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Abstract
This paper offers a new angle on the common idea that the process of
science does not support epistemic diversity. Under minimal assump-
tions on the nature of journal editing we prove that editorial proce-
dures, even when impartial in themselves, disadvantage less prominent
research programs. This purely statistical bias in article selection fur-
ther skews existing differences in the success rate and hence attractive-
ness of research programs, and exacerbates the reputation difference
between the programs. After a discussion of the modeling assump-
tions, the paper ends with a number of recommendations that may
help promote scientific diversity through editorial decision making.
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1 Introduction

The value of epistemic diversity in science has been argued extensively (e.g.,
Feyerabend 1975, Lakatos 1978, Longino 1990, Kitcher 1993, Hong and Page
2004, Zollman 2010). A field that harbors a greater variety of methods and
theories will offer more balanced viewpoints and is better equipped to respond
to challenges. In the words of Lakatos:

The history of science has been and should be a history of com-
peting research programmes. . . but it has not been and must not
become a succession of periods of normal science: the sooner
competition starts, the better for progress. (Lakatos 1978, p. 69)

In the organization of science, we should therefore aim to facilitate diversity
in research programs. This holds in particular for the peer review system: a
systematic bias towards a mono-culture is detrimental to scientific progress.

It is known that journal editors are prone to systematic (possibly uncon-
scious) bias in favor of more prominent research programs (see Lee et al.
2013, pp. 9–10, and citations below). Several psychological and sociological
factors underlie this tendency in editorial decision making. For instance, edi-
tors may suffer from a confirmation bias in assessing the quality of a research
program (Mahoney 1977, Ernst et al. 1992), and they may choose conserva-
tively among the available submissions with an eye on the reputation of the
journal (Resch et al. 2000, Luukkonen 2012, p. 54). But unfortunately, these
are not the only drivers of bias in editorial decisions.

This paper concerns biases that are rooted not in the prejudices of editors
or reviewers, but rather in the statistical characteristics of editorial decision
making. Our results confront two central notions in the review process: the
probability that a paper gets accepted or rejected, and the average quality
of accepted or rejected papers. Comparison of different research programs
with respect to these notions reveals that less well-established or otherwise
vulnerable research programs are at a disproportional disadvantage. Hence,

2



even if editors manage to purge their decision procedures of unconscious
biases, they will be left with biases of a strictly statistical nature. These
statistical biases contribute to the already existing tendency towards a mono-
culture in science: a purely statistical Matthew effect.

Our findings on editorial decisions rely on a number of assumptions about
the decision process: we presume that research papers have some latent in-
herent quality, that reviews offer a noisy measurement of this quality, and
that editors base their decision to accept or reject a paper only on considera-
tions of quality, informed by the reviews. In what follows we take this notion
of latent quality for granted but we will return to it in our discussion.

For our first result, expounded in section 2, we further assume that there
is no quality difference between the programs. However, we imagine that the
editor is more familiar with the individuals, groups and networks from her
own research program, and that as a consequence she has a more accurate
estimation of the quality of the work. Under these minimal assumptions
journal editors face a dilemma: either they accept more papers from the
research program with which they are more familiar, or the accepted papers
from the more familiar program are on average of higher quality. If we add
some additional assumptions then editors fall prey to both. Assuming that
editors are more likely to belong to established research programs, this makes
it harder for new research programs to gain a foothold.

One possible response is that the editor should abstain from using iden-
tifying author information. Our second result, presented in section 3, shows
the limits of this response. Here we assume that the programs actually dif-
fer in average latent quality, and that the more established program is also
the better one. Unsurprisingly, more papers of the established program will
therefore get accepted. But on top of that, the percentage of accepted papers
that falls below a quality threshold is lower in the established program, no
matter how this threshold is set. Moreover, the percentage of papers with
sufficient quality that do not get accepted is also lower in the established
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program. In short, we argue that the established program enjoys more favor-
able error rates. This makes it once again harder for new research programs
to establish themselves.

Our results identify circumstances under which a reasonable editor, who
does everything in her power to choose all and only high-quality papers for
publication without regard for which research program produced it, will nev-
ertheless advantage the more established research program. Importantly, the
editor treats the individual papers equally in all of this: they are judged on
their quality, and on nothing else. Precisely this fairness towards individual
papers leads to inequality at the level of research programs. Now fairness
towards individual papers is obviously important, but we should be aware of
the non-obvious costs in terms of group-level inequalities. These mechanisms
benefiting more established programs merit careful study. At a minimum,
our paper aims to create awareness of them, and hence of the challenges
involved in safeguarding program diversity.

One possible response is that fairness for individual papers trumps all
considerations pertaining to programs, and that therefore we need not take
any action whatsoever. However, we believe this response to be inadequate
and aim for a different conclusion. Consider the following:

As long as a budding research programme can be rationally recon-
structed as a progressive problem shift, it should be sheltered for
a while from a powerful established rival. (Lakatos 1978, p. 71)

[W]e sometimes want to maintain cognitive diversity even in in-
stances where it would be reasonable for all to agree that one
of two theories was inferior to its rival, and we may be grateful
to the stubborn minority who continue to advocate problematic
ideas. (Kitcher 1990, p. 7)

We can easily multiply quotes that convey a similar preference for cogni-
tive or epistemic diversity in science, for example from Feyerabend (1975),
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Longino (1990), Hong and Page (2004), Zollman (2010) and Wylie (2014).
Arguably, as pointed out by Philip Kitcher (personal communication), diver-
sity in science may not be universally beneficial, partly because dissent may
have adverse effects on the role of science in public discourse (cf. Solomon
2015), and perhaps because some dissent moves beyond the confines of rea-
sonable discussion. These caveats notwithstanding, we take the view that
science benefits from diversity to be fairly widely applicable, and assume it
throughout this paper. It is therefore natural to ask how we can counteract
the statistical biases of peer review.

To be sure, we do not suggest to cease critical assessment of our proneness
to unconscious bias, but we warn that other causes of single-mindedness are
at work. If a journal is seen to promote a dominant program to the detriment
of others, this cannot be ascribed simpliciter to biases at work in the editors.
Instead, we should be aware that biases of a purely statistical nature may be
at work in editorial decision making, and take steps to counteract them. In
our conclusion (section 5) we consider what these concrete steps might be.

2 Different familiarity with the programs

The results of this paper rely on a basic model of peer review. We imagine
a scientific community with one journal, run by an editor who decides what
gets published. The members of the community produce papers which they
submit to the journal. Each paper has a quality q, measured by a single
real number. The editor aims to publish high-quality papers but she faces
uncertainty: the quality q is unknown to the editor. When a paper arrives at
the journal, all the editor has is a prior belief about its quality, in the form
of a probability distribution over possible values of q.

