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Abstract

Recent empirical work has shown that many scientific results may
not be reproducible. By itself, this does not entail that there is a
problem (or a “reproducibility crisis”). However, I argue that there
is a problem: the reward structure of science incentivizes scientists to
focus on speed and impact at the expense of the reproducibility of their
work. I illustrate this using a well-known failure of reproducibility:
Fleischmann and Pons’ work on cold fusion. I then use a rational
choice model to identify a set of sufficient conditions for this problem
to arise, and I argue that these conditions plausibly apply to a wide
range of research situations. In the conclusion I consider possible
solutions and implications for how Fleischmann and Pons’ work should
be evaluated.
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1 Introduction

The reproducibility of scientific research is a cornerstone of the scientific
method. If science is to discover general laws or principles, it should not
matter who tests them, or when, or where. Thus it is a necessary condition
for the acceptability of a particular scientific result that, if some (hypothetical
or actual) scientist competently performs the same experiment, it produces
the same result.1

Reproducibility has come under increased scrutiny, especially in the fields
of medicine and psychology. There has long been “a general impression that
many results that are published are hard to reproduce” (Prinz et al. 2011),
which has recently begun to be empirically tested. Two studies by pharma-
ceutical companies reported that they could reproduce less than a quarter of
results in cancer biology (Prinz et al. 2011, Begley and Ellis 2012). A more
systematic study is currently underway (Nosek and Errington 2017). A large
systematic study of results published in prominent psychology journals found
that less than half could be reproduced (Open Science Collaboration 2015),
while in a similar study of social science experiments slightly more than half
could be reproduced (Camerer et al. 2018).

This has led to talk of reproducibility problems (or a “crisis”): the above
results are taken to show that a smaller number of scientific results is re-
producible than would be “expected” if science was being done “properly”.
However, empirically measured reproducibility rates cannot prove this by
themselves as it is not obvious what reproducibility rates should be expected.
The following toy model illustrates this (based on Ioannidis 2005).

Consider a scientific community engaging in various projects with the aim
to make major scientific discoveries. Suppose that only one in every twenty-
one projects leads to a genuine discovery, but there is a false discovery rate
α = 0.05. Then, on average, two out of twenty-one projects will claim a

1Determining whether a particular result should count as “the same” can be a compli-
cated affair. The field of statistics is largely devoted to this task.
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discovery, but only half of these will be genuine.
In such a world, finding that approximately half of all scientific discov-

eries can be reproduced would in fact be expected if science was being done
properly. More generally, the unknown number of genuine scientific results
waiting to be discovered (relative to the total number of scientific projects)
influences the reproducibility rates that can be expected. So the empirical
reproducibility rates cited above do not suffice to show that there is a crisis.

The aim of this paper is to show that there is in fact a problem, and to
diagnose one source of the problem. The diagnosis is that due to the reward
structure of science scientists have an incentive to produce research that is
less likely to be reproducible than we should want. This diagnosis is more
general than those that identify particular statistical practices or journal
practices as the source of the problem, implying that the problem is harder
to solve than some have thought.

The reward structure of science is centered around credit. Credit is ac-
quired by receiving recognition for one’s work, e.g., by having it published
in a scientific journal, by having it cited, or by receiving a prestigious award
for it. Because their careers may depend on it, scientists are very concerned
about credit. This point has long been recognized by philosophers of science
like Hull (1988, chapter 8), Kitcher (1993, chapter 8), Strevens (2003), and
Zollman (2018) and sociologists such as Merton (1957, 1969) and Latour and
Woolgar (1986, chapter 5).

This raises the question what behaviors scientists are likely to engage in
to get credit. Philosophers and economists have used rational choice models
to answer this question. Kitcher (1993, chapter 8) and Strevens (2003) argue
that credit can incentivize scientists to distribute themselves over research
programs in a way that is closer to optimal than if they were individually
epistemically rational. Dasgupta and David (1994) and Zollman (2018) argue
that credit incentives speed up the progress of science. Boyer-Kassem and
Imbert (2015) argue that credit incentives encourage collaboration between
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scientists. And Boyer (2014), Strevens (2017), and Heesen (2017) argue that
credit incentives can motivate scientists to share their work widely.

This literature largely focuses on the positive effects of credit incentives.2

In contrast, it has been suggested that the incentive structure of science may
be (at least partially) responsible for reproducibility problems—a negative
effect. I distinguish four such claims.

Claim (Rushing into print). Scientists are incentivized to produce more re-
sults and/or more important results, at the expense of spending more time
on the reproducibility of any given result.

Claim (Publication bias). Scientists are incentivized to favor positive results
at the expense of reproducibility.

Claim (Novelty bias). Scientists are incentivized to favor novel results at the
expense of reproducibility.

Claim (Checking bias). Scientists are disincentivized to attempt to reproduce
each other’s work, reducing the incentive to make sure their own work is
reproducible.

Publication bias, novelty bias, and checking bias each pick out relatively
specific features of the reward structure of science.3 Publication bias origi-
nates from journals’ preference for positive results (Easterbrook et al. 1991,
Egger and Smith 1998).4 A “positive” result usually means that a statistical

2Largely, but not exclusively. For example, it has been argued that credit incentives
contribute to herding behavior (Strevens 2013) and a productivity gap between male and
female scientists (Bright 2017b).

3I do not mean to take a strong stand here on whether these phenomena are appropri-
ately called biases. The name “publication bias” is well established in the literature and I
am simply naming novelty bias and checking bias by analogy to this existing terminology.

4I focus on journals here because journal publications are an important way to be
rewarded for scientific work. This includes both a preference by editors and reviewers for
positive results and a preference by scientists to only submit positive results in anticipation
of such a preference (note that the latter can happen even if journals do not actually have
such a preference).

4



hypothesis that a certain experimental condition has “no effect” (a null hy-
pothesis) is rejected. As a result, evidence favoring a null hypothesis is not
published, biasing the scientific literature (the so-called “file drawer problem”
Rosenthal 1979).

Novelty bias and checking bias originate from journals’ preference for
novel results. In particular, journals are generally not interested in publish-
ing direct replications, i.e., studies that follow (as much as possible) exactly
the same experimental design as a previously published study (Neuliep and
Crandall 1990). This incentivizes scientists to skew (the presentation of) their
results to focus on novel findings (novelty bias). It also means scientists do
not expect that anyone will attempt to reproduce their work, weakening their
incentive to make sure their work is reproducible (checking bias).

Publication bias, novelty bias, and checking bias each suggest their own
solution. Publication bias would be prevented or seriously reduced if null
results were regularly published and rewarded (Ioannidis 2006). Novelty
bias and checking bias would be seriously reduced if replication studies were
regularly published and rewarded (Koole and Lakens 2012).

The incentive to rush into print, on which I focus in this paper, is different
in two ways. First, as I will argue, it does not depend on fairly specific
features of the reward structure of science, but rather on the general facts
that scientific work is rewarded and that these rewards are determined at
least partially before it is known whether the work is reproducible. Second
(and as a consequence of the first), it is much less obvious how the incentive
to rush can be reduced or eliminated.

Rushing into print describes the incentive that scientists have to focus
on the speed with which they can produce results and/or the impact of
those results, and the corresponding lack of focus on the reproducibility of
these results. This is usually described with the phrase “pressure to publish”
(Fanelli 2010, Prinz et al. 2011), although I argue the phenomenon is not
essentially tied to journal publications.
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I illustrate rushing into print in section 2 with a case study in which a
concern for credit led to the publication of research that other scientists were
unable to reproduce: Fleischmann and Pons’ work on cold nuclear fusion.

I then provide a rational choice model of scientists’ decision how much
time to spend on a particular study before trying to publish it5 and I com-
pare the credit-maximizing choice to the choice that is optimal from a social
perspective. I show that three ingredients are sufficient to create a system-
atic incentive to rush into print (section 3). First, the fact that speed and
reproducibility trade off against each other. Second, the fact that scientists
get rewarded for publications. And third, the fact that the system of peer
review fails to predict perfectly which work will be successfully reproduced.

The point of the rational choice model is to show that scientists have
an incentive to produce work that is less likely to be reproducible than is
socially desirable. As I argued above, this is not something that can be
shown by empirical studies of reproducibility rates. I also show that the
particular journal preferences responsible for publication bias, novelty bias,
and checking bias are not necessary for reproducibility problems to arise.
They may, however, exacerbate such problems.

In section 4 I expand the model by allowing the scientist to also choose
a desired level of impact. High-impact work has greater scientific value and
yields more credit, but this trades off against speed and/or reproducibility.
I show the robustness of my earlier results in this expanded model, and I
consider how it gives rise to different types of scientists: “impact-seekers”
and “safety-seekers”.

In the conclusion (section 5) I summarize my results. I also discuss possi-
ble ways to disincentivize rushing into print. And finally, I discuss the extent

5The model, as well as this paper’s title, reflects a tension in scientists’ motivations
with regard to this decision. This tension was, to my knowledge, first noted by Merton
(1969, p. 209) and expressed dramatically by Fuller (2002, p. 201): “[T]he scientist is
supposed to both expedite the flow of knowledge and not rush into print. But how can he
"expedite" without also "rushing"?”
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to which my results support an interpretation of Fleischmann and Pons’ cold
fusion research as a case of rushing into print.

My focus in this paper is exclusively on the incentives that scientists
have to do their work in a way that is less likely to be reproducible. This
incentive-based approach to reproducibility problems may be contrasted with
amethodological approach. A methodological approach focuses on identifying
practices that scientists engage in that may lead to irreproducible research.

For example, various choices have to be made in conducting a research
study: Should outliers be excluded? What statistical test should be used?
And so on. These choices have been called “researcher degrees of freedom”
(Simmons et al. 2011). If scientists run their analysis multiple times (varying
how these choices are made) and report only cherry-picked6 results, this
creates a biased publication record (Ioannidis 2005, Simmons et al. 2011).

Focusing on methodology invites different suggestions for improving re-
producibility than focusing on incentives, e.g., pre-registration of studies and
more complete reporting of results. However, such suggestions will not elim-
inate researcher degrees of freedom entirely. It is both impossible and un-
desirable to reduce the scientific method to a fixed mechanical protocol, as
Feyerabend (1975) famously argued.

This suggests that if a scientist has an incentive to produce biased results,
it will always be possible for her to do so without straying from the method-
ological norms of her field. For this reason I think methodological suggestions
for improving reproducibility are unlikely to be as effective as their propo-
nents hope unless the incentives leading to irreproducible research are also
addressed.

6The discussion above has suggested what kind of cherry-picking scientists may engage
in. For example, results that reject a null hypothesis would be favored over those that fail
to reject a null, results that have a “novelty” factor would be favored, and so on. This can
be done consciously (for careerist reasons) or unconsciously (“this result fails to support
our hypothesis, so something must have gone wrong”).
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2 Cold Fusion

In this section I use a case study to argue that the pressure to publish can lead
to the publication of research that cannot be reproduced. The next section
aims to show that this is a structural rather than an incidental problem.

On March 23, 1989, two established and respected chemists named Martin
Fleischmann and Stanley Pons gave a remarkable press conference at the
University of Utah. They claimed that by loading a palladium rod with
deuterium through electrolysis, they had turned the rod into a source of
energy, producing up to four times as much heat as they put in.

They hypothesized that the deuterium atoms might be packed together so
closely within the palladium as to force pairs of them together in an energy-
producing process known as nuclear fusion. Conventional wisdom held that
a sustained, controlled fusion reaction—the kind needed for a viable source of
energy—requires temperatures over a hundred million degrees (among other
things). Now two chemists claimed to be able to achieve the same thing at
room temperature. Hence the phenomenon came to be known as cold fusion.

A media hype ensued, as cold fusion held the promise of a clean and nearly
boundless source of energy. Given these implications, and Fleischmann and
Pons’ impeccable credentials as experimentalists, scientists around the world
dropped what they were doing to attempt to reproduce the experiment.

Within the first few weeks after the press conference, a number of an-
nouncements were made (usually also via press conference) by researchers
seeing similar phenomena. But as time passed their claims came under
heavy criticism. The excess heat measurements were attributed to mistakes
in accounting for the potential recombination of gases released during the
experiment. The neutron measurements (Fleischmann and Pons’ other im-
portant piece of evidence) could not be replicated with more sophisticated
equipment. After the meeting of the American Physical Society (APS) in
May 1989, the tide shifted from a mixture of excitement and skepticism to a
consensus that Fleischmann and Pons had been mistaken; the phenomenon
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was deemed irreproducible.
The current scientific consensus, then, is that it is not possible to achieve

cold fusion at meaningful rates. Fleischmann and Pons’ claim to the contrary
on March 23, 1989, has been heavily criticized by scientists. In their books
on the case, Close and Huizenga judge that they “went public too soon
with immature results” (Close 1991, p. 328) and that their “gamble to go
public. . . is the scientific fiasco of the century” (Huizenga 1993, p. 214). What
led Fleischmann and Pons to make this fateful decision to “go public”?

At the nearby Brigham Young University, physics professor Steven Jones
and his team had been working on a very similar project. The main differ-
ences were that Jones was primarily interested in explaining the heat at the
center of the Earth (rather than creating a new source of energy) and that
he focused on measuring neutron production rather than excess heat.

The two teams first became aware of each other in September of 1988
and interacted a number of times. In February of 1989, Jones announced
that he was going to present his data at the APS meeting in May and was
planning to submit an article to a journal soon. Fleischmann and Pons were
not ready for this yet. They were confident in their evidence that some
experiments produced excess heat, but much remained to be investigated.
They indicated that they wanted to do another eighteen months of research
before going public (Pool 1989, Huizenga 1993, p. 18).

