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Informal presentations of the liar paradox typically begin with a
sentence like this one:

This sentence is not true.

or perhaps:

(L) Sentence (L) is not true.

Such sentences are ‘self-referential’ in the straightforward sense that
they refer to themselves, and then go on to say of themselves that they
are not true. Reasoning whose specifics are explored in other chapters of
this book1 then leads to a paradox: If (L) is true, then, since what it says
is precisely that it is not true, it is not true; but if it is not true, then,
since what it says is that it is not true, it must be true after all. Hence,
(L) can be neither true nor false; but then it is not true, and off we go
again.

A common first reaction to this paradox is to blame the self-referential
character of the sentences that give rise to it. One can easily observe this
reaction among students and (patient) friends, and it surfaces sometimes
in the older literature on truth, as well. J. L. Austin (1950, pp. 121–3),
for example, argues that there is a general prohibition on self-reference.
This response is largely dismissed nowadays, however, for two main
reasons. First, a very similar construction, involving a sentence like

(G) Sentence (G) is not provable.

is used in the proof of Kurt Gödel’s (1931) famous incompleteness theo-
rems, and analogous constructions turn up elsewhere in mathematical
logic. Second, the techniques that Gödel uses to construct sentences

1Note the self-reference!
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like (G) require only very minimal resources. It is this that leads Saul
Kripke (1975, p. 692) to remark that “Gödel put the issue of the legiti-
macy of self-referential sentences beyond doubt; he showed that they are
as incontestably legitimate as arithmetic itself”. As we shall see below,
Kripke is, strictly speaking, correct, but the remark can be misleading,
and it may well have misled some authors.

In contemporary presentations, either of Gödel’s results or of the
Liar Paradox, the self-referential construction is typically presented as a
lemma: the so-called Diagonal Lemma.2

Lemma (Diagonal Lemma). Let A(x) be an arbitrary formula containing
just the variable x free, and let Σ be a ‘sufficiently strong’ formal theory.
Then there is a sentence GA such that Σ proves

GA ≡ A(⌜GA⌝)

The significance of the corner quotes, ⌜·⌝, will be explained below; for
now, it suffices to note that they are meant to function somewhat like
ordinary quotation. We’ll also discuss below exactly what it means for Σ
to be ‘sufficiently strong’; for now, it suffices to note that such familiar
theories as Dedekind-Peano arithmetic (PA) and Zermelo–Fraenkel set
theory (ZF) are sufficiently strong and, indeed, are much stronger than
is required.

With the diagonal lemma in hand, then, we can then proceed as
follows. Suppose we are working in some ‘sufficiently strong’ theory
whose language includes a ‘truth-predicate’ Tr(x).3 If we take as our
formula A(x) the formula ¬Tr(x), then the Diagonal Lemma delivers a
sentence L such that the equivalence

L ≡ ¬Tr(⌜L⌝)

will be provable. There is thus at least a weak sense in which L ‘says
of itself ’ that it is not true: It is provably equivalent to the sentence
¬Tr(⌜L⌝), which straightforwardly says that L is not true.4 We’ll see

2Why the ‘Diagonal’ Lemma? I do not know who first used this term, but there is a
clear analogy to the sort of diagonal construction used in Cantor’s proof of his eponymous
theorem. The term “Fixed Point Lemma”, which one also sees, has a more obvious
genealogy: x is a fixed point of f(·) iff x = f(x).

3So as not to clutter the exposition, I will usually omit quotation marks when citing
formulae. Context should make clear enough what is intended.

4One might object that L will only ‘say of itself ’ that it is not true if what’s provable
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below that there is a stronger sense in which L is self-referential, as well.
But provable equivalence is adequate for most purposes.

In his original paper on the incompleteness theorems, Gödel himself
does not formulate the Diagonal Lemma. Rather, he explicitly constructs
a particular sentence, the famous “17 Gen r”, which plays the role of (G)
in his proof (Gödel, 1986, pp. 173ff).5 Gödel does note that his proof of
the incompleteness theorem, which specifically applies to a simplified
version of the formal system of Principia Mathematica (Whitehead and
Russell, 1925), which he calls P, generalizes to a wide class of theories
(Gödel, 1986, p. 181); it is implicit in that remark that the construction
of (G) can also be generalized. That, however, only involves making use
of different notions of provability: provability in Principia, or provability
in ZF, or provability in some other recursively axiomatized theory. It
was Rudolf Carnap (1937, §35) who first realized that there was an
even more general construction implicit in Gödel’s work.6 In retrospect,
then, we can see that what Gödel did, in effect, was to take A(x) to be
¬BewΣ(x), where BewΣ(x) is a ‘provability predicate’ for some recursively
axiomatized7 theory Σ, and then to construct a sentence G such that Σ
itself will prove:

G ≡ ¬BewΣ(⌜G⌝)

What Carnap saw was that the construction of G is ‘uniform’ in the
sense that none of its details depend upon our beginning with ¬BewΣ(x):
Exactly the same construction can be applied starting with any other

in this theory is actually true, i.e., if the theory is sound. But it’s enough if the fragment
of the theory used in proving the equivalence is sound, and the axioms needed to prove
the Diagonal Lemma are certainly true. See, however, Milne (2007) for some important
observations along these lines.

5Gaifman (2006) offers a reconstruction of Gödel’s discovery of the construction as a
kind of synthesis of Cantor’s construction and Richard’s paradox of the least number not
nameable in fewer than eighteen syllables. (There must be such a number, since there
are only finitely many expressions of fewer than eighteen syllables. But the italicized
phrase names it in just sixteen syllables.) Gaifman also discusses the relation between
Gödel’s construction and Kleene’s proof of the recursion theorem and proves a general
result that unifies these.

6Smoryński (1981), in an otherwise useful discussion of the history of the Diagonal
Lemma, does not mention Carnap, suggesting that Rosser (1939, p. 57) was the first to
state the Lemma in general form.

7A form of this restriction is present in Gödel’s work, and in most expositions of the
incompleteness theorems, but it is not actually required. The construction of the Gödel
sentence goes through so long as the set of Σ’s axioms is definable in Σ. This can be used
to prove the incompleteness of such theories as PA plus all Π1 truths.
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formula.8

To understand the role that self-reference plays in the liar paradox,
then, it will suffice to understand the Diagonal Lemma. Unfortunately,
however, most presentations of that Lemma make it seem like magic:
They do indeed show that self-referential sentences can be constructed,
but they do not produce anything one might call ‘understanding’.9 The
reason, I suggest, is that a proper statement of the Diagonal Lemma, let
alone a proper proof of it, requires several different ingredients, each
of which poses its own conceptual obstacle. In what follows, then, I
want to pull these various ingredients apart. An element of magic will
remain, but it’s the kind of magic that’s always present in really clever
constructions.

Given that our goal here is understanding, then, I’m going to focus
more on ideas than on the formal niceties. Readers who want more detail
will find it in the papers I’ll cite.10

1 The Diagonal Lemma in Theories of Syntax

Modern discussions of the liar paradox typically concern an arithmetical
theory, such as PA, to which a truth-predicate Tr(x), or other semantic
vocabulary, has been added. At first blush, this might seem very strange.
Truth is a property of sentences,11 but the language of PA does not seem

8As Gaifman (2006, p. 710) notes, this seems obvious now, but it would not have been
at all obvious in the early 1930s.

9Which contributes, I suspect, to the persistent sense among non-specialists that
there is something fishy about the incompleteness theorem.

10The standard textbook on this material is Boolos et al. (2007, esp. chs. 15–17).
Another good reference is Smith (2013). Probably the most comprehensive study of these
issues is Smullyan (1994), which was a kind of sequel to Smullyan (1982). Some years
ago, I wrote a guide, for teaching purposes, that’s intended to be accessible to students
with just a good understanding of basic logic and some math skills (Heck, 2022). It skips
the (difficult and lengthy) proof that all recursive functions are representable in Q but is
otherwise reasonably rigorous.

11In natural languages, there are many bits of vocabulary that are ‘context-dependent’.
Standard examples include (in English) such words as “I”, “here”, and “now”, whose
reference, when uttered, depends upon when, where, and by whom they were uttered.
The sentence “I am a philosopher”, then, has no truth-value by itself; only particular
utterances of it do. Exactly what we should regard as the primary bearers of truth—
utterances, token sentences, propositions, etc—is itself a controversial matter. Here,
however, we shall ignore this issue: In the sorts of formal languages we will be discussing,
there is no context-dependence, so we can safely apply the truth-predicate to type
sentences. Nonetheless, many discussions of truth suffer from an over-emphasis on
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to provide us with any way to talk about sentences: In the language of
arithmetic, it would seem, we can only talk about numbers; how, then,
can we possibly say, in the language of PA, that the sentence “0 = 0” is
true? As we shall see, there is a solution to this problem (due, again, to
Gödel). But that is one of the ingredients we’ll discuss later.

In this section, we’ll begin by discussing theories of syntax: theories
whose (explicit) subject matter is symbols and their properties. It’s easy
to describe a theory whose subject matter is its own syntax and so to
which we could, if we wished, add a new ‘semantic’ predicate Tr(x) that
applied to sentences of that very language. Before we get too enmeshed
in technicalities, however, let us step away from formalisms and see how
the construction of self-referential sentences works informally.

1.1 Self-Reference in Ordinary Language

Here’s how to construct an expression that is a name of itself.12

We’ll need to make use of the operation of substituting one expression
for some part of another expression. We all know what this means. If E1

is:

Some expressions are x

and E2 is the word:

amusing

then the result of substituting E2 for all occurrences of ‘x’ in E1 is:

Some expressions are amusing

Of course, there’s no need for E1 and E2 to be different. So if E2 is the
same as E1, then the result is:

Some expressions are some expressions are x

which is nonsense, but a perfectly good expression (symbol, string).
A special case arises if E2 is not just an expression but a name of an

expression. So let E1 be:

x contains four words
formal languages, due to their lack of context-sensitivity. See Heck (2023).

