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1 Frege’s Definitions of the Ancestral

Among the many things for which Frege’s Begriffsschrift is celebrated,
one of the most important is his definition of the ancestral. Frege first
defines what it is for a concept! to be “herditary” in a “sequence”, where
a “sequence” is simply given by a relation. The definition is (Frege, 1967,
§24):2

Her,,.(Fx; Ryz) = VaVy(Fz A Rxy — Fy)

Frege then defines the strong® ancestral as (Frege 1967, §26; Frege, 1980,
§79):
R*ab = VF(Hery,.(Fx; Rry) AVa(Rax — Fa) — Fb)

That is: a stands in the strong ancestral of R to b just in case b falls
under every concept that is hereditary in the R-series and under which
all immediate R-successors of a fall. The definition in Grundgesetze is
the same, except that Frege defines the strong ancestral directly as:

R*ab = VF|VaVy(Fx A Rry — Fy) AVz(Rax — Fx) — Fb

and does not bother with the intermediate definition of heredity (Frege,
2013, v. I, §45).

Frege does not speak of concepts in Begriffsschrift but of predicates and functions,
but these differences, as significant as they are (Heck and May, 2013), do not affect his
defintion of the ancestral.

%I won’t attempt to reproduce Frege’s symbolism here, which differs between Begriffs-
schrift and Grundgesetze. Those differences are themselves of some interest (Heck, 201X,
§4).

3S0-called because we do not necessarily have R*aa. Intuitively, we have R*aa only
when there is a “loop” in the R-series: a path from a back to itself.



The ancestral of course plays a crucial role in Frege’s philosophy of
arithmetic. In particular, the ancestral is used in the definition of the
concept of a natural, or finite, number. Frege defines the weak ancestral
as (Frege, 1967, §29; Frege, 1980, §81; Frege, 2013, v. I, §46):

R*~ab = RabVa=5>

Having then defined both the number 0 and what it is for one number
a immediately to precede another number b in the “natural series of
numbers”,* which we shall write ‘Pab’, Frege then proceeds to define the
concept of natural number as (Frege, 1980, §83; Frege, 2013, v. I, §46):5

Na = P*0a

It is an easy consequence of Theorems 128 and 144 of Grundgesetze that
Frege could equivalently have defined the weak ancestral as:

R*~ab = VF(Fa ANVaVy(Fx AN Rxy — Fy) — Fb)

i.e., as: b falls under every R-hereditary concept under which « falls. So,
the concept of natural number could equivalently have been defined as:

Na = VF[FOAVa2Vy(Fx A Pry — Fy) — Fa

It is for this reason that it is so tempting to say, as Crispin Wright once
did, that Frege’s “account of the ancestral has made it possible. . . to define
the natural numbers as entities for which induction holds...” (Wright,
1983, p. 161, his emphasis).

That is not quite right.® It is possible, by a series of elementary
logical manipulations, to derive:

(IND-) VF[FOAV2Vy(Fx A Pry — Fy) — Va(Nx — Fz)]

“The definitions are:

0=Nz:z#z
Pab = 3FFyb=Nz: Fx ANFyANa=Nz:(Fz ANz # y)]

where ‘Nz : Fz’ means: the number of F's. (In Grundgesetze, though not in Die Grundla-
gen, Frege actually defines P as the extension of a relation, but it is now customary to
ignore this aspect of Frege’s presentation.)

SFrege does not use any special symbol for this concept, but simply uses (his version
of) “P*=0¢”.

6T do not mean to pick on Wright here. This opinion seems to have been, and still to
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from Frege’s definition. But arithmetical induction is:
(IND) VF[FOAVa2Vy(Nz A Fx A Pxy — Fy) — Va(Nx — Fz)]

which is a stronger principle, since the the second conjunct of the an-
tecedent has been weakened by the addition of the condition ‘Nz’.” It
might seem surprising that (IND-) and (IND) should be as different as
they are. But in the present context, they are very different. Suppose,
for example, that we work in a version of Frege’s own theory in Grund-
gesetze, but take our background logic to be predicative second-order
logic. This theory, as is now well-known, is consistent. And, if we define
number exactly as Frege does, and use exactly his definitions of zero,
predecession, and natural number, we can prove all the axioms of the
weak arithmetical theory known as Robinson arithmetic (Heck, 1996).
Moreover, we can prove (IND-), since, as mentioned, it follows trivially
from the definition of natural number. But we cannot prove (IND).

Frege himself seems to have been insufficiently aware of the differ-
ence between these two principles in Die Grundlagen. His proof, in
§§82-3, that every number has a successor purports to use only (IND-),
whereas it is (IND) that is needed (Boolos and Heck, 2011, pp. 327ff). In
the corresponding portions of Grundgesetze, however, Frege explains this
difference himself (Frege, 2013, v. I, §114) and shows how (IND-) can be
used to prove (IND). More precisely, he uses Theorem 144:

(Gg 144) R*=abA Fa ANVaVy(Fz A Rxy — Fy) — Fb

which is all but immediate from the definition of the weak ancestral, to
prove Theorem 152:

(Gg 152) R*~ab A Fa ANVaVy(R*“ax AN Fx AN Rxy — Fy) — Fb

of which arithmetical induction is then an instance: Just substitute P¢n
for R¢n and 0 for a.

be, fairly common, and it is something I thought myself for a long time.

"This point is especially clear when we think of the mathematical part of Frege’s
project in terms of the notion of relative interpretation (Tarski et al., 1953). Suppose
our goal is to interpret first-order Dedekind-Peano arithmetic in some form of Frege
arithmetic. Then, among the principles we need to interpret is the induction scheme

A(0) AVz(A(x) — A(Sz)) — Vz(A(x))

The interpretation will have to be relativized to the ‘natural numbers’, and that will
then introduce the restriction Nz in the antecedent of the second conjunct.



The proof of (Gg 152) is not difficult: We need only take F¢ in (Gg
144) to be R*=a& A FE. That yields

R*~abA (R aa A Fa) A
VaVy[(R*“ax AN Fx) AN Rzy — (R*"ay A Fy)] — Fb

Since the conjunct R*=aa is trivial, we thus have:

R*~abA Fa A
VaVy[(R*"ax A Fz) N Rey — (R* " ay A Fy)] — Fb

To prove (Gg 152), then, we need only show that
VaVy[(R*“ax A Fx) AN Rzy — (R*"ay A Fy)]

follows from
VaVy(R*“ax N Fx N\ Ry — Fy)

But if R*=ax A Rzy, then certainly R*=ay, by a weak form of transitivity
that Frege proves as Theorem 133.

Although this proof is easy, it is still worth noting that it requires
non-trivial logical resources. In particular, it requires Il comprehen-
sion. Frege does not have comprehension axioms in his system but,
rather, a rule of substitution that allows, for example, the substitution of
R*=a€ N FE for F¢ in (Gg 144). But this is just equivalent to assuming
comprehension for R*=a¢ A F¢. And since the definition of R*= is IT13—it
is of the form VF ¢, where ¢ contains no second-order quantifiers—the
crucial formula R*=aé A F¢ is also I1}. That is why (Gg 152), and so
arithmetical induction, cannot be proven in the predicative fragment of
the formal theory of Grundgesetze mentioned earlier. The lesson is thus
that Frege does not simply define the natural numbers as the numbers
for which arithmetical induction holds. He defines them as the numbers
for which a weaker sort of induction-like principle holds, and then proves
arithmetical induction from the weaker principle.