The model thus adopts a common idea about peer review, namely that it
is “the means by which one’s equals assess the quality of one’s scholarly work”
(Eisenhart 2002, p. 241). Its aim is to guarantee “public confidence that high-
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quality academic work that makes a contribution to the accumulation of
knowledge has been done” (Eisenhart 2002, p. 241). Conversely, bias in peer
review may be defined as “any systematic effect on ratings unrelated to the
true quality of the object being rated” (Blackburn and Hakel 2006, p. 378).
These claims rely on a robust notion of quality, one on which it makes sense
to speak of the quality of a journal submission. When invoked so explicitly,
the notion of quality invites skepticism (cf. Lee et al. 2013). Rightfully so,
we think, and we will return to this issue in section 4. Nevertheless we take
this picture of peer review to be widely, if perhaps implicitly, shared among
scientists.

In her prior belief about a paper’s quality, the editor takes into account
the following factors. First, there are two competing research programs in
the scientific community, the established research program H and the novel
research program L, and each paper belongs to exactly one of these. Second,
the editor is familiar with the work of some scientists in the community, but
not others. The characteristics of particular scientists, insofar as the editor
believes them to be relevant to the quality of their work, are represented in the
model by a random variable K. If the editor has author knowledge of some
kind, by knowing individual scientists, their research group, or the specific
network in which they operate, then she knows these characteristics (K = k)
and takes them into account in her prior. If the authors of a submission are
not known to the editor, she uses a generic prior that incorporates uncertainty
about these characteristics.

known author k unknown author
research program H q | H,K = k q | H
research program L q | L,K = k q | L

Table 1: The prior distribution of q, given the research program the paper
originates from and whether or not the author is known to the editor.

Submitted papers may thus be divided into four groups (known and un-
known authors associated with each of the two research programs) with possi-
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bly different prior distributions (see table 1). But in the model both of these
factors are in fact irrelevant. The author characteristics follow the same
distribution in the group of known scientists and in the group of unknown
scientists, and the editor’s beliefs are calibrated to these distributions:

EK [q | H,K] ∼ q | H and EK [q | L,K] ∼ q | L,

with ∼ denoting equality in distribution and EK denoting expectation with
respect to K. Moreover, the distribution of quality is the same for the two
research programs, and the editor’s beliefs reflect this as well: q | H ∼ q | L.
In sum, the editor correctly believes the papers from each of the four groups
to be distributed over the quality values in the same way.

Despite all this, knowing a particular scientist’s characteristics may still
be relevant. For example, suppose each of the four groups consisted of just
two scientists, and in each group one of these scientists consistently pro-
duces high-quality work, the other low-quality. When the editor knows the
individual scientists, she can take this into account. A reasonable decision
procedure might be to accept all papers from the high-quality scientist and
reject all papers from the low-quality scientist. But when she does not know
the individual scientists, she cannot condition her decision procedure on au-
thor identity, and she might end up making worse decisions overall. This
idea drives the main result of this section.

We assume that the editor knows the characteristics of a greater propor-
tion of scientists or research groups in the established research program H

than in the novel research program L. The idea behind this assumption is
that the editor has had more time to familiarize herself with the key play-
ers, the important training sites, and the essential tools and methods of the
more established program. Moreover, the editor herself is typically an estab-
lished member of the community, and hence she is more likely to belong to
the established program. This makes it more probable that she has author
knowledge for a larger proportion of papers from that program, i.e., that she
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is able to associate a paper with a known individual, network or research
group more easily.

The editor solicits one or more reviews of the paper. The information
gleaned from the reviewers’ reports is summarized in a random variable R.
We assume that the quality of the paper screens off any information about
the author or the research program from the reviewers’ report (i.e., reviewers
are unbiased with respect to these factors):

R | q ∼ R | q,H ∼ R | q, L ∼ R | q,K = k.

The editor updates her belief about q based on the reviewers’ report. Hence
her posterior belief if she has author knowledge is either q | R,H,K = k or
q | R,L,K = k. If she does not have author knowledge her posterior belief
is q | R,H or q | R,L.

Now the editor has to make a decision D whether or not to accept the
paper.1 We write D ∈ {A,¬A}, where A denotes acceptance and ¬A rejec-
tion. The editor aims to maximize the quality of accepted papers, i.e., her
utility function is given by

u(D) =

q if D = A,

q∗ if D = ¬A.

This says that if the editor accepts the paper her utility is equal to the real
quality of the paper q, and if she rejects it her utility is some fixed constant
value q∗. The latter simply means that she gets no value out of rejected
papers, and in particular that she is indifferent to their quality. Very similar
conclusions would be reached if we instead assumed that the editor feels
regret for rejecting high-quality papers.

1Since we presume that there is only one journal, strategic considerations to do with
journal competition do not play a role in this decision.
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Since the editor does not know the quality q she is facing a decision under
uncertainty. Being a rational editor, she maximizes her expected utility. The
expected utility of accepting the paper is the expected value of q, given her
beliefs, i.e., it is equal to the mean of the editor’s posterior distribution for
the quality of the paper. The expected utility of rejecting the paper is simply
q∗; no uncertainty there. So the editor accepts the paper if and only if the
posterior mean quality exceeds q∗.

Given this model of editorial decisions and uncertainty, we are interested
in two things. First, what is the chance that an arbitrary paper from one
of the two research programs is accepted? And second, what is the aver-
age quality of published papers originating from the two research programs?
We begin by discussing the results of Heesen (2018), who studies a specific
instance of our model where all the relevant probability distributions are
normal.

Example 1. Suppose that quality follows a normal distribution with a mean
that may be different for each author and a fixed known variance: q | K =
k ∼ N(k, σ2

q ). Suppose further that author means are themselves normally
distributed in the population: K ∼ N(µ, σ2

k). And suppose finally that the
reviewers’ report provides a noisy but unbiased estimate of the quality of
the paper, also with a normal distribution: R | q ∼ N(q, σ2

r). If the overall
acceptance rate of the journal is less than 50 % (or equivalently, if q∗ > µ)
then the following inequalities hold (Heesen 2018, theorems 1 and 2):

Pr(A | K) > Pr(A) and E[q | A,K] > E[q | A].

That is, papers written by authors known to the editor are (on average)
more likely to be accepted than papers written by unknown authors, and
(despite this) the average quality of papers written by known authors that
are accepted for publication is higher than the average quality of accepted
papers written by unknown authors. If, as we have assumed, the editor
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knows a greater proportion of scientists from research program H than from
research program L, it follows that the same inequalities hold at the level of
research programs, i.e.,

Pr(A | H) > Pr(A | L) and E[q | A,H] > E[q | A,L].

The results from this example are worrying. They show that an editor who
only aims to maximize the quality of accepted papers may accept papers from
the established research program at a higher rate than those from the novel
research program. Moreover, the papers she accepts from program H are of
higher quality (on average) than the papers she accepts from program L.