The two groups agreed to a compromise: they would submit their results
to Nature simultaneously on March 24. Jones has claimed that there was
a further agreement not to publicize the work until that time, but Pons
has denied this (Pool 1989, Close 1991, p. 94). Either way, Fleischmann
and Pons did publicize their work: they sent a manuscript to the Journal of
Electroanalytical Chemistry on March 11, and they held the above-mentioned
press conference on March 23.

Their goal in going public was to establish priority—and thus claim
credit—for the cold fusion research, especially relative to Jones (Huizenga

9



1993, p. 19). This may seem unnecessary in hindsight, as Jones’ experimen-
tal results were quite different (measuring neutrons rather than heat) and of
such a different order of magnitude as to hold no promise for a viable source
of energy. Jones’ publication would thus not appear to be a threat to the
originality or importance of Fleischmann and Pons’ work. But this was not
so clear at the time, as Fleischmann explained later.

We could not tell whether Jones had heat data or was planning to
look for this. How could one tell? He was certainly thinking about
fusion as a source of heat in the Earth. If he was going to say that
in the paper, which was surely his intention to do, it would almost
certainly destroy any possibility of patent protection (quoted in
Close 1991, pp. 99–100).

Thus, both the decision to agree to publish simultaneously with Jones
and the later decisions to submit to a different journal before Jones and hold
a press conference were made out of a concern for credit. Fleischmann and
Pons were aware that their results were still preliminary (they wanted to do
another eighteen months of research before publishing anything) but went
public anyway to establish priority.

So a concern for credit led to the publication of research that other scien-
tists were unable to reproduce. The model presented next aims to establish
that this is a structural problem: scientists have a credit incentive to rush
into print. In doing so, the model also lends some support to the claim that
Fleischmann and Pons did nothing irrational by going public when they did,
despite Close and Huizenga’s criticism of this decision (as I argue in more
detail in section 5).
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3 A Tradeoff Between Speed and Reproduci-
bility

Here I develop a rational choice model to evaluate decisions to go public with
results of scientific research. By giving a model, I aim to show the existence of
a (structural) credit incentive to rush into print. This section considers only
the tradeoff between speed and reproducibility, while section 4 also allows
the potential importance or impact of the result to vary.

Consider a scientist—or a team of scientists, such as Fleischmann and
Pons—working on a research study. When should she attempt to publicize
her work, say in the form of a journal article? As the case of Fleischmann and
Pons illustrates, getting credit for the work is an important consideration.

As I mentioned in the introduction, scientists’ concern for credit is well-
documented and understandable, given its importance to scientific careers
(Merton 1957, 1969). Because I am interested in what the scientist has a
credit incentive to do, I assume that credit is her only concern. This is a
methodological assumption to isolate the credit incentive.

This is represented in the model by assuming that the scientist aims to
maximize the amount of credit she accrues per unit time. As a consequence,
the scientist prefers to get her work published faster rather than slower (all
else being equal): if the amount of credit per publication is some fixed num-
ber c (this assumption is relaxed in section 4), publishing twice as fast will
double credit per unit time. So the concern for credit entails a concern for
speed (to be defined more formally below).

At the same time, publishing faster reduces reproducibility. By repro-
ducibility I mean, loosely speaking, the likelihood that the result of the re-
search study (e.g., “cold fusion is a viable source of energy”) is reproduced
if someone attempts to do so. But this loose definition has two problems.
First, what if no one attempts to reproduce the result? And second, what if
multiple attempts to reproduce it are made, with some succeeding and some
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failing?
Since credit is conferred socially, what really matters is the standing of a

result in the eyes of other scientists. So I call a scientific result accurate if it
holds up in the relevant scientific community in the mid-term, i.e., either no
one attempts to reproduce it, or any subsequent studies are taken on balance
to have reproduced the result. Conversely, I call a result erroneous if it does
not hold up in the community in the mid-term, i.e., the community deems the
result irreproducible. The reproducibility of the result is then the scientist’s
subjective probability, given the evidence gathered at the time of publication,
that the result is accurate.7 This definition should be interpreted broadly,
applying to both experimental and non-experimental contributions (e.g., a
mathematical theorem is considered reproducible by my definition if no one
discovers a mistake in it).

In the model, the scientist chooses the desired reproducibility p ∈ [0, 1]
ex ante. I assume this to be fixed for the duration of the study. That is,
the scientist works on her research project until she obtains a result that she
thinks has at least probability p of holding up in the community, at which
time she publishes.

Reproducibility takes time (think of the eighteen more months of research
Fleischmann and Pons wanted to do). This is reflected in the model by the
speed function λ. The value λ(p) reflects the scientist’s expected speed if the
desired reproducibility is p (see figure 3.1). More specifically, γ(p) = 1/λ(p)
is the expected time until completion of the research project (so λ(p) is the
number of projects “like this one” that the scientist would expect to complete
per unit time). This reflects the scientist’s ex ante expectation about the
duration of the study.

7Note that it follows from these definitions that reproducibility goes up if fewer attempts
to reproduce scientific results are made, because results that are never tested count as
accurate. For this reason, the present model is not suitable to study strategic decisions
scientists might make regarding whether to reproduce others’ work. In particular, I do not
aim to capture the phenomenon of novelty bias, discussed in the introduction. See Bruner
(2013) for a model in which the incentives to reproduce others’ work are considered.
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Figure 3.1: p and λ trade off against each other. In this example, λ(p) =
1− p2, satisfying assumptions 3.1–3.3.

Reducing reproducibility (lowering p) allows the scientist to publish faster.
“Rushing” the work in this way could mean that the scientist ends the study
sooner (gathering less evidence), or it could mean that the scientist tries to
gather the same amount of evidence more quickly (potentially making mis-
takes). The present model is not intended to investigate incentives related
to deliberate fraud, such as when data is misreported or fabricated, or when
publication time is reduced through (self-)plagiarism. For formal work on
credit-based incentives for fraud, see Bruner (2013) and Bright (2017a).

I make a number of assumptions on the way speed and reproducibility
trade off against each other, as reflected in the speed function λ.

Assumption 3.1 (The speed function is decreasing). For all p, q ∈ [0, 1], if
p < q, then λ(q) < λ(p).

Assuming that λ is decreasing means that the scientist expects to take
more time to do research that is less likely to be erroneous. For example,
this may involve collecting more data or being more thorough, either of which
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takes time.
One might object that in some situations (e.g., the scientist discovers a

mistake in her previous work) the scientist’s confidence in the reproducibility
of her work might go down instead of up over time, seemingly in violation of
this assumption. But this misinterprets the function λ. This function gives,
for each desired reproducibility p, the scientist’s ex ante expectation of how
long it would take for her confidence in her result to reach at least level p. So
if the scientist’s confidence was at p or above before discovering the mistake,
she would already have published, but if her confidence was below p she will
have to work until it finally reaches p before publishing.

Thus the model does not capture the dynamics of a scientist’s expecta-
tions about the duration of the project as they change over time. However,
I suspect that similar conclusions might be reached in a suitable dynamic
model by evaluating the scientist’s expectations at any given time.

Assumption 3.2 (The speed function is concave). For every p, q, t ∈ [0, 1],

tλ(p) + (1− t)λ(q) ≤ λ(tp+ (1− t)q).

This assumption may be described as a kind of decreasing marginal re-
turns. As the reproducibility p is lowered, the expected speed λ is increased
by assumption 3.1, but it increases ever slower as p approaches zero: writing
the paper itself takes time, which becomes relatively more significant if the
scientist spends relatively little time on the research content. Conversely, if
the scientist aims for higher reproducibility (increasing p), the speed λ drops
off ever faster. More time is required, e.g., to increase p from 0.8 to 0.9 than
from 0.7 to 0.8. Peirce (1967 [1879]) makes the same observation.

To put the point in more statistical terms: the size of the standard error of
a parameter estimate gives an indication of the reproducibility of the result.
As n (the amount of data collected) increases, this width decreases at a rate
proportional to

√
n. So there are decreasing marginal returns (in terms of
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the certainty with which the result is established) from investing the time to
collect more data, such that, e.g., doubling the dataset does not halve the
margin of error.

Assumption 3.3 (No perfect work). limp→1 λ(p) = 0.

This assumption asserts that the scientist cannot deliver perfect work (in
the sense of zero probability of errors), no matter how slowly she works. This
reflects the fact that there is no certainty in science: for any fact or discovery,
it is always possible that it will later be overturned, as Lakatos (1978) and
Quine (1951, section VI) have argued.

Note that these assumptions imply the following restrictions on the ex-
pected completion time γ(p) = 1/λ(p): the expected completion time is
increasing, convex, and diverges to infinity as p approaches one. These re-
strictions can be given analogous justifications to the above.

The above assumptions also imply that the expected speed is a continuous
function of reproducibility, which may be unrealistic when (say) experimental
results arrive in batches, leading to discontinuous jumps in reproducibility.
This is only a problem for my model if such discontinuities are sufficiently
common and predictable that the scientist can anticipate them (since the
speed function reflects her ex ante expectations). This requires not only that
the scientist knows in advance that experimental results arrive in batches,
but also that she can predict fairly accurately what level of reproducibility
she will reach with the first batch.

Such cases may arise; my claim here is not to capture all scientists every-
where, but a large range of cases. The types of cases excluded from the model
are those in which evidence is gathered in discrete amounts, with relatively
predictable effects on the scientist’s confidence in her results, and where the
scientist is in a position to decide whether or not to gather more evidence
after seeing some initial results.

How does all this affect the scientist’s credit? For reasons I outlined
above, I assume the scientist gets credit only for published work. Whether
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or not the scientist’s work is published is determined through peer review.
The purpose of peer review is to determine the accuracy of the scientist’s
work, i.e., whether her results are likely to stand up to the scrutiny of the
scientific community.

Suppose it does this “pre-screening” perfectly: all and only those papers
that are in fact accurate are accepted (I will drop this assumption momen-
tarily). The scientist does not know whether her paper is accurate; she only
knows the reproducibility p, i.e., her own credence that it is accurate. So
from the scientist’s perspective, if she produces a paper with reproducibil-
ity p, there is a probability p that the journal publishes it.

Suppose that the average amount of credit for a published accurate result
is ca. Then the scientist’s expected credit per unit time is a function C of
the chosen reproducibility p and the speed λ (which is itself a function of p)
given by C(p) = capλ(p).

In reality the peer review system cannot perfectly predict the success of
future attempts to reproduce present results. Some accurate results get re-
jected, while some erroneous results get accepted. An example of the latter
is Fleischmann and Pons’ paper in the Journal of Electroanalytical Chem-
istry: it passed peer review but was thoroughly discredited within a year of
publication (thus satisfying my definition of erroneous).

The acceptance of an erroneous result is called a false positive and the
rejection of an accurate result a false negative. Following common usage in
statistics I write α for the probability of a false positive and β for the “power”
(the probability that a false negative is avoided, i.e., that an accurate result
is accepted). The case of “perfect peer review” described above would be one
where β = 1 and α = 0.

Here I assume instead that peer review is imperfect in the sense of a
positive probability of false positives (α > 0). Note that I remain agnostic
on the possibility of false negatives (β may or may not be equal to one)
although it seems reasonable to assume that those occur as well. I do assume
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that accurate results, like erroneous results, have a non-negligible chance of
acceptance (β > 0).

Assumption 3.4 (Imperfect peer review). The peer review acceptance prob-
abilities are such that α > 0 and β > 0.

I write ce for the average amount of credit for a published erroneous re-
sult. While such results are eventually “discredited” (by my definition of er-
roneous), this does not necessarily equate to zero credit. Research that could
not be reproduced frequently still gets cited as if it was accurate (Tatsioni
et al. 2007), even after a formal retraction (Budd et al. 1998). In other cases
the fact that the proposed hypothesis has fallen out of favor does not prevent
it from being a credit-worthy contribution to science, e.g., Priestley’s work on
phlogiston. This suggests that erroneous publications are worth some credit,
i.e., ce > 0.8

Putting all of this together yields the following. The scientist works on the
research project at expected speed λ(p). The result is accurate with proba-
bility p. In this case it gets published with probability β and this publication
is worth ca units of credit. With probability 1 − p the result is erroneous,
which leads to a publication worth ce units of credit with probability α. Thus
the scientist’s expected credit per unit time, as a function of p, is given by

C(p) = caβpλ(p) + ceα(1− p)λ(p).

To compare the individually optimal (i.e., credit-maximizing) tradeoff be-
tween speed and reproducibility to the socially optimal tradeoff, it is impor-
tant to be explicit about what is meant by the social value of a research
study. Here I have in mind the contribution that it makes to science as a

8On the other hand, some discredited research can actively harm a scientist’s career
(more so than publishing nothing at all would have done), suggesting that ce < 0. These
are usually cases of fraud rather than honest mistakes and so they are not my primary
concern here. However, the point here is not to argue that ce is necessarily positive, but
that erroneous publications can influence a scientist’s credit stock.
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social enterprise, which in turn benefits society. This is reflected in the first
place by the extent to which the work is utilized by other scientists, and in
the second place by the extent to which it or work based on it finds its way
into society, e.g., in the form of a new medicine.

What is the expected social value V of the scientist’s research? I assume
that research can have social value only when it is published. The probabil-
ities of publication α and β, the reproducibility p, and the expected speed
λ(p) are all as above.9 Hence

V (p) = vaβpλ(p) + veα(1− p)λ(p),

where va is the average social value of an accurate result, and ve the average
social value of an erroneous result. The social value function looks very
similar to the credit function, but I argue below that there is reason to
expect ve to differ systematically from ce.

Before stating the first result I require the following relatively modest
assumption on the parameters.

Assumption 3.5 (Positive value). Accurate results have positive credit value
(ca > 0) and social value (va > 0).

The first result follows from the assumptions made so far. It states that
the functions C and V have unique maxima, i.e., there is a particular re-
producibility that a rational credit-maximizing scientist would choose, and
there is a particular reproducibility that maximizes the social value of the
scientist’s contribution.

