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Abstract

There is a commonly made distinction between two types of scien-
tists: risk-taking, trailblazing mavericks and detail-oriented followers.
A number of recent papers have discussed the question what a de-
sirable mixture of mavericks and followers looks like. Answering this
question is most useful if a scientific community can be steered toward
such a desirable mixture. One attractive route is through credit in-
centives: manipulating rewards so that reward-seeking scientists are
likely to form the desired mixture of their own accord. Here I ar-
gue that (even in theory) this idea is less straightforward than it may
seem. Interpreting mavericks as scientists who prioritize rewards over
speed and risk, I show in a deliberatively simple model that there is a
fixed mixture which is not particularly likely to be desirable and which
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credit incentives cannot alter. I consider a way around this result, but
this has some major drawbacks. I conclude that credit incentives are
not as promising a way to create a desirable mixture of mavericks and
followers as one might have thought.

1 Introduction

It is an old idea in the philosophy of science that there are different ways
to contribute to science. Kuhn famously distinguished between normal sci-
ence and extraordinary or revolutionary science, and he strongly hinted that
scientists were differentially suitable to these different types of work (Kuhn
1996, pp. 82–89). Hull invokes a similar idea, and makes the tie to individual
scientists more explicit: “Most scientists play it safe, making small, uncon-
troversial contributions. A few attempt to revolutionize some area of science.
They risk failing big” (Hull 1988, p. 474).

Let me unpack this distinction from Hull a bit. Many scientists work in
the context of established research programs or paradigms, using standard
methodologies to make incremental progress on relatively specific pre-existing
problems. Generally, they are able to produce results that are likely to be
accepted by the scientific community, and do so consistently over time. Some
scientists instead go in for research in relatively unexplored areas, or areas
where the foundations are not as settled. This type of work can yield major
new discoveries if successful, but it is more likely to take an unpredictable
amount of time or fail completely. For the moment I will refer to scientists
of the latter type as mavericks and to the former as followers.

The distinction has drawn some recent interest in the literature on for-
mal social epistemology, i.e., the study of epistemological questions regarding
the social structure of science using formal models. Weisberg and Muldoon
(2009) introduce epistemic landscape models and use them to argue that a
scientific community benefits from having a mixture of mavericks and follow-
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ers. A number of subsequent papers have extended or criticized this (Grim
et al. 2013, Alexander et al. 2015, Thoma 2015, Pöyhönen 2017, Avin forth-
coming).

One of the key underlying questions in these papers is: What distribution
of researcher types (i.e., what proportion of mavericks, followers, and possibly
other types) makes for an effective scientific community? Here, an effective
community appears to be one that finds and uses approaches that work well
for the research question(s) it is interested in.

The authors involved do not take this question about good (or optimal)
distributions to be of purely theoretical interest. Rather, once a satisfying
answer to the question is obtained, it should be used normatively: real scien-
tific communities should be encouraged to adopt a good (preferably optimal)
distribution of researcher types. In the words of Kitcher, one of the first to
write on formal social epistemology: “The philosophers have ignored the so-
cial structure of science. The point, however, is to change it” (Kitcher 1990,
p. 22).

On the whole, the papers mentioned above say very little about how a
socially beneficial distribution of researcher types, once determined, should
be realized. Thoma (2015) worries about this a little bit. Towards the end
of her paper, she points out that in Weisberg and Muldoon’s model, it is
“unclear why anybody would choose to be a follower, given their lack of
productivity” (Thoma 2015, p. 470). In her own model, where explorers
and extractors play the role of mavericks and followers respectively, a con-
verse problem arises: “the question is why anybody would choose to be an
explorer” (p. 470). She then suggests that rewards given to individual scien-
tists may have a role to play here: “social and financial rewards. . . could help
to maintain an epistemically beneficial diversity of research strategy by mak-
ing sure that the explorer strategy is attractive enough for some scientists to
choose it” (p. 471).

This idea has some plausibility. It is a well-known fact that scientists are
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mainly rewarded for their work through credit: the recognition of achieve-
ments by peers, made visible in the form of publications in prestigious jour-
nals, citations, prizes, and prestigious appointments (Merton 1957, Hull
1988). This affects scientists’ behavior in a predictable way: they are more
likely to do things which they believe will yield credit (Merton 1969, Dasgupta
and David 1994, Strevens 2003). Formal social epistemologists like Kitcher
(1990) and Strevens (2003) have suggested that this may affect scientists’
choice of methodological approach—creating a socially beneficial division of
cognitive labor in Kitcher’s terminology. A number of authors have argued
for other positive side effects of the credit motive (Dasgupta and David 1994,
Boyer-Kassem and Imbert 2015, Heesen 2017, Zollman 2018).

The question, then, that I focus on here is whether credit incentives can
be used to encourage scientists to create a socially beneficial distribution of
researcher types. In other words, where previous work has asked what a
good distribution of researcher types looks like, I ask whether credit can be
used to get there. I use a deliberately simple model (abstracting away from
epistemic landscapes) as a starting point for my discussion.

