverse conformable frac-
tional differential transform of F k is defined as

f t = 〠
∞

k=0
Fq k t − t0

qk 7

Lemma 1 [31]. If f t = u t ± v t , then Fq k =Uq k ±
Vq k .

Lemma 2 [31]. If f t = αu t , then Fq k = αUq k .

Lemma 3 [31]. If f t = u t 3 = u t u t u t , then Fq k =
∑k

i=0∑
i
j=0∑

j
l=0Uq l Uq j − l Uq k − j .

The multistep CFDTM method is proposed to solve
the CFM system. Divide the time interval 0, T into small
subintervals tn, tn+1 , where n = 0, 1, 2,… ,N , tN = T , and
tn+1 − tn = h. According to (7), the solution of the system
over interval tn, tn+1 is given by

x tn+1 ≈ 〠
D

k=0
X k hkq1 ,

y tn+1 ≈ 〠
D

k=0
Y k hkq2 ,

z tn+1 ≈ 〠
D

k=0
Z k hkq3 ,

8

where

X k + 1 = 1
q1 k + 1 cFk

1,

Y k + 1 = 1
q2 k + 1 d − e Fk

2 + eFk
1 ,

Z k + 1 = 1
q3 k + 1 e Fk

2 − Fk
1 − X k ,

9

and

Fk
1 = a1Z k + b1 〠

k

i=0
〠
i

j=0
〠
j

l=0
Z l Z j − l Z k − j ,

Fk
2 = a2Y k + b2 〠

k

i=0
〠
i

j=0
〠
j

l=0
Y l Y j − l Y k − j

10

It should be pointed out that

X 0 = x tn ,
Y 0 = y tn ,
Z 0 = z tn

11

It means that x tn+1 , y tn+1 , and z tn+1 can be obtained
based on x tn , y tn , and z tn , and the solution can be given
as x tn+1 = F x tn . As for the contribution of this section,
there are two aspects that could be specified. Firstly, it is the
first time that the solution of the conformable fractional-
order chaotic (memcapacitor) system is obtained by employ-
ing DTM. Secondly, we modified the method as the multistep
CFDTM method by dividing the solution into subintervals
tn, tn+1 , and the obtained solution can be represented as x
tn+1 = F x tn . Thus, the numerical solution of the con-
formable fractional-order chaotic system can be obtained in
MATLAB.

In addition, we chooseD = 3 for the approximation of the
system. Let e = 6 9; phase diagrams with different derivative
orders are shown in Figure 1. As shown in Figure 1, type I
and type III attractors do not change much with the decrease
of derivative orders while type II attractor is changed from
chaos to periodical circle. Obviously, these three types of
attractors are different. According to [12], there is no steady
state in the type I system and type III system, but the type
II system is steady when 0 < e < 4.
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3. Dynamical Analysis of the CFM System

3.1. LCE Calculation Algorithm. As mentioned above, the
solution of the CFM system can be written as x tn+1 = F
x tn ; thus, it is actually shown as a given map x n + 1 =
F x n . Here, the QR decomposition method is employed
to calculate the LCEs of the system. The computational pro-
cess is denoted as

qr JnJn−1 ⋯ J1 = qr JnJn−1 ⋯ J2 J1Q0 =QnRn ⋯ R2R1,
12

where qr · represents the QR decomposition function, J is
the Jacobian matrix of the given map, Q is an orthogonal
matrix, and R is an upper triangular matrix. All LCEs are cal-
culated according to the upper triangular matrix, and they
are given by [38]

λη =
1
Mh

〠
M

i=1
ln Ri η, η , 13

where η = 1, 2, 3 (dimension of the system) and M is the
maximum iteration number. Here, the Jacobian matrix is
obtained by the MATLAB symbolic operation function J =
Jacobian ⋅ . LCEs of attractors in Figure 1 are calculated,
and the results are shown in Table 2.