Despite these complications, however, Frege’s definition of the an-
cestral, and of the concept of natural number, are adequate for any
mathematical application one might need to make of them, as anyone
familiar with Frege’s arguments in Grundgesetze will know.? So, in that
sense, Frege’s definition of the ancestral undeniably works.

8 Assuming, again, that we have enough comprehension.
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But the definition can seem almost magical. One might well want to
ask, with Wright (1983, p. 159), whether Frege’s definition “capture[s]
the intuitive meaning” of the ancestral. The question matters for several
reasons, not least of which is that Frege is attempting to show that
arithmetic is logical in character, and by that I mean arithmetic as we
ordinarily understand it. If so, then Frege really does need a definition
of the concept of natural number that “capture[s] the intuitive meaning”
of that concept, not just one that works, in some technical sense.

What is the intuitive meaning we need to capture? Frege is aiming
to tell us how to define the notion of an ancestor, for example, in terms of
that of a parent. And there is an obvious way to do this: My ancestors are
my parents, and their parents, and their parents, and so on. Of course,
that uses “and so on”, which is not very helpful. So we might try: My
ancestors are those people to whom I can be connected by a finite series
of steps, starting with me and moving always from a person to one of
that person’s parents. But that definition uses the notion of finitude and
so could not be employed in a non-circular definition of the concept of
natural number. That is what forces Frege to give a very different sort of
definition. But that, in turn, raises the question what Frege’s definition
has to do with the ordinary notion of an ancestor. And the truth is that
it is far from obvious that Frege’s definition is even extensionally correct:
that my ‘Frege-ancestors’ are exactly my ancestors. It is, that is to say,
far from obvious that the people who have every property my parents
have and that is had by any parent of someone who has it, are exactly
the people to whom I can be connected by a finite series of steps, starting
with me and moving always from a person to one of that person’s parents.
Couldn’t some person totally unrelated to me just happen to have every
such property (cf. Wright, 1983, p. 160)? Then Frege’s definiendum would
be satisfied, and the person in question would wrongly be counted as one
of my ancestors.

In fact, however, the extensional correctness of Frege’s definition can
be proven. The intuitive notion we are trying to capture is that of one
object’s being some finite number of R-steps ‘downstream’ from another.
So what we want to show is simply that, for any «, b, and R, if b is finitely
many R-steps downstream from a, then R*ab, and conversely.

Let us first prove the stated direction. Suppose that b is finitely many
R-steps downstream from a. To show that R*ab, we prove the formula
that defines it:

(1) VF[Vx(Rax — Fz) AVaVy(Fz A Ry — Fy) — Fb]



The proof is by arithmetical induction on how many R-steps b is from
a. For the basis, suppose that b is one R-step downstream from «, i.e.,
that Rab. Fix F' and suppose that Vz(Raz — Fz). (We do not need the
other conjunct of the antecedent.) Then certainly Fb, since Rab. For
the induction step, then, suppose that (1) holds whenever b is n R-steps
downstream from a, and suppose that cis n + 1 R-steps downstream. Fix
F and suppose that VaVy(Fx A Rry — Fy). (Again, we do not need the
other conjunct of the antecedent.) Then there must be a b such that Rbe,
where b is n R-steps downstream from a. But then we have Fb, by the
induction hypothesis, and so F'¢, since F'is R-hereditary. So, if a is any
finite number of R-steps downstream from b, then (1) holds.

Note, for later reference, that the proof just given used arithmetical
induction.

For the proof of the converse, abbreviate “¢ is finitely many R-steps
downstream from «” as: FRS(¢). If Rax, then certainly FRS(z), since
then z is precisely one R-step downstream from a. Similarly, if FRS(z)
and Rxy, then also FRS(y), since, if = is n R-steps downstream, then y is
n + 1 steps downstream. But now we have shown that:

Va(Rax — FRS(x)) A VaVy(FRS(z) A Rxy — FRS(y))

And so the definition of the ancestral delivers:®

R*ab — FRS(b)

which is what we wanted to prove.

Note, for later reference, that this proof did not use arithmetical
induction but only the sort of induction derivable from Frege’s definition
of the ancestral.

Frege’s definition of the ancestral is thus extensionally correct. We
can prove

(NEC#) If b is finitely many R-steps from a, then R*ab

with the help of ordinary arithmetical induction. And we can prove

9The definition immediately yields:
R*ab — VF|VaVy(Fz A Rxy — Fy) AVz(Rax — Fx) — Fb]
Now instantiate F§ with FRS(¢). That gives:
R*ab — [Vz(Rax — FRS(z)) A VaVy(FRS(z) A Rzy — FRS(y)) — FRS(b)]

But the antecedent of the embedded conditional has been proven.



(SUF*) If R*ab, then b is finitely many R-steps from a

using a different sort of induction.

2 Objections To Frege’s Definition

If the foregoing arguments strike the reader as somehow circular, then
they are not alone. Many such charges have been made over the years.

2.1 Poincaré

Henri Poincaré famously lodged several objections of circularity against
attempts to define the concept of natural number in such a way as to
render induction provable. Poincaré’s own discussions are, to my mind,
confusing at best, but they have been carefully elaborated by Janet
Folina, who distinguishes four sorts of objection that Poincaré offers. I
will follow Folina’s presentation.?

The first objection is that, if one simply regards induction as part of
the definition of natural number, then one needs a proof of the consistency
of such a definition, and induction will figure essentially in that proof
(Folina, 2006, pp. 278-9). But, as Folina notes, this objection rests upon
a conflation between logicism and a sort of formalism that supposes
that arithmetical notions are defined by the axioms in which they figure.
That makes it particularly inappropriate as an objection to Frege, since
he makes this sort of objection to formalism himself (Frege, 2013, v. II,
§§138-45). Moreover, Frege is extremely hostile, at least in his mature
period, to the idea that axioms can define anything (Frege, 1984b,c).

The fourth objection—we’ll consider the second and third shortly—is
that the ‘new logic’ of Frege and Russell is so different from traditional
logic that it is not clear why it should be regarded as logic at all. Poincaré,
as Folina reads him, thinks the logicist might seek to answer this ques-
tion by appealing to the idea that the axioms and rules of inference
governing the logical notions are analytic of them because they serve
to define them. Then we need a consistency proof again (Folina, 2006,
p- 280-1). But that makes the fourth objection a version of the first,

The first and fourth objection seem to be discussed only in Folina’s 2006 paper
“Poincaré’s Circularity Arguments for Mathematical Intuition”. The second and third
are also discussed in her 1992 book Poincaré and the Philosophy of Mathematics. As one
might expect, the later discussion is better, but there are points that emerge only in the
earlier one, so the reader is encouraged to consult both.



which, as I have said, is certainly not properly brought against Frege.
Nonetheless, the general question Poincaré raises is perfectly reasonable,
and neither Frege nor Russell says much explicitly about why the ‘new
logic’ is properly so called.!! The question is particularly pressing in the
present setting, since the definition of the ancestral is given in second-
order logic. More importantly, as we saw above, the proof of arithmetical
induction from the definition of the ancestral requires IT} comprehension,
and impredicative second-order logic is particularly liable to seem like
“set theory in sheep’s clothing”, as Quine (1986, pp. 66—8) famously put it.
But this sort of worry is not one about circularity.

Indeed, Poincaré’s concerns about the logical character of the ‘new
logic’ apply every bit as much to its first-order fragment as to anything
higher-order. Those concerns emerge in the second and third objections
that Folina (2006, pp. 279-80) distinguishes, which I'll present together,
since they seem to me to be closely related. The basic objection is that
mathematics must be used in the very “Exposition of the Concept-script”,
as Frege entitles Part I of Grundgesetze. Specifically, various sorts of
recursive definition must be employed, for example, in explaining what
a well-formed formula is, or what a proof is (Parsons, 1995, p. 202).