I claim that under quite general conditions the key factor that influences
whether a credit-maximizing scientist chooses to be a maverick or a follower
is her predisposition for producing the type of work typical of a maverick or
a follower. I use this to argue for a negative conclusion: there is no reason to
think that the predisposition to be a maverick occurs among scientists at any-
thing like the frequency at which it needs to occur to produce a particularly
good distribution of researcher types.

As will become clear, I do not intend to make any strong nativist claims
about predispositions. In particular, I remain agnostic about when and how
a scientist’s predisposition gets fixed (at birth, in childhood, or as a part of
professional training). However, it is key to my argument that this predis-
position is specific to an individual scientist and is unlikely to change much
over the course of a scientific career.
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My argument uncovers serious limitations to the idea of using credit in-
centives to create a beneficial distribution of researcher types. Credit incen-
tives do not act like an “invisible hand”, steering the scientific community
towards the optimal distribution, as they have been claimed to do for the
division of cognitive labor (Strevens 2003) and intermediate results sharing
(Heesen 2017).

Not all is lost though. After presenting my formal result, I discuss in
more detail what kinds of manipulation through credit incentives are ruled
out by it, and what remains possible. The relationship between the division
of cognitive labor (studied by Kitcher and Strevens) and the distribution
of researcher types (studied by Weisberg and Muldoon and Thoma) turns
out to be more complicated than previously thought. Where Weisberg and
Muldoon and Thoma saw an analogy, I argue there is a tradeoff instead.

2 Mavericks as Impact-Seekers

What exactly is a maverick? The various authors mentioned in the introduc-
tion all use slightly different definitions so it is useful to clarify the version
of the idea I work with.

Weisberg and Muldoon put their definitions in terms of a desire to de-
viate from (or imitate) what others have done: “mavericks avoid previously
examined approaches, while followers emulate them” (Weisberg and Mul-
doon 2009, p. 243). In a variation on this theme, Thoma’s explorer types
“like to follow approaches that are very different from those of others, while
extractor-types like to do work that is very similar to but not the same as
that done by others” (Thoma 2015, p. 463). No analysis is given of what
these desires are based on.

Kuhn (1996) does not explicitly discuss different types of scientists, but
associates different skills with periods of normal science as opposed to ex-
traordinary or revolutionary science. His most explicit claim in this regard,
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repeated multiple times (pp. 90, 144, 166), is that younger scientists are more
suitable to instigate revolutions (cf. Wray 2003).

Hull (1988, p. 474) draws the distinction in terms of the tradeoff between
risk and reward. This way of drawing the line is most congenial to my
purposes. It avoids building into the definition any assumption about a
psychological explanation for the existence of different researcher types, and
it also avoids building in an assumption that the distinction has to be binary
(as opposed to graded).

So on my definition a “maverick” is a scientist (used broadly to include
any academic researcher) who works on high-risk high-reward projects, i.e., a
scientist who aims “to revolutionize some area of science” (Hull 1988, p. 474).
This presupposes that scientists are in a position to decide in advance whether
to attempt a high-risk high-reward project as opposed to something less am-
bitious. An opposing view holds that scientists pick projects for other reasons
(e.g., intellectual interest, or the availability of instruments or materials) and
that high-reward projects are simply regular projects carried out by partic-
ularly skillful or lucky scientists. I do not provide an argument against this
view, but I assume that, at least, the truth is somewhere in the middle: sci-
entists can form expectations about the likely rewards of particular projects
and such expectations factor into their decisions. Let me say more now about
what I mean by rewards and risks.

As mentioned, the main unit of reward in science is credit: prestige con-
ferred by the scientist’s peers in the form of prizes, publications, citations,
and appointments. Founding or revolutionizing a (sub)field of science is the
pinnacle, yielding the most credit, contributions that change a (sub)field
in some smaller way yield less credit, and at the bottom sits scientific work
that is completely ignored. Hence credit is given for a contribution to science
broadly in proportion to its scientific impact.

That credit is proportional to impact is an empirical claim which I build
into my model. It is defended by Merton (1957, especially pp. 642–645) who
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argues that “rewards are to be meted out in accord with the measure of
accomplishment” (p. 659). Cole and Cole (1967, p. 385) provide some lim-
ited quantitative evidence by showing that scientists who write high-impact
papers tend to get prestigious awards and have better name recognition. It
is perhaps telling that both credit and impact tend to be measured using
citation counts (e.g., Sinatra et al. 2016, Cole and Cole 1973, with the latter
using citations in both senses; see Bornmann and Daniel 2008 and citations
therein for discussion). I discuss what happens if this assumption is relaxed
in section 4.

The risk of aiming for high impact is twofold. First, the project may
fail, as most attempts to revolutionize an area of science do. (In contrast,
less world-shocking projects often have a greater chance of success.) Second,
projects that aim for high impact tend to take more time to complete. In
some sense this exacerbates the first risk: if the project fails, potentially a lot
of time has been wasted, at least compared to the time wasted when a less
ambitious project fails. But even if the project succeeds the risk of taking
a long time is relevant: if the scientist could have completed multiple less
ambitious projects in the same amount of time, the combined credit from
those projects might have been higher than that of the high impact project,
even if it is more impactful than any one of the less ambitious projects.