Theorem 3.1 (Unique maxima). If assumptions 3.1–3.5 are satisfied, then
there exist unique values p∗C < 1 and p∗V < 1 that maximize the functions C

9Hence the social value V of the scientist’s research is more precisely the scientist’s own
subjective estimate of the expected social value of the research (because p is a subjective
probability). This may seem problematic when I use the function V below to argue that
credit incentivizes scientists to make choices that are not socially optimal. I address this
point below.
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and V respectively, that is,

C(p∗C) = max
p∈[0,1]

C(p) and V (p∗V ) = max
p∈[0,1]

V (p).

Proofs for the results in this section are given in appendix A.
Note that even with these fairly minimal assumptions, it follows that p∗V <

1. This means that even from the social perspective perfect reproducibility
is not a goal worth striving for. Or in other words, even if the scientist was
“high-minded” in the sense that she only cared about maximizing the social
value of her scientific work, she should not strive to avoid error at all cost.

That p∗V < 1 is a more or less direct consequence of the “no perfect work”
assumption and hence reflects the insight of Lakatos and Quine that there is
no certainty in science. It means that even in a science functioning perfectly,
a tradeoff between speed and reproducibility must be made, and hence errors
should be expected. This reflects back on the discussion of peer review: it
is designed on the basic premise that there will be errors, and science must
attempt to catch them as early as possible.

Other than the fact that perfect accuracy is not to be expected, how-
ever, theorem 3.1 does not say very much about the credit-maximizing re-
producibility p∗C or the social value-maximizing reproducibility p∗V . The main
result requires further assumptions on the parameter values, which I discuss
next.

Credit is awarded for (accurate) scientific work proportional to its social
value (va = ca). Since, for all I have said so far, credit and social value are
measured on unspecified interval scales, this may be viewed merely as fixing
these scales (without loss of generality). A more substantive argument may
be obtained from the literature on rewards in science. Merton enumerates
the various kinds of rewards that exist in science—from the Nobel Prize to
a journal publication—and concludes that “rewards are to be meted out in
accord with the measure of accomplishment” (Merton 1957, p. 659). Strevens
compares rewards in science to those given out in other areas and concludes
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that in general “society accords prestige and other rewards. . . in proportion
to the social good resulting from [the achievement]” (Strevens 2003, p. 78).

If a more exact measure of the amount of credit awarded to a specific
publication (as opposed to a scientist) is wanted, a good candidate is the
number of times it is cited. But at the same time the number of citations
provides a measure of the extent to which the publication has been utilized
by other scientists, which I argued reflects its social value. So all three of
these lines of reasoning support my assumption that va = ca.

How about the social value of an erroneous result ve? While errors can
sometimes be instructive, I take it that the case in which they are distracting
or actively misleading is more common. Take for instance a study which
erroneously (in hindsight) finds that a particular medicine helps cure some
disease. Perhaps the error was in the design of the study, or perhaps it was
simply bad luck, i.e., the data were acquired properly but they just happened
to suggest a misleading conclusion. Either way, once the conclusion that the
medicine is effective is published, it takes more time and effort to set the
record straight than it would have to establish that the medicine is ineffective
in the absence of the erroneous publication.10 Moreover, before the error is
corrected (and perhaps after as well, see Budd et al. 1998 and Tatsioni et al.
2007) the scientific community and society will proceed as if the medicine
is effective, with potentially negative consequences for future research and
public health.

So it seems to me that erroneous results are, on average, at best socially
neutral, if not socially harmful: ve ≤ 0. And I suggested above that they
may still yield positive credit: ce > 0. However, I need not insist on these
conclusions. The weaker assumption that the social value of erroneous results
is less than the credit given for them (ve < ce) suffices for my argument.

Once again reasoning in terms of citations yields a similar conclusion.
10Recall that I defined an erroneous result as one that is later shown to be irreproducible.

Thus it is impossible by definition for an error to go uncorrected.
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As mentioned above an erroneous result may still receive plenty of citations
(Budd et al. 1998, Tatsioni et al. 2007). But here it does not seem so plau-
sible that this a direct measure of its social value. Some of these citations
may be actively criticizing the result. Others may be utilizing it under the
assumption that it is accurate, possibly causing them to make errors in turn.

At the same time, citations to erroneous results are still worth credit,
regardless of whether they are supportive or critical: they recognize the pub-
lication and its author as worth engaging with. The enormous effort under-
taken by physicists to attempt to replicate Fleischmann and Pons’ results is
testament to Fleischmann and Pons’ authority as competent electrochemists
(Kitcher 1993, section 8.2). In contrast, work by subsequent cold fusion re-
searchers has largely been ignored (Huizenga 1993, p. 208). So a citation to
an erroneous publication is generally a positive marker of credit, but need
not be a positive marker of social value.

Assumption 3.6 summarizes what I have argued are reasonable constraints
on the parameter values that reflect the credit and social value of scientific
work in typical cases (including, in particular, the case that Fleischmann and
Pons found themselves in).

Assumption 3.6 (Credit and social value). Accurate results are awarded
credit proportional to their social value (ca = va), while the social value of
erroneous results is less than the credit given for them (ve < ce).

The main result of this paper can now be stated. It says that the imperfec-
tions in the peer review system and the way credit is awarded systematically
favor lower levels of reproducibility. That is, a scientist who maximizes ex-
pected credit will set her reproducibility target no higher than the optimal
level from the perspective of maximizing social value.

Theorem 3.2 (Rushing into print). Let assumptions 3.1–3.6 be satisfied,
and define p∗C and p∗V as in theorem 3.1. Then p∗C ≤ p∗V .
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I interpret this result as showing that, given imperfect peer review, there
is a credit incentive to produce research at a systematically lower repro-
ducibility than is socially optimal. This result depends crucially on the im-
perfections in the peer review system, and in particular the possibility of false
positives: if α = 0 and β > 0 then assumptions 3.1–3.3 and 3.5 are sufficient
to show that the functions C and V have unique maxima, and that these
maxima are equal. Intuitively, given imperfect peer review it makes sense for
scientists to quickly produce lots of papers and “see what sticks” rather than
spending too much time perfecting any one paper, and any resulting errors
hurt society more than the scientist.

Hence I interpret theorem 3.2 as showing that imperfections in the peer
review system create a systematic bias that leads credit-maximizing scientists
to favor speed over reproducibility relative to the social optimum: the claim
I called rushing into print in the introduction. What does this result mean
for real scientists, who may care about other things than maximizing credit,
and who may be less than fully rational? It means that whenever they
face a research situation that satisfies the assumptions of my model (which
I have argued to apply to typical cases of scientific research, including the
one Fleischmann and Pons found themselves in) they either rush into print
or they could have improved their expected credit if they had rushed into
print. Insofar as credit acts as a selection mechanism in science this means
scientists who rush into print are more likely to succeed than scientists who
do not, and one should expect rushing into print to increase over time (cf.
Smaldino and McElreath 2016). Thus there is a structural misalignment of
incentives, the effect of which is to push scientists in the direction of rushing
into print.

I think this misalignment is worth addressing, but one might object that
there might be countervailing motivations (goals of scientists other than
credit) or systematic irrationalities that make scientists choose socially op-
timal reproducibility levels despite my argument. It would be a surprising
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coincidence if other motivations or irrationalities balanced out the incentive
to rush into print exactly, but I do not have an argument to rule this out. The
objection does illustrate the more general point that in evaluating potential
policy responses we should consider not just their effect on the issue at hand
(here, the credit incentive to rush into print) but also what the potential side
effects might be (here, effects on other motivations or irrationalities) and how
they can be managed. This is one reason why I stop short of recommending
any particular action in section 5.

I now briefly consider two objections to my interpretation of theorem 3.2.
The first one points out that the theorem establishes an inequality between
the credit-maximizing reproducibility and the social value-maximizing repro-
ducibility, but not a strict inequality. So the theorem leaves open the possi-
bility that p∗C = p∗V , the happy case in which individual and social incentives
align exactly.
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Figure 3.2: If λ(p) = 2− p− p2 (the solid red line) and ve is relatively high,
it may be that p∗C = p∗V = 0. In this example, the function C is shown as a
dotted blue line (with caβ = 1 and ceα = 8/9) and the function V is shown
as a dashed green line (with vaβ = 1 and veα = 7/9).
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However, the happy case can only arise in one of two situations. First,
if the value of erroneous results is so high that it is both individually and
socially optimal to have no concern whatsoever for reproducibility (p∗C =
p∗V = 0—not actually a very happy case, see figure 3.2). Second, if the speed
function is not differentiable at the point of optimality (see figure 3.3).
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Figure 3.3: If λ(p) = 1−p/2 for p ≤ 2/3 and λ(p) = 2(1−p) for p > 2/3 then
λ (solid red) is not differentiable at p = 2/3. Then the functions C (dotted
blue, with caβ = 2 and ceα = 4/5) and V (dashed green, with vaβ = 2 and
veα = 0) may both be maximized there: p∗C = p∗V = 2/3.

I take these two cases to be highly exceptional. If they are ruled out, a
strict inequality can be shown to hold.

Assumption 3.7 (Limited social value of errors). The social value of erro-
neous results (weighted by the chance of acceptance) is less than half that of
accurate results: αve < βva/2.

Assumption 3.8 (The speed function is differentiable). The function λ is
differentiable on the interior of its domain, i.e., for all p ∈ (0, 1).
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Theorem 3.3 (Strict inequality). Let assumptions 3.1–3.8 be satisfied, and
define p∗C and p∗V as in theorem 3.1. Then p∗C < p∗V .

The second objection is based on the fact that in the model the repro-
ducibility p is a subjective probability. While this is reasonable from the
perspective of the scientist’s choice of when to go public (this will be based
on her own subjective estimate of the reproducibility of the result), it does
not seem so reasonable from the perspective of assessing the social value of
the scientist’s contribution. When it comes to social value, what matters is
the actual reproducibility of the result, not the scientist’s estimate (cf. foot-
note 9).

I have two responses to this objection. First, I think it is reasonable to
expect the scientist’s estimate of reproducibility to be quite good, so that
the subjective and the objective probability should be roughly equal. An
important part of scientists’ training, after all, involves learning how to assess
evidence as objectively as possible. Some empirical support for this assertion
is provided by a recent systematic study of the reproducibility of social science
experiments: scientists (as a group) were remarkably accurate in predicting
which experiments would be reproduced successfully and which would not
(Camerer et al. 2018).

Second, if there is a discrepancy between the scientist’s estimate of the
reproducibility of the result and its objective reproducibility, the scientist
is going to be overconfident more often than underconfident. This is also a
result of scientists’ training: scientists learn to view the methods they use in
their research as the best ones to address the problems they work on (and/or
they self-select into working with the methods they think are best).

To capture this formally, note that the scientist’s choice of (subjective)
reproducibility determines the objective reproducibility. So I introduce an
objective reproducibility function o, where o(p) is interpreted as the objec-
tive reproducibility that results if the scientist’s choice of (subjective) repro-
ducibility is p. Then the foregoing suggests that either o(p) = p or o(p) < p.
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I also assume that the objective reproducibility function is surjective.
This means that any objective reproducibility level is achievable in the sense
that there exists a subjective reproducibility level corresponding to it.

Assumption 3.9 (Confident scientist). The objective reproducibility func-
tion o : [0, 1] → [0, 1] is surjective, i.e., for all p ∈ [0, 1] there is a q ∈ [0, 1]
such that o(q) = p. Moreover, o(p) ≤ p for all p ∈ [0, 1].

A credit-maximizing scientist chooses reproducibility p∗C , the (subjective)
probability that maximizes the credit function C. Social value is maximized
if the scientist chooses her reproducibility p such that the objective probabil-
ity o(p) maximizes the social value function V . It follows from theorem 3.1
that social value is maximized if p is chosen such that o(p) = p∗V . But then
it follows that p ≥ p∗V . So by theorem 3.2 p ≥ p∗C , i.e., the rushing into print
result extends to the case with objective reproducibility.

Corollary 3.1. Let assumptions 3.1–3.6 and 3.9 be satisfied, and define p∗C
as in theorem 3.1. Let q∗V be any value such that

V (o(q∗V )) = max
p∈[0,1]

V (o(p)).

Then p∗C ≤ q∗V .

Corollary 3.2. Let assumptions 3.1–3.9 be satisfied, define p∗C as in theo-
rem 3.1, and q∗V as in corollary 3.1. Then p∗C < q∗V .

4 A Tradeoff Between Speed, Reproducibil-
ity, and Impact

One feature of Fleischmann and Pons’ work that presumably played a role
in their decision to go public but did not appear in the model so far is the
potential impact of their work. As the media emphasized in the days after
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the press conference, if cold fusion worked it held the promise of an energy
revolution.

Fleischmann and Pons could perhaps be described as “impact-seekers”,
scientists who go in for risky research in relatively unexplored areas that
promises to yield great rewards if successful (Close 1991, p. 71, describes
Fleischmann in this way). In contrast, many scientists are “safety-seekers”,
content to make small contributions that are likely to be correct and accepted
and/or can be made relatively quickly. The distinction is analogous to that
between mavericks and followers (Weisberg and Muldoon 2009) or explorers
and extractors (Thoma 2015) and has a long history in philosophy of science
(e.g., Hull 1988, p. 474). I use different terminology to avoid the implication
that this is a binary distinction rather than a graded one, or that there is
necessarily a psychological explanation for it.

In this section I expand the model to include research studies with differ-
ential potential impact. The scientist now has to make a three-way tradeoff.
She chooses both the reproducibility and the impact, but choosing either or
both of these too highly comes at the expense of speed (compare the old
business saying “You can have it good, fast, or cheap; pick two”).