3.2. Bifurcation and Chaos. As with [12], we also treat
parameter e as a bifurcation parameter. Meanwhile, dynam-
ics with the variation of fractional derivative orders q1, q2,
and q3 is also analyzed. Since type II attractor changes more
with the decrease of derivative orders, it is chosen as the rep-
resentation of the three kinds of chaotic attractors for further
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Figure 1: Different types of chaotic attractors in the CFM system with different fractional derivative orders: (a) type I attractor with q1 =
q2 = q3 = 0 95; (b) type I attractor with q1 = q2 = q3 = 0 9; (c) type I attractor with q1 = q2 = q3 = 0 8; (d) type II attractor with q1 = q2 = q3 =
0 95; (e) type II attractor with q1 = q2 = q3 = 0 9; (f) type II attractor with q1 = q2 = q3 = 0 8; (g) type III attractor with q1 = q2 = q3 = 0 95;
(h) type III attractor with q1 = q2 = q3 = 0 9; (i) type III attractor with q1 = q2 = q3 = 0 8.

Table 2: LCEs of the CFM system with different derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 0.0987, 0, −3.4849 0.1290, 0, −4.7279 0.2287, 0, −8.4289
II 0.1099, 0, −6.422 0.0855, 0, −7.1556 0, 0, −16.1767
III 0.0531, 0, −9.0147 0.0789, 0, −12.4373 0.2831, 0, −28.5537
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analysis. When plotting bifurcation diagrams, the initial
condition for the blue dots is x t0 , y t0 , z t0 = 0 1, 0, 0 ,
while the initial condition for the red dots is x t0 , y t0 ,
z t0 = −0 1, 0, 0 .

Case 1. Fix q1 = q2 = q3 = 0 95 and vary parameter e from 6.7
to 7.05 with a step size of 0.0007. The bifurcation diagram
and LCEs with parameter e varying are shown in Figure 2.
It shows that dynamical behaviors of the CFM system change
with the variation of parameter e. The system is chaotic when
q ∈ 6 7, 0 7561 U 0 7617, 6 9974 , while the system is peri-
odical when q ∈ 0 7561, 0 7617 U 6 9974, 7 05 .

Case 2. Let e = 6 9 and q1 = q2 = q3 = q. Vary q from 0.72 to
1 where the variation step size is 0.002. As shown in
Figure 3(a), the system is divergent when q < 0 75. When
q ∈ 0 7568, 0 802 U 0 817, 0 8496 , the system is periodical
while the chaotic interval is q ∈ 0 75, 0 7568 U 0 802,
0 817 U 0 8496, 1 . LCE curves agree well with the analysis
results. It shows that rich dynamics is found with the
decrease of q.

Case 3. Let e = 6 9 and q2 = q3 = 1, and vary q1 from 0.995 to 1
with a step size of 0.00056. The bifurcation diagram and its
corresponding LCEs are shown in Figure 4. The system is
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Figure 2: Dynamics of the CFM system with parameter e varying: (a) bifurcation diagram; (b) LCEs.
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Figure 3: Dynamics of the CFM system with derivative order q1 = q2 = q3 = q varying: (a) bifurcation diagram; (b) LCEs.
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Figure 4: Dynamics of the CFM system with derivative order q2 = q3 = 1 and q1 varying: (a) bifurcation diagram; (b) LCEs.
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chaotic when q ∈ 0 9958, 0 9975 U 0 9984, 1 , while the
system is nonchaotic for the rest values of q1.

Case 4. Let e = 6 9 and q1 = q3 = 1, and vary q2 from 0.995
to 1 with a step size of 0.00001. The bifurcation diagram
and its corresponding LCEs are shown in Figure 5. When
q2 < 0 9959, the transient state is found. The system is cha-
otic at the beginning and then becomes divergent finally.
The system is periodical when q ∈ 0 9967, 0 9982 , while
for the rest range, the system is chaotic.

Case 5. Let e = 6 9 and q1 = q2 = 1, and vary q3 from 0.995 to 1
with a step size of 0.00001. The bifurcation diagram and its
corresponding LCEs with derivative order q3 are shown in
Figure 6. The system is chaotic when q ∈ 0 942, 0 95 U
0 961, 1 , and the system is periodical when q ∈ 0 85, 0 942
U 0 95, 0 961 .