So while Hull describes a two-way tradeoff between risk and reward, I
suggest that the risk component of this tradeoff may be broken down into a
risk of failure and a risk of being slow (which carries an opportunity cost).
The next section discusses a simple model of the three-way tradeoff between
what I will call impact, speed, and success probability. Insofar as I continue to
use the terminology of risk, it will refer to the risk of failure (the complement
of the success probability) rather than the risk of being slow.

To distinguish my conception of different researcher types from that of
authors like Weisberg and Muldoon and Thoma, I will use different terms
from here on out. Emphasizing Hull’s tradeoff, I refer to a scientist who
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works on high-risk high-reward projects as an impact-seeker (my analogue of
the maverick) and to the contrast case as a safety-seeker.

3 A Simple Model of Researcher Types

The key tradeoff that the model aims to capture is the three-way tradeoff
between impact, success probability, and speed. The model I provide is
deliberately simple, as the aim is to capture the phenomenon I am interested
in with as few assumptions as possible.

As the old business adage says: you can have it good, fast, or cheap; pick
two. In the present context, this means you can have it impactful, fast, or
with high chance of success, and (within certain limits) you get to choose
two of these, with the third one being determined as a result of the tradeoff.
In setting up the model, I assume that success probability and impact are
chosen by the scientist, and speed is determined as a function of these choices.
(This is a harmless assumption: a simple translation exercise yields the same
model with success probability and speed as the independent variables, or
impact and speed.)

Let p denote the scientist’s success probability. More precisely, this is the
scientist’s subjective probability that the project yields a publishable result
of any impact at all. Being a probability, this variable is constrained to
the unit interval: p ∈ [0, 1]. The risk of failure is the complement 1 − p

of the success probability. Note that what matters to the scientist’s choice
of what to work on is her own estimate of the likelihood of success, hence
this is a credence rather than a chance. It seems reasonable to suppose that
a competent scientist’s credence of success cannot be too far off from her
(objective) chance of success, but nothing in my model turns on this.

Let c denote the scientist’s impact. This is the scientist’s estimate of the
impact of her project assuming it succeeds. As discussed in the previous
section, in the model I equate impact and credit. I remain agnostic about

8



how impact/credit should be measured, but one relatively simple way to
make this more precise would be as the expected number of citations to
the publication(s) resulting from the project, as is commonly done when a
quantitative measure is needed (Cole and Cole 1967, 1973, Sinatra et al.
2016). I assume estimated impact to be nonnegative (otherwise why start
the project?), i.e., c ∈ [0,∞). I do not explicitly impose a maximum on the
impact a scientist might aim for, although as I will show the assumptions
below entail that such a maximum exists.

Finally, let λ denote the scientist’s speed. The scientist has to estimate
how long her project will take with a probability distribution. Empirical
data on publication patterns in scientific careers suggests that the length
of projects approximates an exponential distribution (Huber 1998a,b, 2001,
Huber and Wagner-Döbler 2001a,b). So I assume the scientist believes the
duration of the project to be exponentially distributed, with the speed pa-
rameter λ denoting her “work rate”. That is, λ gives the average number
of projects she would complete per unit of time if she works on projects at
rate λ continuously. A more straightforward interpretation attaches to its
inverse: 1/λ is the expected completion time of the project. As with the
other two variables, I focus on the scientist’s own subjective estimate of the
speed.

The tradeoff is modeled by assuming that speed is determined as a func-
tion of success probability and impact: for any p and c, λ(p, c) denotes the
maximum speed the scientist thinks she can achieve given her choices of suc-
cess probability and impact. Call this function the tradeoff function. I make
the following assumptions on this function.

Assumption 1. The tradeoff function has the following properties:

1.a. The tradeoff function is decreasing in both of its arguments, i.e., if p <
p′ then λ(p′, c) < λ(p, c) for any c, and if c < c′ then λ(p, c′) < λ(p, c)
for any p.
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1.b. No perfect work: limp→1 λ(p, 0) = 0.

1.c. The tradeoff function is concave: for any t ∈ [0, 1] and for any p, p′, c, c′

tλ(p, c) + (1− t)λ(p′, c′) ≤ λ(tp+ (1− t)p′, tc+ (1− t)c′).

Assumption 1.a formalizes the fact that the tradeoff function is meant
to capture a tradeoff: if one of the three variables goes up, one or both of
the others must go down. This need not always happen in practice, but
recall that the variables reflect the scientist’s expectations before starting
the project. The assumption only fails if there is a way that the scientist can
know about in advance for her to increase one of these variables without a
corresponding decrease. This seems like it would be a rare case.

Assumption 1.b captures the idea that there is no certainty in science.
There is never a guarantee of success, hence impact and speed must go to
zero as the success probability goes to one.

Assumption 1.c indicates that there are decreasing marginal returns from
decreasing a variable or a combination of two variables, or increasing marginal
costs for increasing a variable. A scientist aiming to increase her success
probability requires ever more time to do so (or must restrict her ambitions
of impact). A scientist who wants to publish more quickly finds that her
gains are smaller if she already had relatively modest goals for impact and
success probability (if only because writing a paper itself takes time, and this
will take up a relatively larger share of the time if the scientist spends less
time on developing the scientific content). And a scientist going for greater
impact faces ever greater increases in the risk of failure or the required time.