Notice the minimal assumptions under which this result holds: apart from
the different levels of information she has about authors, the editor treats
each paper equally. Various ways of making the model more realistic are
likely to exacerbate the result, e.g., if the editor is biased in favor of the
research program she is more familiar with. Moreover, we have assumed that
the extra information the editor has only affects her assessment of the quality
of individual papers. If she also finds it easier to identify good reviewers for
papers she has more information about (i.e., σ2

r is lower when assessing papers
by known authors) this would likewise exacerbate the result.

Heesen (2018) goes on to discuss whether this phenomenon produces
epistemic injustices for individual authors, and the extent to which triple-
anonymous peer review may avoid such injustices. He concludes that triple-
anonymization (where the editor does not know the identity of the author)
is advisable from the perspective of fairness, but may not be desirable from
an epistemic perspective. Here our focus is on the effect on entire research
programs rather than individual authors. As we will see in section 3, we are
also somewhat skeptical of the epistemic benefits of triple-anonymization, if
for different reasons.

As we pointed out, however, Heesen’s results depend on assuming that
various uncertainties follow normal distributions. Our theorem, a partial
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generalization of Heesen (2018, theorems 1 and 2), shows that these results
are not merely a peculiarity of normal distributions. It says that regardless
of the distributions of q, K, and R, at least one of Heesen’s inequalities must
hold.

Theorem 2. If knowing author characteristics sometimes makes a difference
to the editor’s decision (i.e., there is a positive probability of getting a com-
bination of author characteristics and reviewers’ report such that the paper
is accepted if the editor has author knowledge but rejected if the editor does
not have author knowledge, or vice versa), then

Pr(A | H) > Pr(A | L) or E[q | A,H] > E[q | A,L].

The proof is given in appendix A. It is based on the value of information
theorem due to Good (1967). The idea is that the additional information the
editor has available when she has author knowledge allows her to make better
decisions. (While we have framed things in terms of an established program
and a novel program to highlight our concerns about epistemic diversity,
the mathematical result is indifferent to this: in any situation of asymmetric
information—including a situation where an editor knows more about a novel
research program—the decision-making process studied here would favor the
side about which more information is available.)

The theorem shows that at least one of the following holds. Either the
acceptance rate for papers from research program H is higher than the ac-
ceptance rate for papers from research program L, or accepted papers from
program H are on average of higher quality than accepted papers from pro-
gram L. This is so even though the overall distribution of quality is the same
in the two programs. We may formulate the result as a dilemma that the ed-
itor faces: either she will be seen to display a kind of favoritism by accepting
papers from the established research program at a higher rate, or she will
find that the papers she publishes from the established program turn out to
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be better papers (on average) than those she publishes from the novel pro-
gram. In other words, the dilemma is between boosting research program H

directly by giving it more exposure, or indirectly by creating the misleading
impression that it produces higher quality work. By adapting her editorial
practices she might manage to avoid one of these problems, but she cannot
avoid both.

This is what we call a statistical Matthew effect: the established research
program receives a boost despite its quality distribution being identical to
that of the novel research program, and despite the fact that neither the
editor nor the reviewers are biased. It is a Matthew effect (in the sense of
Merton 1968) because the research program already enjoying a good reputa-
tion receives greater benefits when it delivers the same quality of work. It is
statistical because it arises from the underlying uncertainties in measuring
quality as opposed to a specific preference from the editor or the reviewers.

3 Latent differences between the programs

A salient feature of the model presented in the previous section is that the
editor treats papers differently depending on their author. By and large,
scientists with a good track record will have their papers accepted even if
the reviewers’ report is relatively lukewarm, whereas scientists with a poor
track record need a glowing report for acceptance. In response to this we
may want to rule out the use of prior information by the editor. This could
be achieved by implementing triple-anonymous review.2

Triple-anonymous review comes at a cost: we give up information that is
potentially relevant for evaluating paper quality. This is true in our model—
the editor does best in selecting for quality if she factors in whether she knows

2We deliberately avoid the terminology of “blind review”, which has been criticized for
being ableist (Tremain 2017, pp. 32–33).
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the author—and it also seems to be confirmed empirically by Laband and
Piette (1994).

One might advocate triple-anonymous review to prevent various other
types of biases (see Heesen 2018, Lee and Schunn 2010, p. 7). However,
it is not entirely successful as a response to the statistical Matthew effect.
Similar phenomena can still occur if the quality distributions of the two
research programs are different.

To show this we present an adapted version of our model. As before,
each paper has latent quality q and papers belong to one of two research
programs (H and L). The reviewers’ report R provides information about
the quality of the paper, and it does so in a way that is independent of the
research program that the paper belongs to: R | q,H ∼ R | q, L. But we
no longer distinguish between known and unknown authors or other such
prior information: the decision to accept a paper for publication is based
exclusively on the reviewers’ report. In particular, the paper is accepted if
R exceeds a threshold value r∗.

The reviewers’ report R is a random variable which follows some proba-
bility distribution. We make no assumption on the shape of this distribution.
We only assume that papers of higher quality have a greater chance of being
accepted, in the following sense. Define the acceptance function a as the
chance of acceptance given the latent quality q, i.e.,

a(q) := Pr(A | q) = Pr(R > r∗ | q).

We assume that this function is (strictly) increasing, i.e., q < q′ implies
a(q) < a(q′).

While we make essentially no assumptions on the distribution of R, we
do make some more substantial assumptions on the distribution of the latent
quality. Let FH be the distribution of quality for papers out of research
program H, that is, FH is the function such that FH(x) = Pr(q ≤ x | H).
Similarly, let FL be the quality distribution for research program L. We
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assume that the quality distributions are differentiable so that the density
functions fH and fL are well-defined everywhere.

We make two key assumptions on the quality distributions, one on what
they have in common and one on how they differ. First, we restrict our
attention to distributions whose density function is log-concave. A density
function f is log-concave just in case

f(px+ (1− p)y) ≥ f(x)pf(y)1−p

for all x, y ∈ R, and for all p ∈ [0, 1]. Log-concavity is a somewhat technical
assumption restricting the shape of the distribution; among other things it
entails that the distribution is unimodal. It is satisfied by a wide range
of well-known distributions, such as the normal, exponential, and uniform
distributions.

Second, we assume that the quality distributions for the two research
programs have the same functional form, but that the average quality of
papers produced by research programH is higher than the average of research
program L. The idea is that the established program is able to reliably
produce work of decent quality, whereas the novel program may suffer from
startup problems. This assumption need of course not always be satisfied
but here we explore cases where it holds, much like previously we assumed
that the editor is more likely to have author knowledge for papers coming
from the established program.

More formally, let f be a log-concave density function supported on an
interval [b, c],3 and let F be the corresponding distribution function. Our
assumption requires that there exist parameters µH and µL with µH > µL

such that
FH(q) = F (q − µH) and FL(q) = F (q − µL).