12Smullyan (1994, §2) gives a similar exposition, though this kind of idea goes back
at least to Quine (1981, §59), which was originally published in 1940. See also Smullyan
(1957).
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and let E2 be the phrase:

Junebug’s favorite English sentence

Then the result of substituting E2 for all occurrences of ‘x’ in E1 is:

(1) Junebug’s favorite English sentence contains four words

Whether this is true will depend upon what Junebug’s favorite English
sentence is. Then again, E2 could be a quote-name of an expression, for
example:

“Junebug’s favorite English sentence”

and now the result is:

(2) “Junebug’s favorite English sentence” contains four words

which is certainly true. As always, it’s critical to distinguish the case
with quotes (mention) from the case without quotes (use). There’s all the
difference in the world between (1) and (2).

We could have E2 be E1 again, in which case we get nonsense:

x contains four words contains four words

More interestingly, we can have E2 be a quote-name of E1. I.e., E2 could
be:

“x contains four words”

and then the result is:

“x contains four words” contains four words

which we might reasonably count as true.
Focus attention now on this special kind of self-substitution, that is,

on the operation:

The result of replacing all occurrences of ‘x’ in E1 with its own
quote-name

(that is, with a quote-name of E1). The example we just considered is
one case of this kind of self-substitution, with E1 being:

x contains four words

Other examples are easy to construct. E.g, if E1 is:
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x contains one free variable

then the result is:

“x contains one free variable” contains one free variable

which is true.
To get a self-referential expression, apply the operation just illus-

trated to an expression describing that very operation:

(3) The result of replacing all (unquoted) occurrences of ‘x’ in x with
its own quote-name

The idea of doing this is what can’t really be motivated: This is where
the cleverness in the construction lies. But once one has hit upon this
idea, the rest is easy. If we replace all (unquoted) occurrences of ‘x’ in (3)
with a quote name of (3), we get:

(4) The result of replacing all (unquoted) occurrences of ‘x’ in “The
result of replacing all (unquoted) occurrences of ‘x’ in x with its own
quote-name” with its own quote-name

But now (4) describes the result of the very operation we just performed!
So (4) is a name of itself.13

As said, the element of magic lies in the idea of applying the oper-
ation described by (3) to (3) itself. The other resources required are
quite simple: substitution, and the formation of quote-names. Given an
understanding of those, the ‘proof ’ that (4) names itself is as simple as it
could be: It just involves carrying out the substitution described in (4)
and then observing that the result is (4) itself.

We can make this more concise by employing an abbreviation. Abbre-
viate (3) as: The diagonalization of x. Then consider:

(5) The diagonalization of “The diagonalization of x”

This expression too names itself.

13Those attracted to Russellian views of descriptions might want to object that (4)
does not refer to anything, since descriptions are not referring expressions. We’ll return
to this sort of issue below.
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1.2 The Diagonal Lemma, Informally

We can now prove the following informal version of the Diagonal Lemma.
By a ‘sentence-frame’, let us mean something like “x is long” or “x con-
tains five words”: something that would be a sentence if we replaced all
(unquoted) occurrences of x with (say) “Xander”.14

Lemma. Let A(x) be a sentence-frame of English containing the variable
x (but otherwise just ordinary words of English). Then there is an English
expression tA that is itself a name of the English sentence A(tA): the
result of substituting the very term tA for the variable x in A(x). I.e., and
roughly:

tA = ⌜A(tA)⌝

The sentence A(tA) will thus be a sentence that ‘says of itself ’ that it has
whatever property A(x) expresses.

We’ll just do an example, but it will be clear that it generalizes. Let
A(x) be:

(6) x is weird

To construct an expression that names the result of substituting that
very expression for ‘x’ in (6), just consider:15

(7) The result of replacing all occurrences of ‘x’ in x with its own quote-
name is weird

And now ask: What is the result of applying the operation mentioned in
the subject of (7) to (7) itself? That is, we want to know which expression
is named by:

(8) The result of replacing all occurrences of ‘x’ in “The result of re-
placing all occurrences of ‘x’ in x with its own quote-name is weird”
with its own quote-name

So just take (7) and replace the (unquoted) occurrence of ‘x’ in it with the
result of putting (7) in quotes:

(9) The result of replacing all occurrences of ‘x’ in “The result of re-
placing all occurrences of ‘x’ in x with its own quote-name is weird”
with its own quote-name is weird

14If we wanted to make things seem even less formal, we could use blanks and talk
about sentence-frames like “_____ is tall”.

15What I’ve done is to replace ‘x’ in (6) with (3). I’ll henceforth omit the qualification
“(unquoted)”.
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So (8) is a name of (9). We have proven this by a simple calculation.
But (9) is just (8) followed by the words “is weird”, i.e., it is the result of
replacing ‘x’ in (6) with (8). Roughly:

(8) = “(8) is weird”

So (8) says of itself that it is weird. Which it is.

Corollary. Let A(x) be a sentence-frame. Then there is a sentence GA

that ‘says of itself’ that it has whatever property A(x) expresses. I.e., and
roughly:

GA ≡ A(⌜GA⌝)

Proof. By the Diagonal Lemma, there is a term tA such that tA = ⌜A(tA)⌝.
By Leibniz’s Law, then

A(tA) ≡ A(⌜A(tA)⌝)

So the promised sentence GA is A(tA).

Note that proving this equivalence requires us to apply Leibniz’s Law to
the sentence-frame A(x), that is, to make an inference of the form:

t = u → A(t) ≡ A(u)

We’ll consider the significance of this point below.
Using the abbreviation defined above, we can again make this more

concise. Consider:

(10) The diagonalization of “The diagonalization of x is weird”

and note that it is a name of:

(11) The diagonalization of “The diagonalization of x is weird” is weird

So the subject of (11)—i.e., (10)—names (11). So (11) ‘says of itself ’ that
it is weird.

1.3 Self-Reference in Formal Theories of Syntax

As we have seen, the construction of a ‘diagonal sentence’ from any given
formula A(x) requires only very modest resources: Substitution and the
formation of quote names, as well as the general ability to talk about
expressions of the language in question. For the time being, I’ll use
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corner quotes for this latter purpose, treating e.g. ⌜∃x⌝ as a primitive,
unstructured name of the contained string. I’ll write subst(y, z) to mean:
the result of substituting z for all free occurences of “x” in y; and write
q(y) to mean: the quote name of y, a quote name being a primitive term
like ⌜∃x⌝.16 Then we can define diag(y)—the diagonalization of y—as:
subst(y, q(y)), officially treating this as an abbreviation.

Given a formula A(x), we can then consider

(12) diag(subst(⌜A(x)⌝, ⌜diag(x)⌝))

Or, more concisely, but slightly less precisely:

(13) diag(⌜A(diag(x))⌝)

We can then observe that the result of carrying out the mentioned opera-
tion is

(14) A(diag(⌜A(diag(x))⌝))

So (13) denotes (14). But the argument in (14) is (13), so (14) once again
‘says of itself ’ that it has whatever property A(x) expresses.

To formalize this construction, then, we need only to operate in a
theory that allows us to define the relevant notions. As we’ll see below,
formalizing quotation raises some annoying but resolvable technical
problems. But if we set these aside for the moment, then we can already
see one straightforward way to formalize the proof of the diagonal lemma.
Start with some language L; add to it symbols subst(y, z), q(y), and
primitive terms like ⌜∃x⌝; take as axioms all true sentences of the form:

subst(t, u) = v

q(t) = v

where t, u, and v are quote names. These axioms will be sufficient to tell
us which expression diag(subst(⌜A(x)⌝, ⌜diag(x)⌝)) is, in each case, and
that is enough to prove the Diagonal Lemma.17

One might nonetheless balk at treating such a complex operation as
substitution as primitive, so the question arises how it might be defined.
This question was almost answered by Gödel, whose construction of a

16So, e.g., q(⌜∃x⌝) = ⌜⌜∃x⌝⌝. I.e, the quote name of the string consisting of an
existential quantifier followed by an ex is a string consisting of a left corner, followed by
an existential quantifier, followed by an ex, followed by a right corner. (It’s embedded
quotation of this sort that causes the problems with quotation that we’ll discuss below.)

17This may seem like cheating. But such a theory is not unlike the arithmetical
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self-referential sentence also uses the operation of substitution, which
he defines explicitly (Gödel, 1986, p. 167).18 If one traces the steps of
this definition, one can see that Gödel defines substitution in terms of
concatenation: the operation of ‘gluing’ two strings together.19 The hitch
is that Gödel’s definition uses (primitive) recursion extensively, and he
does not show us how to effect primitive recursion using just concatena-
tion; he does that, rather, using a theory of (finite) sequences based upon
prime factorization.20 However, if we could effect primitive recursion
using just concatenation, then we could adapt Gödel’s construction to
define substitution in terms of it alone.

As it happens, this can in fact be done. Exactly how it is done
depends upon how strong a theory of concatenation one employs. On
one end of the spectrum, John Corcoran, William Frank, and Michael
Maloney (1974) employ a second-order theory of concatenation, one that
is comparable to second-order arithmetic. In that sort of theory, recursive
definitions can be formalized using well-known techniques due to Richard
Dedekind (1902) and Gottlob Frege (1879). Many years earlier, W. V. O.
Quine (1946) had shown how to develop a theory of sequences within
a theory of concatenation21 and then to use it to ‘construct’ arithmetic

theory known as R, which has among its axioms all true equations of the forms:

n+m = k

n×m = k

where n is the numeral for n. (We’ll discuss R further below.) The crucial point, of course,
is that substitution and the formation of quote names are algorithmic operations, so the
theory mentioned in the text is recursively axiomatizable.

18These definitions come in three stages. First, Gödel (1986, 163–71) simply gives
standard mathematical definitions of the relevant notions. Then, in Theorem V, he
proves that these defintions can be formalized in the theory P (Gödel, 1986, p. 171).
Later in the paper, he proves that these defintions are arithmetical, in the now standard
sense. That is Theorem VII (Gödel, 1986, p. 183).

19So, for example, the concatenation of “ABC” and “123” is “ABC123”.
20In fact, what get concatenated in Gödel’s treatment are sequences, with strings

treated as sequences of symbols.
21One might wonder what the difference is between concatenation and sequences.