Note that these assumptions do not specify the exact rate at which the
three variables trade off. In particular, there is no assumption of symmetry.
Thus, it is consistent with my assumptions that aiming for high impact comes
at a cost of low chance of success and low speed, whereas perhaps high
chance of success and high speed can be achieved simultaneously (given a
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specification of what counts as “high” for each variable). The substance of
it being a three-way tradeoff is in the fact that a small increase in impact
(say) can usually be “paid for” either with a decrease in success probability,
a decrease in speed, or a combination of both.

These assumptions have a number of consequences. One is that the trade-
off function is continuous, i.e., there are no sudden jumps (this follows from
concavity). This seems right to me for most cases, as the tradeoff func-
tion reflects the scientist’s expectations about average speed, not the actual
time taken on any particular project. Even so, I grant that there may be
exceptions to this; my aim is to capture typical cases, not necessarily all.

Another consequence pertains to the set of choices for p and c for which
the tradeoff function is nonnegative. This may be viewed as the set of feasible
choices. Assumption 1 entails that there is a function µ which may be called
the maximum impact function: for any choice of p, µ(p) gives the highest
possible impact that can be achieved at success probability p and nonnegative
speed.

Proposition 1 (Maximum Impact). Let p ∈ [0, 1]. Assumption 1 entails
that there exists a function µ : [0, 1] → [0,∞) such that λ(p, c) ≥ 0 if and
only if c ≤ µ(p). The function µ is decreasing and concave.

Note that the maximum impact function inherits the key properties of
the tradeoff function. This reflects the more general fact that, if a particular
level of speed is fixed, the two-way tradeoff between impact and success
probability inherits (through assumption 1) the structural properties of the
three-way tradeoff.

Consider a scientist who aims to maximize expected credit, and is perfectly
rational in going about this goal. This is not to claim that any such scientist
exists: real scientists have other goals beside credit, and are not perfectly
rational. But the choices a rational expected credit-maximizing scientist
makes are the choices that real scientists have a credit incentive to make.
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The scientist’s expected credit per unit of time while she is working on
this project is a function of her choices of success probability p and impact c.
She completes projects like this one at a rate of λ per unit of time, the project
succeeds with probability p, and the scientist’s expected credit if the project
does succeed is c. Hence the expected credit function C is given by

C(p, c) = c · p · λ(p, c).

Note that this expected credit function does not depend on whether there
are any other scientists in the community and what they are doing. It turns
out to be a consequence of using exponential distributions to model the time
it takes to complete projects that the average completion rate of projects
is independent of the activity of competing scientists. This is mathemati-
cally convenient here as it reduces the model to one that can be analyzed
using decision theory rather than requiring game theory. It is not obvious
that anything significant is lost by making use of this convenience, given the
evidence that project completion times are indeed exponentially distributed
(Huber 1998a,b, 2001, Huber and Wagner-Döbler 2001a,b).

So what happens when the scientist aims to maximize the expected credit
function?

Theorem 1 (Unique Maximum). If assumption 1 is satisfied, there exists a
unique point (p∗, c∗) that maximizes the function C:

C(p∗, c∗) = max
p∈[0,1],c∈[0,∞)

C(p, c).

Moreover, 0 < p∗ < 1 and 0 < c∗ < µ(p∗).

The key insight offered by theorem 1 is that there is a unique credit-
maximizing choice. In other words, theorem 1 rules out the possibility that a
scientist could switch from being a safety-seeker to an impact-seeker or vice
versa, while remaining at a global maximum of C. For a credit-maximizing
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scientist, there is just one rational tradeoff between impact and safety, not
a range of admissible values between which an independent preference for
being an impact-seeker or a safety-seeker might act as a tie-breaker. This
consequence of the model may be seen as surprising in light of the psycholog-
ical terms in which previous authors have discussed these types (this is most
explicit in Thoma 2015, for example on p. 470: “some scientists do choose to
be explorers, apparently for good reasons”).

This does not rule out the existence of different researcher types. But
it suggests that these types are the result of differences in the shape of the
tradeoff function of different scientists. According to theorem 1, the location
of the optimum given a particular tradeoff function determines the researcher
type any scientist with that tradeoff function has a credit incentive to be.

There is some reason to believe that the tradeoff function is more or less
fixed over the course of a career. For example, Huber (1998a,b, 2001) and
Huber and Wagner-Döbler (2001a,b) argue based on empirical evidence that
the productivity of scientists (i.e., λ) is, on average, constant over the course
of a career. And Sinatra et al. (2016) argue that high-impact papers are
distributed randomly within each scientist’s career, suggesting that expected
impact (i.e., c) is constant across a career.

This suggests an interpretation of the tradeoff function as a relatively
stable predisposition to trade off speed, success probability, and impact in
a particular way. Any given scientist’s researcher type will then similarly
be relatively stable, as determined by her predisposition, while different re-
searcher types result from differences in predispositions across scientists. The
following example illustrates this.

Example. Consider two scientists. In the estimation of scientist 1, the trade-
off between speed, success probability, and impact is given for her by the
function λ1, where

λ1(p, c) = 1− 3
4p

4 − 1
4p

2 − 1
2pc−

1
4c

2 − 3
4c,
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for all 0 ≤ p ≤ 1 and c ≥ 0 (see figure 1). Note that this function satisfies
assumption 1. Then the credit-maximizing choice for scientist 1 is p ≈ 0.52
and c ≈ 0.38.