As shown above, after introducing the conformable frac-
tional derivative, the system still has rich dynamical behav-
iors like parameter e and derivative orders q1, q2, and q3.
Moreover, when varying one derivative order and the other
two to be equal to 1, the chaotic region shrinks much, com-
pared with that when all derivative orders are varied simulta-
neously. The minimum order for chaos in the CFM system is
2.25, when the system is solved by CFDTM. Meanwhile,
according to Figures 3–6, the system is chaotic when q1 =

q2 = q3 = 1. However, when the derivative orders become
smaller, the periodical state can be observed. It means that
derivative orders can change the dynamics of the system dis-
tinctly. Thus, the conformable derivative orders q1, q2, and q3
are also the bifurcation parameters. Chaotic pseudorandom
sequence (CPRS) has been widely used in real applications.
In the next section, complexity of the CPRS generated by
the CFM system is measured and the potential application
values of the system are discussed.

3.3. Coexisting Attractors and Transient State. As shown in
the above bifurcation diagrams, when the initial conditions
are different, the red and blue dots show two different
routes to chaos. Moreover, the coexistence of multiple
attractors is produced mainly due to the reason that sym-
metry and invariance exist in the system. For the CFM
system, it is symmetric and invariant under the transforma-
tion x, y, z → −x, −y, −z for all values of parameter e.
Thus, the coexistence of multiple attractors should be
observed. As mentioned above, two different sets of initial
conditions are chosen which are x t0 , y t0 , z t0 = 0 1,
0, 0 and x t0 , y t0 , z t0 = −0 1, 0, 0 . Coexisting attrac-
tors under different orders are shown in Figure 7. Obvi-
ously, the phase portraits of the CFM system with two
symmetric initial values are symmetric, and the system
can generate coexisting periodical cycles, chaotic attractors.

In some cases, there is no steady state in the system, and
dynamical behaviors of the system are different under certain
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Figure 5: Dynamics of the CFM system with derivative order q1 = q3 = 1 and q2 varying: (a) bifurcation diagram; (b) LCEs.
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Figure 6: Dynamics of the CFM system with derivative order q2 = q2 = 1 and q3 varying: (a) bifurcation diagram; (b) LCEs.
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parameters when starting from a different initial state. As
mentioned above, when e = 6 9, q1 = q3 = 1, and q2 < 0 9959,
the system has a transient state. Here, phase diagrams with
q2 = 0 9955 and 0.9958 are shown in Figure 8, where initial
conditions are the same as those mentioned above. The coex-
isting state and transient state are observed as shown in
Figure 8. The system becomes divergent through different
directions with different initial conditions, and it is chaotic
at the beginning and becomes divergent finally.

4. Complexity Analysis of the CFM System

In this section, complexity of the CFM system is analyzed by
means of symbolic complexity measures. Generally, if the
system has higher complexity, it means that the system is
securer in practical applications. Besides, it is more

convenient to calculate complexity since it just needs a seg-
ment of time series. Thus, complexity analysis result provides
a basis for parameter choice of chaotic systems.

4.1. Symbolic Complexity Measures. In real application, a
chaotic time series should be discretized as a pseudorandom
sequence or symbolic sequence, which usually varies between
0 and 1 (0-1 time series) or varies from 0 to 255 (8-bit num-
bers). Here, complexity of chaotic symbolic time series is
analyzed using different algorithms including the symbolic
entropy (SybEn) algorithm, symbolic spectral entropy (Syb-
SEn) algorithm, and symbolic C0 (SybC0) algorithm. These
three complexity algorithms are defined as follows.

Step 1 (pseudorandom process). Here, suppose that there is a
chaotic series defined as x n , n = 0, 1, 2,… ,N − 1 ; it is
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Figure 7: Coexisting attractors of the CFM system where e = 6 9. The blue line is obtained with the initial condition x t0 , y t0 , z t0 =
0 1, 0, 0 , and the red line is obtained with the initial condition x t0 , y t0 , z t0 = −0 1, 0, 0 : (a) q1 = q2 = q3 = 0 79; (b) q2 = q3 = 1,
q1 = 0 95; (c) q1 = q3 = 1, q2 = 0 997; (d) q1 = q2 = 1, q3 = 0 948.
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Figure 8: Transient state in the CFM system where the blue line is obtained with the initial condition x t0 , y t0 , z t0 = 0 1, 0, 0 and the
red line is obtained with the initial condition x t0 , y t0 , z t0 = −0 1, 0, 0 : (a) q2 = 0 9955; (b) q2 = 0 9958.
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discretized as s n , n = 0, 1, 2,… ,N − 1 by employing the
following method:

s n =

0, if min x ≤ x n < Δx,
1, if Δx ≤ x n < 2Δx,
⋮

255, if 255Δx ≤ x n ≤max x ,

14

where Δx = max x −min x /256. Thus, s n , n = 0, 1,
2,… ,N − 1 is an 8-bit number time series.

Step 2 (calculating SybEn). Count the number of each symbol
(from 0 to 255), and obtain the probability of each symbol as

Pi =
# i : s n = i, n = 0, 1,… ,N − 1

N
, 15

where # stands for number and i = 0, 1,… , 255. Thus, SybEn
is defined by

SybEn = −〠
255

i=0
Pi log Pi 16

Step 3 (discrete Fourier transformation (DFT)). Before the
DFT, the following normalization is employed to the symbol
time series, and it is denoted as

S n = s n −mean s
std s

, 17

where mean s and std s are the mean value and the stan-
dard deviation of the time series s, respectively, and n = 0,
1,… ,N − 1. Thus, the mean value of the new time is zero
and there is no direct current signal. DFT is carried out
on time series S, and it is given by

X k = 〠
N−1

n=0
S n e− j2πnk/N , 18

where k = 0, 1,… ,N − 1 and j is the imaginary unit.

Step 4 (calculating SybSEn). If the power of a discrete power
spectrum with the kth frequency is X k 2, then the “proba-
bility” of this frequency is defined as

ρk =
X k 2

〠N/2−1
k=0 X k 2 19

When the DFT is employed, the summation runs from
k = 0 to k =N/2 − 1. The normalization of SybSEn is denoted
by [34]

SybSEn = −
1

ln N/2 〠
N/ 2−1

k=0
ρk ln ρk 20

ln N/2 is the entropy of the completely random signal.

Step 5 (inverse DFT). Define the mean square value of X k
as

GN = 1
N

〠
N−1

k=0
X k 2 21

Let

X k =
X k , if X k 2 > rGN ,
0, if X k 2 ≤ rGN ,

22

where r r > 0 is the control parameter. The inverse DFT of
X k is

S n = 1
N

〠
N−1

k=0
X k ej2πnk/N , 23

where n = 0, 1,… ,N − 1. S n reflects the regular part of the
time series with detailed information removed.

Step 6 (calculating SybC0). SybC0 complexity is defined as
[35]

SybC0 = 〠
N−1

n=0

S n − S n
2

Ω
24

where Ω =∑N−1
n=0 S n 2.

The three complexity measuring algorithms estimate
complexity of an 8-bit symbol time series from different
aspects. Firstly, SybEn analyzes complexity in the time
domain while SybSEn and SybC0 are defined in the frequency
domain. Secondly, SybEn and SybSEn are defined based on
the definition of the Shannon entropy while SybC0 reflects
the ratio of an irregular part in the time series. Let e = 6 9
and q1 = q2 = q3 = 0 95; we obtain a type II chaotic time series
x. The time series is shown in Figure 9(a), and the symbol
time series is illustrated in Figure 9(b). By employing (15)
and (19), plots of the two different “probabilities” are shown
in Figures 9(c) and 9(d), respectively. According to (22) and
(24), we illustrate the irregular part of the time series with
r = 10, where the red line represents S n 2 and the green

line represents S n − S n
2
which shows the “difference”

or “irregular part.”
As shown in Figure 9, the principles of different algo-

rithms are different. For SybEn and SybSEn, if the probability
density is more uniform, values of entropy are larger, while if
the proportion of the green part is larger, values of SybC0 are
larger. As a result, larger values of SybEn, SybSEn, and SybC0
mean that the system has higher complexity. In this paper, to
analyze the complexity of the CMF system, the time series
x with a length of 55000 is sampled with τ = 10; thus, x = x
1 10 55000 . Finally, the sampled time series is changed
into a symbol time series. For SybC0 complexity, we choose
r = 10.