Folina goes so far as to attribute to Poincaré the claim that “induc-
tion. . .1is epistemologically prior, not only to arithmetic, but to any sort
of systematic thinking” (Folina, 1992, p. 103). That has to be too strong.
Even if we allow that it is essential for us to think in symbols, it does
not follow that we need to be able to apprehend the symbols as symbols,
let alone that we need to know anything about them. In brief: We do
not need to think about symbols to think with symbols. So, even if a
proper understanding of the symbols themselves, and of the relations
between them that underlie logical inference, would require the use of
inductive methods, there is no reason that we, the thinkers, have to use
such inductive methods in order to make logical inferences and to be
justified in drawing the conclusions at which we thereby arrive. Note
that I am not saying that it is an uninteresting question whether, as a
matter of empirical fact, our initial appreciation of recursion somehow
flows from our understanding of language. Maybe it does. And, if it
does, then I would suppose that fact to be of significant psychological
interest. But that is where its interest would lie: in psychology, not in
epistemology.

" As it happens, I think Frege did have some inchoate views about the matter (Heck,
2010; 2012, ch. 2). We'll return to this issue.



This sort of charge, that Poincaré’s argument is unacceptably psy-
chologistic, has been made before, by Warren Goldfarb, but it is worth
being clear exactly what the response is and what its presuppositions are.
The first charge Goldfarb (1988, p. 68) makes is that Poincaré ignores
the distinction “between empirical conditions a person must satisfy in
order to arrive at certain propositions and the ultimate rational basis
for the propositions”. Ironically, Goldfarb claims, this distinction is it-
self supposed to be founded on the ‘new logic’, so Poincaré is unable to
appreciate it precisely becuase he rejects the ‘new logic’. But, while it is
certainly true that Frege and Russell intended the ‘new logic’ to be a tool
for investigating epistemic relations, I do not see any reason to suppose
that one’s ability to draw the distinction between enabling conditions
and justificatory relations depends upon whether one is with Aristotle
and Boole or with Frege and Russell.

That, however, is not really the crucial point. Poincaré has a specific
reason to think that induction plays a justifying role in logical inference.
Folina suggests, in fact, that “Poincaré’s most pentrating criticism” is
that recursion is implicit in the inferential rules of the ‘new logic’ (Folina,
2006, p. 280; see also 1992, pp. 84-9). To determine whether a formula
is an instance of modus ponens, for example, we would need to be able
to count parentheses (or to do something equivalent), and the problem
only gets worse with the axioms and rules involving the quantifiers. But
that looks like a recursive process,'? and recursion is the flip-side of
induction.

Goldfarb insists, however, that this argument, too, is overly psycholo-
gistic:

Logic is not about manipulations of signs on paper, even
though it may be a psychological necessity for us, in order to
be sure that we are proceeding logically, to verify proofs by
syntactic means. (Goldfarb, 1988, p. 69)

And that seems right. The ‘new logic’ is supposed to make it possible
for us to know that my beliefs that A — B and A suffice to justify my
belief that B by observing that a certain syntactic relation holds among
these three propositions—and, ultimately, to know that the Basic Laws
of Grundgesetze suffice to justify its theorems. But that simply does not
imply that, if I infer B from A — B and A, then my justification for B

2Can it be proven to be a recursive process? Might one think of that as a consequence
of the fact that no regular expression can be used to check for balanced parentheses?
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includes the meta-judgement that such a syntactic relationship obtains.
On the contrary, as was just said, my justification for B is simply that
A — B and A.

In leading up to this response, however, Goldfarb seems to imply
that its availability depends upon adoption of the so-called ‘universalist’
conception of logic that he and others have claimed to find in Frege!? or,
perhaps more precisely, upon the claim that “no metatheoretical stance
[on logic is] either available or needed” (Goldfarb, 1988, p. 69). But
even if one does think such a stance is possible, one can continue to
insist, with Goldfarb’s logicist, that “To give the ultimate basis for a
proposition is...to assert the proposition with its ground, not to assert
the metaproposition ‘this sentence is a theorem’” (Goldfarb, 1988, p. 69).
The only thing that would prevent one from doing so would be the view
that the metaproposition was epistemically more fundamental than the
proposition itself. But it is hard to imagine any sensible view that would
endorse that claim, and the mere fact that a “metatheoretical stance” is
available cannot by itself imply that it plays the sort of epistemic role
that Poincaré supposes it must.

And that is a very good thing. Poincaré’s question whether the ‘new
logic’ really should be so called is, as I said above, a perfectly good one.
But, as Folina (2006, p. 285) emphasizes, the commitments Goldfarb
ascribes to Frege threaten to “render all questions about the general
nature of logic unanswerable in a noncircular way by logic...”, with the
further consequence that logicism would be “unable to be justified in a
way that would be approved by the program itself”. And, indeed, those
who regard Frege as a universalist in Goldfarb’s sense (see e.g., Ricketts,
1997, p. 174) frequently emphasize that such a doctrine would preclude
Frege from making genuine sense of the question: What distinguishes
logical from non-logical truth? If so, however, Frege would have to deny
that it is even a substantive question whether, say, Basic Law V is a truth
of logic (prescinding, for the moment, from its inconsistency), or whether
impredicative second-order reasoning is properly logical, in which case
logicism threatens to become a merely verbal doctrine (Heck, 2012, p.
34).14

13There is now a sizeable literature on this. Proponents include Goldfarb (2001),
Kremer (2000), Ricketts (1986), and Weiner (1990). Opponents include Stanley (1996),
Sullivan (2005), Tappenden (1997), and me (Heck, 2010; 2012, Part I).

14Special thanks to an anonymous referee for helping me clean up the discussion of
Goldfarb.
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2.2 Kerry and Angelelli

It seems to me, therefore, that good answers to Poincaré’s objections of
circularity are available to Frege. But there are more such objections
to be considered. Ignacio Angelelli discusses two in his paper “Frege’s
Ancestral and Its Circularities”. The second of these is originally due
to Benno Kerry, who raises it in the same series of articles in which
he introduces the infamous problem of the concept horse. Speaking of
Frege’s definition of the ancestral, Kerry writes:

Now, this criterion is to begin with of dubious value because
there is not a catalogue of such properties [the hereditary
ones, etc], hence one is never sure that one has examined the
totality of them. Moreover, there is the crucial fact that, as
[Frege] has proved, of the properties that are hereditary in
the f-series is also the following: to follow x in the f-series.
Thus, the determination of whether y follows z in the f-series,
according to the definition given for this concept, depends on
whether, in addition to a lot of other things about hereditary
properties in general, one knows, in particular, about the
hereditary property “being a descendant of z”, that y has it or
not. It is clear that this circle should totally prevent us from
saying, in Frege’s sense, that any y follows z in an f-series.
(Kerry, 1887, p. 295, as translated in Angelelli, 2012, p. 480)

Kerry’s worry is this. Frege’s definition tells us that y follows x in the f-
series just in case y has every f-hereditary property that 2’s immediate f-
successors all have. But the property follows x in the f-series is precisely
such a property. So, to determine whether y has every such property,
we need to determine whether y has this property, that is, we need to
determine whether y follows x in the f-series. But that is what we were
trying to determine in the first place.