Figure 1: Graphs of λ1 (on the left) and λ2 (on the right).

In contrast, scientist 2’s estimate of the tradeoff is given by tradeoff func-
tion

λ2(p, c) = 1− 1
4p

2 − 1
2pc−

1
4c

2 − 3
4c

4 − 3
4p,

for all 0 ≤ p ≤ 1 and c ≥ 0 (see figure 1). This function also satisfies
assumption 1. But the credit-maximizing choice for scientist 2 is p ≈ 0.38
and c ≈ 0.52.

Scientist 1’s tradeoff function shows a predisposition that favors the suc-
cess probability compared to scientist 2’s, which shows a predisposition that
favors impact. This is because λ1 is closer to linear in c—having only a small
quadratic component—while it is a fourth-degree polynomial in p (λ2 is sim-
ply its mirror image). So if the scientists are responsive to credit incentives,
scientist 1 will behave more like a safety-seeker, doing relatively safe, low-
impact research. Scientist 2 on the other hand will behave more like an
impact-seeker, doing more risky, high-impact research.

If C correctly captures the shape of the credit function, and assumption 1
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is justified, then theorem 1 guarantees that differences in the shape of the
tradeoff function (what I am now calling different predispositions) are the
only way different researcher types can arise as a result of credit incentives.

It is tempting to think of a scientist with a predisposition that favors
safety-seeking as risk-averse, and a scientist with a predisposition that favors
impact-seeking as risk-loving, since the latter will more likely engage in high-
risk high-reward research. But this is somewhat misleading. At least on
a conventional understanding of the terminology, risk aversion is thought
of as a preference. A preference to avoid risk can be expressed by using a
concave utility function (setting aside complications introduced by the Allais
and Ellsberg paradoxes, although these types of risk aversion are also most
readily understood as preferences).

In contrast, the predispositions discussed here should be thought of as
beliefs. The tradeoff function captures a scientist’s belief about how speed,
success probability, and impact trade off for her. So a predisposition that
favors safety-seeking reflects a scientist’s belief that her knowledge and skills
will generate more impact over time if she focuses on a larger number of
low impact projects than if she focuses on a smaller number of high impact
projects.

I have said nothing about whether the distribution of predispositions in
a scientific community is likely to incentivize a good or a bad distribution of
impact-seekers and safety-seekers. As far as I can see there is no connection
between how predispositions will be distributed and what makes for a good
distribution of researcher types, so any positive effects here would be purely
coincidental. Moreover, according to theorem 1 credit incentives cannot be
used to improve the distribution of types. Rather, the distribution of types
that is favored by credit incentives—and hence the distribution the commu-
nity will tend to insofar as scientists are responsive to credit incentives—is
as likely to be beneficial as harmful.
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4 Possibilities and Limitations

As mentioned, I take the tradeoff between speed, success probability, and
impact as it is captured in the tradeoff function to be a feature of an indi-
vidual scientist. I find the term predisposition convenient as a shorthand,
but the implications of this terminology should not be taken too strongly.
As mentioned above, the idea is to capture something that is specific to an
individual scientist and unlikely to change (much) over time.

Theorem 1 tells against a “passive” approach to using the credit economy
to get a good distribution of researcher types. Where previous work has
argued that the credit economy operates like an invisible hand, using indi-
vidual self-interest to motivate socially beneficial decisions (Hull 1988, 1997,
Leonard 2002, Strevens 2003, Heesen 2017), I have argued here that this
mechanism should not be expected to have particularly beneficial effects in
the context of the distribution of researcher types. This is because there is no
reason to expect the distribution of predispositions in a scientific community
to match the optimal (or a particularly good) distribution of impact-seeking
versus safety-seeking.

This does not rule out a more “active” approach. The way scientific re-
sults are rewarded is to some extent under our control. More specifically, it
is under the control of “gatekeepers” such as journal editors and the agencies
and governments that award grants and prizes. Scientists’ credit incentives
change if the amount of credit that is given for different scientific contribu-
tions changes.

So far I have assumed that scientists expect the reward for successful
scientific work to be directly proportional to its scientific importance: both
are represented by the variable c. Scientific importance (i.e., impact) in-
fluences the tradeoff with speed and success probability and thus features
in the tradeoff function, whereas the reward features in the credit function.
That rewards are proportional to importance might be a feature of the credit
economy as currently implemented (see Merton 1957, Cole and Cole 1967,

16



Strevens 2003), but if it is, it is not a necessary feature. Proportionality
could be abandoned.

Suppose a social planner (with perfect control over how rewards are dis-
tributed) observes that not enough scientists are working to revolutionize the
field with high-risk high-reward research, i.e., there is a relative shortage of
impact-seekers. Such a planner could start giving extra rewards for high-
impact work, perhaps by introducing new prizes for this kind of work. As
a result the expected credit per unit of time for individual scientists looks
different. For example, the result might be that credit per unit of time is
described by a new function C ′ given by

C ′(p, c) = c2 · p · λ(p, c),

i.e., the scientist now expects rewards to be proportional to the square of the
scientific importance of the work, meaning that highly important work now
gets rewarded more (relative to the original credit function C). In general,
this will shift the optimal tradeoff for her so she becomes more impact-
seeking. To illustrate this: the C ′-maximizing choice for scientist 1 in the
example above has c ≈ 0.53 > 0.38 and the C ′-maximizing choice for scien-
tist 2 has c ≈ 0.64 > 0.52.