4.2. Complexity Analysis. Complexity of the CFM system is
analyzed by means of SybEn, SybSEn, and SybC0. Firstly,
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SybEn, SybSEn, and SybC0 of different types of CFM systems
with different derivative orders are analyzed, and the results
are shown in Tables 3–5, respectively. As with Figure 1 and
Table 2, values of derivative orders are set as q1 = q2 = q3 =
0 95, 0 90, and 0 80 and e = 6 9. It shows that complexity

analysis results agree well with the LCE analysis results.
When the system is chaotic, higher complexity can be found.
Moreover, the system has relative higher complexity when
the derivative orders are smaller. It should be pointed out
that SybEn cannot distinguish the chaotic state and periodi-
cal state well similar to SybSEn and SybC0. Actually, it is also
one of the reasons why we furtherly design complexity anal-
ysis methods in the frequency domain.

Complexity of the CFM system with parameter e varying
is analyzed, and results are shown in Figure 10. Here, q1 =
q2 = q3 = q equals to 0.95, and parameter e varies from 6.7
to 7.05 with a step size of 0.0007. As shown in Figure 10, Syb-
SEn and SybC0 agree with the maximum LCEs better than
SybEn, and they identify more periodical windows which
show relative lower complexity.
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Figure 9: Analysis of complexity algorithms: (a) original time series x; (b) pseudorandom sequence s; (c) probability of each symbol Pi; (d)
probability of the frequency ρi; (e) irregular part in the SybC0 algorithm.

Table 4: SybSEn complexity of the CFM system with different
derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 0.4497 0.5131 0.5589

II 0.5635 0.6135 0.3190

III 0.3580 0.3776 0.5386

Table 5: SybC0 complexity of the CFM system with different
derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 0.1263 0.1756 0.2885

II 0.1913 0.2424 0.0776

III 0.1795 0.1963 0.3128

Table 3: SybEn complexity of the CFM system with different
derivative orders.

Type q1 = q2 = q3 = 0 95 q1 = q2 = q3 = 0 90 q1 = q2 = q3 = 0 80
I 5.4834 5.4646 5.4868

II 4.7810 4.7422 4.6255

III 4.8680 4.8711 4.9467
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Complexity of the type II CFM system with parameter
e = 6 9 and derivative orders q1, q2, and q3 varying is ana-
lyzed, and the analysis results are shown in Figure 11. Let
q1 = q2 = q3 = q and let it vary from 0.75 to 1. Complexity
analysis results are shown in Figures 11(a)–11(c). As
shown in Figures 11(b) and 11(c), complexity of the sys-
tem increases with the decrease of order q, which means
that the system has higher complexity with smaller values
of q. Thus, the system has a good application value in the
engineering field. Fix q2 = q3 = 1 and vary q1 from 0.995 to
1, and the complexity results are shown in Figures 11(d)–
11(f). Fix q1 = q2 = 1 and vary q2 from 0.996 to 1, and the
complexity results are displayed in Figures 11(g)–11(i).
Moreover, let q1 = q2 = 1 and vary q3 from 0.85 to 1, and
the complexity results are illustrated in Figures 11(j)–11(l).
As shown in those figures, complexity of the CFM system
does not increase with the decrease of derivative order q1,
q2, or q3. When q1 = q2 = q3 = 1, the integer-order system is
chaotic with high complexity, but the low-complexity region
can be found when the fractional derivative orders decrease.
In real application, one should choose those orders with
which the system generates high-complexity time series.

According to Figures 11 and 12, SybEn, SybSEn, and
SybC0 complexity analysis results are consistent with the
corresponding maximum LCEs to a certain degree. Overall,
SybSEn and SybC0 analysis results agree better with the cor-
responding maximum LCE results than with those of SybEn.
Compared with calculating LCEs, calculating SybEn, SybSEn,
and SybC0 needs much less time and it is more convenient
in real application since results can be obtained with a time
series. On the one hand, it shows that the system has a poten-
tial application value in practice. On the other hand, it pro-
vides a basis for parameter choice of the CFM system in
real applications.