There is not really any circularity here, however, for reasons Russell
makes clear in the appendix on Frege in the Principles:

This argument. . . radically misconceives the nature of deduc-
tion. In deduction, a proposition is proved to hold concerning
every member of a class, and may then be asserted of a par-
ticular member: but the proposition concerning every does
not necessarily result from enumeration of the entries in a
catalogue. (Russell, 1903, p. 522)
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Russell presents the point as a logical one: A proof that VF(...F...)
need not consist in a proof of each of its instances. But, as so often
with Russell, the fundamental point is really epistemological: Kerry’s
objection assumes that defense of the universal claim VF(... F...) must
depend upon our having some independent justification for each of its
instances. But that is simply false. We can have justification for the
universal claim and thereby have justification for its instances.

The same sort of answer can be given to the other charge of circu-
larity that Angelelli (2012, pp. 478-9) brings against Frege’s definition.
Angelelli has us imagine that, if Fritz can show that Karl is his ancestor,
he stands to inherit a large sum of money. So, attempting to avoid the
need to show that Karl is his ancestor in the ordinary sense, he asserts
that Karl is his ancestor in Frege’s sense.

Fritz does not fully understand what he is saying but hopes
that the audience will be intimidated by such a display of
conceptual weaponry.... Alas, a smart opponent ruins this
plan by requesting Fritz to defend the Fregean version of
his claim for the predicate “Karl is an ordinary ancestor of
z”. Fritz is dialogically forced to assert the conditional: if
(the property “Karl is an ordinary ancestor of =” is hereditary
and all children of Karl have it) then Karl is an ordinary
ancestor of Fritz. The opponent then attacks the conditional
by asserting its antecedent, which is a conjunction whose two
conjuncts the opponent defends successfully. Thus, poor Fritz
is left with the obligation of defending the same statement
he wanted to shun: “Karl is an ordinary ancestor of Fritz”.

(Angelelli, 2012, p. 479)

But this would have no force whatsoever if Fritz had grounds for the uni-
versal generalization. If he had such grounds, then, given the conditional
and his opponent’s helpful proof of its antecedent, he could perform a sim-
ple inference to get the result he needs. In any event, it is not clear what
conclusions we can draw from cases in which people make assertions
they do not even understand.

One might respond that Angelelli (2012, pp. 479-80) is specifically
concerned to argue that this sort of circularity undermines the status of
Frege’s definition of the ancestral as any kind of analysis. He mentions
Russell’s answer to Kerry himself, for example, but then raises the ques-
tion whether it depends upon assumptions about how the definition is
intended. But it seems pretty clear that it does not. Russell is making an
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elementary logical cum epistemological point: A universal generalization
does not have to be derived from the conjunction of its instances, and
knowledge of a universal generalization need not rest upon knowledge of
its instances.

What really seems to be bothering Kerry, and Angelelli, too, is
whether, say, the fact that Karl is Fritz’s Frege-ancestor could be es-
tablished otherwise than by exhibiting a parental path connecting them.
If not, the thought seems to be, then Frege’s definition essentially de-
pends upon the intuitive one. In fact, however, this is not at all clear:
Even if knowledge that Karl is Fritz’s Frege-ancestor depends upon
knowledge of the existence of a path, the bearing of this epistemic de-
pendence upon the correctness of Frege’s definition is not clear. And it
simply isn’t true that one can only establish that Karl is Fritz’s Frege-
ancestor by exhibiting such a path. Suppose Fritz knew by testimony
that Karl’s father was his Frege-ancestor, and suppose he also knew
that Karl was an only child. Then he could prove that Karl was his
Frege-ancestor in roughly the way Frege proves Theorem 124 of Begriffs-
schrift.'® Whether showing that Karl is Fritz’s Frege-ancestor requires
us to exhibit a parental path therefore depends, unsurprisingly, upon
what else we happen to know. Moreover, the power of Frege’s definition
shows itself not in particular cases but in results like the one just men-
tioned: in the generalizations about the ancestral that it allows us to
prove. Worries about what happens in particular cases thus seem to be
misplaced.

2.3 Papert and Parsons

There is, however, a deeper worry about Frege’s definition of the an-
cestral, one that Charles Parsons (1995, pp. 203-5) discusses in his
paper “Frege’s Theory of Number”, attributing it to Seymour Papert
(1960).16 The worry is that the argument for the extensional adequacy
of Frege’s definition of the ancestral takes the intuitive notion of finitude
for granted and assumes the correctness of ordinary induction. It is

BTn our notation, this is:
VaVyVz(Rzz A Ryz — x = y) A R"ac A Rbc — R*ab

We do not really need to know, however, that R is one-many, only that b is the unique
R-predecessor of c.

6Unfortunately, I do not read French well enough to confirm this attribution. But
Parsons is nothing if not careful, so I'm prepared to take him at his word.
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easy to see how this observation might lead one to worry that Frege’s
definition of the ancestral cannot provide us with any sort of justification
for ordinary arithmetical induction, even though it does allow us to prove
something that looks very much like it. The problem is that we have to
use arithmetical induction to convince ourselves of the correctness of the
definition we use to prove arithmetical induction. And the more general
worry is that this same sort of situation will arise for every definition of
the ancestral.!”

To spell this out a bit, Parsons and Papert are conceding that Frege
can show that

(ANC) VF[FOAVYaVy(P*~0x A Fx A Pry — Fy) — Ya(P*~ 0z — Fz)]

is a truth of logic. What they are challenging is the claim that this shows
that

(IND) VF[FOAVaVy(Nz A Fx A Pxy — Fy) — Va(Nx — Fz)]
is a truth of logic. Now, we can of course derive (IND) from (ANC) and
(EQ) Vz(P*~0x = Nzx)

which will license us to replace the two occurences of P*=0x with Nz in
(IND). So (IND) is a truth of logic if (EQ) is. But note that we do need
both directions of (EQ): We need the left-to-right direction to replace the
first occurrence of P*=0x and the right-to-left direction to replace the
second one. But the right-to-left direction of (EQ) is a special case of
NEC#*, whose proof depends upon arithmetical induction, that is, upon

Tt may well be that the Frege of Grundgesetze would have no time at all for this sort
of objection. But the Frege of Die Grundlagen might be committed to taking it seriously.
Thus, in explaining his notion of analyticity, Frege writes:

The problem becomes, in fact, that of finding the proof of the proposition,

and of following it up right back to the primitive truths. If, in carrying out

this process, we come only on general logical laws and on definitions, then

the truth is an analytic one, bearing in mind that we must take account also

of all propositions upon which the admissibility of any of the definitions

depends. (Frege, 1980, §3, my emphasis)
To be sure, it’s not entirely clear what Frege means here. But here’s one thought. Suppose
that, at least early on in the composition of Die Grundlagen, Frege was intending to
use ‘Hume’s Principle’ to introduce names of numbers, only later to change his mind in
the face of the Caesar problem (Heck, 201X, §7). Then he might have meant, e.g., the
proposition that equinumerosity is an equivalence relation, upon which the legitimacy
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(IND).'® So the worry is not that Frege’s definition of the ancestral
is circular, or that the definition depends upon arithmetical induction,
or anything of that sort. The worry is that the appeal to arithmetical
induction in the proof of (EQ) undermines Frege’s claim to have justified
arithmetical induction (let alone to have done so purely logically). The
circularity, that is to say, is supposed to be epistemological, not logical.