This shows that, despite the result from the previous section, credit incen-
tives can be used to manipulate the tradeoff scientists make between impact
and safety. But then what, if anything, is the significance of the result from
the previous section?

First, even allowing for the kinds of manipulations just suggested (which
assume a kind of fine-grained control over rewards that may not exist in
practice), credit incentives will not affect the relative distribution of impact-
seekers and safety-seekers. Rewarding high-impact work more (or less), will
generally affect all scientists in the same way. In the example above, all
scientists become more impact-seeking, at least qualitatively speaking.

At the same time, the quantitative effects may be different. In the exam-
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ple, c increases by 0.15 for scientist 1 and 0.12 for scientist 2. Interestingly, it
is the relatively more safety-seeking scientist 1 who makes a greater change
in the direction of impact-seeking. So at least in this example, encouraging
more impact-seeking also brings the scientists’ choices of c closer together
(here again there is a kind of decreasing marginal returns). While I suspect
this particular point does not generalize, it illustrates that quite a detailed
understanding of scientists’ predispositions may be needed on the part of a
social planner to achieve the desired effect from these manipulations.

More specifically, if two scientists have the same predisposition, changing
the rewards as suggested above will have the same qualitative and quantita-
tive effect on both. So if the optimal distribution of researcher types requires
changing the diversity in the scientific community (as Weisberg and Muldoon
2009 seem to suggest) it will not be possible to achieve this. For example,
suppose all scientists in a given community have one of two tradeoff functions
(say λ1 and λ2 from the example). If the overall productivity of the commu-
nity is optimized when there are three researcher types (e.g., impact-seekers,
speed-seekers, and success-seekers) then credit incentives cannot produce the
optimal distribution. Or to stay a bit closer to Weisberg and Muldoon’s dis-
cussion, if the optimal distribution calls for 60% impact-seekers and 40%
safety-seekers, but the community contains 30% impact-seekers (scientists
with tradeoff function λ2) and 70% safety-seekers (tradeoff function λ1), the
optimal distribution cannot be reached through the approach proposed here.

Second, the result of the previous section addresses the special case where
expected credit is proportional to impact. Strevens (2003) argues that credit
should be proportional to impact. This argument, if accepted, yields a pref-
erence for credit function C over C ′ or any alternative. Relatedly, Strevens
(2006) argues that the Matthew effect—famous scientists receive more credit
for the same work than non-famous scientists—is good for science on the
assumption that credit is proportional to impact. While I will not consider
this argument in detail, it supports the same preference. Any call to change
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the credit function will need to take all factors into account.
The argument in Strevens (2003, section 2) is based on the following

simple model. Suppose scientists need to choose which of a number of re-
search problems to work on, and assume the following. First, the projects
are independent in the sense that solving any one of them would be socially
valuable regardless of which of the other ones are solved (Strevens calls this
“the additive case”). Second, each project is characterized by a “success func-
tion”, which specifies the chance of solving the problem given the number of
scientists working on it. And third, the success functions are increasing and
concave. Then a reward structure which gives credit to each scientist propor-
tional to the expected impact of their contribution will incentivize scientists
to distribute themselves among the problems in a way that maximizes the
expected sum total impact.

The problem of how to distribute scientists over different research prob-
lems (or methodological approaches, or research programs) has been called
the division of cognitive labor since Kitcher (1990). The question of the type
of research carried out by each scientist (impact-seeking or safety-seeking)
is a separate issue, one that I have here referred to as the distribution of
researcher types. Using this terminology, Strevens (2003) argues that giving
credit proportional to impact optimizes the division of cognitive labor, and I
have argued there is no reason to expect it to lead to a particularly good dis-
tribution of researcher types. If the work of Weisberg and Muldoon (2009),
Thoma (2015), and others yields a specific recommendation for a good (or
even optimal) distribution of researcher types, incentivizing this distribution
would presumably involve a departure from setting credit proportional to im-
pact (as in the function C ′). But this entails a departure from the incentive
structure that optimizes the cognitive division of labor according to Strevens.

So there is not quite a disagreement with Strevens here. Strevens (2003)
is only concerned with the division of cognitive labor, and I note that a
concern with the distribution of researcher types may pull in a different
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direction. This suggests that there is a tradeoff between incentivizing a
beneficial division of cognitive labor and a beneficial distribution of researcher
types. However, it is difficult to be precise about the nature of this tradeoff
until we have a better sense of what is needed to incentivize a beneficial
distribution of researcher types.

What is perhaps more interesting is the general question this raises about
whether policy proposals designed to address different aspects of the social
structure of science are compatible. Strevens (2003) argues that credit should
be proportional to impact because he is concerned with the division of cog-
nitive labor. The argument by Strevens (2006) that the Matthew effect is
benign also depends on credit being proportional to impact. Heesen (2017)
argues that credit should be proportional to the difficulty of the completed
task out of a concern with sharing intermediate results. The present pa-
per suggests deviating from credit proportional to impact to get the right
level of impact-seeking. And other issues may impose yet further, possibly
incompatible constraints. Combining and weighting these constraints is an
important issue for future research.