Aren’t sequences, in effect, just strings of their elements? No, as one can see by consid-
ering the two sequences: <ab, cd, ef> and <abc, def>. The obvious idea, then, is to use
some kind of separator: We don’t just concatenate the elements of the sequence, but
separate them with, say, a comma. But what if the elements of the sequence contain the
comma? If we want to be able to construct all possible sequences of symbols, then we
can’t just ignore this problem. But this is precisely the problem Quine shows us how to
solve. See note 42.
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itself. Quine claims that his approach is “elementary”, but he appears
to mean by this that it is first-order. He does not specify any formal
theory of concatenation in which he proposes to work and appears, in
fact, to have in mind the theory consisting of all truths of the first-order
theory of concatenation (and, correspondingly, of arithmetic).22 It seems
plausible, however, that Quine’s construction can be carried out in a
theory of concatenation analogous to PA.23

More recently, Andrzej Grzegorczyk (2005) showed how a construction
much like Quine’s can be carried out in an extremely weak theory of con-
catenation, which he calls TC.24 Where ⌢ symbolizes concatenation,25

the axioms of TC are:

1. (x ⌢ y) ⌢ z = x ⌢ (y ⌢ z)

2. x ⌢ y = z ⌢ w → (x = z ∧ y = w)∨
∃u[(x ⌢ u = z ∧ y = u ⌢ w) ∨ (x = z ⌢ u ∧ u ⌢ y = w)]

3. α ̸= x ⌢ y

4. β ̸= x ⌢ y

5. α ̸= β

The core of the theory is really the first two axioms. The first, of course,
is associativity; the second axiom is known as ‘Tarski’s law’ or the ‘editor
axiom’.26 Axioms (3)–(5) guarantee that there are at least two atoms,
α and β. (Without them, the theory has a one-element model.) But,
in general, a syntactic theory TCL for a language L will include such

22This is an incredibly powerful theory, strong enough to prove the consistency of
every consistent formal theory, and so much stronger even then second-order arithmetic,
or ZFC, or ZFC plus whatever large cardinals you like.

23This would be a theory that added an induction principle to Grzegorczyk’s TC (to
be mentioned momentarily). Or, probably equivalently, the theory Halbach and Leigh
(2022, Ch. 8) call E∗.

24See Halbach and Leigh (2022, Ch. 5) for a different but also very weak theory in
which the Diagonal Lemma can be proven.

25The other symbol commonly used is ∗, which is what Gödel uses for the operation of
concatenating two sequences.

26Here’s what this says. Suppose I split some string in the middle, with the ‘head’
being x and the ‘tail’ being y; suppose I do this again, with the head being z and the tail
w. Then, if I haven’t just divided it the same way twice, I’m guaranteed to have a certain
kind of overlap between the parts. One option is that x overlaps w in some part u, so
that x = z ⌢ u and w = u ⌢ y; the other option is similar. (Drawing a picture helps.)
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axioms as ∃ ≠ x ⌢ y, ∨ ≠ x ⌢ y, and ∨ ≠ ∃,27 and similarly for the other
primitive expressions of L.28 This theory is strong enough to prove the
Diagonal Lemma (Grzegorczyk, 2005, pp. 228–9).29

TC is weak in the sense that it is of the same strength as Robinson
arithmetic, usually known as Q.30 The same goes for TCL. As it happens,
TC is in some ways too weak: One cannot even define a pairing function
in TC. But Albert Visser (2009), to whom that observation is due, has
shown how to augment TC in such a way that a reasonable theory of
sequences can be developed, and the augmented theory is still of the
same strength as Q.

Note also that, if we have concatenation, then we do not really need
corners.31 It would suffice to have terms denoting each of the primitive
expressions of the language. Names of compound expressions can then
be constructed using concatenation: We can e.g. replace ⌜∃x⌝ with ∃ ⌢ x.
Since concatenation is associative, strings of more than three symbols
will have many such names; we can specify that ‘the’ quote name of a
string associates to the left. For the rest of this section, I’ll use corners to
abbreviate quote names—or, better, ‘canonical’ names—of this new kind.
The symbol q(x) can now be thought of as mapping an expression to its
canonical name.

More interestingly, once we have concatenation, we do not really need

27Here, I’m using e.g. ∃ as a primitive name of the existential quantifier.
28This adds no real strength, since we can code symbols other than the two primitives

in terms of them (Grzegorczyk, 2005, §4).
29The definition of substitution in TC is somewhat indirect. Rather than giving an

explicit definition of the form:

subst(t, u)
df
= ϕ(t, u)

what we actually define is the graph of subst:

subst(t, u) = v ≡ Φ(t, u, v)

We can then treat subst(t, u) as, in effect, meaning: the v such that Φ(t, u, v), and
eliminate the description as Russell taught. This has the effect, as we’ll discuss in
Section 2.2, of allowing us only to prove the ‘weak’ version of the Diagonal Lemma, not
the ‘strong’ version.

30For more of the history, and additional references, see Visser (2009, §1.4). The
axioms of Q are: 0 ̸= Sx, Sx = Sy → x = y, x + 0 = x, x + Sy = S(x + y), x × Sy =
(x× y)+x, and x ̸= 0 → ∃y(x = Sy). This is a very weak theory. It does not, for example,
prove the associativity or commutativity of addition or multiplication. It does not even
prove x ̸= Sx.

31For a detailed development of this sort of idea, see Grzegorczyk (2005, §6) and
Halbach and Leigh (2022, §8.1).
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substitution (even if we can define it). This observation seems to be due to
Alfred Tarski. In his famous paper “The Concept of Truth in Formalized
Languages”, Tarski develops his definition of truth within what is, in
effect, a theory of syntax. More precisely, Tarski works in a meta-theory
that extends the language for which the definition is being given—the
‘object-language’—by adding both a theory of the syntax of that language
and—for the purpose of defining truth—certain higher-order resources
not present in the original language (Tarski, 1956, §§2–3). Tarski does
not formalize the meta-theory, but he does state five axioms for the
syntactic part of the theory with sufficient precision that formalization
is entirely routine (and would have been so when Tarski was writing).

In Tarski’s presentation, the only primitive operation is that of con-
catenation. Tarski also helps himself to terms for each of the primitive
expressions in the calculus of classes, much as we have just done; that
gives him names for all strings formed from those primitives. When, late
in the paper, Tarski proves what we now know as Tarski’s Theorem, he
has to construct a self-referential sentence.32 Rather than use substi-
tution to do so, he simply uses concatenation (Tarski, 1956, p. 250).33

Consider again a formula A(x). The formula

∃x(x = t ∧A(x))

is logically equivalent to A(t), i.e., to subst(⌜A(x)⌝, ⌜t⌝).34 So, rather than
define diagonalization in terms of substitution, we can simply define it
as follows:35

diag(z)
df
= ⌜∃x(x =⌝ ⌢ q(z) ⌢ ⌜∧⌝ ⌢ z ⌢ ⌜)⌝

32Tarski (1956, p. 247, n. 1) acknoweldges his debt to Gödel here, noting that this
result was added to the paper only after he became aware of Gödel’s work.

33This construction is more explicit in Tarski et al. (1953, p. 47), where it is used to
prove a generalization of the First Incompleteness Theorem. Grzegorczyk (2005, pp.
225–8) gives a similar construction. He first observes that every formula with one free
variable is equivalent to one in which the only free variable occurs only free, and only
once. (The formula we want is ∃x(x = v ∧A(x)), where v is any variable that does not
occur in A(x).) He then notes that defining substitution for such formulas is easy. But
Tarski’s method is even easier.

34Here the convention of omitting quotes around formulas might be confusing. I
am here using “subst(⌜A(x)⌝, ⌜t⌝)”, not mentioning it: A(t) is equivalent to the thing
“subst(⌜A(x)⌝, ⌜t⌝)” names, not (of course) to the term itself.

35There are some use–mention subtleties here, which I’ll confine to the notes. First,
let’s be clear that ⌜diag(z)⌝ is itself a term, and it is a name of a formula, namely, the
one named by the term on the right-hand side of the definition I’m about to state.
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Or less precisely but a bit more clearly:

diag(⌜A(x)⌝)
df
= ⌜∃x(x = ⌜A(x)⌝ ∧A(x))⌝

To prove the Diagonal Lemma now, we need to start with a formula A(y)
containing just y free and consider:

(15) diag(⌜∃y(y = diag(x) ∧A(y))⌝)

Applying the mentioned operation then yields:36

(16) ∃x(x = ⌜∃y(y = diag(x) ∧A(y))⌝ ∧ ∃y(y = diag(x) ∧A(y)))

which is logically equivalent to

(17) ∃y(y = diag(⌜∃y(y = diag(x) ∧A(y))⌝) ∧A(y))

and so to37

(18) A(diag(⌜∃y(y = diag(x) ∧A(y))⌝))

And now, once again, the argument to A(·) in (18) is just (15), which
names (16), which is logically equivalent to (18).38

There is a difference, however, in what this construction delivers:
(15) does not actually denote (18). Rather, (15) denotes (16). So (18)
does not ‘say of itself ’ that it has whatever property A(x) expresses. The
‘self-referential sentence’ is (16), and it is self-referential in two senses:

36That is, the term displayed at (15) is a name of the sentence displayed at (16). More
formally, what we have is:

diag(⌜∃y(y = diag(x) ∧A(y))⌝) =

⌜∃x(x = ⌜∃y(y = diag(x) ∧A(y))⌝ ∧ ∃y(y = diag(x) ∧A(y)))⌝

(Sorry about that.)
37Note how the work previously done by substitution has been off-loaded onto the

logic.
38Formally, what we have is that, for each formula A(y) containing just y free, there

is a sentence GA that is provably equivalent to A(⌜GA⌝). The sentence in question is
(16). That it is equivalent to

A(⌜∃x(x = ⌜∃y(y = diag(x) ∧A(y))⌝ ∧ ∃y(y = diag(x) ∧A(y)))⌝)

sorry again—then follows from (i) the fact that (16) is logically equivalent to (18) and
(ii) the identity mentioned in note 36, which is a provable truth of syntax (not logic).
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1. The formula (18) most certainly does say of (16) that it has whatever
property A(x) expresses. But (16) is logically equivalent to (18). So
that gives us a weak sense in which (16) ‘says of itself ’ that it has
that property: It’s logically equivalent to a sentence that says that
(16) has whatever property A(x) expresses.