Some will want to respond that Frege was not really in the business
of analyzing the ordinary notion of the ancestral (or the related notion of
finitude) but of replacing it with a rigourously defined notion suitable for
the purposes of science. But that response threatens to divorce Frege’s
‘natural numbers’ from the natural numbers, thus raising the question
whether Frege really shows us how to prove axioms for arithmetic, not
just something that look like axioms for arithmetic (Heck, 2011b, §1.3).
And, in fact, we aren’t even talking, at this point, about whether Frege’s
definition gets the sense of arithmetical claims (even close to) right. The
issue here is purely extensional: If (EQ) is not true, then a statement
of the form Vz(P*~0x — Fz) is not even about the same objects as a
statement of the form Va(Nz — Fz). So the question is what reason we
have to believe that Frege has managed to pick out the right objects,
from among the cardinal numbers, as the finite ones.!®

A different response is that this sort of circularity is familiar in other
settings and is not necessarily problematic. For some years, there has
been a robust discussion, for example, about the significance of the fact
that modus ponens has to be applied in proving the validity of modus
ponens.2® Such a circularity would no doubt be fatal if we were in the
business of trying to justify the laws of logic ex nihilo. But surely that is
not what anyone supposes such arguments might accomplish since, as
Dummett (1991, p. 204) puts it, ... there is no sceptic who denies the
validity of all principles of deductive reasoning, and, if there were, there
would obviously be no reasoning with him”. Perhaps, then, we could
think of the circularity affecting the justification of Frege’s definition of
the ancestral in a similar way.

of that ‘contextual definition’ would depend.

18 Alternatively, one can give a direct proof. Certainly P*~00; and if P*~0z and Py,
then P*=0y. So by arithmetical induction, if Nz, then P*~0z.

Y And here again, the issue is not whether Frege’s zero is the ordinary zero. Even if
that is granted, the question in the text remains.

20The modern discussion probably begins with Dummett (1978). But if one is looking
for a place to enter the current literature, one might start with Boghossian (2000) and
Wright (2001).
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Perhaps. And I would not want to discourage anyone from considering
the issue in those terms. The best way to answer this sort of objection,
however, or it seems to me, would be to give a definition of the ancestral
that (i) does not appeal, either directly or indirectly, to the notion of
finitude it seeks to explicate and (ii) has some claim to be intensionally
correct, so that its extensional correctness will not require proof at all,
let alone proof by arithmetical induction.

Let’s see if we can improve on Frege’s definition, then.

3 A New Definition of the Ancestral

Consider an arbitrary relation R and some initial object . We want to
give a rigorous definition of the intuitive notion of (what I shall call) an
R-descendant of a, where b is an R-descendant of a if b is reachable from
a by a sequence of R-steps. That is, what we want to capture is the idea
that there is an R-path from a to b. For technical reasons, the case where
a = b causes a lot of problems here, so it is easiest to define an analogue
of the weak ancestral first: either a = b or else a # b and there is an
R-path from a to b. The strong ancestral can then be defined in terms of
the weak, as:
R.ab = Jy(R;ay N Rybd)

where R is the notion we are about to define.

An R-path from a to b would be described by a relation @ that re-
stricted R, in the sense that VzVy(Qzry — Rxy), and that met some other
conditions. Which? First, ) should be one-one—the steps back and forth
along the path should always be completely determined—and the path
described should begin with a and end with b: 32(Qax) but —3z(Qza),
and Jz(Qzb) but —3z(Qbx). Moreover, everything else in @’s field—in
the union of its domain and range—should be a ‘step along the way’:

Jy(Quz) ANz # b — I2(Qxz)
Jy(Qzy) Az # a — I2(Qzx)

That is to say: Jy(Qzy) = Jy(Qyzx), except in the case of a and b. I'll put
this by saying that @ ‘runs from a to ¥’ and abbreviate that claim as:
a--+b.

By themselves, these conditions do not suffice, as one can see from
the following example. Let R{n be the relation n = £ + 1, defined on the
integers. Let Q¢n be its restriction to integers > 10 or < —10. Then @
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satisfies the conditions just stated with ¢ = 10 and b = —10, but —10
is certainly not reachable from 10 by a sequence of +1 steps. So the
conditions so far stated are insufficient to capture the intuitive notion.
This example also shows that it will not help to require that there should
be no further restriction of ) meeting the same conditions. For that is
true of () in this example.

It is at this sort of point that Poincaré et alia might be expected to
observe that the missing condition is that the field of @ should be finite.
And, of course, there are many definitions of finitude to which we might
appeal in attempting to state this additional condition. For example,
we might appeal to a definition due to Zermelo: A set is finite if it can
be well-ordered by a relation whose converse is also a well-ordering.?!
Zermelo’s definition has no claim, however, to capture the intutive notion
of finitude, so a proof that it was even extensionally equivalent to it
would then be wanted. Such a proof would likely use induction. Even
if did not, however, our definition of an R-descendant would contribute
little to the analysis of finitude, since it would actually depend upon a
prior analysis of that very notion.

Familiarly, however, there are two notions of finitude. Perhaps the
more familiar of these is the one we find in Cantor: one that is connected
with such notions as enumeration, recursion, and induction. That is the
notion we are presently trying to analyze. But there is a different notion
that was introduced by Dedekind (1902, §64): A set is Dedekind finite
if it is not equinumerous with any of its proper subsets. That is not the
notion we are trying to analyze—it is defined as Dedekind defined it—so
it would be perfectly in order for us to appeal to the notion of Dedekind
finitude in our analysis of the enumerative notion of finitude. And it
turns out that it is sufficient to require that the field of ) be Dedekind
finite or, more simply: The field of Q must not be equinumerous with the
result of omitting a.2?

It might seem surprising that this would suffice, since, without an

HParsons (1987) discusses the history of such definitions.

22 Antonelli (2012) has made a closely related point, as did Albert Visser in a lecture
given in London in May 2012. So this idea seems to have been in the air. My own
appreciation of it dates to at least 2004, when it appears in an early draft of what would
eventually become Reading Frege’s Grundgesetze.

The issue about the correctness of Frege’s definition bothered me from the very
beginning, and my initial attempts to address it, in the early 1990s, foundered upon the
need to appeal to some notion of finitude in giving an adequate analysis of an R-path. It
was reflection on the results mentioned in note 26 that made me realize that it would
suffice to require that the path be Dedekind finite.
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axiom of (countable) choice, one cannot prove that every Dedekind finite
set is finite in the enumerative sense.?2 So one might have suspected
that using Dedekind’s notion here would lead us to a definition on which
objects that are some infinite but Dedekind finite number of R-steps
from a count as R-descendants of a. But it does not take very much
thought to see, and we are about to prove, that no R-descendant of a can
be infinitely many R-steps downstream from a.
The proposed definition of an R-descendant, then, is:*

R_-ab=a =10V 3IQVzVy(Qry — Rxy) A
VaVyVz(Qrzy A Qrz — y = 2) A
VaVyVz(Qrz A Qyz — © = y) A
Jz(Qax) A =Fz(Qxa) A
Jz(Qxb) A =3z (Qbx) A
(@(Quy) A x £ a > F2(Qz)) A
(Fy(Quz) Az # b — 2(Quz)) A
—Eq,(3y(Qzy vV Qyx); Jy(Qzy V Quyz) A x # a)]

or, abbreviating:
R_ab=a=">bV3IQVzVy(Qry — Rxy) A
@ is one-one A
a _(,_29 bA

—Eq,(Fy(Qzy V Quz); Iy(Qzy V Qyz) A x # a)]

where “Eq,,(Fz; Gz)” means that F' is equinumerous with G (that notion
being defined in the usual way).25
In order to show that this definition could take the place of Frege’s

2] discuss Dedekind’s proof, and where choice is used in it, in Reading Frege’s
Grundgesetze (Heck, 2012, §11.3).