The first question I aim to investigate here is whether the rushing into
print phenomenon also shows up in this more general model. The second
question is to what extent the different “types” of scientists—impact-seekers
and safety-seekers—show up in the model. More specifically, can credit in-
centives explain the existence of both types?11

In the model of this section the scientist chooses both a desired repro-
ducibility p and a desired impact level c. Since p is interpreted as a prob-
ability, its domain is constrained to the interval [0, 1]. The impact c is not

11This question is raised by Thoma (2015, section 4.4). She points out that, from
the purely epistemic perspective taken by Weisberg and Muldoon (2009), this cannot be
explained: “In their model, it was unclear why anybody would choose to be a [safety-
seeker], given their lack of productivity. In [Thoma’s model], the question is why anybody
would choose to be an [impact-seeker]” (Thoma 2015, p. 470).
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similarly constrained. However, I assume that, at least for a given value of p,
there is a maximum impact that can be achieved µ(p). For any admissible
choice of p and c, λ(p, c) gives the scientist’s speed. The following definitions
formalize this setup.

Definition 4.1. The maximum impact function is a function µ : [0, 1] →
[0,∞). The set of admissible choices is the set D = {(p, c) | p ∈ [0, 1], c ∈
[0, µ(p)]}. The speed function hasD as its domain: it is a function λ : D → R.

I make a number of assumptions on the shape of λ. These assumptions
are very similar to the ones I made before. Although they have to be adapted
to the new context, their justification is as before.

First I assume that the speed function is decreasing in each of its ar-
guments. That is, at a fixed level of reproducibility, increasing the impact
decreases speed, and at a fixed level of impact, increasing reproducibility
decreases speed.

Assumption 4.1 (The speed function is decreasing).

4.1.a. For all p, p′ ∈ [0, 1], if p < p′ and c ≤ min{µ(p), µ(p′)}, then λ(p′, c) <
λ(p, c).

4.1.b. For all p ∈ [0, 1), if c < c′ ≤ µ(p), then λ(p, c′) < λ(p, c).12

Assumption 4.2. The function λ vanishes as p or c approaches the edge of
its domain D.

4.2.a. limp→1 λ(p, 0) = 0.

4.2.b. For all p ∈ [0, 1], limc→µ(p) λ(p, c) = 0.

This assumption has a role similar to assumption 3.3 (the “no perfect
work” assumption). Assumption 4.2.a is in fact identical to that assumption

12This assumption excludes the case where p = 1. This is because subsequent assump-
tions entail that λ(1, c) = 0 for all c, which would contradict this assumption if µ(1) > 0.
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(although for technical reasons I only need to make the assumption for the
case c = 0) and has the same justification. Assumption 4.2.b formalizes
the idea that µ(p) represents the maximum impact that can be achieved
at a given reproducibility p, by requiring that the scientist’s speed becomes
negligible as this value is approached.

Assumption 4.3 (The speed function is concave). For any (p, c), (p′, c′) ∈ D
and t ∈ [0, 1],

4.3.a. (tp+ (1− t)p′, tc+ (1− t)c′) ∈ D;13

4.3.b. tλ(p, c) + (1− t)λ(p′, c′) ≤ λ(tp+ (1− t)p′, tc+ (1− t)c′).

As before, this assumption says that there are decreasing marginal returns
from decreasing reproducibility to gain speed. This more general version says
that there are also decreasing marginal returns from decreasing the impact
level, which is justified for the same reason.

What does the credit function look like in this more general setting?
The main difference is that the credit for an accurate result is no longer an
exogenously fixed parameter ca, but a variable c whose value is chosen by
the scientist. As for the credit for an erroneous result, there is a modeling
choice to be made. Either it is a fixed absolute value, independent of the
impact the result would have had if it was accurate, or it is proportional to
the impact. Here I choose the latter option (although I suspect that similar
results could be proven if the former option was used).

So credit for erroneous results (ce in the previous section) is now given by
rcc, where rc is a proportionality constant. The effect of making credit for
erroneous results proportional is as follows. If rc > 0, erroneous high-impact
results get more credit than erroneous low-impact results (“at least you tried

13It does not follow from the definition of the domain D of λ or the assumptions made
so far that (tp+ (1− t)p′, tc+ (1− t)c′) ∈ D, but this is required for the idea of a concave
function to make sense, hence this assumption. It is equivalent to the assumption that µ
is a concave function.
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something ambitious”). If rc < 0, erroneous high-impact results are penalized
more harshly than erroneous low-impact results (“the bigger they are, the
harder they fall”). This seems right at least for the case of Fleischmann and
Pons: the amount of attention given to proving them wrong, and the effect
on their personal reputations, seems to have been bigger exactly because of
the potential impact their work could have had.

So the scientist’s expected credit, as a function of p and c (and defined
whenever (p, c) ∈ D), is

C(p, c) = βpcλ(p, c) + α(1− p)rccλ(p, c).

Now consider the social value of the scientist’s work. I assume that the
impact level c chosen by the scientist reflects not only the potential reward
but also the potential social value of the work. So the variable c replaces not
only the parameter ca but also the parameter va. This is equivalent to one of
the assumptions made above (ca = va) but for notational convenience I build
this assumption into the definition of the function V rather than stating it
separately.

As I did for the case of credit, I assume that the social value of an erro-
neous result is determined in proportion to the value of an accurate result,
i.e., ve is replaced by rvc, where rv is the proportionality constant for the so-
cial value of erroneous results.14 So the social value of the scientist’s research,
as a function of p and c (for (p, c) ∈ D), is

V (p, c) = βpcλ(p, c) + α(1− p)rvcλ(p, c).

The assumption on the peer review parameters α and β is as before. I restate
it here merely as a reminder.

14If the social value of erroneous results is usually negative, as I suggested in section 3,
this means that the social cost of erroneous high-impact results is higher than the social
cost of erroneous low-impact results. Again the case of Fleischmann and Pons seems to
illustrate this phenomenon, with lots of resources being devoted to proving them wrong.
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Assumption 4.4 (Imperfect peer review). The peer review acceptance prob-
abilities are such that α > 0 and β > 0.

An assumption similar to assumption 3.5 is not needed in this version of
the model, as the parameters ca and va have been replaced by the variable c,
which is restricted to be nonnegative by definition.

The first result says that there are unique choices of reproducibility and
impact level that maximize expected credit and that maximize social value.

Theorem 4.1 (Unique maxima (redux)). If assumptions 4.1–4.4 are satis-
fied, then there exist unique points (p∗C , c∗C) and (p∗V , c∗V ) that maximize the
functions C and V respectively, that is,

C(p∗C , c∗C) = max
(p,c)∈D

C(p, c) and V (p∗V , c∗V ) = max
(p,c)∈D

V (p, c).

Moreover, p∗C < 1 and 0 < c∗C < µ(p∗C); and p∗V < 1 and 0 < c∗V < µ(p∗V ).

Proofs for the results in this section are given in appendix B.
As in section 3, an additional assumption is needed to get the rushing

into print result. Once again I assume that erroneous results yield less social
value on average than accurate results (rv < rc). The additional assumption
that the credit and social value of accurate results are equal is no longer
needed because it is built into the definition of the functions C and V .

Assumption 4.5 (Credit and social value). The social value of erroneous
results is less than the credit given for them: rv < rc.

This yields the result that I referred to as rushing into print in section 3,
namely that the credit-maximizing reproducibility p∗C is no higher than the
social value maximizing reproducibility p∗V .

Theorem 4.2 (Rushing into print (redux)). Let assumptions 4.1–4.5 be sat-
isfied, and define (p∗C , c∗C) and (p∗V , c∗V ) as in theorem 4.1. Then p∗C ≤ p∗V .
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As before, one may ask under what circumstances the inequality p∗C ≤
p∗V can be guaranteed to be strict. This involves ruling out cases in which
p∗C = p∗V = 0 and cases in which the speed function is not differentiable.
For technical reasons, the former requires a slightly stronger condition than
before.

Assumption 4.6 (Limited social value of errors). The social value of erro-
neous results (weighted by the chance of acceptance) is less than a third that
of accurate results: αrv < β/3.

Assumption 4.7 (The speed function is differentiable (in p)). The partial
derivative of the function λ with respect to its first argument exists on the
interior of its domain, i.e., ∂

∂p
λ(p, c) exists whenever 0 < p < 1 and 0 < c <

µ(p).

Theorem 4.3 (Strict inequality (redux)). Let assumptions 4.1–4.7 be satis-
fied, and define (p∗C , c∗C) and (p∗V , c∗V ) as in theorem 4.1. Then p∗C < p∗V .

How do these results shed light on the two questions I raised above?
First, imperfections in the peer review system give the scientist an in-

centive to favor speed and/or impact over reproducibility, relative to what
she would do if she were trying to maximize the social value of her work. In
other words there is a credit incentive to rush into print.

The incentive to rush exists in the model under essentially the same con-
ditions as above. So the results expressed in theorems 3.2 and 3.3 are seen
to be robust against the introduction of the dimension of impact.

Second, theorem 4.1 rules out the possibility that a scientist could switch
from being a safety-seeker to an impact-seeker (increasing impact at the ex-
pense of reproducibility) or vice versa, while remaining at a global maximum
of either C or V . For a credit-maximizing scientist, there is just one ratio-
nal choice, not a range of admissible values between which an independent
preference for being an impact-seeker or a safety-seeker might act as a tie-
breaker. This consequence of the model may be seen as surprising in light
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of the way philosophers like Hull (1988), Weisberg and Muldoon (2009), and
Thoma (2015) discuss these types.

This does not rule out the existence of different “types” of scientists.
But it suggests that these types are the result of differences in the shape
of the speed function of different scientists. If the speed function describes
the tradeoff between reproducibility, impact, and speed for a given scientist,
the location of the optimum given that particular speed function determines
the type of scientist she will be (or at least has a credit-incentive to be).
If the speed function is more or less fixed over the course of a career15 and
outside the scientist’s control, theorem 4.1 can be interpreted as showing that
different types of scientists are the result of differences in aptitude rather than
choice. The following example illustrates this.

Example 4.1. Consider two scientists. For scientist 1, the tradeoff between
reproducibility, impact, and speed is given by the speed function λ1, where

λ1(p, c) = −3
4p

4 − 1
4p

2 − 1
2pc−

1
4c

2 − 3
4c+ 1,

for all 0 ≤ p ≤ 1 and 0 ≤ c ≤ 1
2(
√

25 + 12p− 12p4 − 3− 2p) (see figure 4.1).
Note that this function satisfies assumptions 4.1–4.7. Suppose further that
rc = 0.16 Then the credit-maximizing choice for scientist 1 is p ≈ 0.52 and
c ≈ 0.38.

In contrast, scientist 2’s speed function is given by

λ2(p, c) = −1
4p

2 − 1
2pc−

1
4c

2 − 3
4c

4 − 3
4p+ 1,

for all 0 ≤ c ≤ 1 and 0 ≤ p ≤ 1
2(
√

25 + 12c− 12c4 − 3− 2c) (see figure 4.1).
This function also satisfies assumptions 4.1–4.7. But the credit-maximizing

15See Huber (2001, and citations therein) for evidence that the productivity of scientists
is, on average, constant over the course of a career.

16This is a convenient value of rc for illustrative purposes since it entails that I need to
make no specific assumption on the values of α and β: the maximum of C will not depend
on this as long as β > 0.
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Figure 4.1: Graphs of λ1 (on the left) and λ2 (on the right).

choice for scientist 2 (assuming rc = 0) is p ≈ 0.38 and c ≈ 0.52.
Scientist 1’s speed function shows an aptitude for reproducibility com-

pared to scientist 2’s, which shows an aptitude for impact. This is because
λ1 is closer to linear in c—having only a small quadratic component—while
it is a fourth-degree polynomial in p (λ2 is simply its mirror image). So if
the scientists are responsive to credit incentives, scientist 1 will behave more
like a safety-seeker, doing relatively safe, low-impact research. Scientist 2
on the other hand will behave more like an impact-seeker, doing more risky,
high-impact research.

In general, given that the speed function is concave and decreasing, the
less linear it is in one of its variables the higher the optimal value for that
variable will be. So a function that is more linear in c and less linear in p

produces safety-seekers, and the reverse impact-seekers.
Moreover, if scientists are credit-maximizers, and assumptions 4.1, 4.2,

4.3, and 4.4 are justified, then theorem 4.1 guarantees that differences in the
shape of the speed function are the only way different types of scientists can
arise.

This is potentially a problem. Weisberg and Muldoon (2009) and Thoma
(2015) have investigated whether there is an epistemically optimal distribu-
tion of safety-seekers and impact-seekers in a scientific community. Thoma
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(2015, section 4.4) points out that credit may play a crucial role in moti-
vating scientists to distribute themselves over the types. But if differences
in aptitude are required for credit to play this role, there is no reason to
expect the resulting distribution of safety-seekers and impact-seekers to be
anywhere close to optimal.

5 Conclusion

The following five conclusions can be drawn from the work presented in this
paper. First, I have argued that under a wide range of plausible conditions
scientists have a credit incentive to publish work that is unlikely to be suc-
cessfully reproduced (relative to the socially optimal reproducibility level).
Three key ingredients are responsible for this misalignment of incentives: the
tradeoff between speed and reproducibility (and impact), the fact that sci-
entists are rewarded for publications, and imperfections in the peer review
system.

This misalignment hurts science and society: by definition, any deviation
from the social optimum hurts the progress of science and the social benefits
of that progress. More specifically, I have shown how credit incentives may
contribute to the reproducibility problems that have recently attracted sig-
nificant attention. In particular, I have argued that credit incentives may do
so even in the absence of some of the particular phenomena that have pre-
viously been identified as culprits (e.g., publication bias, novelty bias, and
checking bias).