3This means that f(x) = 0 if x < b or x > c. We explicitly allow for the possibility
that b = −∞ and/or c =∞.
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So we require that quality follows the same log-concave distribution in both
research programs, differing only in that the distribution for research pro-
gram H is shifted to the right compared to the distribution for research
program L.

We discuss the role of these assumptions in more detail at the end of this
section, and we provide a more extensive critical discussion of the model in
section 4. For now we note that, analogous to section 2, the assumptions
of log-concavity and different average quality may be interpreted either as
genuine features of the distribution of quality in the scientific community, or
as features of the editor’s beliefs about how quality is distributed.4

Our main result for this version of the model relates the probability that
a paper is accepted for publication to the probability that its latent quality
exceeds some threshold t. For interpreting the result, it is useful to think
of the condition q > t as asserting that the paper passes some threshold of
suitability for publication. We may then think of the goal of selecting for
quality in terms of error rates: a false positive occurs when an unsuitable
paper (q ≤ t) is accepted for publication, and a false negative occurs when a
suitable paper is rejected. The theorem says that regardless of the choice of
threshold t, both error rates are lower for research program H. Or in terms
of concepts from the literature on psychological testing: both the sensitivity
Pr(A | q > t) and the positive predictive value Pr(q > t | A) of editorial
decisions are better for program H.

Theorem 3. Let t ∈ R be any number in the support of fH or fL, i.e.,
b+ µL < t < c+ µH . Then

Pr(q > t | A,H) > Pr(q > t | A,L) and

Pr(A | q > t,H) ≥ Pr(A | q > t, L).
4While features of the quality distribution may reflect the editor’s perception, the qual-

ity of individual papers cannot be straightforwardly interpreted as mere editor perception,
as we have assumed throughout that the editor faces uncertainty about quality. We return
to the interpretation of individual paper quality in section 4.
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The latter inequality is strict unless the right tail of F is exponential, i.e.,
f(q) ∝ exp{−q} for all q > t+ µL.

A proof of the theorem is given in appendix B. It generalizes results obtained
in a different (psychometric) context by Borsboom et al. (2008).

The intuition behind the proof is as follows. For any fixed quality q,
the chance of acceptance does not depend on the research program, and the
higher q, the higher the chance of acceptance. As a result, papers that are
close to the suitability threshold t are at greatest risk of an error: those just
above the threshold are less likely to be accepted than those far above it,
and those just below the threshold are more likely to be accepted than those
far below it. The distributional assumptions entail that among the suitable
papers from research program L there are proportionally more papers close
to the threshold than among suitable papers from research program H.

Consider what this means for the novel research program. Of course,
given its lower average quality, its overall acceptance rate is lower (see corol-
lary 4 below). This is presumably as it should be. But the higher rate
of false negatives means that when the novel research program produces a
good paper (q > t) it is relatively more likely to be rejected by the jour-
nal. And conversely, the higher rate of false positives means that when the
novel research program manages to get a paper accepted for publication, it
is relatively more likely to be of low quality (q ≤ t). Researchers forming an
opinion of the novel program will quickly lose faith, pointing out that despite
the editor’s exclusive focus on latent quality, papers from the novel program
have a harder time in the review process and are more often disappointing
in content when they do make it through.

The peer review we have modeled is “unbiased” in the following sense:
papers of equal quality have the same chance of being accepted regardless
of the research program they originated from. Theorem 3 shows that such a
peer review system may still be “biased” in the following sense: papers whose
quality exceeds a threshold value may have different chances of acceptance
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depending on the research program they originated from. We can recognize
a continuous version of Simpson’s paradox: for every subset of papers with
a given quality q there is no dependence of acceptance on the program, but
owing to a different distribution over quality for the two programs, acceptance
does seem to depend on program once we coarse-grain towards the binary
variable of suitability, q > t and q ≤ t.

Notice that the situation is fully symmetrical and that we can therefore
also derive that Pr(q < t | ¬A,L) > Pr(q < t | ¬A,H), i.e., the negative
predictive value is better for L than for H: among the rejected papers from
the more established program there are more papers that are in fact suitable
than among the rejects of the novel program. Similarly, we can derive a
better specificity for L, namely Pr(¬A | q < t, L) ≥ Pr(¬A | q < t,H),
meaning that the percentage of accepted papers among the unsuitable ones
is higher in the more established program than in the novel one. The general
conclusion we might therefore draw is that the programs have different error
rates for acceptance and rejection, so that they are not treated on a par.

However, we believe we can make our conclusions more specific. The
latter two errors, which are larger for program H than for program L, do
not harm the reputation or the attractiveness of program H in the way that
the errors in theorem 3 harm L. For one, the papers that are not accepted
simply do not see the light of day. The fact that in the set of rejected papers
from H a higher percentage will have the requisite quality for publication
will not deter talent or make the program H look degenerate. If there were a
possibility to check those papers out, the impression might become that we
only see part of all the high-quality work from H. Moreover, the fact that in
the pool of unsuitable papers from H, more will make it to publication by
sheer luck is not damaging to program H either, as on the whole the quality
of accepted papers from H is still better.

For expository purposes we have explained theorem 3 in terms of a no-
tion of suitability for publication. But it bears repeating that the theorem
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holds regardless of the choice of the threshold value t. So it follows from the
theorem that the probability distribution of quality for those papers from re-
search program H that get accepted for publication stochastically dominates
the quality distribution for accepted papers from research program L: for
any t, the probability that the quality of an accepted paper from program H

is at least t is greater than the probability that the quality of an accepted
paper from program L is at least t.

Accordingly, researchers who see only what gets published will find that
the novel research program consistently underperforms. Even among papers
that appear in print, papers from the novel research program are consistently
worse in expectation than papers from the established research program. As
a result, researchers may even (falsely) suspect the editor of applying positive
discrimination in favor of the novel research program: how else to explain
the consistent difference in quality even among papers deemed publishable
by the editor? Thus, we claim, there is a sense in which the peer review
system seems biased against the novel research program even when we take
into account the fact that its average quality is lower. This arises not from
any individual bias at the level of the editor or the reviewers, but from the
underlying probability distributions. This is the sense in which a statistical
Matthew effect operates in this second version of our model.

A few final remarks on this model. First, it may be helpful to phrase our
result in a way that makes for a straightforward comparison with the results
of the first model. Recall that, by theorem 2, either the acceptance rate or
the average quality of published papers is higher for the established research
program. Theorem 3 entails that both inequalities are satisfied in the present
version of the model.

Corollary 4. In the model of this section,

Pr(A | H) > Pr(A | L) and E[q | A,H] > E[q | A,L].
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Moreover, the first inequality holds for any density function f , i.e., does not
require the assumption of log-concavity.