24As we shall see below, we do not need all of these conditions, but the analysis
suggests them, and including extra conditions cannot hurt. Indeed, nothing here requires
that Q be minimal, so, as the definition is formulated, the relation Q01, Quw would
exhibit the fact that P01, since P01 and Pww. That’s obviously not what we had in
mind, so such a condition may well be worth adding to the analysis. The proofs then
need minor modification.

%5 Note that a definition of finitude is implicit in the definition of RS. The simplest
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definition of the ancestral, it is enough to prove that it is equivalent to it:
R*~ab= R, ab

The right-to-left direction follows from results Frege proves in Grundge-
setze. The case where a = b is of course trivial, so assume that a # b, and
suppose that there is an R-path from a to b, i.e., a relation Q meeting the
stated conditions. Suppose, for reductio, that -Q*ab, and now consider
the concept: Q*=a&. Then we have:

(2) Vr(Q*ar — VyVz(Qry A Qrz — y = 2))
3 Va(Q"az — Jy(Quy))
(4) Vo (Q*ar — —Qxx)

The first of these is immediate from the fact that () is one-one. For the
second, suppose Q*=az. If z = a, then Jy(Qxy), by the condition Jy(Qay),
so suppose = # a. So Q*ax. But then Theorem 124 of Grundgesetze:

(Gg 124) Q% azxr — Jy(Qyx)
implies that Jy(Qyz). And since -Q*ab, x # b. So the condition

Jy(Qyzr) Nz # b — Iz(Qxz)

on () yields (3). Finally, (4) is a essentially a version of Theorem 145 of
Grundgesetze:

(Gg 145) P*=0x — -P*zx

version would be:

Finite(F) = 3Q3a3b[Vz(Fx = Jy(Qzy V Qyx)) A
Q is one-one A

a 2, bA
-Eq,(Fz; Fx Az # a)]

That more or less mimics the way Frege characterizes finitude in terms of the ancestral
(Heck, 2012, §8.1).

There are presumably historical antecedents for such a definition, but it still seems a
bit surprising to me, anyway, that finitude can be defined in terms of Dedekind finitude.
A somewhat similar definition would be: A set is finite if it is Dedekind finite and can be
totally ordered. Proving that equivalence seems to require the axiom of choice, but it
highlights the similarity between this defintion and the one due to Zermelo mentioned
earlier.
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which says that no natural number follows after itself in the natural
series of numbers. The proof of (Gg 145) actually uses no more about
P than that it is one-many and that —P00, however, and so actually
establishes:

(B)  VaVy¥z(Qzz A Quz — © = y) A -Q%aa — Vo (Q* " ax — —Q*zx)

But the first conjunct is one of the conditions on @, and the second
again follows from (Gg 124), since, if Q*aa, then Jy(Qya), which violates
another of the conditions on (.

As a little thought will show, conditions (2)—(4) characterize the Q-
series beginning with « as an w-sequence,?® and Frege himself proves,
essentially as Theorem 262 of Grundgesetze, that the number of objects in
any series meeting these conditions is the same as the number of natural
numbers and so is Dedekind infinite. Indeed, under these conditions, the
relation () itself correlates Q*=a& one-one with Q*=aé A x # a. But that
contradicts the last condition on (). So Q*ab, whence also R*ab, since ()
restricts R.

For the other direction, suppose that R*~ab. Then either a = b or
R*ab. If the former, then of course R ab, trivially, so we need only prove
that, if R*ab, then R ab. We do so by induction. So we need to establish
that:

Vz(Rar — R ax)

i.e., that every immediate R-descendant of a falls under the concept
RZa&, and that:
VaVy(R, ax N Rry — R, ay)

i.e., that R af is hereditary in the R-series.

For the first, suppose that Rab. If a = b, then R_ab trivially. And if
a # b, then the relation £ = a A ¢ = b will describe an R-path from a to b,
i.e., it will meet the conditions on () in the definition of R ab.

%6The basic reason we do not need choice here is really that we can prove, quite gener-
ally, that if Q is many-one, then Q*~af is either finite or countably infinite. Frege proves
a version of this fact as Theorems 207 and 263 of Grundgsetze. That same observation
was what lay behind my proof of the result stated at the end of “Die Grundlagen der
Arithmetik §§82—-83” (Boolos and Heck, 2011, p. 85). A different way to put what is essen-
tially the same point is that, if (2) and (4) hold, then Q*~a is well-ordered by Q™. (See
Frege’s proof of Theorem 359 in Grundgesetze and my discussion of that result (Heck,
2012, §§85, 9.2.1).) The conditions on an R-path—specifically, the condition that Q must
be one-one—therefore imply that the path cannot be infinite and Dedekind finite.
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For the second, suppose that R;ab and Rbc. If a = ¢, then again
RZ ac trivially, so suppose a # c. If a = b, then Rac, so R ac by the
argument just given. So suppose a # b. Then there is some ) meeting
the conditions on R ab. We want to show that we can define )’ meeting
the conditions for R ac. Now, if ¢ is not in the field of @), this is easy. Just
adjoin <b,c>to Q: Q¢ = QEC A (E =bA( =c). If cis in the field of Q,
then there are two possibilities: Either Q*ac or —Q*ac.?

If Q*ac, then c is already on the path from a to b, and we can get
the relation we need by restricting @ as follows: Q¢ = Q&¢C A Q*Ee.
Most of the conditions then hold of Q' simply because they already held
for Q. The only conditions that really need checking are the last one,
concerning Dedekind finitude, and the condition that —32(Q’cz). But if
Q'cz, then Qcz and Q*cc, contradicting (5) above. And if the field of Q’
were Dedekind infinite, then the field of (Q would be, too.

If -Q*ac, then c is not on the path from a to b. We can restrict @
to that path by considering Q¢¢ A Q*=(b. Note that —Q*=cb, and so
-3z (Qzc A Q*=cb). For, by what was shown in proving the right-to-left
direction, Q*=ab. So, if Q*=cb, then, since () is 1-1, we have either Q*ac or
a = cor QQ*ca, by a version of Begriffsschrift Theorem 133. But all of these
are impossible, the last because —3x(Qxa). Moreover, —~3x(Qbx A Q*=xb),
since otherwise Q*bb, contradicting (5), again. So we are free to adjoin
<b, c> not to Q¢ but to QEC A Q*=(b, and the relation we want can be
defined as follows:

QEC=(QECNQ™C) V(E=bA(=0)

And now the conditions on @’ follow, once again, from the corresponding
conditions on Q.

We have thus shown that R*=ab = R_ab. And, though the proof
of the left-to-right direction was by induction, that use of induction is
justified directly by the definition of R*, that is, by Frege’s definition of
the ancestral. At no point in the argument do we need to use arithmetical
induction.

#Thanks for Ran Lanzet for pointing out a significant lacuna in the proof given in
the published version of this paper: The case where —Q*ac was not considered. The next
two paragraphs fix this.

I seem to recall that, in some earlier version, I had introduced a ‘simplifying assump-
tion’ that everything in the field of Q was between a and b, i.e., that Qzy — Q" az A
Q*~yb. I think this must somewhere have gotten discarded, perhaps because the admis-
sibility of this assumption is not so obvious. Indeed, the technique needed to show that
it is legitimate is the one I deploy below: Consider Q&¢ A Q*~(b. (And see also note 24.)
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Note also that the argument just given is not intended to demonstrate
the extensional correctness of the definition of R . That is, it is not in-
tended as a proof that R_ab iff b is an R-descendant of a. The definition
of R, is supposed to constitute a rigorous analysis of the ordinary notion
of the ancestral. The extensional correctness of that definition is then
meant to follow without proof from its intensional correctness. What the
argument just given is supposed to show is simply that R and R*= are
provably equivalent, which suffices to establish the extensional correct-
ness of Frege’s original definition of the ancestral, as well, without any
appeal to arithmetical induction. So, if we wish, we can continue to pro-
ceed with Frege’s definition, confident now in its extensional correctness,
but on grounds that do not invite objections of circularity.