What can be done about this? One solution is to eliminate imperfections
in the peer review system. Without those imperfections credit incentives are
perfectly aligned with the social optimum in my model. But this is a lot
to ask: it requires reviewers at scientific journals to be perfect predictors of
whether future work will successfully replicate a result.

However, I noted that the misalignment of incentives in the model is
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exclusively caused by false positives (accepting erroneous results for publi-
cation). So reducing those can bring the credit-maximizing optimum closer
to the social optimum.17 This seems to recommend conservative editorial
practices: rejecting papers even based on fairly minimal doubts about their
reproducibility. But if reducing false positives leads to more false negatives
(rejecting accurate results) the effect will be that the maximum social value
is itself lowered, even if the credit-maximizing optimum is brought closer to
it. Investigating this further tradeoff is beyond the scope of this paper.

A different way to eliminate imperfections in the peer review system would
be to get rid of peer review (and perhaps even scientific journals) altogether,
possibly replacing it with post-publication peer review. But even such a
drastic rethinking of the way scientific research is disseminated would not
avoid this problem. The problem arises because scientific work needs to be
evaluated in some way or other in the short run, before it is known whether
it will in fact be reproduced (e.g., scientists need to decide what to read and
what to cite). Hence, while I have focused discussion on imperfections in the
peer review system, the existence of peer review in its current form is not
essential to the incentive to rush into print.

Another solution focuses on the amount of credit given for irreproducible
results. I referred repeatedly to Budd et al. (1998) and Tatsioni et al. (2007),
who showed that scientists continue to give credit (in the form of citations)
to research that has been refuted. If the credit given to irreproducible results
matched the social value of those results more closely, the gap between the
credit-maximizing optimum and the social optimum would be reduced. It
would help if there was a broader general awareness of which research has
been refuted, but this may be hard to achieve in practice. More specifically,
one might aim to make hiring and promotion committees more aware of
candidates’ refuted results.

17More specifically, it can be shown (under the assumptions of theorems 3.3 and 4.3)
that reducing the value of α reduces the difference between p∗C and p∗V . In the limiting
case where α = 0 they are equal.
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A third solution aims to somehow compensate for the misalignment. For
example, Nelson et al. (2012) have suggested limiting the number of papers
scientists may publish per unit time. This would create an incentive to favor
reproducibility over speed that could in principle balance out the incentive
to rush. But this suggestion comes with its own problems. The limit on the
number of papers would have to be just right to balance out the incentive
to favor speed over reproducibility without overshooting the optimum in the
other direction, needlessly harming the timely publication of accurate results.
This problem is exacerbated by the fact that different scientists may have
different speed functions, which may require different publication limits to
create the best incentive structure.

In this paper I have focused on rushing into print, without denying that
publication bias, novelty bias, and checking bias may also capture important
ways in which scientists are incentivized to do research that is less than
optimally reproducible. But whereas these biases wear their corresponding
solutions on their sleeve (scientists should be rewarded for negative results
and replications), the above discussion suggests that the solution to rushing
into print is much less clear, if one exists at all.

The second conclusion is that certainty of reproducibility is neither to be
expected nor to be desired. The reason for this is that if scientists were too
demanding in perfecting their research before publishing it, nothing would
ever get published. The point is hardly new (it goes back at least to Lakatos
and Quine), but since philosophers of science and epistemologists have said
a lot about error avoidance but relatively little about how to achieve this
in a reasonable time frame (cf. Friedman 1979, Heesen 2015), it is worth
emphasizing.

The third conclusion concerns next steps in applying this work. One may
ask whether there is a way to validate the model. In particular one may want
to calibrate the parameter values, for example to see whether there is reason
to be worried about rushing into print in a particular case. A good starting
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point for this kind of work may be in medicine. Here we find relatively well-
defined problems (particular diseases) with well-defined solutions (particular
treatments). Moreover, measures of the social value of some treatment (e.g.,
survival rates or recovery rates) can be separated relatively cleanly from
measures of credit (e.g., citations, prestigious publications, or prizes).

Fourth, I considered the difference between scientists who pursue high-
impact research that is risky with regard to reproducibility and/or speed
(“impact-seekers”) and scientists who pursue more mundane research rela-
tively likely to be reproducible and/or fast (“safety-seekers”). My model
suggests that the existence of these types of scientists reflects a difference in
aptitude rather than a preference for certain kinds of research.

Considering the tradeoff between speed, reproducibility, and impact ex-
plicitly shows that high-impact research (or “transformative” research in
modern terms) is likely to be less reproducible. Example 4.1 illustrates this.
Thus it is perhaps unreasonable to hold impact-seekers to the same stan-
dards of evidence as safety-seekers. In this way my model justifies to some
extent the practice at institutions like the NSF and the NIH to consider a
grant proposal’s “potential to be transformative” separately from its likeli-
hood to succeed. By considering the criteria separately, these institutions
aim to prevent biasing their evaluation process for or against impact-seekers
or safety-seekers.

Finally, the work in this paper suggests a reevaluation of Fleischmann
and Pons’ decision to go public with their work on cold fusion. That decision
has been much maligned for being premature. The rejection of cold fusion by
the scientific establishment and the subsequent decline of cold fusion research
would seem to vindicate the judgment of prematurity. But Fleischmann and
Pons could not know this at the time. The question is whether their decision
was irrational, given the information available to them.

Two of the above conclusions suggest that it may not have been. First,
imperfections in the peer review system may make it rational for a credit-
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maximizing scientist to submit work the reproducibility of which is not yet
firmly established. Second, scientists who are pursuing high-impact research
should be given more leeway to produce work that is relatively less likely to
be reproduced.

Fleischmann and Pons were well aware of the uncertainties surrounding
cold fusion at the time they went public. They also knew that if they did
not go public, the risk of being scooped was high. The above considerations
suggest (without proving of course) that under these circumstances it may
well have been rational to go public despite the uncertainties.

Fleischmann and Pons went out on a limb, as every scientist does when
she publishes her work. On this occasion, they got burned. But I submit
that this was not primarily the result of poor judgment, although it may be
easy to come to the opposite conclusion with the benefit of hindsight. Rather,
they did exactly what other scientists have done on countless occasions: they
weighed the risk of going public against the potential reward. That they are
now maligned rather than celebrated is largely the result of bad luck.18

A The Tradeoff Between Speed and Repro-
ducibility

Assumptions and theorems whose labels start with a 3 are restated from
section 3. Assumptions, lemmas, and theorems labeled with an “A” are
original to this appendix.

I begin by briefly restating the key features of the model. Define the
18Thanks to Kevin Zollman, Michael Strevens, Stephan Hartmann, Teddy Seiden-

feld, Jan Sprenger, Liam Bright, Cailin O’Connor, Seamus Bradley, Conor Mayo-Wilson,
Adrian Currie, Shahar Avin, Rory Švarc, and audiences at Tilburg University, the National
University of Singapore, the Congress of Logic, Methodology and Philosophy of Science
in Helsinki, the Formal Epistemology Workshop in Groningen, and Risk and the Culture
of Science in Cambridge for valuable comments and discussion. This work was partially
supported by the National Science Foundation under grant SES 1254291 and by an Early
Career Fellowship from the Leverhulme Trust and the Isaac Newton Trust.
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following functions for all p ∈ [0, 1]:

C(p) = caβpλ(p) + ceα(1− p)λ(p),

V (p) = vaβpλ(p) + veα(1− p)λ(p),

ca,e(p) = apλ(p) + e(1− p)λ(p).

The function C reflects the scientist’s expected credit as a function of p: she
aims to choose a value of p that maximizes C. The function V reflects the
expected social value of the scientist’s work. The family of functions ca,e is
defined in such a way that the functions C and V are members of the family.
This family captures the common structure of C and V , which will be useful
in the analysis below.

The variable p is the desired level of reproducibility, which can range
from zero to one, and is chosen by the scientist. The parameters have the
following interpretations: ca is the expected credit to the scientist for an
accurate paper, ce is the expected credit for an erroneous paper, va is the
expected social value of an accurate paper, ve is the expected social value of
an erroneous paper, β is the probability that an accurate paper passes peer
review, and α is the probability that an erroneous paper passes peer review.

The function λ : [0, 1] → [0,∞) reflects the tradeoff between speed and
reproducibility: λ(p) is the speed at which the scientist works given that the
desired reproducibility is p, and γ(p) = 1/λ(p) is the expected completion
time of the project. In the paper I made the following assumptions about
the shape of this function.

Assumption 3.1 (The speed function is decreasing). For all p, q ∈ [0, 1], if
p < q, then λ(q) < λ(p).

Assumption 3.2 (The speed function is concave). For every p, q, t ∈ [0, 1],

tλ(p) + (1− t)λ(q) ≤ λ(tp+ (1− t)q).
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Assumption 3.3 (No perfect work). limp→1 λ(p) = 0.

This assumption asserts that the scientist cannot deliver perfect work (in
the sense of zero probability of errors), no matter how slowly she works. She
can, however, get arbitrarily close: due to assumption 3.1, λ(p) > 0 for all
p < 1.

It is worth noting that assumptions 3.1–3.3 entail the following related
characteristics of the expected completion time function γ.

Lemma A.1. If assumptions 3.1–3.3 are satisfied, the function γ is increas-
ing and convex. Moreover, limp→1 γ(p) =∞.

Proof. Since λ(p) > 0 for all p < 1, λ(q) < λ(p) if and only if γ(q) > γ(p).
Since λ gets arbitrarily small (while remaining positive) as p → 1, γ gets
arbitrarily large as p → 1. Since λ is strictly positive and concave on [0, 1),
γ is convex on [0, 1) (see Kantrowitz and Neumann 2005, proposition 2 for a
proof).

Assumption 3.1 entails that λ is bounded, as λ(p) ≤ λ(0) < ∞ for
all p ∈ [0, 1]. Assumption 3.2 entails that λ is continuous on (0, 1) (but
not necessarily at the endpoints). Combined with the other two assump-
tions, however, it follows that λ is continuous on its entire domain, as the
following lemma shows.

Lemma A.2. If assumptions 3.1–3.3 are satisfied, λ is continuous on [0, 1].

Proof. Due to assumption 3.2, λ is continuous on (0, 1). By assumption 3.3,
limp→1 λ(p) = 0. By definition this means that for every ε > 0 there exists a
choice of p < 1 such that λ(p) < ε. It follows that λ(1) = 0 (if λ(1) > 0 then
one could choose ε = λ(1) to find a p such that λ(p) < ε = λ(1), contradicting
assumption 3.1). So limp→1 λ(p) = 0 = λ(1), i.e., λ is continuous at p = 1.

It remains to show that λ is continuous at p = 0. Because λ is monotone
and bounded, ` = limp→0 λ(p) exists. Because λ is decreasing, ` ≤ λ(0).
Suppose for reductio that ` < λ(0). By definition of the limit there exists
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a choice of p > 0 small enough such that ` − λ(p) < (λ(0) − `)/2. Then
λ(0)/2+λ(p)/2 > ` > λ(p/2), contradicting assumption 3.2. Hence ` = λ(0),
i.e., λ is continuous at p = 0.

The next lemma depends on a result by Kantrowitz and Neumann (2005),
which I state first.

Theorem A.1 (Kantrowitz and Neumann 2005). Let the functions f1, . . . , fn

be concave, non-negative, and not identically equal to zero on the closed
bounded interval [a, b]. Then the product h := f1 · · · fn has the following
properties:

(i) h(x) > 0 for all x ∈ (a, b);

(ii) there exist numbers α and β with a ≤ α ≤ β ≤ b for which h is
strictly increasing on [a, α), constant on (α, β), and strictly decreasing
on (β, b];

(iii) if one of the functions f1, . . . , fn has at most one global maximum point
in [a, b], then so does h;

(iv) the product h is constant on [a, b] if and only if each of the functions
f1, . . . , fn is constant on [a, b];

(v) if f1, . . . , fn are differentiable at a point x ∈ (a, b), then h′(x) > 0 if
x ∈ (a, α), while h′(x) < 0 if x ∈ (β, b).

Lemma A.3. If assumptions 3.1–3.3 are satisfied, there exists pa,e such that
ca,e(pa,e) = maxp∈[0,1] ca,e(p). Moreover, if a > 0, then pa,e < 1 uniquely
maximizes ca,e.

Proof. By lemma A.2, λ is continuous on [0, 1]. It follows that ca,e is con-
tinuous. By the extreme value theorem, ca,e attains its maximum, i.e., there
exists pa,e ∈ [0, 1] such that ca,e(pa,e) = maxp∈[0,1] ca,e(p).
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Note that a > 0 implies that there is at least some value of p for which
ca,e(p) > 0: if e ≥ 0 this is true for all p ∈ (0, 1) and if e < 0 this is true
because

a− 2e
2(a− e) ∈ (0, 1), and

ca,e

(
a− 2e

2(a− e)

)
= 1

2aλ
(
a− 2e

2(a− e)

)
> 0.

It follows that ca,e(pa,e) > 0. Since λ(1) = 0, ca,e(1) = 0 < ca,e(pa,e). So
pa,e 6= 1.

To see that a > 0 implies uniqueness of the maximum, write ca,e as the
product of two concave functions:

ca,e(p) = (e+ (a− e)p)λ(p),

where λ is concave by assumption 3.2 and e + (a − e)p is concave because
it is linear. Uniqueness of the maximum is established by checking that the
conditions of theorem A.1.iii are satisfied.

As a result of assumptions 3.1 and 3.3 the function λ is nonnegative and
not identically zero on [0, 1]. If a > 0 and e ≥ 0 then the function e+(a−e)p
is also nonnegative and not identically zero on [0, 1]. If on the other hand
a > 0 and e < 0 then e+(a−e)p is only nonnegative whenever p ≥ −e

a−e , where
−e
a−e < 1. So I restrict attention to the nonempty interval [max{0, −e

a−e}, 1].
In this interval both λ and e + (a− e)p are nonnegative and not identically
zero.