2. What (16) says is that there is a sentence which is the diagonaliza-
tion of a certain expression, and that that sentence has whatever
property A(x) expresses; as it happens, the sentence in question is
(16) itself. In effect, then, (16) refers to itself ‘by description’ rather
than in the more direct way that, say, (14) refers to itself.39

As Kripke (1975, p. 692) notes, in that respect, (16) is similar to so-called
‘empirical’ liars, like

The only sentence in a displayed quotation on page 16 of ‘The
Liar Paradox and Metamathematics’ is false.

But, in the case of (16), it’s a syntactic (and so, presumably, necessary)
truth that the sentence it describes is (16) itself.

1.4 Quotation

So the construction of self-referential sentences can proceed entirely
in terms of concatenation: Nothing so complicated as substitution is
required. We do, however, also need access to a function like q(x). Note
that this is different from just being able to form quote names (or canoni-
cal names) on a case-by-case basis. What we need, rather, is to be able to
describe that operation quite generally: to be able to refer to the function
that maps a given expression to its quote name. Such a function is used
in every one of the constructions we have so far discussed.

One might think this was quite trivial.40 If we had quotation marks,
for example, couldn’t we just define q(x) as: ⌜“⌝ ⌢ x ⌢ ⌜”⌝? So can’t
we just add quotation marks, or something of the same sort?41 Unfortu-
nately, no, not if we want (a) to be able to form a quote name of every

39For some discussion of this kind of self-reference, see Picollo (2018).
40Another reason to think it’s trivial is that the axioms governing this operation are

so easy to state. See note 16.
41Similarly, it is easy to formulate a single axiom that governs the semantics of

quotation marks:
For every string x, ⌜“⌝ ⌢ x ⌢ ⌜”⌝ denotes x.

This does not show that quotation is compositional, since the meaning of a quote name
does not depend upon the meaning of its parts. (This follows trivially from the fact that
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string and (b) to have the resulting expressions be unambiguous, which
is absolutely essential. Suppose, for example, that we wanted to form a
quote name of this expression:

x ⌢ “y” ⌢ “z”

We’d get:
“x ⌢ “y” ⌢ “z””

But that could instead be parsed as:

[“x ⌢ “y”] ⌢ [“z””]

where the first expression is a name of: x ⌢ “y, and the second is a name
of: z”. George Boolos (1998, p. 395) credits this observation to a student
of his, Michael Ernst. As Boolos notes, adding more types of quotation
marks seems unlikely to solve the problem, at least so long as these are
finite in number.

There is a solution: Boolos shows how we can construct infinitely
many types of quotation marks from the two symbols ′ and ◦ (much
as infinitely many variables can be constructed from the two symbols
x and ′). One can then make sure, when quoting a string, always to
use quotation marks that are ‘longer’ than any contained in that string.
But this greatly complicates the defintion of q(x). Grzegorczyk (2005)
addresses a form of this problem, however, and shows that it is solvable.42

The reason, in brief, is that his theory TC is strong enough to represent
all ‘discernible’ functions, just as Q is strong enough to represent all
recursive functions (of which the discernible functions are the syntactic
analogue), and q(x) is certainly discernible.

There is, however, a simpler solution, if we are willing to allow only
well-formed expressions to be quoted.43 Under this restriction, we can
just use quotation marks. I’ll use guillemets (French quotes) for clarity.
Thus, “«x»” is a name of the variable “x”. The crucial point is that,
if what’s between the guillemets has to be well-formed, then it will

it is possible to quote strings that have no meaning.) But it does show that Donald
Davidson (1984) was wrong to be worried that the semantics of quotation cannot be
finitely axiomatized.

42Much the same problem arises when one tries to build a theory of sequences using
concatenation. If we had commas, then the sequence of two strings could just be the two
strings separated by a comma. But what if one of the strings contains a comma? For
answers, see Quine (1946) and Visser (2009).

43And for present purposes, there is no need whatsoever to quote arbitrary strings.

17



already have balanced guillemets, and be uniquely readable, and there
can be no ambiguity. The exceptions, of course, are the cases where
a guillemet itself is quoted: ««» and «»». We could just ban these and
instead use primitive names « and » for the two quote symbols. But we
needn’t. These two exceptions are readily identified and can be handled
straightforwardly: There is only one way to parse expressions containing
them so that those expressions are themselves well-formed, and so that
all quoted expressions are also well-formed.44 The function that maps
an expression to its quote name can then be defined explicitly as:

q(x) := (««» ⌢ x) ⌢ «»»

It is not the prettiest thing in the world, but it works.

The moral of this section, then, is this. The legitimacy of self-
referential sentences is indeed beyond doubt. Their existence follows
from very basic facts about syntax. Exactly what kinds of self-referential
sentences we can construct will depend upon exactly what resources we
allow ourselves. But the worst-case scenario is provable equivalence:
Given A(x), elementary facts about how concatenation and quotation
work suffice to guarantee the existence of a sentence GA such that GA is
provably equivalent to A(⌜GA⌝).

2 The Diagonal Lemma in Theories of Arith-
metic

2.1 Gödel Numbering and Interpretability

Gödel’s original construction of a self-referential sentence is carried out,
not in a theory of syntax, but rather in a theory of what is, in effect,
higher-order arithmetic. As many readers will already know, he is able
to do this because of another technique he invented: what we now call
‘Gödel numbering’ or ‘coding’.45 There are several different ways one can

44The point is that «» is not itself well-formed: We do not have a quote name of the
empty string, since the empty string is not well-formed. So «» cannot occur as part of a
well-formed expression except in one of the two contexts just mentioned, and ««»» cannot
occur at all. (If we wanted a name of the empty string, we could add a primitive term
for it, as Visser (2009) does.) So we can, in effect, just treat ««» and «»» as if they were
primitive symbols.

45It would be difficult to over-state the importance of Gödel numbering. It is absolutely
fundamental to computer science. It is, for example, what allows a machine that operates
with 0s and 1s to compute with strings.
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think of Gödel numbering. Tarski (1956, p. 184) seems to have thought
of it as a way of ‘interpreting’ syntax in arithmetic.

From one perspective, interpretation, in this sense, is a technique for
producing ‘relative consistency proofs’.46 Given some ‘base’ theory B and
some ‘target’ theory T —stated in languages LB and LT , respectively—
one interprets T in B by showing how LT can be translated (in a purely
formal sense) into LB. The translation is compositional, in the sense
that the only thing we actually need to do is define the (non-logical)
primitive expressions of LT in terms of those of LB and specify a ‘domain’
for the interpretation in terms of a formula δ(x) of LB.47,48 This can
then be extended to a complete translation of LT into LB in the obvious
way. For example: (A ∧ B)∗ = (A∗) ∧ (B∗), where A∗ is the translation
of A. Quantifiers are ‘relativized’ to δ(x): ∀x(ϕ(x)) is translated as:
∀x(δ(x) → ϕ∗(x)); ∃x(ϕ(x)), as: ∃x(δ(x) ∧ ϕ∗(x)). One then completes the
interpretation by showing that the translations of the axioms of T can
be proven in B. We also need proofs of δ(t∗), for each primitive term t of
LT (if any), and of the closure condition

∀x1 · · ·xn[δ(x1) ∧ · · · ∧ δ(xn) → δ(f∗(x1, . . . , xn))]

for each primitive function-symbol f , of however many places. We also
need (if this isn’t already covered) a proof that the domain is non-empty:
∃x(δ(x)).

The crucial fact is then that, because the translation preserves logical
form, the translations of the theorems (as well as the axioms) of T can

46The first detailed study of interpretation is in Tarski, Mostowski, and Robinson
(1953), but the notion is much older. (Their focus is on proofs of undecidability, which
implies incompleteness.) Proofs of the consistency of non-Euclidean geometries, given in
the 19th century, use this technique: They show how non-Euclidean geometries can be
interpreted in Euclidean geometry.

47We allow terms and function-symbols to be translated using descriptions, which
can then be eliminated as Russell (1905) taught. In that case, we need B to prove that
the descriptions are proper. This technique is essential, for example, for interpreting PA
in ZF: There are no terms in the language of set theory other than variables, so 0 cannot
really be interpreted as (say) ∅ but must be interpreted via the description ιx∀y(y /∈ x).
Similarly, x + y has to be interpreted via some formula Sum(x, y, z). In this case, of
course, formulas like δ(t∗) will be far more complex than this notation makes them
appear. To avoid this complication, it is sometimes convenient to work first with purely
relational langauges—no terms, no function-symbols—and then to reduce non-relational
languages to relational ones. See Visser (1998) for more on this issue.

48What I’m about to describe is a one-dimensional relative interpretation without
parameters. There are more general notions of interpretation, but we’ll not need them
here.
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also be proven in B. Roughly: To translate a T -proof, one first proves
the translations of the needed axioms of T and then appends a (slightly
modified) version of the original T -proof. So, quite generally, if T ⊢ A,
then B ⊢ A∗, where, again, the asterisk means: translation of. It follows
that, if B is consistent, so is T : If T ⊢ A ∧ ¬A, then B ⊢ (A ∧ ¬A)∗, so
B ⊢ A∗ ∧ (¬A)∗, so B ⊢ A∗ ∧ ¬(A∗), and B is inconsistent, too.

For our purposes, though, a different way of thinking of interpretation
is more useful: Interpreting T in B is a way of making the resources
of T available in B. For example, although Peano arithmetic is, in the
first instance, a theory about natural numbers, we can code finite sets of
numbers bit-wise: S is coded by the number whose binary representation
has a 1 in the n+ 1th place (counting from the right) just in case n ∈ S.
One can then go on to define membership and various set theoretic
operations such as union and intersection. All of that then allows us to
‘talk’, in PA, about finite sets of numbers by instead talking about their
codes.49

Gödel numbering is a way of doing the same thing for syntax. Given
any (countable) language L, we can interpret TCL in arithmetic by
(i) specifying a translation for each of the primitive names of TCL (e.g.,
∃ and ∨) and (ii) showing how to define concatenation so that the trans-
lations of the axioms of TCL will be provable in whatever arithmetical
theory we are considering. And, as mentioned earlier, we already know
that TCL is interpretable in Q. So the resources of a weak theory of
syntax, for any countable language L, can be made available in any
arithmetical theory containing Q. In particular, if A is the language of
arithmetic, then TCA is interpretable in Q, which allows Q to ‘talk about’
its own syntax. Moreover, the proof of the Diagonal Lemma for TCA
will ‘lift’ into Q, so we’ll get a proof of the Diagonal Lemma (under the
translation) for Q.