Of course, there is an obvious question to ask about the definition
of R and my claim that it is intensionally correct, namely: To what in
the ordinary notion of an R-descendant does the condition of Dedekind
finitude correspond? But there is an easy answer to that question: When
we say that there is a path from a to b, what we mean is that we could
actually get from a to b by following that path. If the path were Dedekind
infinite, however, then taking the first step along that path would leave
us with just as many steps to take as we had before we started. But
then we cannot get from a to b by following this path: We can take some
R-steps, and we can keep right on taking them, but we are never going to
get to b, because we are not actually making any progress toward b. And
if that still does not seem sufficiently intuitive, then note that this very
idea turns up in the hymn “Amazing Grace”, where eternity is described
in these words:27

When we’ve been here ten thousand years
Bright shining as the sun,

We’ve no less days to sing God’s praise

Than when we’d first begun.

#'This particular verse was not written by the reformed slave trader John Newton,
who was originally responsible for the hymn. Ironically, it originated in the spiritual
tradition of the African-Americans he’d helped to enslave. It was being used as a verse of
“Amazing Grace” at least as early as 1852, when it appears as such in Harriet Beacher
Stowe’s classic book Uncle Tom’s Cabin. The words themselves date to at least 1790,
however, when they appear in A Collection of Sacred Hymns, though as a verse of a
different song. It was, and still is, common for verses to be recycled in this way in
African-American spirituals. (Thanks to Wikipedia for some of this information.)
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And, as Sam Wheeler mentioned to me, the same sort of idea is at work
in the paradoxes of Zeno: The problem Achilles has is that, even once he
is halfway to the goal, he has just as many tasks left to complete as he
did before he started.

One might object, however, that this shows only that the condition of
Dedekind finitude is necessary, not that it is sufficient.?8 The intuition
that is being used to motivate the condition is that an R-path from a
to b must, as we might put it, be completable. And it is clear enough
that a completable path must be Dedekind finite. Is it so clear, however,
that every Dedekind finite path is completable? Intuition is not going to
answer that question, which means we need a proof that every Dedekind
finite path is completable. One might well suspect that any such proof
would have to use induction. And, if so, then that would re-instate the
Papert—Parsons objection.

In fact, however, matters are not nearly so dire. The objection we
are considering concedes that the definition of R articulates neces-
sary conditions on the existence of an R-path and so concedes that the
conditional

(NEC) If bis an R-descendant of a, then R_ab

can be established by reflection. As a glance back at page 6 will show,

however, that was always the problematic direction: It was for the proof
of

(NEC#*) If bis an R-descendant of a, then R*ab

that we required ordinary arithmetical induction.?? We did not need
arithmetical induction to prove the converse

(SUF*) If R*ab, then b is an R-descendant of a

but only the sort of induction justified by Frege’s definition of the ances-
tral.39 But that now implies that

(SUF) If R:ab, then b is an R-descendant of a

2Special thanks to @ystein Linnebo here.

2The kind of induction you have available is determined by what is in the antecedent,
since that is what you will be supposing for purposes of the proof.

30The proof does, of course, depend upon some claims about R-descendants, namely:
Any immediate R-descendant of a is an R-descendant of a; and any immediate R-
descendant of an R-descendant of a is also an R-descendant of a. Those are plausibly
conceptual truths, however.
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can also be proven without any appeal to arithmetical induction: We need
only put the proof of (SUF*) together with the proof just given that R_ab
iff R*=ab. So the Papert—Parsons objection is not, in fact, re-instated.

The argument just given is of a type first introduced by Georg Kreisel
(1972): a so-called ‘squeezing argument’.?! The general structure of
such arguments is as follows (Smith, 2011, §1). Suppose we have some
informal notion J and that we want to show that some rigorous notion R
provides an extensionally correct analysis of J. Suppose further that it is
uncontroversial that R provides a necessary condition for J. Then one way
to show that fR is extensionally adequate is to find some other rigorous
notion R’ that uncontroversially provides a sufficient condition for J and
then to show rigorously that R is sufficient for R/, thus ‘squeezing’ J
between R and PR’. To put the point set-theoretically, we are supposing
that it is uncontroversial that:

RCICR
and that rigorous argument assures us that
R C R

from which it then follows that 7 = 9. In our case, J is the intuitive
notion of an R-descendant; {R is the ancestral as Frege defines it; and R’
is the ancestral as I have defined it. So we are ‘squeezing’ the intuitive
notion between Frege’s definition of the ancestral and mine.

One might yet want to object, of course, that this does not show that
the offered definition of R is a ‘correct analysis’ of the ordinary notion of
an R-descendant: The condition of Dedekind finitude has been shown to
be mathematically sufficient but not to be intensionally sufficient. Maybe.
I'm not sure. I'm inclined to think that, even if the analysis leaves out
some condition that the intuitive notion includes (completability, say), if
we can prove that this additional condition is redundant, the analysis still
has a reasonable claim to intensional correctness. To be honest, though,
I would be uncomfortable putting too much weight on the claim that the
definition is intensionally correct: For the usual sorts of reasons, I am
far from certain that there are any ‘correct analyses’ of ordinary notions.
That does not imply, however, that there are never any interesting or
important differences between extensionally equivalent definitions of
a given notion. Nor does it imply that we cannot demand more of a

31Thanks here to an anonymous referee for pointing out this similarity.
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definition of natural number, if it is to have the sort of epistemological
interest Frege wanted his definition to have, than that it should be
extensionally correct. And the present definition of R has, in that sort
of respect, a number of advantages over Frege’s definition of R*=.

For present purposes, the key feature of the definition of R, is that
it allows us to prove the principle of arithmetical induction, as that
principle is ordinarily understood, without any appeal to arithmetical
induction. The proof is a version of the one considered earlier: I propose
to derive

(IND) VF[FOAVa2Vy(Nz A Fx A Pxy — Fy) — Vo(Nx — Fz)]
from

(ANC') VF[FOAVaVy(P;0x A Fx A Pry — Fy) — Vo (P 0x — Fx)]
and

(EQ) Vz(P-0x = Nx)

Frege’s definition of the ancestral and our proof that R ab iff R*=ab
together imply (ANC’). And (EQ’) follows from (NEC) and (SUF), given
the observation—which is of course presupposed by everything we are
doing here—that the natural numbers are the P-descendants of 0.