Moreover, on the interval [max{0, −e
a−e}, 1] the function λ has a unique

maximum at max{0, −e
a−e}. So by theorem A.1.iii, the function ca,e has a

unique maximum on the interval [max{0, −e
a−e}, 1]. Since ca,e < 0 whenever

0 ≤ p < −e
a−e , it follows that ca,e has a unique maximum on [0, 1].

Theorem A.2. If assumptions 3.1–3.3 are satisfied, and caβ > 0 and vaβ >
0, then there exist unique values pC < 1 and pV < 1 that maximize the
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functions C and V respectively, that is,

C(pC) = max
p∈[0,1]

C(p) and V (pV ) = max
p∈[0,1]

V (p).

Proof. Note that C and V are special cases of ca,e, with C = ccaβ,ceα and
V = cvaβ,veα. Because caβ > 0 and vaβ > 0 the conditions of lemma A.3
apply to C and V . The result follows immediately.

The above result is a somewhat more general version of theorem 3.1 in
the paper. To see this, first recall the following assumptions.

Assumption 3.4 (Imperfect peer review). The peer review acceptance prob-
abilities are such that α > 0 and β > 0.

Assumption 3.5 (Positive value). Accurate results have positive credit value
(ca > 0) and social value (va > 0).

Theorem 3.1 now follows as a corollary of theorem A.2.

Theorem 3.1 (Unique maxima). If assumptions 3.1–3.5 are satisfied, then
there exist unique values pC < 1 and pV < 1 that maximize the functions C
and V respectively, that is,

C(pC) = max
p∈[0,1]

C(p) and V (pV ) = max
p∈[0,1]

V (p).

Proof. From β > 0, ca > 0, and va > 0, it follows that caβ > 0 and vaβ > 0.
Hence theorem A.2 applies.

Having established the existence of a unique maximum for each of the
functions C, V , and ca,e, I now prove a number of lemmas that are instru-
mental in establishing the main rushing into print result.

Lemma A.4. If assumptions 3.1–3.3 are satisfied, a > 0 and a > 2e, then
pa,e > 0 (where pa,e uniquely maximizes ca,e).
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Proof. Since a > 0, the function ca,e has a unique maximum at pa,e by
lemma A.3. It follows from a > 2e that a−2e

2(a−e) ∈ (0, 1). Using the defini-
tion of concavity (see assumption 3.2) with t = a−2e

2(a−e) , p = 1, and q = 0
yields:

λ

(
a− 2e

2(a− e)

)
≥ a

2(a− e)λ(0) + a− 2e
2(a− e)λ(1) = a

2(a− e)λ(0),

where the equality uses the fact that λ(1) = 0. Hence,

ca,e

(
a− 2e

2(a− e)

)
= 1

2aλ
(
a− 2e

2(a− e)

)
≥ a2

4(a− e)λ(0).

Now note that (a− 2e)2 > 0 and therefore a2 > 4e(a− e). Since a− e > 0,

ca,e

(
a− 2e

2(a− e)

)
≥ a2

4(a− e)λ(0) > eλ(0) = ca,e(0).

This shows that ca,e is not maximized at p = 0.

Lemma A.5. If assumptions 3.1–3.3 are satisfied, and a > 0, the func-
tion ca,0 (that is, ca,e with e = 0) is uniquely maximized at p∗ ∈ (0, 1), where
the value of p∗ does not depend on the value of a, and ca,0 is increasing on
[0, p∗] and decreasing on [p∗, 1].

Proof. The conditions of this lemma entail that the conditions of lemmas
A.3, and A.4 are satisfied. Hence there exists p∗ ∈ (0, 1) that uniquely
maximizes ca,0. Because ca,0(p) = apλ(p), a is merely a scaling constant, so
the maximum is unchanged when a changes.

It remains to show that ca,0 is monotonically increasing on [0, p∗] and
decreasing on [p∗, 1]. Note (as in the proof of lemma A.3) that ca,0 can
be written as the product of two concave functions (ap and λ) that are
nonnegative and not identically zero on [0, 1]. So by theorem A.1.ii, there
exist x1 and x2 such that ca,e is increasing on [0, x1), constant on (x1, x2),
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and decreasing on (x2, 1]. Since the maximum is unique, it follows that
x1 = x2 = p∗.

Lemma A.6. If assumptions 3.1–3.3 are satisfied and moreover a > 0 and
e ≥ 0, then pa,e ≤ p∗ (where pa,e uniquely maximizes ca,e and p∗ is as defined
in lemma A.5).

Proof. The existence and uniqueness of pa,e and p∗ follow from lemmas A.3
and A.5 respectively. Suppose for reductio that pa,e > p∗. By definition
p∗ maximizes the function ca,0 (see lemma A.5), so ap∗λ(p∗) > apa,eλ(pa,e).
Since λ is decreasing (hence λ(p∗) ≥ λ(pa,e)) and e ≥ 0 it also follows that
e(1− p∗)λ(p∗) ≥ e(1− pa,e)λ(pa,e). So

ca,e(p∗) = ap∗λ(p∗) + e(1− p∗)λ(p∗)

> apa,eλ(pa,e) + e(1− pa,e)λ(pa,e) = ca,e(pa,e).

But pa,e maximizes ca,e by definition, which entails ca,e(pa,e) ≥ ca,e(p∗). Con-
tradiction. So pa,e ≤ p∗.

Lemma A.7. If assumptions 3.1–3.3 are satisfied and moreover a > 0 and
e ≤ 0, then pa,e ≥ p∗ (where pa,e uniquely maximizes ca,e and p∗ is as defined
in lemma A.5).

Proof. The existence and uniqueness of pa,e and p∗ follow from lemmas A.3
and A.5 respectively. Suppose for reductio that pa,e < p∗. By definition
p∗ maximizes the function ca,0 (see lemma A.5), so ap∗λ(p∗) > apa,eλ(pa,e).
Since λ is decreasing (hence λ(p∗) ≤ λ(pa,e)) and e ≤ 0 it also follows that
e(1− p∗)λ(p∗) ≥ e(1− pa,e)λ(pa,e). So

ca,e(p∗) = ap∗λ(p∗) + e(1− p∗)λ(p∗)

> apa,eλ(pa,e) + e(1− pa,e)λ(pa,e) = ca,e(pa,e),

But pa,e maximizes ca,e by definition, which entails ca,e(pa,e) ≥ ca,e(p∗). Con-
tradiction. So pa,e ≥ p∗.
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Assumption A.1. One of the following conditions holds: either

vaβ ≥ caβ > 0 and ceα ≥ 0 and ceα ≥ veα, (A.1)

or

caβ ≥ vaβ > 0 and ceα ≤ 0 and ceα ≥ veα. (A.2)

Theorem A.3. Let assumptions 3.1–3.3 and A.1 be satisfied. Define pC
and pV as in theorem A.2. Then pC ≤ pV .

Proof. Both sets of conditions imply that caβ > 0 and vaβ > 0, so theo-
rem A.2 applies. Define pC and pV to be those choices of p that uniquely
maximize the functions C and V respectively.

Assumption A.1 specifies two sets of conditions. I prove the result for
the two sets separately. Consider the first set of conditions, as specified
in equation (A.1). Because caβ > 0 and ceα ≥ 0, lemma A.6 applies, so
pC ≤ p∗, where p∗ is as defined in lemma A.5. Suppose for reductio that
pV < pC . Since pC uniquely maximizes the function C, C(pC) > C(pV ).
Since 0 ≤ pV < pC ≤ p∗ and since the function pλ(p) is increasing on
the interval [0, p∗] by lemma A.5, pCλ(pC) > pV λ(pV ). Finally, since λ is
decreasing by assumption 3.1, (1− pC)λ(pC) < (1− pV )λ(pV ). Putting this
all together yields

V (pC) = C(pC) + (vaβ − caβ)pCλ(pC) + (veα− ceα)(1− pC)λ(pC)

> C(pV ) + (vaβ − caβ)pCλ(pC) + (veα− ceα)(1− pC)λ(pC)

≥ C(pV ) + (vaβ − caβ)pV λ(pV ) + (veα− ceα)(1− pV )λ(pV )

= V (pV ).

But this contradicts the supposition that pV maximizes V . So pC ≤ pV .
Now consider the second set of conditions, as specified in equation (A.2).

Because vaβ > 0 and veα ≤ 0, lemma A.7 applies, so pV ≥ p∗. Suppose
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for reductio that pV < pC . Then C(pC) > C(pV ) because pC uniquely
maximizes C. Since p∗ ≤ pV < pC ≤ 1 and pλ(p) is decreasing on the
interval [p∗, 1] by lemma A.5, pCλ(pC) < pV λ(pV ). And, since λ is decreasing
by assumption 3.1, (1− pC)λ(pC) < (1− pV )λ(pV ). So

V (pC) = C(pC) + (vaβ − caβ)pCλ(pC) + (veα− ceα)(1− pC)λ(pC)

> C(pV ) + (vaβ − caβ)pV λ(pV ) + (veα− ceα)(1− pV )λ(pV )

= V (pV ).

But this contradicts the supposition that pV maximizes V . So pC ≤ pV .

The above theorem implies the main result from the paper (in partic-
ular, assumption A.1 is strictly weaker than assumptions 3.4–3.6). Recall
assumption 3.6.

Assumption 3.6 (Credit and social value). Accurate results are awarded
credit proportional to their social value (ca = va), while the social value of
erroneous results is less than the credit given for them (ve < ce).

Theorem 3.2 (Rushing into print). Let assumptions 3.1–3.6 be satisfied,
and define pC and pV as in theorem 3.1. Then pC ≤ pV .

Proof. Assumptions 3.4–3.6 imply that caβ = vaβ > 0 and that ceα ≥ veα.
Thus, if ceα ≥ 0 the set of conditions (A.1) is satisfied, and if ceα ≤ 0
the set of conditions (A.2) is satisfied. So assumptions 3.4–3.6 imply that
assumption A.1 holds, which means that theorem A.3 applies.

In order to get strict inequality some additional assumptions are needed.

Assumption 3.7 (Limited social value of errors). The social value of erro-
neous results (weighted by the chance of acceptance) is less than half that of
accurate results: αve < βva/2.

This assumption guarantees that the function V is not maximized at zero
(using lemma A.4).
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Assumption 3.8 (The speed function is differentiable). The function λ is
differentiable on the interior of its domain, i.e., for all p ∈ (0, 1).

With these additional assumption the previous result can be strengthened
to a strict inequality.

Theorem A.4. Let assumptions 3.1–3.3, 3.7–3.8, and A.1 be satisfied, and
assume moreover that ve < ce. Define pC and pV as in theorem A.2. Then
pC < pV .

Proof. Since the assumptions of theorem A.3 are satisfied, pC ≤ pV . Because
vaβ > 2veα (by assumption 3.7) and vaβ > 0 (by assumption A.1), the
conditions of lemmas A.3 and A.4 are satisfied, so 0 < pV < 1. If pC = 0
this completes the proof, so assume that pC > 0. Then 0 < pC ≤ pV < 1
so the maximum of C is achieved in the interior of its domain. Because λ
is differentiable on (0, 1), C and V are differentiable on (0, 1). In particular,
since pC maximizes C, C ′(pC) = 0. To show that pC 6= pV it suffices to show
that V ′(pC) 6= 0.

Consider first the case where vaβ ≥ caβ and ceα ≥ 0 (condition (A.1) of
assumption A.1). Because ceα ≥ 0, lemma A.6 applies, so pC ≤ p∗, where p∗

is as defined in lemma A.5. Because λ is differentiable, the derivative of pλ(p)
exists and is given by pλ′(p) + λ(p). By lemma A.5, pλ(p) is increasing on
[0, p∗], which means its derivative is nonnegative, so in particular pCλ′(pC) +
λ(pC) ≥ 0. By assumption 3.1, λ′(pC) < 0. Putting all of this together yields

V ′(pC) = C ′(pC) + (vaβ − caβ)(pCλ′(pC) + λ(pC))

+ (veα− ceα)(1− pC)λ′(pC)− (veα− ceα)λ(pC)

≥ (veα− ceα)(1− pC)λ′(pC)− (veα− ceα)λ(pC) > 0.

Now consider the case where caβ ≥ vaβ and ceα ≤ 0. Because ceα ≤ 0,
lemma A.7 applies, so pC ≥ p∗. By lemma A.5, pλ(p) is decreasing on [p∗, 1],
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so pCλ′(pC) + λ(pC) ≤ 0. Hence

V ′(pC) = C ′(pC) + (vaβ − caβ)(pCλ′(pC) + λ(pC))

+ (veα− ceα)(1− pC)λ′(pC)− (veα− ceα)λ(pC)

≥ (veα− ceα)(1− pC)λ′(pC)− (veα− ceα)λ(pC) > 0.

This yields the result from the main text.

Theorem 3.3 (Strict inequality). Let assumptions 3.1–3.8 be satisfied, and
define pC and pV as in theorem 3.1. Then pC < pV .

Proof. As in the proof of theorem 3.2, note that assumptions 3.4–3.6 imply
that caβ = vaβ > 0 and that ceα ≥ veα. Thus, if ceα ≥ 0 the set of
conditions (A.1) is satisfied, and if ceα ≤ 0 the set of conditions (A.2) is
satisfied. So assumptions 3.4–3.6 imply that assumption A.1 holds.

Moreover, ve < ce holds by assumption 3.6. Hence all assumptions of
theorem A.4 hold, so pC < pV .

Next I consider a version of the model in which the scientist’s estimated
reproducibility level p (a subjective probability) is replaced by the actual
(objective) reproducibility level. To capture this formally, note that the sci-
entist’s choice of (subjective) reproducibility determines the objective repro-
ducibility. So I introduce an objective reproducibility function o, where o(p)
is interpreted as the objective reproducibility that results if the scientist’s
choice of (subjective) reproducibility is p.