SybSEn and SybC0 complexity in the q-e parameter plane
is calculated, and the results are shown in Figure 12. Here, the
parameter varies from 6.7 to 7.05 similar to that mentioned
above, while derivative order q varies from 6.5 to 1, simulta-
neously. As shown in Figure 12, the minimum order for
chaos is about 0.65 when e = 6 7. Meanwhile, it shows that
the system has higher complexity.

The pseudorandom time series s n by (14) fluctuates
with the original system variables. As we all know that a
chaotic system is a good source for entropy. There are
many different kinds of chaotic systems that can be used

for designing a pseudorandom sequence generator (PRSG),
such as the Lorenz system [39], logistic map, sine map, and
2D-SIMM [40]. And these PRSGs are widely used in real
application fields such as image encryption [41], speech
encryption [42], and chaotic watermark [43]. The quantiza-
tion algorithms used in this applications are more complex
than the method given in (14). One of the most commonly
used methods is designed by expressing the original num-
ber or its converted number as a 64-bit binary number as
DB63-DB0; then, one can obtain a new 8-bit number by
choosing DB7-DB0. The details of this method are given
as follows.

The original number is converted as

φ n = round x n × 10w , 25

where n = 0, 1, 2,… ,N − 1 and w is a control number. Here,
in this paper, w = 10. Thus, φ n is an integer number and it
can be expressed as

φ n = DB63DB62 ⋯DB1DB0 26

By choosing the first 8-bit number, a new symbol time
series s n is given as

s n = DB7 ⋯DB1DB0 27

Obviously, s n can be expressed as a decimal integer
number varying from 0 to 255, as mentioned above. By using
this quantization algorithm, complexity of pseudorandom
sequences generated by different chaotic systems is calculated
and the results are shown in Table 6. The length of each seg-
ment symbol time series is 5000, and complexity of such 100
time series is calculated. The results are given as mean± std of
complexity values in these windows. As shown in Table 6,
entropy or complexity of different chaotic pseudorandom
sequences is at about the same high level. It shows that as
with other different chaotic systems, the CFM system is also
a good system for high entropy.

According to Table 6, complexity of the CFM system is
high as other systems. Thus, it is necessary to check whether
the pseudorandom sequence generated by this system passes
the test suite of NIST. The package used for the NIST test is
sts-2.1.2 which can be downloaded from the website. Two
indicators, which are p values and the proportion of passing
sequences, are used to show whether the sequence passes
the test or not. The minimum value for p value is 0.0001. It
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Figure 10: Complexity analysis results of the CFM system with parameter e varying: (a) SybEn; (b) SybSEn; (c) SybC0.
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means that when the p value is larger than 0.0001 and the
confidence interval satisfies

1 − η − 3 1 − η η

M
, 1 − η + 3 1 − η η

M
, 28

where M is the sample size and η is the given significance
level, then the pseudorandom bit generator passes the test
successfully. In our test, the length of the pseudorandom
sequence is 106, and η = 0 01 with a confidence interval given
by 96 015%, 1 . The test result is illustrated in Table 7. For
those items including C. Sums (2 times), N.O. Temp (148
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times), R. Excur. (8 times), R. Excur. V. (18 times), and Serial
(2 times), we only illustrate the lowest values of p value and
proportion. It is shown in Table 7 that all p values are larger
than 0.0001 and the computed proportion for each test lies
inside the confidence interval. Hence, the tested binary
sequences generated by the proposed pseudorandom bit gen-
erator are random.

In this section, two different pseudorandom quantization
algorithms are designed. As shown in Figures 9(a) and 9(b),
fluctuation of pseudorandom sequence obtained by the first
method given (14) agrees well with the original time series.
Thus, it is the reason why complexity analysis results match
well with the corresponding maximum LCEs. It provides a
good symbol sequence for complexity analysis of chaotic
systems when analyzed by complexity measuring methods.
However, according to Table 6, pseudorandom sequences
generated by different systems by employing the second
method have the same level of high complexity. Mean-
while, the pseudorandom sequence passes all the NIST
tests. It means that the obtained sequence is random. As
with other chaotic systems, the CFM system is also a good
secret key generator for real applications including infor-
mation encryption, secure communication, and chaotic
digital watermark.
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Figure 12: Complexity analysis results of the CFM system in the e-q parameter plane: (a) SybSEn; (b) SybC0.