5 Conclusion

Lakatos (1978) and Feyerabend (1975) famously argued that a diversity of
methodological approaches (what Kitcher 1990 called a division of cogni-
tive labor) is good for scientific progress. One might reason by analogy
that a diversity of researcher types, i.e., of mavericks/impact-seekers and
followers/safety-seekers, is also good for scientific progress, as hinted by Kuhn
(1996) and Hull (1988) and argued more explicitly by Weisberg and Muldoon
(2009) and Thoma (2015). Since credit rewards can arguably be used to
incentivize scientists to organize themselves into an optimal division of cog-
nitive labor (Kitcher 1990, Strevens 2003), extending the analogy suggests
that credit incentives might be used to improve the distribution of researcher
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types.
At a high level of abstraction, giving out credit for different types of

scientific contributions would seem to be an adequate means of incentivizing
both a diversity of methodologies and a diversity of researcher types. This
makes Thoma’s suggestion to use credit for the latter where Kitcher and
Strevens had used it for the former seem natural. Weisberg and Muldoon
(2009) similarly see a close connection there, as evidenced by their use of
“division of cognitive labor” in the title of a paper about researcher types.
It is somewhat surprising then that as one looks more closely, as I have done
here, one finds that the two types of diversity may conflict.

According to Strevens (2003), in order to optimize the division of cog-
nitive labor credit must be equated to impact. I have argued in section 3
that the incentive structure thus created entails a particular distribution of
researcher types which is not particularly likely to be a good one. Improving
the incentive structure with respect to the distribution of researcher types
in the manner suggested in section 4 then requires moving away from the
optimum with respect to the division of cognitive labor.

The point generalizes. Recent work on the social structure of science has
identified a number of choices scientists make that are potentially influenced
by credit incentives. In addition to the division of cognitive labor and the
distribution of researcher types, this includes the issues of compensating for
the positive externalities of scientific research (Dasgupta and David 1994,
Zollman 2018), collaboration (Boyer-Kassem and Imbert 2015), and sharing
intermediate results (Heesen 2017). In each case the good news is that credit
rewards can be used to incentivize good or optimal choices.

The bad news identified here is that the right incentive structure may be
different for each issue. The division of cognitive labor requires giving credit
proportional to impact, the distribution of researcher types may well re-
quire deviating from that, sharing intermediate results requires giving credit
proportional to difficulty, and the other issues may have yet further require-
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ments. It appears that there are real tradeoffs here. A crucial question for
future research is how to assess these tradeoffs. In other words, what reward
structure is best all-things-considered?

A The Tradeoff Between Impact, Success Prob-
ability, and Speed

In this appendix I prove the results from section 3. Recall assumption 1.

Assumption 1. The tradeoff function has the following properties:

1.a. The tradeoff function is decreasing in both of its arguments, i.e., if p <
p′ then λ(p′, c) < λ(p, c) for any c, and if c < c′ then λ(p, c′) < λ(p, c)
for any p.

1.b. No perfect work: limp→1 λ(p, 0) = 0.

1.c. The tradeoff function is concave: for any t ∈ [0, 1] and for any p, p′, c, c′

tλ(p, c) + (1− t)λ(p′, c′) ≤ λ(tp+ (1− t)p′, tc+ (1− t)c′).

I first prove that this assumption entails that the tradeoff function is
continuous.

Lemma 1. If assumption 1 is satisfied, λ is continuous (except perhaps when
p = 1).

Proof. Because λ is concave, it is continuous at any interior point of its
domain, i.e., for all p ∈ (0, 1) and for all c ∈ (0,∞). It remains to show that
λ is continuous on the borders, that is at those points (p, c) with p = 0 or
c = 0. I give a proof for the case c = 0 (the other case is similar.)

Fix a value of p. Since λ is decreasing in c, it must be that limc→0 λ(p, c) ≤
λ(p, 0). But it follows from the fact that λ is concave that limc→0 λ(p, c) ≥
λ(p, 0). So the two must be equal, and λ is continuous at the point (p, 0).
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As stated in the lemma, continuity may fail when p = 1. But note that,
due to concavity and the no perfect work assumption, λ(1, 0) ≤ 0. And due
to the assumption that λ is decreasing it also follows for any c > 0 that
λ(1, c) < 0 and limp→1 λ(p, c) ≤ 0.

Since negative speed has no interpretation in the model, and since the
function C obviously will not be maximized at points where the tradeoff
function is negative or zero, it makes no difference to the results to work with
a “fixed up” function of the tradeoff function that is continuous everywhere
(i.e., including at points with p = 1). But this does significantly simplify the
proofs below. So below I assume that λ is continuous everywhere.

The role of the maximum impact function µ is to identify the set of choices
for p and c where the speed is positive.

Proposition 1 (Maximum Impact). Let p ∈ [0, 1]. Assumption 1 entails
that there exists a function µ : [0, 1] → [0,∞) such that λ(p, c) ≥ 0 if and
only if c ≤ µ(p). The function µ is decreasing and concave.