Gödel numberings are usually presented somewhat differently, in two
respects.50 Gödel’s own procedure makes for a good example. First, Gödel
(1986, p. 161) specifies an association between symbols and numbers, not
a way of translating names of symbols by names of numbers. So, e.g.,
the code for ∨ is the number 7, in Gödel’s treatment. Second, Gödel does

49We can do much better: The so-called Ackermann coding allows us to code hered-
itarily finite sets of numbers; arithmetically definable sets can be coded by the Gödel
numbers of formulas that define them; and so forth. The standard reference for such
things is Hájek and Pudlák (1993).

50Actually, three: No independent (so to speak) syntactic theory is usually mentioned
at all.
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not just specify a code for each of the primitive symbols but specifies
such a code for every string. Given such an association between symbols
and numbers, there will then be some number-theoretic function that
corresponds to concatenation (and to every other syntactic operation):
the image of that function under the coding.51 Gödel then proceeds to
show—after the fact, as it were—that the number-theoretic analogue of
concatenation is definable in P (Gödel, 1986, p. 165).

There is nothing wrong with this approach, but it does have the disad-
vantage that it leaves it somewhat mysterious exactly what restrictions
we might want to impose upon the coding, and why. Here’s an extreme
example. Tarski’s Theorem is often stated as: Arithmetical truth is not
arithmetically definable. But, actually, that’s not true. It is possible to
define arithmetical truth if one uses the right kind of Gödel numbering.
Let s0, s1, . . . be a list of all well-formed expressions of the language of
arithmetic. If s0 is a true sentence of that language, then let its code be
0; otherwise, let it be 1. More generally, if si is a true sentence, then let
its code be the next even number; otherwise, the next odd number. Then
∃y(x = SS0× y)—i.e., x is even—defines arithmetical truth.52

Is that cheating? In some sense, yes, but in what sense? The state-
ment of Tarski’s Theorem in Tarski, Mostowski, and Robinson’s Unde-
cidable Theories addresses this lacuna. They define a ‘diagonal function’,
much as we have above, and state the theorem as: If a theory T (which
need not be recursively axiomatizable) is consistent, then the set of theo-
rems of T and the diagonal function are not both definable in T (Tarski
et al., 1953, p. 46).53 So we can conclude that, under the coding just
described, the diagonal function will not be definable. But one might
wonder why that should be desirable. Who cares if the diagonal function
is definable? Maybe it would be better if it weren’t. The best answer to
this question, it seems to me, is that we want concatenation to be defin-
able, and for its elementary properties to be provable, because we want
to be able to ‘do syntax’ in arithmetic. But that is, essentially, to say that
we want to be able to interpret a reasonable theory of syntax. For some

51I.e., let ⌢ be concatentation in its syntactic sense, and let g(·) be the coding function.
Then the ‘number-theoretic analogue’ of concatentation is that function ∗ such that
g(s) ∗ g(t) = g(s ⌢ t), for all strings s and t. This function will usually be partial; we
can stipulate a throwaway value for the other cases, if we wish.

52For a more sophisticated construction in the same spirit, see Visser (2004, pp.
164–5).

53By ‘definable’, Tarski, Mostowski, and Robinson (1953, p. 45) mean ‘representable’,
in the sense to be defined below.
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purposes, of course, we may want to impose stronger conditions, e.g.,
that the image of the concatenation function should be recursive (see e.g.
Tarski et al., 1953, p. 48). But that condition, while not unmotivated—
surely concatenation is a computable operation—is still stronger than is
needed for Tarski’s Theorem. Moreover, it is not easily stated for theories
in non-arithmetical languages.54

We get the right level of generality, I suggest, if we state Tarski’s
Theorem in terms of interpretability.55

Theorem (Tarski’s Theorem). Let T be a theory in the language L, and
let I be an interpretation of TCL in T . Then, if T is consistent, there is no
formula Tr(x) of L such that, for each sentence A of L, T ⊢ Tr(⌜A⌝I) ≡ A,
where ⌜A⌝I is the I-translation of the canonical name of A in TCL.

The proof is a straightforward adaptation of the usual proof, making use
of the interpretation of TCL (and the availability of the diagonal lemma
in TCL) to produce a sentence L such that L ≡ ¬Tr(⌜L⌝I) is a theorem of
T .

Another advantage of thinking of arithmetization in terms of inter-
pretability is that it extends smoothly to non-arithmetical theories, such
as various forms of set theory. Of course, one can ‘do Gödel numbering’ in
ZF by first developing arithmetic in ZF and then using that to mimic one’s
favorite arithmetical coding. But that kind of indirection is obviously
inessential. Alternatively, then, one can code symbols as sets directly
(e.g., the code of ∨ might be the empty set). But now, what restrictions
do we want to put on how this coding is done? The answer, I suggest
again, is most naturally given in terms of the interpretability of a certain
elementary theory of syntax, such as TC.

54Indeed, there is an analogous problem concerning the ‘coding’ of arithmetic on
Turing machines: If we represent numbers using a non-standard coding, we can arrange
for e.g. the halting function to be computable. See Rescorla (2007) and references therein
for discussion.

55In fact, this can be strengthened. As Grabmayr (2021) shows, even the requirement
that concatenation be provably total is stronger than it needs to be. But that will be
required if we’re to interpret TC, since it contains a function-symbol for concatenation.
As mentioned earlier, however, whereas TC is a kind of analogue of Q, there is another
theory in the same language that would be an analogue of R, and that will be enough.
Moreover, it is almost certainly enough to be able to interpret a relational version of TC
that does not assume existence and uniqueness as general principles but only tells us
that, in each concrete case, the concatenation of two expressions exists and is unique.
See Švejdar (2007) and Heck (2014) for discussion of the arithmetical case.
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( ) ∃ ∀ ∨ ∧ → ¬ x ′ 0 S + × =
1 2 3 4 5 6 7 8 9 a b c d e f

Table 1: The Basic Correspondence

2.2 Gödel Numbering, the Usual Way

As said, Gödel numbering is not usually done the way just described. It
is, therefore, worth being acquainted with the usual sort of treatment.
The work we have done so far will allow us to isolate one of the otherwise
puzzling elements that comprises it.

We begin, of course, by establishing some one–one correspondence be-
tween strings and numbers. Here is one simple way of doing that.56 Start
with the correspondence between primitive symbols and hexadecimal
(base-16) digits in table 1. We extend the correspondence to one between
strings of symbols of the language of arithmetic and hexadecimal nu-
merals by treating these symbols as if they just were the corresponding
hexadecimal digits. Thus, for example, we read the string ‘) + 0∃∨’ as if
it just were the hexadecimal numeral ‘2db35’. This induces a correlation
between strings of symbols and natural numbers. The one-element string
‘0’ is thus correlated with the number b16, or 11; the string ‘) + 0∃∨’ is
correlated with the number 2db3516, or 187, 189. It’s then easy enough to
see which number-theoretic function is the image of concatenation under
this mapping:57

Concat(n,m) := n× 16log16(m)+1 +m

It’s less obvious how this function might actually be defined in the
language of arithmetic.

Some authors, including Gödel (1986) and Boolos (1993), actually
produce explicit definitions of the concatenation function (or something
close enough), and ultimately of the diagonalization function. But it is
more common nowadays to proceed differently.58 It’s a quite general fact
about Q that every recursive function is ‘representable’ in Q. Here’s what
that means.

56Something like this construction is also presented by Smullyan (1982, §4).
57Here, log16(m)—the (truncated) base 16 logarithm—will be one less than the length

of the hexadecimal numeral for m. So Concat(n,m) is the number whose hexadecimal
representation is given by that for n followed by that for m.

58This approach was popularized by Tarski et al. (1953), which is in many ways the
first really modern treatment of the incompleteness theorem—though it draws upon the
exposition in Mostowski (1952).
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Definition. Let T be a theory in the language of arithmetic. Then the
function f(x) is represented in T by the formula F (x, y) just in case,
whenever f(n) = m:

1. T ⊢ F (n,m)

2. T ⊢ F (n, x) → x = m

Or, equivalently:

3. T ⊢ F (n, x) ≡ x = m

Similarly for functions of more than one argument.

Here, n is the numeral for n, i.e., S . . . S0, where there are n Ss. Note that
what’s required is that T should prove that f(n) has a value in each case,
and that it should prove in each case that the value is unique. It is not re-
quired that T should prove existence or uniqueness as a general principle,
i.e., that it should prove ∀x∃yF (x, y) or ∀x∀y∀z(F (x, y)∧F (x, z) → y = z).
This is important. Weak theories like Q (let alone R) will not be able to
prove such generalizations.59

Note that a one-place function is ‘represented’ by a two-place formula,
i.e, by a relation. In effect, what we are defining isn’t f(x) but y = f(x);
that relation is sometimes called the ‘graph’ of f(x). The reason we must
do this is that the language of arithmetic is term-poor: There are many
primitive recursive functions, such as 2x, that cannot be defined by any
term, however complex, formed from just 0, S, +, and ×.60 But there
is a formula Exp(x, y) that represents 2x, already in Q, in the sense that
Q proves each instance of the conditions mentioned. The key result, as
already said, is then that every recursive function is representable in Q.
Since the image of concatenation is recursive,61 we can thus conclude
that it is representable in Q; similarly for substitution and quotation.62

Indeed, since the diagonalization function (defined in any of the ways we
have discussed) is recursive, it too will be representable in Q.

59In fact, the definition allows for the possibility that f(x) should be partial. But even
when it is not, we do not require T to prove existence and uniqueness.

60Any such term is equivalent to a polynomial, and every polynomial is eventually
dominated by 2x.

61Quite generally, if the coding function is recursive and has a recursive inverse, then
the image of every ‘discernible’ syntactic function will be recursive. This is easy to see
using Church’s Thesis.