Second, we may ask what happens when the distribution of quality differs
between the two research programs in both mean and variance. We may
again generalize (and slightly correct) results from Borsboom et al. (2008)
to obtain a partial answer for the case where research program H has the
greater variance.

Theorem 5. Define f and F as above. Let

FH(q) = F
(
q − µH
σH

)
and FL(q) = F

(
q − µL
σL

)
.

Let t ∈ R be any number such that min{σLb+µL, σHb+µH} < t < max{σLc+
µL, σHc+ µH}. If

σH > σL and µH − t
σH

≥ µL − t
σL

then

Pr(q > t | A,H) > Pr(q > t | A,L) and

Pr(A | q > t,H) > Pr(A | q > t, L).

See appendix B for a proof. A similar proof can be given about the negative
predictive value and the specificity of the editorial decisions, which again
point in the opposite direction assuming that program L has the greater
variance (cf. Borsboom et al. 2008, appendix C).

Third, we note that our model in this section differs from that of the
previous section, requiring log-concavity and a difference in the means of the
quality distributions for the two research programs. How restrictive are these
assumptions? Their role in the proof is to guarantee a certain smoothness of
the distributions, so that the result works out the same way for all values of t.
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The proof suggests, however, that acceptance and suitability will typically
come apart for different distributions of quality. We conjecture that as long
as the distributions of quality in the two research programs are different
(in any which way), it is unlikely that the probabilities of suitability given
acceptance will be equal, and likewise for the probabilities of acceptance
given suitability.5 At a minimum though, theorem 3 establishes that in a
nontrivial range of circumstances triple-anonymous review is vulnerable to a
statistical Matthew effect, and hence that anonymity cannot be taken as a
panacea against the problems raised in the previous section.

4 Discussion of modeling assumptions

The upshot of the foregoing is that editorial decision making is liable to
purely statistical biases, and that these biases work against the diversity of
research programs within a discipline. Since we take epistemic diversity to be
beneficial, these biases are detrimental and we therefore need to counteract
them. But can we claim that our models are sufficiently similar to editorial
practice, so that we are warranted in believing that these biases indeed occur,
and justified to take action against them? In what follows we critically assess
our models and answer the above questions affirmatively, albeit tentatively,
because ultimately empirical study has to settle the matter.

Both models posit a latent quality of papers that is then measured by
the editor. It is not immediately clear that measuring paper quality is what
editors and reviewers are doing. Editorial practice consists in accepting and
rejecting papers, and referee reports employ grades, often accompanied by a
narrative. However, we believe that the practice of the peer review process—
assessing papers for their “suitability” for publication—implicitly commits

5More specifically, we conjecture that this is a measure zero event, i.e., for any FH and
for any non-trivial choice of t, the set of FL such that Pr(q > t | A, H) = Pr(q > t | A, L)
or Pr(A | q > t, H) = Pr(A | q > t, L) will be measure zero in the set of all probability
distributions.
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editors and reviewers to some version of our story. Our idea is that the
notion of a latent, unidimensional paper quality is effectively induced by
the editorial practice, or at least that such a notion will prove useful in a
representation of that practice.6 But this is ultimately an empirical matter,
and not one that we can settle in this paper. For present purposes we simply
adopt the notion of latent quality as a modeling assumption. At the end
of this section we discuss the possibility of doing away with the notion of
quality altogether.

Note that even without an argument that selecting for quality is an em-
pirically reasonable description of peer review, it seems clear that scientists
and editors themselves view it this way and discuss it in these terms. From
this perspective, our models simply hold up a mirror, pointing out in abstract
terms and under minimal auxiliary assumptions that the following natural
idea is false: if editors select for quality in an unbiased way, then they will
treat different research programs equally. This reveals something important,
we think, about the baseline case of selecting for quality, independently of
whether our models describe phenomena that occur in practice.

If we accept the notion of quality in some form, it is still not clear what
we should take to be expressed by the quality scale. The model assumes that
the conditional probability of acceptance Pr(A | q) increases monotonically
in q, but other than that it is a matter for further discussion how to interpret
it. The quality of a paper might be the long-run importance of the paper in a
discipline, as a social fact, or perhaps the contribution that a paper makes to
the development of a discipline towards some goal. Referees and editors will
rank papers according to several criteria, which are then compressed into a

6Our reasons to think this relate to a phenomenon known from psychometrics, the
“positive manifold” (Spearman 1904). Insofar as the various quality aspects of a paper
will correlate positively—and we think that they will—we can typically include a single
latent variable as a modeling tool and interpret it as paper quality, without committing
to its existence or causal efficacy (cf. van der Maas et al. 2006).
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binary judgment. It is to some extent an empirical question what weighted
combination of criteria is best taken as the perceived quality.7

For our concerns, a particularly salient consideration is that editors and
referees might take the novelty or originality of the paper as one of the
criteria. That is, a paper may receive a high quality ranking because it
brings a fresh perspective to a discipline, e.g., by working from within a new
research program. As we have argued, at the level of a scientific discipline,
epistemic diversity is a stand-alone virtue because it improves the versatility
and hence resilience of the discipline as a whole. However, if novelty by itself
enhances the quality of individual papers, this would presumably undercut
our main conclusions about the differences between established and novel
programs.

As indicated before, our results present a baseline case in which editors do
not factor in such global considerations when judging individual papers for
their journal. Their primary goal is to maintain their journal’s status, and
therefore to publish papers that offer good descriptions, reliable predictions,
and convincing explanations. In our model, novelty of perspective may still
contribute to the quality of a paper in a derivative sense, in that it may
occasion benefits for the individual paper that matter to an editor, e.g., when
the novel perspective makes for better descriptive, predictive or explanatory
properties. Whether it will feature as a global consideration in its own right,
is once again an empirical issue. It is not taken into consideration in the
model we have presented.

We turn to the specific modeling assumptions that drive our results. For
the first result we assumed that the editor will be more acquainted with
authors or research groups from an established program than from a new
one. This seems to be fairly straightforward: a more established program
will have had more exposure, and it is also more likely that the editor herself

7The familiar paradoxes of voting theory loom here: it may be impossible to aggregate
scores on criteria in a way that avoids a “dictatorship” of one quality criterion.
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is associated with it. For the second result, however, the key assumption
is that the average quality of papers from the more established program is
higher. This assumption is far less straightforward, but we believe it can be
motivated.

Characteristics that determine the quality of a paper are its descriptive,
predictive, and explanatory characteristics. They are in turn determined by
the so-called positive heuristics of the program from which a paper origi-
nates, i.e., its core assumptions, and furthermore by the skill sets and the
institutional and financial support of the researchers. These latter character-
istics underpin the differences in the average quality of the programs: more
established programs will have more social and monetary capital to make
their research a success, they will have more developed methods and tech-
niques, and also better training facilities. Additionally, those programs will
be better equipped to recognize, support, and signal quality and talent. If
the core assumptions of the novel program are superior, then we might hope
that this will eventually come to light. But the novel program starts at a
disadvantage.