4 Simplifying the Definition of Natural Number

It is worth considering more closely how the defintion of an R-descendant
applies to the case of natural numbers specifically.
If we take Nn to be defined as P_-0n, then that amounts to:

Nn=0=nV3IQVaVy(Qry — Pzxy) A
VaVyVz(Qry A Qrz — y = z) A
VaVyVz(Qrz A Qyz — = =y) A
Jz(Q0x) A —3z(Qx0) A
Jz(Qxn) A =z (Qnx) A
(3(Quy) Az # 0 - 32(Qz)) A
(@y(Quz) A w £ 1 — 32(Qw2)) A
—Eq,(y(Qzy v Quz); Jy(Qzy vV Qyx) A x # 0)]
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Some of these conditions are now guaranteed to be satisfied, however,
due to what we know about P. In particular, Q has to be one-one, since
P is; and, since —3z(Pz0), we must have —3z(Qz0), as well. So the
definition reduces to:

Nn=0=nV3IQVaVy(Qry — Pzy) A
Jz(Q0x) A
Jz(Qxn) A =3z (Qnx) A
(3(Quy) A x # 0 - 32(Qz)) A
(B(Que) A # n — F2(Quz)) A
—Eq,(3y(Qzy vV Qyz); Jy(Qzy vV Qyx) A x # 0)]

And if one thinks about the remaining conditions, then it is easy to see
that they all concern the domain and range of the relation ). In fact,
they can be expressed in terms of conditions on its field, as follows:32

Nn=0=nV3IF[FOAFnA
VaVy(Fy A Pxy — Fx) A
VaVy(Fz A Pry Az #n — Fy) A
-Eq,(Fx; Fx A x # 0)]

The idea is that we can recover Q&( itself, if we wish, as: PECA FEN FC.
The first two conditions then correspond to 3z(Q0z) and 3z (Qxn); the
third, to Jy(Qzy) Az # 0 — Fz(Qzx); and the fourth, to Jy(Qyz)Azx #n —
Jz(Qzz) and, to some extent, ~3x(Qnzx), which one can now see is not
essential. In fact, it is clear that the third condition VaVy(FyAPzy — Fz)
is not essential, either. Moreover, we need not treat the case n = 0
specially, since we can take F'¢ to be: £ = 0, and the rest of the conditions
will be satisfied.
So the definition of natural number simplifies to:

Nn =3F[FOA FnA
VaVy(Fax A Pry ANx #n — Fy) A
-Eq,(Fz; Fx Az #0)]

That is: n is a natural number if there is a Dedekind finite concept that
is true of both 0 and » and is closed under successors, except that it need

32This only works because P is one-one. One cannot reframe the original definition of
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not be true of the successor of n. The point, obviously, is that, if n is not
finite, then the two conditions F'0 and VzVy(Fz A Pry Ax # n — Fy) will
force F' to be true of all natural numbers and so to be Dedekind infinite.

The proof of induction from this definition is relatively straightfor-
ward. First, we establish:

(6) Nn — VF[FO AVaVy(Fz A Pry — Fy) — Fn|

Suppose that F'0 and VaVy(Fz A Pxry — Fy), but =Fn. We want to show
that —Nn, for which we need to show that, for any G, if GO, Gn, and
VaVy(Gx A Pxy Az # n — Gy), then G is Dedekind infinite. It is enough
to show, under those hypotheses, that:

@8 P*~0a — Ga

where, note, that is Frege’s version of the weak ancestral (which, again,
we can treat as just an abbreviation). Frege himself shows that P*=0¢
is Dedekind infinite, so (7) will imply that G¢ is Dedekind infinite, as
well.33

To prove (7), we use (Gg 152) and so need to establish that G0, which
we have assumed, and:

VaVy[P*~0x A Gz A Pxy — Gy]
We have assumed that
VaVy(Gx A Pzy A x # n — Gy)

so it will be enough to establish that, if P*=0z, then x # n. So suppose

P*=0x. Since we have also supposed that F0 and VaVy(Fx A Pxy — Fy),

we have by (Gg 144) that Fz. But then z # n, since we have also

supposed that =Fn. So that establishes (7) and therefore also (6).34
Now, as said earlier, induction is really the stronger principle:

(8) Nn — VF[FOAVa2Vy(Nx A Fx A Pxy — Fy) — Fn]

R is similar terms.

33In Frege’s system, the fact that F is Dedekind infinite can be concisely expressed as:
P*=(Nz:Fx,Nz: Fz). So the fact that P*~0¢ is Dedekind infinite is Theorem 165, and
the fact that every superset of a Dedekind infinite set is Dedekind infinite is Theorem
476.

34Special thanks to an anonymous referee for pointing out a thinko in an earlier
version of this proof.
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But, to prove this, we may proceed in much the way Frege does, namely,
by taking F¢ to be N¢ A FE in (6). That gives us:

Nn — [(NO A F0) AVaVy((Nz A Fz) AN Pry — (Ny A Fy)) — Fn]
Again, NO is trivial, so what we need to show is that:
VaVy(Nz A Fx A Pxy — Fy)

implies:
VaVy((Nz A Fx) A Pry — (Ny A Fy))

And for that, it will suffice to prove that, if Nz and Pzy, then Ny. But
that is easy—T'll leave it as a simple exercise—so we are done.

5 Concluding Remarks

It is important to see that Frege’s definition of R*= has some advantages
of its own over the present definition of R_. As mentioned above, Frege’s
definition of R*= is II{. The definition of Ry, by contrast, is ¥1: IFVR¢,
the universal second-order quantifier coming from —Eq_(...;...), since
Eq is X1: 3R¢. Frege’s definition is, in this respect, best possible, since
the ancestral cannot be defined by a %} formula®> and so is not even A}.

The additional complexity of the definition of RI surfaces in the
logical resources required for proofs involving it. The transitivity of
R*= can be proven without any appeal to comprehension (Boolos, 1998,
p- 159). So far as I can tell, however, the proof that R is transitive
needs a fair bit of comprehension, the complication being that, if we
have R_ab and R bc, then ¢ may already be on the path from a to b.
In that case, we cannot just paste these paths together, but have to
truncate the first one, much in the way we did in the proof that R*=ab
implies R_ab. For similar reasons, the proof that R*=ab implies R_ab
uses I1} comprehension (though the proof of the converse seems to use
just II} comprehension). The proof of induction from the simplified

3This follows from the compactness theorem for first-order logic. Suppose that
3F1...3F,¢(a,b, R, F1, ..., F,) holds if, and only if, there is a finite sequence a =
ao,ai,...,an = b where Ra;a;+1. Consider the first-order formula ¢(a,z, R, F1, ..., Fy)
together with —Rab, ~3xo(Raxo A Rxzob), ~3xoIx1 (Razxo A Rxox1 A Rxz1b), etc. Obviously,
there are models of any finite subset of these and ¢(a, z, R, F1, ..., F,). By compactness,
there is thus a model in which all of them hold. In that model, there is no finite sequence
connecting a to b, yet ¢(a,z, R, F1,...,Fy) holds so 3F:...3F,¢(a,x,,R, F1,...,Fy)
holds as well. Contradiction.
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definition of N¢ discussed in the last section (which is also X)) also uses
I1} comprehension, though only in deriving the stronger form of induction
(8) from the weaker one (6)—in particular, when we use induction on
N¢ A Fé—not in the argument for (6) itself.

But these advantages are mostly technical, and my purpose here has
not primarily been technical. My goal, rather, has been to show that
there is a way of defining the concept of natural number in second-order
logic that is immune to the sort of worry first voiced by Poincaré: that
any definition of an enumerative notion of finitude must in some way
make use of that very notion. The strongest way to put the point of
these investigations would be that the definition of RI captures the
connection between the relations parent and ancestor, or successor and
natural number, in a way that is intensionally correct. But even if that
claim is too strong, we have seen that the definition of R nonetheless
makes it possible to prove its equivalence with the ordinary notion of an
R-descendant without appeal to arithmetical induction, and so makes it
possible to prove arithmetical induction, as it is ordinarily understood,
without any need to appeal to arithmetical induction. And that allows
us to answer the best of the circularity objections: the one that Parsons
attributes to Papert.

I thus take myself to have shown that arithmetical induction can
be justified in much the way Frege supposed, though we need to use a
definition different from his to do it.26
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