62In this case, the quotation function can be taken just to be the numeral function:
the function that takes us from a number to the code of the numeral that denotes it.
That numeral is the canonical name of the number in question.
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Typically, then, the diagonal function will be formally encoded as a
relation, not as a function. This is one of the technical subtleties that can
make the Diagonal Lemma harder to understand than it needs to be. The
way I remember the proof of the Diagonal Lemma is as involving the for-
mula A(diag(x)), which we then diagonalize to get A(diag(⌜A(diag(x))⌝)).
That then turns out to be what is named by the embedded argument
diag(⌜A(diag(x))⌝). But there isn’t really a term diag(x) in the language
of arithmetic. Rather, there is a formula Diag(x, y) that represents diago-
nalization. So A(diag(x)) becomes:

(19) ∃y(Diag(x, y) ∧A(y))

and its diagonalization (if defined in terms of substitution) is:

(20) ∃y(Diag(⌜∃y(Diag(x, y) ∧A(y))⌝, y) ∧A(y))

We then reason as follows. Let d be the Gödel number of (20). Assuming
that Diag(x, y) represents diagonalization in T , we thus have:

(21) T ⊢ Diag(⌜∃y(Diag(x, y) ∧A(y))⌝, y) ≡ y = d

So (20) is T -provably equivalent to ∃y(y = d ∧ A(y))63 and so to A(d).
That is, roughly:

T ⊢ (20) ≡ A(⌜(20)⌝)

or, more precisely:

T ⊢ ∃y(Diag(⌜∃y(Diag(x, y) ∧A(y))⌝, y) ∧A(y)) ≡
A(⌜∃y(Diag(⌜∃y(Diag(x, y) ∧A(y))⌝, y) ∧A(y))⌝)

which gives us the Diagonal Lemma in the form that asserts provable
equivalence: There is a sentence GA such that T ⊢ GA ≡ A(⌜GA⌝). The
wanted sentence GA is just (20).

Note, as earlier, that A(d) does not refer to itself. It refers, rather,
to (20), which refers to itself only ‘by description’: (20) says that there
is a sentence meeting a certain condition, and that that sentence has
whatever property A(x) expresses. That sentence just so happens to be
(20).

One might wonder, then, whether we can do better: Whether we can
produce a proof of the Diagonal Lemma that doesn’t involve this kind of
indirection. As we’ll see, there are a few ways to do that, some of them
better than others.

63Because the left-hand side of (21) is the first conjunct of (20). So we can replace
that conjunct with y = d.
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2.3 The Strong Diagonal Lemma

One way to proceed is to consider a richer language.64 The theory known
as Primitive Recursive Arithmetic is formulated in a language that
has function symbols for every primitive recursive function (and has,
among its axioms, the equations that define that function). Typical
Gödel numberings, such as the one mentioned above, make (the images
of) concatenation, substitution, and diagonalization not just recursive
but primitive recursive. So, in PRA, there will be function symbols for all
of these functions. In particular, there will be a function symbol diag(x)
that defines diagonalization, and the axioms of PRA are strong enough
for us to prove, in each particular case, what the diagonalization of any
given formula is. In particular, PRA ⊢ diag(⌜A(x)⌝) = ⌜A(⌜A(x)⌝)⌝,65 for
each formula A(x).

With that in hand, we can then prove the Diagonal Lemma more
straightforwardly. Now there really is a formula A(diag(x)), and we can
consider the term:

(22) diag(⌜A(diag(x))⌝)

The diagonalization of A(diag(x)) is, familiarly:

(23) A(diag(⌜A(diag(x))⌝))

So PRA proves:

diag(⌜A(diag(x)⌝) = ⌜A(diag(⌜A(diag(x))⌝))⌝

or, roughly:
(22) = ⌜A(⌜(22)⌝)⌝

So now (23) really does refer to itself: The embedded argument refers to
(23).

So, in PRA, we have what is sometimes known as the ‘Strong’ Di-
agonal Lemma (though it might better be called the ‘term’ form of the
Lemma).

64This way of proving the Diagonal Lemma first appears in print, so far as I can tell,
in Jeroslow (1973). Halbach and Visser (2014a, p. 684) suggest, though, that Kreisel was
aware of it by 1953.

65Note that this is all we really need. So the theory that Halbach and Visser (2014a,
pp. 674–5) call Basic will suffice. Basic extends R by adding function symbols for all
primitive recursive functions and, as new axioms, all true identities of the form: n = t,
where t is a closed term. As they note, Basic is interpretable in R. (We can, presumably,
also work in a relational version of Basic that does not assume existence or uniqueness
as general principles, but only that values exist and are unique in each case.)
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Lemma (Strong Diagonal Lemma). For each formula A(x), there is a
term tA such that PRA ⊢ tA = ⌜A(tA)⌝.

The provable equivalence, or Weak (or ‘sentence’), form then follows, as
we saw earlier, by Leibniz’s Law.

Boolos (1993, pp. 24ff) suggests a way of helping ourselves to terms
like diag(x) even when they aren’t actually available. The idea is to treat
such terms as abbreviations, to be eliminated contextually via Russell’s
theory of descriptions. So A(diag(x)) abbreviates: ∃y(Diag(x, y)∧A(y)).66

Boolos imposes the condition on the use of such ‘pseduo-terms’ that
existence and uniqueness be provable for them. That guarantees that
all ‘disabbreviations’ of these terms will be provably equivalent, so we
don’t have to worry about scope issues. And, in the context of the theory
in which Boolos is working, namely PA, this restriction is harmless:
Existence and uniqueness will be provable for the various syntactic
operations we need.67 In the context of weaker theories, however, such
as Q, existence and uniqueness will not be provable. So long as we
are only interested in formulas where the argument-places of the term
are filled by numerals, though—or by some other closed term—the two
conditions that define representability imply that we do have existence
and uniqueness for each particular case. So, once again, we need not
worry about ambiguity, so long as we stick to closed terms. Observing
this restriction, then, we can reason with pseudo-terms as if they were
real terms, and unabbreviate only when we are done.

2.4 Some Lessons Worth Learning

Which form of the Diagonal Lemma we have available can make as big a
difference as it possibly could: Whether a given theory is consistent can
depend upon it. It requires some care to state this fact precisely. Write:
⌜A⌝g to mean: the numeral for the Gödel number of A, according to some

66Or, in the first instance, we have diag(x) = ιyDiag(x, y), and then we eliminate the
description operator. We could add a clause expressing uniqueness to what’s in the text,
but there’s no particular need to do so.

67Indeed, if existence and uniqueness are provable, then the theory that results
from adding the new axiom f(x) = y ≡ F (x, y) will be a conservative extension of the
original theory (exercise!), and we can actually work in that theory. The disabbreviaton
of anything we prove in the extended theory will then be provable in the original theory.
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particular Gödel numbering g. Then the theory whose axioms are:

Tr(⌜¬A⌝g) ≡ ¬Tr(⌜A⌝g)

Tr(t) ≡ Tr(⌜Tr(t)⌝g)

where t is a closed term, is inconsistent if the Gödel numbering is one for
which the Strong Diagonal Lemma holds, but it can be consistent if it is
one for which only the Weak Diagonal Lemma holds (Heck, 2007, §3.1;
Grabmayr and Visser, 2021, §9).68 In particular, the mentioned theory is
consistent if we use the Gödel numbering described above and, indeed,
most of the Gödel numberings typically considered in the literature.
In so far as the mentioned theory is intuitively inconsistent—there’s a
straightforward informal argument for its inconsistency (Heck, 2007, pp.
12–3)—that might be seen as a reason to prefer formal frameworks in
which the Strong Diagonal Lemma is available.

Another advantage of the Strong Diagonal Lemma is that it is rela-
tively independent of the background logic. Consider, for example, Saul
Kripke’s (1975) theory of truth.69 The logic of the (best-known) theory
Kripke presents is strong three-valued (Kleene) logic. So a biconditional
A ≡ B is true just in case A and B are both true or both false, and
undefined otherwise. It follows that we do not have the usual form of
the Diagonal Lemma in Kripke’s theory. If we did, then there would be a
formula Λ such that Λ ≡ ¬Tr(⌜Λ⌝). But such a Λ would be paradoxical
and so neither true nor false. So the biconditional cannot be true. But
there is no obstacle to the Strong Diagonal Lemma, and if Kripke’s theory
is formulated with the base theory being PRA, then we will indeed have
the Strong Diagonal Lemma. Leibniz’s Law, in this setting, will take the
form of an inference rule:

t = u,A(t) ⊢ A(u)

So we’ll end up with a term λ such that λ = ⌜¬Tr(λ)⌝, and Leibniz’s Law
will imply that Tr(λ) is inter-derivable with Tr(⌜¬Tr(λ)⌝), and similarly
for ¬Tr(λ) and ¬Tr(⌜¬Tr(λ)⌝).70

That is not to say that Kripke’s theory has to be formulated in an
expressive language like that of PRA. If our base theory is PA, say, and if

68It’s essential, of course, that A, in the first scheme, be allowed to contain the
truth-predicate.

69[[XREF to that chapter]]
70As I’ll emphasize below, it’s important to note that, while λ = ⌜¬Tr(λ)⌝, λ is not

the same term as ⌜¬Tr(λ)⌝. The latter symbol abbreviates the numeral for the Gödel
number of ¬Tr(λ), whereas λ itself is the term diag(⌜¬Tr(diag(x))⌝).
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we use an ordinary sort of Gödel numbering, then we will still have the
Diagonal Lemma formulated in terms of inter-derivability: There will
be, for each formula A(x), a formula GA such that GA is inter-derviable
with A(⌜GA⌝).71 We see, though, how sentential forms of the Diagonal
Lemma can be very sensitive to the background logic.

This brings us to an important and often over-looked point. As
mentioned earlier, Kripke (1975, p. 692) claims that “self-referential
sentences. . . are as incontestably legitimate as arithmetic itself”. That
is correct if what Kripke has in mind is the Strong Diagonal Lemma (or
something similar). Only quite elementary arithmetical (or syntactic)
resources are needed to prove it. Since everything involved there is
primitive recursive, even finitists will regard it as unproblematic. The
same cannot be said of the Weak Diagonal Lemma, even in its inter-
derivability form. That does not follow just from arithmetic unless the
formula involved is itself arithmetical. The proof of the equivalence,
whatever form it takes, will involve an appeal to instances of Leibniz’s
Law for the formula A(x). If that formula is not arithmetical—if, in
particular, it is ¬Tr(x)—then arithmetic itself will have nothing to say
about it. In that sense, then, arithmetic alone does not guarantee the
existence of a formula Λ such that Λ is inter-derivable with ¬Tr(⌜Λ⌝).
The proofs of these claims involve the use, not just the mention, of
non-arithmetical resources.