5 Counteracting statistical biases

In the foregoing we offered a critical assessment of our models, and argued
that statistical biases might well be a reality. We readily admit that the
models are not a complete description of editorial decision making. The
statistical biases that we identify will be mixed in with biases and mechanisms
that we have not described. However, this does not take away from the need
to counteract the biases identified. As long as we believe that the models
capture certain aspects of real editorial practice, the statistical biases might
indeed obtain, even if they obtain alongside others. Hence, we have reason
to look for ways to respond. We devote the remainder of our paper to the
question how we might do this.
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Before we consider our options, it deserves emphasis that our results
are still valuable if further empirical investigation reveals that the modeling
assumptions are too idealized, and that they therefore never obtain. That
is, our results are also informative when they are not merely incomplete,
as already discussed, but empirically false. In that case they still present a
principled argument against the feasibility of a particular ideal of editorial
decision making. This makes them informative for our editorial practices in
a derivative sense. They tell us that, as a baseline case, a strict focus on
individual paper quality may be detrimental to program diversity, and that
differential treatment at some level seems inevitable.

Assuming now that we have to counteract these biases, what can we do?
One response to the first of the two results was already discussed at the
start of section 3. This bias can be prevented by disallowing the informa-
tion asymmetry required for the result. We could demand that no prior
information about the author of a paper may be taken into account in eval-
uating it, analogously to the standing practice in criminal prosecution and
psychological testing for the purpose of selection. One way to achieve this
is by employing triple-anonymous review, but the editor then foregoes in-
formation that would help her improve the average quality of papers in her
journal. Another option is that we remedy the information asymmetry be-
tween programs by working with an editorial team that reflects the mix of
research programs in the discipline.

Owing to our second result, however, this approach fails to rule out all
threats to epistemic diversity. We readily admit that the assumption of
a lower average quality for the new program will not always hold but we
believe we have motivated it sufficiently to say it holds sometimes, so that
the statistical bias in the editorial process can occur. We also believe that it
would be a mistake to consider this kind of bias relatively harmless, or even
reasonable in the light of the latent differences between the programs. It is to
be expected that the program producing lower quality work gets this work
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published less easily, but it is far more worrisome that science’s selection
mechanisms work less well for that program.8

One more-or-less direct repair can be constructed. The root cause of the
differences in error rates is that the novel program has proportionally more
papers that are near the quality cut-off point for inclusion in the journal.
Accordingly, we can counteract the bias by directing more reviewer efforts
towards papers that are borderline cases. To some extent this is already
the standing practice, or so we think. A problematic consequence of this
is perhaps that this creates an asymmetry between the two programs of a
different nature: the editorial office will spend more of its reviewing resources
on the novel program (cf. the analogous discussion in Borsboom et al. 2008).
This will be acceptable to some, but others may feel that the persistence of
biases invites us to search farther afield. In particular, we might hope to
eliminate the implicit adoption of a notion of quality in editorial decision
making.

What we are taking into consideration here is a more far-reaching reevalu-
ation of the system of science. Scientific publication is a process of regulated
information sharing. Depending on what goals we take this information shar-
ing to have, it may well turn out that it is better served by a system like
ArXiv than by centralized collection and curation. To find out about this,
we need to confront our models with empirical fact and evaluate the merits
and defects of the various formats for information sharing in science (Heesen
and Bright forthcoming, attempts to do this). Indeed the ultimate resolution
of threats to epistemic diversity through biases in editorial decision making
might turn out to be a truly radical one: to do away with editor decisions
altogether. Depending on the details of such a system new problems will

8That such biases are to be taken seriously is underscored by the public debate around
fairness in AI and the scientific work that it has promoted. Kleinberg et al. (2017), for
instance, prove a version of our theorem 3, and suggest that it is the main driver behind the
unfairness of a system that estimates recidivism risks for the US criminal courts (Angwin
et al. 2016).
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undoubtedly emerge, but we may hope that statistical Matthew effects are
not among them. Even among the authors of this article, the debate over
the merits and defects of radically overhauling editorial processes continues.

A Proof of the value of knowing the author

Our proof relies on the following well-known result.

Theorem 6 (Good (1967)). Given some choice problem, let D be a decision
that maximizes expected utility relative to some prior beliefs and a utility
function u. Let K be a random variable and let D(K) be a decision that
maximizes expected utility relative to the posterior beliefs (obtained from the
prior beliefs by conditioning on the outcome of K) and utility u. Then

EK [E[u(D(K))]] ≥ E[u(D)].

Moreover, the foregoing inequality is strict if there is a set of outcomes K0

such that Pr(K ∈ K0) > 0 and E[u(D(k))] > E[u(D)] for all k ∈ K0 (i.e.,
decision D no longer maximizes expected utility if outcome k is observed).

In our model, we make a distinction between scientists known to the editor
and scientists unknown to the editor, where knowing a scientist is represented
as knowing the value of some random variable K that is potentially relevant
to evaluating the quality of the scientist’s paper. Let D(K,R) be the decision
taken by the editor if she knows the scientist’s characteristics K and the
reviewer report R and let D(R) be the decision if the scientist is unknown,
i.e., only the reviewer report R is known. Applying Good’s theorem to our
model yields the following.

Theorem 7. Assume that there exists a set S of joint outcomes for K and R
(i.e., members of S are pairs (k, r) where k is a possible outcome of K and
r is a possible outcome of R) such that D(k, r) 6= D(r) for all (k, r) ∈ S and
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Pr((K,R) ∈ S) > 0. Then

Pr(D(K,R) = A) > Pr(D(R) = A) or

E[q | D(K,R) = A] > E[q | D(R) = A].

Proof. From theorem 6 we get that

EK [E[u(D(K,R))]] ≥ E[u(D(R))],

with strict inequality if there is a set of outcomes for K with positive measure
such that E[u(D(k,R))] > E[u(D(R))] for all k in that set. The theorem
assumes that such sets of outcomes exist, so we have strict inequality in the
above.

From the definition of u we know that u(D(R)) = q if D(R) = A and
u(D(R)) = q∗ otherwise. Hence

E[u(D(R))] = E[q | D(R) = A] Pr(D(R) = A) + q∗ Pr(D(R) = ¬A)

= q∗ + E[q − q∗ | D(R) = A] Pr(D(R) = A).

Similarly

EK [E[u(D(K,R))]] = EK [E[q | D(K,R) = A]] Pr(D(K,R) = A)

+ q∗ Pr(D(K,R) = ¬A)

= q∗ + EK [E[q − q∗ | D(K,R) = A]] Pr(D(K,R) = A).