As I argued in the main text, it seems reasonable to assume that the scien-
tist is usually pretty accurate in her estimations of reproducibility (o(p) ≈ p)
and that when she errs she is more likely to be overconfident than undercon-
fident (o(p) < p). So I assume that o(p) ≤ p, which should capture a large
range of cases.

I also assume that the objective reproducibility function is surjective.
This means that any objective reproducibility level is achievable in the sense
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that there exists a subjective reproducibility level corresponding to it.

Assumption 3.9 (Confident scientist). The objective reproducibility func-
tion o : [0, 1] → [0, 1] is surjective, i.e., for all p ∈ [0, 1] there is a q ∈ [0, 1]
such that o(q) = p. Moreover, o(p) ≤ p for all p ∈ [0, 1].

A credit-maximizing scientist chooses reproducibility pC , the (subjective)
probability that maximizes the credit function C. Social value is maximized
if the scientist chooses her reproducibility such that the objective probability
maximizes the social value function V (i.e., V (o(·)) is maximized). The main
results can now be restated for this expanded version of the model.

Theorem A.5. Let assumptions 3.1–3.3, A.1, and 3.9 be satisfied. Define
pC as in theorem A.2. Let qV ∈ [0, 1] be any value such that

V (o(qV )) = max
q∈[0,1]

V (o(q)).

Then pC ≤ qV .

Proof. Because the assumptions of theorem A.3 are satisfied, there exist
unique values pC and pV that maximize the functions C and V respectively,
with pC ≤ pV . Let qV ∈ [0, 1] be any value that maximizes V (o(·)). Given
that V (pV ) = maxp∈[0,1] V (p) and given that the objective reproducibil-
ity function o is surjective, it follows that V (o(qV )) = V (pV ). Since pV
uniquely maximizes V it follows further that o(qV ) = pV . By assumption 3.9
o(qV ) ≤ qV . So pC ≤ pV = o(qV ) ≤ qV .

Corollary 3.1. Let assumptions 3.1–3.6 and 3.9 be satisfied, and define pC
as in theorem 3.1. Let qV be any value such that

V (o(qV )) = max
p∈[0,1]

V (o(p)).

Then pC ≤ qV .

51



Proof. As noted in multiple previous proofs assumptions 3.4–3.6 imply as-
sumption A.1. The result follows immediately.

Theorem A.6. Let assumptions 3.1–3.3, 3.7–3.9, and A.1 be satisfied, and
assume moreover that ve < ce. Define pC as in theorem A.2 and qV as in
theorem A.5. Then pC < qV .

Proof. Because the assumptions of theorem A.4 are satisfied, there exist
unique values pC and pV that maximize the functions C and V respectively,
with pC < pV . Let qV ∈ [0, 1] be any value that maximizes V (o(·)). By the
same reasoning as above, pC < pV = o(qV ) ≤ qV .

Corollary 3.2. Let assumptions 3.1–3.9 be satisfied, define pC as in theo-
rem 3.1, and qV as in corollary 3.1. Then pC < qV .

Proof. As above.

B The Tradeoff Between Speed, Reproduci-
bility, and Impact

In this appendix I investigate a model in which there is a three-way trade-
off between speed, reproducibility, and impact. The scientist chooses the
minimal acceptable reproducibility p, and the level of impact she wishes to
achieve c (equated with the amount of credit she will be given if she is suc-
cessful), and her speed λ is determined as a function of p and c. Assumptions
and theorems whose labels start with a 4 are restated from section 4.

As before, p is interpreted as a probability, so its domain is naturally
constrained to the interval [0, 1]. The impact or credit c is not similarly
constrained. However, I assume that, at least for a given reproducibility p,
there is a maximum impact that can be achieved. The following definitions
formalize this setup.

Definition B.1. Let α, β ∈ [0, 1] and rc, rv ∈ R be fixed parameters.
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B.1.a. The maximum impact function is a function µ : [0, 1]→ [0,∞).

B.1.b. The domain (of admissible choices) is the setD = {(p, c) | p ∈ [0, 1], c ∈
[0, µ(p)]}.

B.1.c. The speed function is a function λ : D → [0,∞).

B.1.d. The credit function is the function C : D → R given by

C(p, c) = βpcλ(p, c) + α(1− p)rccλ(p, c)

for all (p, c) ∈ D.

B.1.e. The (social) value function is the function V : D → R given by

V (p, c) = βpcλ(p, c) + α(1− p)rvcλ(p, c)

for all (p, c) ∈ D.

I make a number of assumptions on the shape of λ. These assumptions
are very similar to the ones I made before, although they have to be adapted
to the new three-dimensional context.

Assumption 4.1 (The speed function is decreasing).

4.1.a. For all p, p′ ∈ [0, 1], if p < p′ and c ≤ min{µ(p), µ(p′)}, then λ(p′, c) <
λ(p, c).

4.1.b. For all p ∈ [0, 1), if c < c′ ≤ µ(p), then λ(p, c′) < λ(p, c).

Note that assumption 4.1.b excludes the case where p = 1. This is because
assumption 4.2 below entails that λ(1, c) = 0 for all c, which is not decreasing
if µ(1) > 0.

Lemma B.1. If assumption 4.1 is satisfied,

λ(p, c) ≤ λ(p, 0) ≤ λ(0, 0) <∞,
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for any (p, c) ∈ D.

Proof. The first inequality follows from assumption 4.1.b and the second from
assumption 4.1.a.

The next assumption has a role similar to assumption 3.3. It requires
that as the scientist gets close to perfect reproducibility (p → 1), her speed
vanishes (λ→ 0). This is required only when c = 0 (but see lemma B.6).

Additionally, the assumption requires (for fixed reproducibility) that as
the scientist gets close to maximum impact (c → µ(p)), her speed vanishes
(λ → 0). This formalizes the intended interpretation of µ as the maximum
impact that can be achieved at a given level of reproducibility.

Assumption 4.2. The function λ vanishes as p or c approaches the edge of
its domain D.

4.2.a. limp→1 λ(p, 0) = 0.

4.2.b. For all p ∈ [0, 1], limc→µ(p) λ(p, c) = 0.

Lemma B.2. If assumptions 4.1.b and 4.2.b are satisfied, λ(p, µ(p)) = 0 for
all p ∈ [0, 1).

Proof. Let p ∈ [0, 1) and ε > 0. By assumption 4.2.b, there exists a c < µ(p)
such that λ(p, c) < ε. By assumption 4.1.b and nonnegativity of λ, 0 ≤
λ(p, µ(p)) < λ(p, c) < ε. So λ(p, µ(p)) = 0.

Lemma B.3. If assumptions 4.1 and 4.2.b are satisfied, µ is decreasing on
[0, 1).

Proof. Let p < p′ < 1 and suppose for reductio that µ(p) ≤ µ(p′). Note
that it follows that µ(p) ≤ min{µ(p), µ(p′)}. By lemma B.2, λ(p, µ(p)) =
λ(p′, µ(p′)) = 0. But by assumption 4.1,

λ(p, µ(p)) > λ(p′, µ(p)) ≥ λ(p′, µ(p′)).

Contradiction. So µ(p′) < µ(p).
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Lemma B.4. If assumptions 4.1 and 4.2.b are satisfied, µ is bounded from
above on [0, 1) by µ(0) <∞.

Proof. Immediate from lemma B.3.

Lemma B.5. If assumptions 4.1 and 4.2.b are satisfied, λ(p, c) ≤ λ(0, c) <
∞ for any (p, c) ∈ D.

Proof. Let (p, c) ∈ D. By definition c ≤ µ(p). By lemma B.4 µ(p) ≤ µ(0).
So c ≤ min{µ(p), µ(0)}. So by assumption 4.1.a λ(p, c) ≤ λ(0, c).

Lemma B.6. If assumptions 4.1 and 4.2 are satisfied, limp→1 µ(p) exists and
limp→1 λ(p, c) = 0 for all c ∈ [0, limp→1 µ(p)].

Proof. By lemma B.3, µ is decreasing, and by definition, µ is bounded from
below (by 0). Hence limp→1 µ(p) exists.

Let 0 ≤ c ≤ limp→1 µ(p) and ε > 0. By assumption 4.2.a, there exists
p′ < 1 such that λ(p, 0) < ε for all p ∈ (p′, 1). By assumption 4.1.b and
nonnegativity of λ, 0 ≤ λ(p, c) ≤ λ(p, 0) < ε. So limp→1 λ(p, c) = 0.

Lemma B.7. If assumptions 4.1 and 4.2 are satisfied, λ(1, c) = 0 for all
c ≤ min{µ(1), limp→1 µ(p)}.

Proof. Let c ≤ min{µ(1), limp→1 µ(p)} and ε > 0. By lemma B.6, there
exists p < 1 such that λ(p, c) < ε. By assumption 4.1.a and nonnegativity
of λ, 0 ≤ λ(1, c) < λ(p, c) < ε. So λ(1, c) = 0.

Assumption 4.3 (The speed function is concave). For any (p, c), (p′, c′) ∈ D
and t ∈ [0, 1],

4.3.a. (tp+ (1− t)p′, tc+ (1− t)c′) ∈ D;

4.3.b. tλ(p, c) + (1− t)λ(p′, c′) ≤ λ(tp+ (1− t)p′, tc+ (1− t)c′).

It does not follow from the definition of the domain D of λ or the assump-
tions made so far that (tp+ (1− t)p′, tc+ (1− t)c′) ∈ D, but this is required
for the idea of a concave function to make sense, hence assumption 4.3.a.
The next lemma characterizes the meaning of assumption 4.3.a.
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Lemma B.8. The following are equivalent:

1. Assumption 4.3.a;

2. The set D is convex;

3. The function µ is concave.

Proof. Note first that tp+ (1− t)p′ ∈ [0, 1] for all p, p′, t ∈ [0, 1].
1 ⇒ 2: A set is convex if every convex combination of two points in the

set is itself in the set. Assumption 4.3.a requires exactly that.
2 ⇒ 3: Let p, p′, t ∈ [0, 1]. By definition, (p, µ(p)), (p′, µ(p′)) ∈ D. By 2,

it follows that (tp+(1− t)p′, tµ(p)+(1− t)µ(p′)) ∈ D. So by definition of D,
tµ(p) + (1− t)µ(p′) ≤ µ(tp+ (1− t)p′). So µ is concave.

3⇒ 1: Let (p, c), (p′, c′) ∈ D and t ∈ [0, 1]. Then

tc+ (1− t)c′ ≤ tµ(p) + (1− t)µ(p′) ≤ µ(tp+ (1− t)p′),

where the latter inequality follows from the concavity of µ. So (tp + (1 −
t)p′, tc+ (1− t)c′) ∈ D.

Corollary B.1. If assumptions 4.1, 4.2 and 4.3.a are satisfied, µ(1) ≤
limp→1 µ(p), and hence lemmas B.3 and B.4 apply also when p = 1.

Proof. By lemma B.6, limp→1 µ(p) exists. By lemma B.8, µ is concave.
µ(1) ≤ limp→1 µ(p) follows from this.

Lemma B.9. If assumptions 4.1–4.3 are satisfied, then for all p ∈ [0, 1]
limc→0 λ(p, c) = λ(p, 0).

Proof. Let p ∈ [0, 1]. First consider the case p = 1. λ(1, c) = 0 for all
c ≤ µ(1) by lemma B.7, so limc→0 λ(1, c) = 0 = λ(1, 0).

If p < 1, limc→0 λ(p, c) exists because λ is decreasing in c (assump-
tion 4.1.b) and bounded from above (lemma B.1). Lemma B.1 implies that
limc→0 λ(p, c) ≤ λ(p, 0). This inequality cannot be strict because λ is concave
(cf. the proof of lemma A.2).
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Lemma B.10. If assumptions 4.1, 4.2.b and 4.3 are satisfied, then for all
c ∈ [0, µ(0)) limp→0 λ(p, c) = λ(0, c).

Proof. Let c ∈ [0, µ(0)). limp→0 λ(p, c) exists because λ is decreasing in p

(assumption 4.1.a) and bounded from above (lemma B.5). Lemma B.5 im-
plies that limp→0 λ(p, c) ≤ λ(0, c). This inequality cannot be strict because
λ is concave (cf. the proof of lemma A.2).

Lemma B.11. If assumptions 4.1–4.3 are satisfied, λ is continuous.

Proof. Because λ is concave, it is continuous at any interior point of its
domain. It remains to show that λ is continuous on the borders, that is at
those points (p, c) with p = 0, p = 1, c = 0, or c = µ(p). I give a proof for
the case c = 0 (the other cases are similar).

Note first that λ is continuous when one of its arguments is held fixed:
the function λ(·, 0) (the restriction of λ along the p-axis) is continuous due
to concavity (at least for non-extreme values of p), and the function λ(p, ·)
is continuous for any fixed value of p: for 0 < c < µ(p) this follows from
concavity, for c = 0 this follows from lemma B.9, and for c = µ(p) this
follows from assumption 4.2.b and lemma B.2.

Let p ∈ (0, 1) and ε > 0 (I set aside the cases where p = 0 or p = 1 to
avoid having to worry about certain technicalities, but essentially the same
proof works for those cases too.). By the foregoing there exists δ1 > 0 such
that λ(p′, 0) < λ(p, 0) + ε for every p′ ∈ (p− δ1, p+ δ1). By assumption 4.1.a,
λ(p′, 0) < λ(p, 0) + ε for every p′ > p− δ1. Similarly, there exists δ2 > 0 such
that λ(p, c′) > λ(p, 0)−ε/2 for every c′ < δ2. And, given the particular value
of δ2 just chosen, there exists δ3 > 0 such that λ(p′, δ2) > λ(p, δ2) − ε/2 >
λ(p, 0)− ε for every p′ < p+ δ3.