I emphasize this point because it has become common in the literature
to begin with the assumption that some sentence L is inter-derivable
with some other sentence A(⌜L⌝) and then to focus attention on the
question what other resources are needed to derive a paradox.72 It’s
effectively assumed that only those other resources can be questioned,
because there is no questioning self-reference. But that is a mistake.
There is, to be sure, a sense in which there should be no questioning
self-reference. Very basic syntactic and arithmetic facts imply that there
are sentences that refer to themselves, whether in the sense that there
is a term tA such that tA = ⌜A(tA)⌝ or in the less direct sense of (21).
Inter-dervability requires more: The application of Leibniz’s Law to A(x).
Someone who wanted to question that move would not be questioning
elementary arithmetic but the same sort of logical principle that non-

71This is because we will still have (21), above; that will imply that (20) is inter-
derviable with A(d).

72For example, Murzi and Rossi (2017, p. S825) proceed this way—though one could
cite many other papers on the semantic paradoxes. See page 37 for more on why this
matters.
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classical ‘solutions’ of the semantic paradoxes usually question.73

3 Generalizations of the Diagonal Lemma

There are two important generalizations of the Diagonal Lemma. For
simplicity, I’ll restrict attention to sentence-based, provable equivalence
forms, and I’ll assume that we are working in classical logic.

In the form in which we have been discussing it, which is the form
in which it is usually stated, the Diagonal Lemma applies to formulas
containing exactly one free variable. In fact, however, that restriction
is inessential. Exactly the same construction can be used to prove this
generalization:

Lemma. Let A(x, y0, y1, . . . ) be a formula containing at least x free. Then,
so long as Σ contains R, there is a formula GA(y0, y1, . . . ) such that Σ
proves the univeral closure of

GA(y0, y1, . . . ) ≡ A(⌜GA(y0, y1, . . . )⌝, y0, y1, . . . )

This form of the Diagonal Lemma can be used to formalize Yablo’s Para-
dox (Yablo, 1993).74 Informally, the paradox concerns an infinite se-
quence of sentences Y0, Y1, . . . , where each of the Yi says that none of
the later sentences in the sequence is true. Let Sat(x, y) be a simple
satisfaction predicate that says, roughly: The one-place formula coded
by x is true of y; so, ideally, we would want:75

Sat(⌜A(z)⌝, y) ≡ A(y)

Now consider:
∀y(z < y → ¬Sat(x, y))

73This type of doubt is usually associated with intentionalist treatments of the liar
(Skyrms, 1984) or those that emphasize the role of sentence tokens (Gaifman, 1992;
Goldstein, 1992). But also one can think of contextualists (Parsons, 1981; Burge, 1984;
Simmons, 1993; Glanzberg, 2001) as questioning this move: Sentence identity does not
guarantee identity of truth-value, because it does not guarantee identity of proposition
expressed. (Indeed, I’m inclined to think that intentionalist and token-based views
collapse, under pressure, into contextualism. See Christman (2023) for discussion.)

74Visser (2004, pp. 166–8) presents a closely related construction. This way of for-
malizing the paradox seems first to have been presented by Priest (1997) and then
independently rediscovered by many others, including Ketland (2005) and myself. There
are other ways of proceeding, as well (Halbach and Zhang, 2017).

75This general principle, with y a variable, is essential to the derivation of a contra-
diction, as is the generalization (24). See Ketland (2005) and Cook (2014, pp. 25ff) for
the reasons.
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Use the form of the Diagonal Lemma just mentioned to obtain a formula
Y (z) such that:

(24) Y (z) ≡ ∀y(z < y → ¬Sat(⌜Y (z)⌝, y))

Since Sat(⌜Y (z)⌝, y) ≡ Y (y), we have:

Y (z) ≡ ∀y(z < y → ¬Y (y))

So Y (n) is equivalent to ∀y(n < y → ¬Y (y)), which says that all of these
sentences:

∀y(n+ 1 < y → ¬Y (y))

∀y(n+ 2 < y → ¬Y (y))

...

are false. The usual reasoning then leads to a contradiction. Suppose
Y (n) is true. Then all of the listed sentences are false. But then they are
all true! In particular, ∀y(n+ 1 < y → ¬Y (y)) is true: It says that all of
the sentences on the list except the first are false, and they are. So no
Y (n) can be true. So all the Y (n) must be false. But then, by the same
reasoning, every Y (n) is true: For Y (n) says that all the listed sentences
are false, and they are. Contradiction.

A second generalization allows for diagonalization on multiple sen-
tences simultaneously.

Lemma. Let A1(x1, x2, . . . , xn), A2(x1, x2, . . . , xn), . . . , An(x1, x2, . . . , xn)
be formulas in which exactly the variables shown are free.76 Then there
are sentences G1, G2, . . . , Gn such that:

G1 ≡ A1(⌜G1⌝, ⌜G2⌝, . . . , ⌜Gn⌝)

G2 ≡ A2(⌜G1⌝, ⌜G2⌝, . . . , ⌜Gn⌝)

...
Gn ≡ An(⌜G1⌝, ⌜G2⌝, . . . , ⌜Gn⌝)

The proof is straightforward, but not obvious, and not often presented, so
I’ll give it. Note first, though, that the requirement that all the displayed
variables be free can be relaxed. If x2 isn’t free in A1, say, then we can
just replace A1 with the logically equivalent A1 ∧ x2 = x2. But the proof
is simpler with the requirement imposed.

76One can also allow extra free variables here.
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Proof. We’ll just do the case of two formulas, and we’ll assume, for ease
of exposition, that we’re working in a rich language, like that of PRA.77

Let the 1-diagonalization of A1(x, y) and A2(x, y) be:

A1(⌜A1(x, y)⌝, ⌜A2(x, y)⌝)

and let the 2-diagonalization be:

A2(⌜A1(x, y)⌝, ⌜A2(x, y)⌝)

These are recursive operations, so there are terms diag1 and diag2 that
represent them. Now consider these formulas:

A∗
1(x, y) := A1(diag1(x, y), diag2(x, y))

A∗
2(x, y) := A2(diag1(x, y), diag2(x, y))

The wanted sentences are then:

G1 := A1(diag1(⌜A
∗
1⌝, ⌜A

∗
2⌝), diag2(⌜A

∗
1⌝, ⌜A

∗
2⌝))

G2 := A2(diag1(⌜A
∗
1⌝, ⌜A

∗
2⌝), diag2(⌜A

∗
1⌝, ⌜A

∗
2⌝))

Observe that diag1(⌜A
∗
1⌝, ⌜A

∗
2⌝) is just G1, and diag2(⌜A

∗
1⌝, ⌜A

∗
2⌝) is just

G2. So we have:

G1 ≡ A1(⌜G1⌝, ⌜G2⌝)

G2 ≡ A2(⌜G1⌝, ⌜G2⌝)

as claimed.

Here’s an application. In its informal version, the Postcard Paradox
(due to Phillip Jourdain) involves a postcard on one side of which is
written “The sentence on the other side is false”, while on the other side
it says: The sentence on the other side is true. More simply, it involves
two sentences that refer to each other:

P1 Sentence (P2) is false.

P2 Sentence (P1) is true.

77If we are working in a less expressive language, then we can use the indirection
discussed earlier.
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We can formalize this paradox with the aid of the Generalized Diagonal
Lemma. Let A1(x, y) be ¬Tr(y) and A2(x, y) be Tr(x). Then we have:

P1 ≡ ¬Tr(⌜P2⌝)

P2 ≡ Tr(⌜P1⌝)

Longer such cycles can of course be constructed as well.78

4 ‘Direct’ Self-Reference

There is an even stronger form of the Diagonal Lemma we might want
to have.

Lemma (Directly Self-Referential Diagonal Lemma). For each formula
A(x), there is a numeral nA such that nA = ⌜A(nA)⌝.

There are papers in the literature that assume the Diagonal Lemma
in this form (e.g. Rosenblatt, 2017, p. 97). It’s convenient, if one has
it, because Leibniz’s Law is no longer required to show that A(nA) is
equivalent (in whatever sense) to A(⌜A(nA)⌝). If we have the Directly
Self-Referential Diagonal Lemma, then those are the very same sentence:
The symbol ⌜A(nA)⌝ denotes the numeral for the Gödel number of A(nA);
by hypothesis, that number is nA; its numeral is called nA; so ⌜A(nA)⌝

and nA are names of the same symbol. So A(nA) and A(⌜A(nA)⌝) are the
same sentence.

The first point worth noting, then, is that this is not what even the
Strong Diagonal Lemma delivers. That gives us a term tA such that tA =
⌜A(tA)⌝, but that term (on the usual construction) is diag(⌜A(diag(x)⌝),
which is obviously not a numeral. Indeed, not only do none of the Gödel
numberings usually discussed in the literature allow us to prove the

78It’s sometimes suggested that these two paradoxes show that self-reference is not
really essential to the Liar Paradox. And, strictly speaking, that is surely true. But
all the Postcard Paradox really shows is that self-reference wasn’t the right notion:
Circular chains of reference are the real problem; self-reference is just the simplest
way of achieving such a chain. Yablo’s Paradox poses a quite different challenge, but it
remains at least somewhat controversial whether some kind of self-reference is present
in Yablo’s Paradox (see Cook (2014, ch. 2) for discussion and references). But even it if
isn’t (and I think it isn’t), one might take the new lesson just to be that non-well-founded
chains of reference are the real problem: Circular chains are just the simplest version
of that. Indeed, that is what I have always thought Yablo’s point was. (So, one might
conclude, something like Kripke’s diagnosis of the Liar, in terms of ungroundedness, is
correct.)
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Directly Self-Referential Diagonal Lemma, but they actually prohibit
it. That is because most Gödel numberings have a property known as
‘regularity’ or ‘monotonicity’:79 The Gödel number of any proper part
of an expression is always smaller than the Gödel number of the whole
expression. It follows from this that the Gödel number of a numeral
must be at least as great as the number it names: ⌜n⌝ ≥ n.80 Moreover,
the Gödel number of A(nA) must be greater than that of the numeral nA.
So ⌜A(nA)⌝ > ⌜nA⌝ ≥ nA, contrary to what the Directly Self-Referential
Diagonal Lemma would require.81

We can, nonetheless, arrange for this kind of direct self-reference.
There are, in fact, several different ways to do so.