The inequality obtained from theorem 6 entails

EK [E[q − q∗ | D(K,R) = A]] > E[q − q∗ | D(R) = A] or

Pr(D(K,R) = A) > Pr(D(R) = A).
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Since q∗ is a constant, the former inequality is equivalent to the one stated
in the theorem.

The above theorem assumes that there exists a set of outcomes S for K
and R of positive probability such thatD(k, r) 6= D(r) for all (k, r) ∈ S. This
is a more formally precise statement of the assumption made in theorem 2
that knowing the characteristics of a scientist sometimes makes a difference
to the editor’s decision. Theorem 2 follows as a corollary of theorem 7.

Proof of theorem 2. Conditional on whether or not the editor knows the char-
acteristics of the scientist who wrote the paper, knowing which research pro-
gram the paper belongs to is completely irrelevant: both the quality distri-
bution and the decision procedure used are identical for research programs
H and L. It follows that both the probability of acceptance and the average
quality of published papers are the same, i.e.,

Pr(D(K,R) = A | H) = Pr(D(K,R) = A | L),

Pr(D(R) = A | H) = Pr(D(R) = A | L),

E[q | D(K,R) = A,H] = E[q | D(K,R) = A,L],

E[q | D(R) = A,H] = E[q | D(R) = A,L].

From theorem 7 we get that either the first of the above four lines is greater
than the second, or the third line is greater than the fourth. Let pKH denote
the proportion of scientists in research program H known to the editor and
let pKL denote the proportion of scientists in research program L known to
the editor. Then

Pr(A | H) = pKH Pr(D(K,R) = A | H) + (1− pKH) Pr(D(R) = A | H),

E[q | A,H] = pKHE[q | D(K,R) = A,H] + (1− pKH)E[q | D(R) = A,H],

and similarly for Pr(A | L) and E[q | A,L]. The result follows from the
assumption that pKH > pKL.

28



B Proof of the consequences of latent differ-
ences

For our purposes, the following characterization of log-concave densities is
key. See Saumard and Wellner (2014, p. 97) for a proof.

Theorem 8. Density function f is log-concave if and only if the family of
densities fG defined by fG(q) := f(q − µG) has monotone likelihood ratios,
i.e.,

fH(q)
fL(q) = f(q − µH)

f(q − µL) ≥
f(q′ − µH)
f(q′ − µL) = fH(q′)

fL(q′)

whenever q > q′, µH > µL, fL(q) > 0, and fL(q′) > 0.

The above theorem is used in the proof of our main result.

Proof of theorem 3. Let fH = F ′H and fL = F ′L be the density functions for
the latent in the two groups. We first consider the distribution of quality
conditional upon acceptance. Note that

Pr(q > t | A,H) = Pr(q > t, A | H)
Pr(A | H) =

∫∞
t a(q)fH(q) dq∫∞
−∞ a(q)fH(q) dq ,

Pr(q > t | A,L) =
∫∞
t a(q)fL(q) dq∫∞
−∞ a(q)fL(q) dq .

Consider the following special cases:

• If c + µL ≤ t < c + µH we are done immediately because Pr(q > t |
A,H) > 0 = Pr(q > t | A,L).

• If b + µL < t ≤ b + µH we are done immediately because Pr(q > t |
A,H) = 1 > Pr(q > t | A,L).

• If c+ µL ≤ b+ µH we are done immediately because for any value of t
either Pr(q > t | A,H) = 1 or Pr(q > t | A,L) = 0.
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So for the remainder of the proof we need only consider the case where
b+ µH < t < c+ µL. By theorem 8 fH/fL is a non-decreasing function of q
whenever it exists. This function exists for all q such that fL(q) > 0, so in
particular for q ∈ (t, c+ µL). Thus

Pr(q > t | A,H) =
∫ c+µL
t a(q)fH(q) dq +

∫ c+µH
c+µL a(q)fH(q) dq∫ c+µL

b+µL a(q)fH(q) dq +
∫ c+µH
c+µL a(q)fH(q) dq

=
∫ c+µL
t a(q)fH(q)

fL(q) fL(q) dq +
∫ c+µH
c+µL a(q)fH(q) dq∫ c+µL

b+µL a(q)fH(q)
fL(q) fL(q) dq +

∫ c+µH
c+µL a(q)fH(q) dq

.

Since b + µH < t, the numerator of this fraction is strictly smaller than the
denominator, i.e., Pr(q > t | A,H) < 1. It follows that

Pr(q > t | A,H) ≥
∫ c+µL
t a(q)fH(q)

fL(q) fL(q) dq∫ c+µL
b+µL a(q)fH(q)

fL(q) fL(q) dq
,

with strict inequality if c <∞. Hence it suffices to show that

∫ c+µL
t a(q)fH(q)

fL(q) fL(q) dq∫ c+µL
t a(q)fL(q) dq

≥
∫ c+µL
b+µL a(q)fH(q)

fL(q) fL(q) dq∫ c+µL
b+µL a(q)fL(q) dq

,

with strict inequality if c = ∞. Let X be a random variable whose density
function is given by

fX(x) = a(x)fL(x)∫ c+µL
b+µL a(u)fL(u) du

for all x. Then the above inequality is equivalent to

E
[
fH(X)
fL(X) | X > t

]
≥ E

[
fH(X)
fL(X)

]
.

This inequality holds because fH/fL is non-decreasing by theorem 8. It
remains to show that this inequality holds strictly if c =∞. Equivalently, it
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remains to show that, if c =∞,

E
[
fH(X)
fL(X) | X > t

]
> E

[
fH(X)
fL(X) | X ≤ t

]
.

Because fH/fL is non-decreasing, fH(t)/fL(t) is a lower bound for the left-
hand side of this inequality, and an upper bound for the right-hand side.
Since t is assumed to be in the support of both fH and fL, fH(t)/fL(t) > 0.

If b > −∞, then for b + µL < x < b + µH we have fH(x) = 0. Hence,
conditional on X < t, fH(X)/fL(X) = 0 with positive probability, and
thus the expectation on the right-hand side must be strictly smaller than
fH(t)/fL(t).

If b = −∞, then the inequality is strict unless fH(x)/fL(x) = fH(t)/fL(t)
for all x ∈ R. But that happens only if fH = fL, i.e., if FH = FL. But we
know that FH 6= FL because these distributions are obtained from F by
adding different constants µH 6= µL.

This concludes the proof for the distribution of quality given acceptance.
Now consider the probability of acceptance given q > t.

Pr(A | q > t,H) = Pr(q > t, A | H)
Pr(q > t | H) =

∫∞
t a(q)fH(q) dq∫∞
t fH(q) dq

= E[a(q) | q > t,H],

Pr(A | q > t, L) =
∫∞
t a(q)fL(q) dq∫∞
t fL(q) dq .