Table 6: Complexity measuring results of different chaotic pseudorandom sequences with the second quantization method.

Systems Equations SybEn SybSEn SybC0

CFM system

Tq1
t0
x = cf 1 z

Tq2
t0
y = d − e f2 y + ef 1 z

Tq3
t0
z = e f2 y − f1 z − x

5.4825± 0.0036 0.9466± 0.0014 0.9995± 0.0014

Lorenz system
x = 10 y − x

y = 28x − xz − y
z = xy − 8z /3

5.5206± 0.0012 0.9583± 0.0003 0.9995± 4.4× 10−4

Logistic map x n + 1 = 4x n 1 − x n 5.4962± 0.0053 0.9461± 0.0012 0.9994± 0.0015
Sine map x n + 1 = 4 sin πx n 5.4966± 0.0043 0.9459± 0.0013 0.9992± 0.0019

2D-SIMM
x n + 1 = 10 sin πy n sin 10/x n

y n + 1 = 10 sin πx n + 1 sin 10/y n 5.4966± 0.0046 0.9461± 0.0014 0.9996± 0.0013

Table 7: NIST test result of binary sequences generated by the CFM
system.

Tests p value Proportion Success

Frequency (1) 0.3345 97/100 ✓

B. Frequency (1) 0.6163 100/100 ✓

C. Sums (2) 0.9558 99/100 ✓

Runs (1) 0.1816 99/100 ✓

Longest Run (1) 0.2133 99/100 ✓

Rank (1) 0.3191 99/100 ✓

FFT (1) 0.1968 99/100 ✓

N.O. Temp (148) 0.0288 97/100 ✓

O. Temp (1) 0.7197 97/100 ✓

Universal (1) 0.5341 99/100 ✓

App. Entropy (1) 0.8165 57/58 ✓

R. Excur. (8) 0.010 57/58 ✓

R. Excur. V. (18) 0.0179 58/58 ✓

Serial (2) 0.5544 99/100 ✓

L. Complexity (1) 0.1025 99/100 ✓
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Finally, it is necessary to explain why we choose 8-bit or
256-quantization-level symbols to form the numbers and
how complexity analysis result is determined by the quanti-
zation levels. Let e = 6 9 and q1 = q2 = q3 = 0 95. A segment
of type II chaotic time series is used to calculate the complex-
ity. The relation between the number of quantization levels
and its complexity measuring results is shown in Figure 13,
where SybEn is normalized via dividing ln m . Here, m is
the number of bits or 2m is the quantization levels. It shows
that the values of the two frequency domain methods,
namely, SybC0 and SybSEn, do not change with the quantiza-
tion levels. However, values of SybEn (the time-domain
method) increase but tend to become stable with the quanti-
zation levels. Meanwhile, the 8-bit number is widely used in
real applications. Thus, 8-bit or 256-quantization-level sym-
bol sequences are employed for complexity analysis.

5. Conclusions

In this work, we introduced the conformable fractional
calculus in a nonlinear system with two memcapacitors
(CFM system). The conformable fractional differential trans-
formmethod is employed to solve the nonlinear conformable
differential system for the first time. The ALCE calculation
algorithm is designed based on the obtained solution, and
bifurcation and chaos in the CFM system are explored. It
shows that the CFM system has rich dynamics with the
variation of system parameter and derivative orders.
Meanwhile, coexisting attractors and transient state were
observed under some specific parameters. Three symbol
complexity measuring algorithms are designed, namely, sym-
bolic entropy (SybEn) algorithm, symbolic spectral entropy
(SybSEn) algorithm, and symbolic C0 (SybC0) algorithm.
Complexity analysis results match well with the corre-
sponding maximum LCE analysis results. Finally, by using
a proper quantization algorithm, the obtained pseudoran-
dom sequence has high complexity as other common chaotic
systems and is randomly verified by the NIST test. It shows

that the memory electronic element-based systems have a
potential engineering application value.
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