Choose δ = min{δ1, δ2, δ3}. Let (p′, c′) ∈ D be such that 0 < ‖(p′, c′) −
(p, 0)‖ < δ. It follows that p− δ1 < p′ < p+ δ3 and 0 ≤ c′ < δ2. Hence, using
assumption 4.1.b and the facts established in the previous paragraph,

λ(p, 0)− ε < λ(p′, δ2) < λ(p′, c′) ≤ λ(p′, 0) < λ(p, 0) + ε.
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So |λ(p′, c′)− λ(p, 0)| < ε. So λ is continuous at (p, 0).

Recall from topology the notion of the interior of a set. The interior of
a set A, written intA is the set of all points x ∈ A such that x is contained
in an open subset of A. Any point x ∈ A that is not in the interior of A
is called a boundary point of A. The interior of the domain D is the set
intD = {(p, c) | p ∈ (0, 1), c ∈ (0, µ(p))}.

Lemma B.12. If assumptions 4.1–4.3 are satisfied, β > 0 and αrc > 0,
there is a unique point (pC , cC) ∈ D such that

C(pC , cC) = max
(p,c)∈D

C(p, c).

Moreover, either (pC , cC) ∈ intD or pC = 0.

Proof. Because λ is continuous (by lemma B.11), C is continuous as well.
By the extreme value theorem, there exists a point (pC , cC) ∈ D such that
C(pC , cC) = max(p,c)∈D C(p, c) (uniqueness will be shown below).

Note that C(p, c) > 0 for all (p, c) ∈ intD. Conversely, C(p, c) = 0 if
either c = 0, c = µ(p) (by lemma B.2), or p = 1 (by lemma B.7). Hence,
either (pC , cC) ∈ intD or pC = 0.

Let (p′, c′) 6= (pC , cC) be any point in D. To show uniqueness of the
maximum, it suffices to show that (p′, c′) does not maximize C.

Let f : [0, 1]→ [0,∞) be the function defined by

f(t) = C (tpC + (1− t)p′, tcC + (1− t)c′)

= (αrc + (β − αrc) (tpC + (1− t)p′))

· (tcC + (1− t)c′)λ (tpC + (1− t)p′, tcC + (1− t)c′)

for all t ∈ [0, 1]. Because C is maximized at (pC , cC), f is maximized at
t = 1.

Note that f can be written as the product of three concave and nonnega-
tive functions: λ is a concave function of t as a consequence of assumption 4.3,
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and αrc+(β−αrc)(tpC +(1− t)p′) and tcC +(1− t)c′ are linear functions of t
and hence also concave. Moreover, since either pC 6= p′ or cC 6= c′, at least
one of the functions αrc + (β − αrc)(tpC + (1− t)p′) and tcC + (1− t)c′ has
a unique maximum (e.g., if cC > c′, tcC + (1 − t)c′ is maximized at t = 1).
Finally, none of the three functions are identically zero on [0, 1]. So it fol-
lows from theorem A.1.iii that f has a unique maximum at t = 1. Hence
C(p′, c′) = f(0) < f(1) = C(pC , cC).

Lemma B.13. If assumptions 4.1–4.3 are satisfied and αrc > β > 0, then
the unique point (pC , cC) ∈ D that maximizes the function C satisfies pC = 0.

Proof. The assumptions of this lemma are a special case of the assumptions
of lemma B.12, so there exists a unique point (pC , cC) ∈ D that maximizes
the function C, and either (pC , cC) ∈ intD or pC = 0. Suppose for reductio
that (pC , cC) ∈ intD, i.e., 0 < pC < 1 and 0 < cC < µ(pC) < µ(0). Then

C(pC , cC) = (αrc + (β − αrc)pC)cCλ(pC , cC).

By assumption 4.1.a, λ(pC , cC) < λ(0, cC) and by the assumptions of this
lemma, αrc + (β − αrc)pC < αrc. Hence

C(pC , cC) < αrccCλ(0, cC) = C(0, cC),

which contradicts the supposition that (pC , cC) ∈ intD maximizes the func-
tion C. So pC = 0.

Lemma B.14. If assumptions 4.1–4.3 are satisfied, β > 0 and αrc ≤ 0,
there is a unique point (pC , cC) ∈ intD such that

C(pC , cC) = max
(p,c)∈D

C(p, c).

Proof. Because λ is continuous (by lemma B.11), C is continuous as well.
By the extreme value theorem, there exists a point (pC , cC) ∈ D such that
C(pC , cC) = max(p,c)∈D C(p, c) (uniqueness will be shown below).
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Let D+
C =

{
(p, c) ∈ D | p ≥ −αrc

β−αrc

}
. Because β > 0 and αrc ≤ 0, 0 ≤

−αrc

β−αrc
< 1. Hence intD+

C =
{
(p, c) | −αrc

β−αrc
< p < 1, 0 < c < µ(p)

}
is non-

empty.
As the name suggests, the significance of D+

C is that it denotes the part
of the domain where C is nonnegative. More precisely, C(p, c) > 0 if (p, c) ∈
intD+

C , C(p, c) = 0 if (p, c) is a boundary point of D+
C , and C(p, c) < 0 if

(p, c) ∈ D \D+
C . It follows that (pC , cC) ∈ intD+

C and (since intD+
C ⊆ intD)

that (pC , cC) ∈ intD.
Let (p′, c′) 6= (pC , cC) be any point in D. To show uniqueness of the

maximum, it suffices to show that (p′, c′) does not maximize C. If (p′, c′) /∈
intD+

C then the proof is done because C(p′, c′) ≤ 0 < C(pC , cC). So suppose
(p′, c′) ∈ intD+

C .
Let f : [0, 1]→ [0,∞) be the function defined by

f(t) = C (tpC + (1− t)p′, tcC + (1− t)c′)

= (αrc + (β − αrc) (tpC + (1− t)p′))

· (tcC + (1− t)c′)λ (tpC + (1− t)p′, tcC + (1− t)c′)

for all t ∈ [0, 1]. Because C is maximized at (pC , cC), f is maximized at
t = 1.

Note that f can be written as the product of three concave and nonnega-
tive functions: λ is a concave function of t as a consequence of assumption 4.3,
and αrc+(β−αrc)(tpC +(1− t)p′) and tcC +(1− t)c′ are linear functions of t
and hence also concave. Moreover, since either pC 6= p′ or cC 6= c′, at least
one of the functions αrc + (β − αrc)(tpC + (1− t)p′) and tcC + (1− t)c′ has
a unique maximum. Finally, none of the three functions are identically zero
on [0, 1]. So it follows from theorem A.1.iii that f has a unique maximum at
t = 1. Hence C(p′, c′) = f(0) < f(1) = C(pC , cC).

Combining these lemmas yields the first theorem for this model.

Assumption 4.4 (Imperfect peer review). The peer review acceptance prob-
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abilities are such that α > 0 and β > 0.

Theorem 4.1 (Unique maxima (redux)). If assumptions 4.1–4.4 are satis-
fied, then there exist unique points (pC , cC) and (pV , cV ) that maximize the
functions C and V respectively, that is,

C(pC , cC) = max
(p,c)∈D

C(p, c) and V (pV , cV ) = max
(p,c)∈D

V (p, c).

Moreover, pC < 1 and 0 < cC < µ(pC); and pV < 1 and 0 < cV < µ(pV ).

Proof. For the function C, the result follows immediately from lemma B.12
if rc > 0 (and hence αrc > 0) and from lemma B.14 if rc ≤ 0 (and hence
αrc ≤ 0).

Since the function V is identical to the function C except that rc is
replaced with rv, the result for V similarly follows from lemma B.12 if rv > 0
and from lemma B.14 if rv ≤ 0.

Theorem B.1. Let assumptions 4.1–4.4 be satisfied. Assume also that rv ≤
rc. Define (pC , cC) and (pV , cV ) as in theorem 4.1. Then either pC < pV or
(pC , cC) = (pV , cV ).

Proof. Suppose for reductio that pC ≥ pV and that (pC , cC) 6= (pV , cV ) (that
is, either pC 6= pV or cC 6= cV ). Because (pC , cC) and (pV , cV ) are distinct,
and (pV , cV ) uniquely maximizes V ,

V (pV , cV ) = (αrv + (β − αrv)pV )cV λ(pV , cV )

> (αrv + (β − αrv)pC)cCλ(pC , cC) = V (pC , cC).

I claim that it follows that cV λ(pV , cV ) > cCλ(pC , cC). To see this, it is useful
to distinguish two cases.

If β ≥ αrv then the supposition that pC ≥ pV yields αrv + (β−αrv)pC ≥
αrv+(β−αrv)pV (moreover, the latter is positive since V (pV , cV ) is positive).
But then the only way V (pV , cV ) > V (pC , cC) can be true is if cV λ(pV , cV ) >
cCλ(pC , cC).
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If, on the other hand, β < αrv it follows that β < αrc. So pC = 0
by lemma B.13 and hence also pV = 0 (because pC ≥ pV ). But then the in-
equality established above reduces to αrvcV λ(pV , cV ) > αrvcCλ(pC , cC) which
(given that αrv > β > 0) is equivalent to cV λ(pV , cV ) > cCλ(pC , cC).

Combining the fact V (pV , cV ) > V (pC , cC), cV λ(pV , cV ) > cCλ(pC , cC),
pC ≥ pV and rc ≥ rv yields

C(pV , cV ) = V (pV , cV ) + α(rc − rv)(1− pV )cV λ(pV , cV )

> V (pC , cC) + α(rc − rv)(1− pC)cCλ(pC , cC) = C(pC , cC).

But this contradicts the fact that (pC , cC) maximizes C. So the supposition
is false, which means that either (pC , cC) = (pV , cV ) or pC < pV .

Assumption 4.5 (Credit and social value). The social value of erroneous
results is less than the credit given for them: rv < rc.

Theorem 4.2 (Rushing into print (redux)). Let assumptions 4.1–4.5 be sat-
isfied, and define (pC , cC) and (pV , cV ) as in theorem 4.1. Then pC ≤ pV .

Proof. Since assumption 4.5 implies that rv ≤ rc, the assumptions of theo-
rem B.1 are satisfied. Hence either pC < pV or (pC , cC) = (pV , cV ). But this
clearly implies pC ≤ pV .

In order to rule out the case that (pC , cC) = (pV , cV ) (and thus conclude
that pC < pV ) two additional assumptions are needed. First, in order to rule
out that pC = pV = 0 I assume that the social value of erroneous results is
significantly lower than the social value of accurate results. Whereas before
a factor two sufficed (αve < βva/2), here a factor three is required.

Assumption 4.6 (Limited social value of errors). The social value of erro-
neous results (weighted by the chance of acceptance) is less than a third that
of accurate results: αrv < β/3.

Lemma B.15. Let assumptions 4.1–4.4, and 4.6 be satisfied. Define (pV , cV )
as in theorem 4.1. Then (pV , cV ) ∈ intD.
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Proof. By theorem 4.1 either (pV , cV ) ∈ intD or pV = 0. So it suffices to
show that pV 6= 0.

Suppose for reductio that (0, c) maximizes V for some 0 < c < µ(0) and
that αrv > 0 (the case αrv ≤ 0 is handled by lemma B.14). By assumption 4.6
β > 3αrv and so t ∈ (0, 1

4), where t is defined by

t = β − 3αrv
4(β − αrv)

and hence 1− t = 3β − αrv
4(β − αrv)

.

Using assumption 4.3 and λ(1, 0) = 0 (by lemma B.7),

(1− t)λ(0, c) = (1− t)λ(0, c) + tλ(1, 0) ≤ λ(t, (1− t)c).

But then

V (t, (1− t)c) =
(
βt(1− t)c+ αrv(1− t)2

)
λ(t, (1− t)c)

≥ (1− t)2 (βtc+ αrv(1− t)c)λ(0, c)

> αrvcλ(0, c) = V (0, c),

where the second inequality follows because t was chosen such that

(1− t)2 (βt+ αrv(1− t))− αrv = (β − 3αrv)2(9β − 7αrv)
64(β − αrv)2 > 0.

Since V (t, (1 − t)c) > V (0, c), V does not have a maximum at (0, c). Con-
tradiction.

Second, I assume that the function λ is differentiable in its first argument
on the interior of its domain.

Assumption 4.7 (The speed function is differentiable (in p)). The partial
derivative of the function λ with respect to its first argument exists on the
interior of its domain, i.e., ∂

∂p
λ(p, c) exists whenever 0 < p < 1 and 0 < c <

µ(p).
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Theorem 4.3 (Strict inequality (redux)). Let assumptions 4.1–4.7 be satis-
fied, and define (pC , cC) and (pV , cV ) as in theorem 4.1. Then pC < pV .

Proof. Since all the conditions of theorem B.1 are satisfied, either pC < pV

or (pC , cC) = (pV , cV ). So it suffices to show that (pC , cC) 6= (pV , cV ).
Since the conditions of lemma B.15 are also satisfied, (pV , cV ) ∈ intD. If

(pC , cC) /∈ intD the proof is finished, so suppose (pC , cC) ∈ intD.
Assumption 4.7 then entails that the partial derivatives of C and V with

respect to their first argument exist at (pC , cC). Since (pC , cC) is an ex-
tremum of C achieved in the interior of its domain, ∂

∂p
C(pC , cC) = 0. By

assumption 4.1.a, ∂
∂p
λ(pC , cC) < 0. Hence

∂

∂p
V (pC , cC) = ∂

∂p
C(pC , cC) + (αrc − αrv)cCλ(pC , cC)

+ (αrv − αrc)(1− pC)cC
∂

∂p
λ(pC , cC) > 0.

So (pC , cC) does not maximize V . So (pC , cC) 6= (pV , cV ).
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