Note that if c + µL ≤ t < c + µH then Pr(q > t | L) = 0. This would mean
that Pr(A | q > t, L) is not defined, so we set this case aside and suppose
that t < c+ µL.

We may write E[a(q) | q > t,H] as a weighted average of E[a(q) | q >
c+ µL, H] and E[a(q) | t < q ≤ c+ µL, H]. Since a is an increasing function,

E[a(q) | q > c+ µL, H] > a(c+ µL) > E[a(q) | t < q ≤ c+ µL, H].
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Hence

Pr(A | q > t,H) ≥ E[a(q) | t < q ≤ c+ µL, H]

=
∫ c+µL
t a(q)fH(q) dq∫ c+µL
t fH(q) dq

=
∫ c+µL
t a(q)fH(q)

fL(q) fL(q) dq∫ c+µL
t

fH(q)
fL(q) fL(q) dq

,

with strict inequality if c <∞. Then it suffices to show that

E
[
fH(Y )
fL(Y )

]
=
∫ c+µL
t

fH(q)
fL(q) a(q)fL(q) dq∫ c+µL

t a(q)fL(q) dq
≥
∫ c+µL
t

fH(q)
fL(q) fL(q) dq∫ c+µL

t fL(q) dq
= E

[
fH(Z)
fL(Z)

]
,

where Y and Z’s density functions are given respectively by

fY (x) = a(x)fL(x)∫ c+µL
t a(u)fL(u) du

and fZ(x) = fL(x)∫ c+µL
t fL(u) du

if x > t (fY (x) = fZ(x) = 0 otherwise). Note that whenever x > t,

fY (x)
fZ(x) ∝ a(x),

which is increasing in x by assumption. So Y has relatively higher density
for high values. Since, moreover, fH/fL is non-decreasing, it follows that
E[fH(Y )/fL(Y )] ≥ E[fH(Z)/fL(Z)].

The inequality is an equality only if fH(q)/fL(q) = fH(t)/fL(t) for all
q > t. This happens if and only if f(q) ∝ exp{−q}.

Proof of corollary 4. By theorem 3, we have

Pr(q > t | A,H) > Pr(q > t | A,L)

for all t ∈ (b+µL, c+µH). For any t outside this interval, the above inequality
is an equality (both probabilities are one if t ≤ b + µL and zero otherwise).
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Thus the distribution q | A,H first-order stochastically dominates the distri-
bution of q | A,L. It follows that E[q | A,H] > E[q | A,L].

We could use the other inequality from theorem 3 to establish the in-
equality in acceptance rates, but then we would need to worry about the
special case where the right tail of f is exponential. Instead we provide a
simple direct proof of the inequality in acceptance rates, which also shows
that the assumption that f is log-concave is superfluous.

Pr(A | H) =
∫ c+µH

b+µH
a(q)f(q − µH) dq

=
∫ c+µL

b+µL
a(u+ µH − µL)f(u− µL) du

>
∫ c+µL

b+µL
a(u)f(u− µL) du = Pr(A | L).

Proof of theorem 5. By the chain rule, FH and FL are differentiable and their
densities are given by

fH(q) = 1
σH

f
(
q − µH
σH

)
and fL(q) = 1

σL
f
(
q − µL
σL

)

for all q.
Consider the probability that a paper from research program H is ac-

cepted and its quality q exceeds t. Using the substitution q = t+ σH
σL

(u− t)
we find:

Pr(q > t, A | H) =
∫ σHc+µH

t
a(q) 1

σH
f
(
q − µH
σH

)
dq

=
∫ σLc+t+

σL
σH

(µH−t)

t
a
(
t+ σH

σL
(u− t)

) 1
σL
f
( 1
σL

(
u− t− σL

σH
(µH − t)

))
du

=
∫ σLc+µ′

t
a
(
t+ σH

σL
(u− t)

)
g(u− µ′) du,

where g is the function given by g(x) = f(x/σL)/σL and µ′ = t+ σL
σH

(µH− t).
Since u > t and σH > σL we have t + σH

σL
(u − t) > u. Using the fact that a
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is an increasing function:

Pr(q > t, A | H) >
∫ σLc+µ′

t
a(u)g(u− µ′) du.

Analogously, we find that

Pr(q ≤ t, A | H) <
∫ t

σLb+µ′
a(u)g(u− µ′) du.

Applying these two inequalities yields

Pr(q > t | A,H) = Pr(q > t, A | H)
Pr(q > t, A | H) + Pr(q ≤ t, A | H)

>

∫ σLc+µ′

t a(u)g(u− µ′) du∫ σLc+µ′

σLb+µ′ a(u)g(u− µ′) du
.

Note that the function g is itself a density function: in particular, if f is the
density function of some random variable X, then g is the density function
of the random variable σLX. Since f is log-concave, and log-concavity is
preserved by affine transformations (Saumard and Wellner 2014, p. 57), g is
also log-concave.

But then we can apply theorem 3! In particular, the condition (µH −
t)/σH ≥ (µL − t)/σL is equivalent to µ′ ≥ µL. Hence by theorem 3:

Pr(q > t | A,H) >
∫ σLc+µ′

t a(u)g(u− µ′) du∫ σLc+µ′

σLb+µ′ a(u)g(u− µ′) du

≥
∫ σLc+µL
t a(u)g(u− µL) du∫ σLc+µL
σLb+µL a(u)g(u− µL) du

=
∫ σLc+µL
t a(u) 1

σL
f
(
u−µL
σL

)
du∫ σLc+µL

σLb+µL a(u) 1
σL
f
(
u−µL
σL

)
du

= Pr(q > t | A,L).

This proves the first inequality. The second inequality is quite similar. Con-
sider the probability that the quality of a paper from research program H
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exceeds t. Using again the substitution q = t+ σH
σL

(u− t) we find:

Pr(q > t | H) =
∫ σHc+µH

t

1
σH

f
(
q − µH
σH

)
dq =

∫ σLc+µ′

t
g(u− µ′) du.

Combining this with the result for Pr(q > t, A | H) from the first half of the
proof, we see that

Pr(A | q > t,H) = Pr(q > t, A | H)
Pr(q > t | H) >

∫ σLc+µ′

t a(u)g(u− µ′) du∫ σLc+µ′

t g(u− µ′) du
.

Since g is log-concave and µ′ ≥ µL, we can apply theorem 3 to get

Pr(A | q > t,H) >
∫ σLc+µ′

t a(u)g(u− µ′) du∫ σLc+µ′

t g(u− µ′) du

≥
∫ σLc+µL
t a(u)g(u− µL) du∫ σLc+µL
t g(u− µL) du

=
∫ σLc+µL
t a(u) 1

σL
f
(
u−µL
σL

)
du∫ σLc+µL

t
1
σL
f
(
u−µL
σL

)
du

= Pr(A | q > t, L).
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