Proof. Let p ∈ [0, 1]. Since λ is decreasing in p and limp→1 λ(p, 0) = 0,
λ(p, 0) > 0 if p < 1 and λ(1, 0) = 0. Now consider the part of the tradeoff
function obtained by holding p fixed and letting c vary. This partial function
is maximized when c = 0 (because λ is decreasing in c). Due to concavity, it
must eventually become negative. Since λ is continuous, by the intermediate
value theorem there must be a value of c such that λ(p, c) = 0. Define µ(p)
to be the smallest value of c such that λ(p, c) = 0. Because λ is decreasing
in c, λ(p, c) > 0 whenever c < µ(p) and λ(p, c) < 0 whenever c > µ(p).
This establishes the existence of the function µ. It remains to show that µ
is decreasing and concave.

Let p < p′ and suppose for reductio that µ(p) ≤ µ(p′). By definition of
µ, λ(p, µ(p)) = λ(p′, µ(p′)) = 0. But since λ is decreasing,

λ(p, µ(p)) > λ(p′, µ(p)) ≥ λ(p′, µ(p′)).
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Contradiction. So µ(p′) < µ(p), i.e., µ is decreasing.
Let p, p′, t ∈ [0, 1]. As established above, µ is defined such that

λ(p, µ(p)) = λ(p′, µ(p′)) = λ(tp+ (1− t)p′, µ(tp+ (1− t)p′)) = 0.

Because λ is concave,

tλ(p, µ(p)) + (1− t)λ(p′, µ(p′)) ≤ λ(tp+ (1− t)p′, tµ(p) + (1− t)µ(p′)).

Since the left-hand side of the above vanishes,

λ(tp+ (1− t)p′, µ(tp+ (1− t)p′)) ≤ λ(tp+ (1− t)p′, tµ(p) + (1− t)µ(p′)).

Since λ is decreasing in its second argument, it follows that

tµ(p) + (1− t)µ(p′) ≤ µ(tp+ (1− t)p′),

which establishes concavity.

Theorem 1 (Unique Maximum). If assumption 1 is satisfied, there exists a
unique point (p∗, c∗) that maximizes the function C:

C(p∗, c∗) = max
p∈[0,1],c∈[0,∞)

C(p, c).

Moreover, 0 < p∗ < 1 and 0 < c∗ < µ(p∗).

Proof. Recall that the function C is defined for all p ∈ [0, 1] and c ∈ [0,∞)
by C(p, c) = cpλ(p, c). Note first that, as a consequence of proposition 1,
C(p, c) ≥ 0 if and only if c ≤ µ(p). Since C is a continuous function (as a
consequence of λ being continuous), by the extreme value theorem it achieves
a maximum at least once on the compact set {(p, c) : p ∈ [0, 1], c ∈ [0, µ(p)]},
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i.e., there exists at least one point (p∗, c∗) such that

C(p∗, c∗) = max
p∈[0,1],c∈[0,µ(p)]

C(p, c).

Note further that C(p, c) > 0 if and only if 0 < p < 1 and 0 < c < µ(p). But
then certainly it must be the case that C(p∗, c∗) > 0. Hence 0 < p∗ < 1 and
0 < c∗ < µ(p∗). Moreover, since C(p, c) < 0 when c > µ(p), any point that
maximizes C on the restricted domain {(p, c) : p ∈ [0, 1], c ∈ [0, µ(p)]} must
also be a global maximum of C:

C(p∗, c∗) = max
p∈[0,1],c∈[0,∞)

C(p, c).

It remains to show that the maximum is unique. To do this I rely on a the-
orem of Kantrowitz and Neumann (2005) for products of concave functions.

Let (p′, c′) 6= (p∗, c∗). To show uniqueness of the maximum, it suffices to
show that (p′, c′) does not maximize C. Since any maximum must satisfy the
condition established above, restrict attention to cases with 0 < p′ < 1 and
0 < c′ < µ(p′).

Let f : [0, 1]→ (0,∞) be the function defined by

f(t) = C (tp∗ + (1− t)p′, tc∗ + (1− t)c′)

= (tc∗ + (1− t)c′) (tp∗ + (1− t)p′)λ (tp∗ + (1− t)p′, tc∗ + (1− t)c′)

for all t ∈ [0, 1]. Because C is maximized at (p∗, c∗), f is maximized at t = 1.
Note that f is the product of three concave and nonnegative functions: λ

is a concave function of t as a consequence of assumption 1, and tc∗+(1−t)c′

and tp∗+(1− t)p′ are linear functions of t and hence also concave. Moreover,
since either c∗ 6= c′ or p∗ 6= p′, at least one of the functions tc∗ + (1 − t)c′

and tp∗ + (1 − t)p′ has a unique maximum (e.g., if c∗ > c′, tc∗ + (1 − t)c′

is maximized at t = 1). Finally, none of the three functions are identically
zero on [0, 1] (in fact none of the three functions are zero anywhere). So
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it follows from Kantrowitz and Neumann (2005, theorem 4.iii) that f has a
unique maximum at t = 1. Hence C(p′, c′) = f(0) < f(1) = C(p∗, c∗).
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