The first, and simplest, is to use a Gödel numbering custom-built
for the purpose. Here’s one simple way to do that (Visser, 2004; Heck,
2007). Start with your favorite numbering; let A0(x), A1(x), . . . be an
enumeration of the formulas with just x free. For each formula Ai(x) in
the mentioned list, let the new Gödel number of Ai(2i+ 1) be 2i+ 1; for
every formula not of the form Ai(2i+ 1), let its new Gödel number be
twice its old one. By construction, then, for each formula Ai(x), we will
have: 2i+ 1 = ⌜Ai(2i+ 1)⌝.82

This construction violates monotonicity. The importance of that
constraint is debatable, but, even if one accepts it, there is another way
to proceed that respects monotonicity. This involves the use of so-called
‘efficient numerals’, which are akin to binary numerals, or ‘bicimals’.
Efficient numerals play an important role in the study of weak systems
of arithmetic, because their length does not grow as fast as does that of
standard numerals.83 For much the same reason, the short argument

79Sometimes this condition is made serious use of: See e.g. Łełyk (2022, p. 4).
80By induction. ⌜0⌝ ≥ 0, trivially; so ⌜S0⌝ > ⌜0⌝ ≥ 0, so ⌜S0⌝ ≥ 1; and so forth. (Here,

I’m using ⌜A⌝ to mean: the Gödel number of A.)
81If one thinks of numerals as an analogue of quote names, then one can see why

this is unsurprising. (But see Grabmayr and Visser (2021, §6).) No quote name can
be a name of an expression that contains that very quote name. That would require
the quote name to be longer than itself. It’s something like this thought, it seems to
me, that makes people worry about the coherence of self-reference, or to think that it is
irremediably circular. What such a worry overlooks is that there can be other ways of
referring to sentences besides quote names.

82As a referee pointed out, this construction may not give each sentence a unique
Gödel number, which is usually desirable (though not essential). One can resolve this
issue by simply taking the numbering described and letting the ‘real’ Gödel number of a
sentence be the least one. Note also that, if the original numbering was computable, so
will be the new one; similarly for the inverses.

83The problem comes when one tries to define the function that maps a number to the
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above that shows that monotonicity implies that ⌜n⌝ ≥ n does not hold
for efficient numerals. A great deal more work is needed to produce a
monotonic Gödel numbering that delivers the Directly Self-Referential
Diagonal Lemma, but it is possible (Grabmayr and Visser, 2021, §4).84

Yet another strategy traces to Kripke’s “Outline of a Theory of Truth”.
He writes:

Let ‘Jack’ be a name of the sentence ‘Jack is short’, and we
have a sentence that says of itself that it is short. I can see
nothing wrong with “direct” self-reference of this type. If ‘Jack’
is not already a name in the language, why can we not intro-
duce it as a name of any entity we please? In particular, why
can it not be a name of the (uninterpreted) finite sequence
of marks ‘Jack is short’? (Would it be permissible to call this
sequence of marks “Harry,” but not “Jack”? Surely prohibi-
tions on naming are arbitrary here.) There is no vicious circle
in our procedure, since we need not interpret the sequence
of marks ‘Jack is short’ before we name it. Yet if we name it
“Jack”, it at once becomes meaningful and true. (Kripke, 1975,
p. 693)

This is by far the closest analogue of the technique I used, at the begin-
ning of this chapter, to introduce a self-referential sentence:

(L) Sentence (L) is not true.

Here, “(L)” is supposed straightforwardly to be a name of the sentence
displayed.

This being philosophy, there’s more to be said about whether Kripke’s
strategy is enough to vindicate ‘direct’ self-reference (Visser, 2004, pp.
156ff). But a corresponding formal construction is not complicated. Let
A0, A1, . . . again be an enumeration of the formulas with just x free;
let s0, s1, . . . be an infinite sequence of (as yet uninterpreted) new con-
stants; add these to our base language, and redo the Gödel numbering
so that formulas involving them are included. Here’s how we interpret
the constants: Let the constant si denote the Gödel number of the for-
mula Ai(si); if we wish, we can add axioms of the form si = ⌜Ai(si)⌝ to

Gödel number of its numeral. Using typical Gödel numberings, and standard numerals,
this function will have exponential growth (Grabmayr and Visser, 2021, Remark 2.4).

84For additional discussion of monotonicity, see Grabmayr et al. (2023).
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whatever theory we were discussing.85 These new axioms will assert,
in effect, the various instances of the Directly Self-Referential Diagonal
Lemma, though the new constants now play the role previously played
by numerals.86 No proof is now required of the Directly Self-Referential
Diagonal Lemma, because it has been ‘built into’ the coding. (This is also
true of the other two constructions mentioned above.)

Once again, it’s important to note that just adding new constants is
not what makes the Directly Self-Referential Diagonal Lemma available:
One has also to arrange for the denotations of the new constants to be
exactly what they need to be. This fact gives rise to a worry about these
sorts of techniques.

The worry is in the vicinity of ones concerning the ‘intensionality’
of the Second Incompleteness Theorem. The proof of the First Incom-
pleteness Theorem87 requires only an ‘extensionally correct’ provability
predicate. More precisely, it requires only that the formula Bew(x, y)
should represent the proof-of relation in whatever theory Σ we are dis-
cussing. I.e., so long as we have:

1. Σ ⊢ Bew(n,m), if n codes a proof of the formula coded by m

2. Σ ⊢ ¬Bew(n,m), if n does not code such a proof

we will be able to mimic Gödel’s reasoning. The Diagonal Lemma will
deliver a sentence G such that G ≡ ¬∃xBew(x, ⌜G⌝); if Σ is ω-consistent,
then Σ will neither prove nor refute G. It does not matter at all whether
Bew(x, y) in any sense ‘means’ that x codes a proof of y.

In the case of the Second Incompleteness Theorem,88 however, it is
not enough for Bew(x, y) to represent the proof-of relation. The simplest
counterexample is the carefully constructed provability predicate that
Barkley Rosser (1936) uses to prove his strengthening of the First Incom-

85If one is interested only in producing a liar sentence, then one can introduce just
one new term, say ℓ, redo the Gödel numbering to include it, and then let ℓ denote the
Gödel number of ¬Tr(ℓ).

86This construction seems to have been discovered independently by several people,
reflecting on Kripke’s discussion. Kripke (2021) himself recently published a short note
describing it. Kripke also shows how this technique can be used to prove the First
Incompleteness Theorem (p. 4). (Note, by the way, that it is irrelevant, in Kripke’s proof,
that S′ is a conservative extension of S. So long as S′ is any kind of extension of S, if S′

does not prove A, then S does not prove it, either.)
87Which says that no sufficiently strong, consistent formal theory is complete.
88Which says that no sufficiently strong, consistent formal theory proves its own

consistency.
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pleteness Theorem. That formula, RBew(x, y), also represents the proof-
of relation,89 and yet it is absolutely trivial that ¬∃xRBew(x, ⌜0 = 1⌝).
That is, it is easy to prove the ‘Rosser consistency’ of almost any theory
you like, in that very theory (and, in fact, in Q). Solomon Feferman (1960)
shows that there are much more interesting ways to get a theory seem-
ingly to prove its own consistency, and there is now a large literature on
exactly what it means for some statement to ‘express’ the consistency of
a given theory.

As the reference to Feferman will have made clear, the literature
on the intensionality of the Second Incompleteness Theorem is old and
venerable. The corresponding issues for the semantic paradoxes, by
contrast, have only begun to be discussed recently.90 We saw an example
of this kind of intensionality above: A theory whose consistency depends
upon the Gödel numbering used. By contrast, Tarski’s Theorem is largely
independent of the Gödel numbering employed. As we have seen, there
are some restrictions, but so long as the Gödel numbering meets some
pretty weak conditions,91 the set of Gödel numbers of true sentences will
not be definable. That makes blaming the Liar Paradox on self-reference
implausible: There are lots of easy ways to achieve self-reference, and all
of them allow one to formulate the Liar Paradox. By contrast, suppose
there is some ‘paradox’ whose derivation depends essentially upon the
use of direct self-reference, in the sense we have been discussing here.
Then it might not be so clear whether we have a genuine paradox. Maybe
that kind of self-reference is indeed suspicious.

Something in this vicinity occurs in the literature on the so-called
V-Curry (Beall and Murzi, 2013). Much of the interest of this paradox
lies in its allegedly requiring for its derivation—besides certain ‘naïve’
rules for a predicate Val(x, y) expressing the validity of the inference
from x to y—only so-called structural rules.92 But that is true only if we

89This is what makes Rosser’s strenghtening work: Once it’s been shown that
RBew(x, y) represents the proof-of relation, we can mimic Gödel’s reasoning. But now
we need only assume that Σ is consistent, not that it is ω-consistent.

90See, for example, Heck (2007); Grabmayr and Visser (2021); Halbach and Leigh
(2022, Ch. 12). This literature intersects significantly with the emerging literature on
the nature of self-reference: There are difficult questions about what exactly it means
for a formula to ‘say of itself ’ that it has some property or other; see Halbach and Visser
(2014a,b); Picollo (2018).

91It’s enough for the image of the concatenation function to be definable in whatever
theory is in question.

92In particular, the rule of contraction, which asserts (in effect) that the premises of
an inference form a set, so that, if A,A ⊢ B, then A ⊢ B.
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have the Directly Self-Referential Diagonal Lemma (Christman, 2023,
Ch. 1). If we have only the Strong Diagonal Lemma, then we need to use
Leibniz’s Law to get the inter-derivability claim; as I emphasized above,
that is the kind of principle that non-classical solutions to the semantic
paradoxes have always questioned. So should we think that there are
non-structural solutions to the V-Curry or not?93 It depends upon what
forms of self-reference one thinks are legitimate.94
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