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A commentary on

Frontoparietal Structural Connectivity in Childhood Predicts Development of Functional

Connectivity and Reasoning Ability: A Large-Scale Longitudinal Investigation

byWendelken, C., Ferrer, E., Ghetti, S., Bailey, S. K., Cutting, L., and Bunge, S. A. (2017). J. Neurosci.
37, 8549–8558. doi: 10.1523/JNEUROSCI.3726-16.2017

Patterns of functional connectivity (FC) in the human brain are constrained by the structural
connections between disparate brain areas (Honey et al., 2009). These structure-function links
strengthen with age and have been proposed to underlie the development of diverse cognition and
behavior during childhood and into adolescence (van den Heuvel et al., 2015). Yet, little is known
about the causal lead-lag relationship between structural connectivity (SC) and FC in supporting
the development of high-level cognitive functions.

To address this question in relation to the development of reasoning ability, a recent study
by Wendelken et al. (2017) examined the lead-lag relationship between SC and FC using data
from 532 individuals aged 6–22 years. Previous work by the authors revealed that two key nodes
in the fronto-parietal network, i.e., the rostrolateral prefrontal cortex (RLPFC) and the inferior
parietal lobule (IPL), are highly related to reasoning performance in adults (Wendelken et al., 2012).
Moreover, FC between RLPFC and IPL has been found to correlate with reasoning development in
adolescence (Wendelken et al., 2015).

In their recent study, Wendelken et al. (2017) added DTI/SC measures to the fMRI/FC and
matrix reasoning scores. Using cross-sectional data from three large-scale studies, the authors firstly
examined the concurrent relationship between the lateral fronto-parietal SC/FC organization and
reasoning ability using mixed model regression. They found that the development of reasoning
ability reached its peak at 6 years, followed by SC at 7 years, and lastly FC at 13 years. SC between the
RLPFC and IPLwithin fronto-parietal tracts was found to be associated with better reasoning ability
in children, and FC between the RLPFC-IPL was related with concurrent increases in reasoning
ability only in adolescents and young adults. No significant SC-FC relationship was found at any
single time point.
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Subsequently, the authors assessed whether SC and/or FC
would predict changes in reasoning ability within a smaller
longitudinal cohort using a step-wise linear regression. Results
suggested that SC predicted FC changes in the fronto-parietal
network, but no driving effect of FC was found. Of particular
interest is the finding that the SC but not the FC appeared to
be a positive predictor for future changes in reasoning ability of
children under 12. Together, these results indicate that although
both SC and FC between the RLPFC-IPL are significantly related
to the development of reasoning ability at different time points,
it is the stronger RLPFC-IPL SC during middle childhood that
determines the subsequent development of RLPFC-IPL FC and
reasoning ability.

Given that FC reflects ongoing neuronal communication
underlying cognitive processing, it is surprising that Wendelken
and colleagues found that RLPFC-IPL FC could not predict the
development of reasoning skills within the longitudinal cohort.
We suspect the lack of causal effect of FC might be due to the
strong focus on the connectivity between the RLPFC and IPL in
the fronto-parietal network. There is growing evidence that other
fronto-parietal regions, such as the anterior cingulate cortex,
together with the RLPFC and IPL, form a so-called “multiple-
demand” system (Duncan, 2010), which gives rise to reasoning
ability during complex tasks (e.g., Latin Square Task used in
Hearne et al., 2017). Computationally, these regions flexibly
interact with each other in a rapid and goal-directed fashion
to provide adaptive task control in a wide range of contexts
(Cole et al., 2013). On a related note, whilst the authors elegantly
described connectivity within the fronto-parietal network, they
overlooked other network connections that may as well serve
as potential predictors of reasoning development. Reasoning
behavior in adults has been found to depend on the efficiency
of FC within distributed neural circuits, including the fronto-
temporal, cingulo-opercular, and default-mode networks (Finn
et al., 2015; Hearne et al., 2017). Therefore, we suggest that
future research should assess flexible intra-network connectivity
mediated by key areas in the fronto-parietal network, and more
importantly should quantify inter-network processes in order to
determine the exact neurocognitive architecture underlying the
development of reasoning.

Another important consideration, from a more technical
point of view, is the implementation of other neuroimaging
modalities (e.g., magnetoencephalography, MEG), which can
provide dynamic temporal information about the role of
fronto-parietal regions in reasoning tasks, into this lead-lag
approach. MEG has the ability to track neuronal oscillations
in specific frequency bands, which have been linked to high-
level cognitive operations (Buzsáki and Draguhn, 2004). For
example, increases in the power and coherence of frontal
theta-band oscillations (4–7Hz) are associated with a range of

higher-level cognitive control and reasoning tasks (Cavanagh and
Frank, 2014). Moreover, this theta activity within the fronto-
parietal network has also been shown to predict visual memory
performance in children (Astle et al., 2015). By combining
high temporal resolution with increasingly sophisticated source
estimation techniques, MEG can offer valuable insights into how
oscillatory network connectivity for example between fronto-
parietal regions could predict reasoning ability in the developing
brain (Barnes et al., 2016).

Lastly, we would like to highlight the need to bridge
multivariate descriptors of brain development, such as SC-FC
coupling, with a richer set of assessments of reasoning behavior.
For example, quantitative models combining deductive,
inductive, and probabilistic aspects of reasoning (Johnson-Laird
and Khemlani, 2013) could be incorporated as multivariate
parameters into network neuroimaging data. In this way, future
neuroimaging work could go beyond correlations with univariate
behavioral indexes (e.g., raw scores of matrix reasoning) and
link multifaceted cognitive models of reasoning with SC/FC
measures.

In conclusion, Wendelken et al. (2017) demonstrate that
the SC between RLPFC and IPL predicts the subsequent
development of both RLPFC-IPL FC and reasoning ability.
We propose that future neuroimaging work taking a similar
developmental perspective could benefit from a brain-wide
network based analysis, combined with temporal-scale
descriptors of FC measured by MEG and comprehensive,
multivariate behavioral models of reasoning.
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