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Abstract 
Historians of science find it difficult to pinpoint to an exact period in which 
symbolic algebra came into existence. This can be explained partly because the 
historical process leading to this breakthrough in mathematics has been a complex 
and diffuse one. On the other hand, it might also be the case that in the early 
twentieth century, historians of mathematics over emphasized the achievements in 
algebraic procedures and underestimated the conceptual changes leading to 
symbolic algebra. This paper attempts to provide a more precise setting for the 
historical context in which this decisive step to symbolic reasoning took place. For 
that purpose we will consider algebraic problem solving as model-based reasoning 
and symbolic representation as a model. This allows us to characterize the 
emergence of symbolic algebra as a shift from a geometrical to a symbolic mode of 
representation. The use of the symbolic as a model will be situated in the context of 
mercantilism where merchant activity of exchange has led to reciprocal relations 
between money and wealth. 

Introduction 
The broader scope of our research project is to understand how mathematical concepts 
come into existence and change during their historical development. More specifically 
we are interested in the role of symbolic reasoning in mathematical concept 
formation. For this purpose the emergence of symbolic algebra during the sixteenth 
century is the major development in the history of mathematics. Before that period, 
arithmetic and algebra were performed rhetorically.1 Modern mathematics from the 
seventeenth century onwards was mostly symbolic. How did this fundamental shift in 
reasoning take place and why precisely during the sixteenth century? We will not be 
able to answer these questions completely on this occasion. However, a scenario will 
be provided which offers a  possible explanation. Considering algebra as model-based 
reasoning, the MBR framework allows us to view  the emergence of symbolic algebra 
as a shift between models predominant in their historical context. Let us define 
algebra, consistent with recent interpretations by Mahoney (1980) and Høyrup (2002, 
278-81), as follows: ‘An analytical problem-solving method for arithmetical problems 
using an unknown quantity represented by an abstract entity’. Much has been written 
about the precise meaning of analysis, but given the historical context it is appropriate 
to adopt the seventeenth-century interpretation of Antoine Arnauld (1996, 239). 
Arnauld’s treatment of analysis and synthesis was derived from Descartes and had an 
important influence on seventeenth-century philosophers of nature such as Newton 
and Leibniz: ‘A method of resolution … [in which the geometers assume the 
unknown] and examine what follows from that assumption. If in this examination, 
they arrive at some clear truth from which the assumption follows necessarily, they 
                                                 
1 The term ‘rhetorical algebra’ was coined by Nesselmann (1842), who distinguished rhetorical, 
syncopated and symbolic algebra. We challenge this distinction and use the term here in its general 
sense of verbal argumentation.  
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conclude that the assumption is true’. Further stating that the unknown is to be 
represented by an abstract entity makes the method by definition model based. The 
abstract entity can be chosen from any domain which allows us to perform the 
operations wich are part of the analytical method. Now, let us contrast the general 
definition of algebra with the following more specific one: ‘Symbolic algebra is an 
analytical problem-solving method for arithmetical and geometrical problems 
consisting of systematic manipulation of a symbolic representation of the problem’. 
Here the definition specifically refers to a representation in the symbolic domain. As 
we claim that symbolic reasoning was a new development from the sixteenth century, 
the emergence of symbolic algebra is to be viewed as the transformation of algebra 
from the first to the second definition. This transformation process has been a long 
and very difficult one. Authors of algebraic works have been struggling with 
symbolism from the end of the fourteenth until the end of the sixteenth century. Such 
difficulties can be understood from the barrier theory by Margolis (1993). Habits of 
minds govern our cognitive processes and are similar to what Polanyi called ‘tacit 
knowledge’. They can be considered critical intuitions within a community and are 
therefore constitutive of a paradigm. A barrier is an entrenched habit of mind that can 
block a cognitive breakthrough. Particular for symbolic thinking the conceptual 
barrier functions in two directions. The conceptual distance between the prevailing 
geometrical view of Arab algebra and the conflicting new ideas about symbolic 
reasoning determined the long historical process of difficulties. In the other direction, 
we are now so accustomed to symbolic reasoning that it becomes equally difficult to 
understand non-symbolic reasoning. In fact, many authors in the history of 
mathematics take symbolic reasoning so much for granted that they do not even notice 
the difference. By way of illustration we will look in detail at two interpretations of 
Babylonian algebra. 

Looking behind historical barriers 
There was tremendous excitement on a conference on mathematical cuneiform texts 
in the late 1920s, when Otto Neugebauer announced that the Babylonians 
demonstrated knowledge for solving quadratic equations on clay tablets from about 
1500 BC. This conference launched a two-decade hunt for and meticulous 
transcriptions of hundreds of new tablets, culminating in the seminal work of 
Neugebauer and Sachs (1945). Once and for all it was proven that solving equations is 
a human achievement which originated over 3000 years ago.  However, a recent 
publication by Jens Høyrup (2002) completely overturns this view. Høyrup 
methodically and convincingly shows that his new interpretation of Babylonian 
algebra is a more appropriate one. By his simple methodological rule of ‘close 
reading’, that one should also read the words and not only the numbers, he shows that 
the tablets explicitly talk about geometrical constructions rather than formulas or 
equations. Babylonians used a geometrical model to solve arithmetical problems in an 
analytic way. In contrast with Arab algebra, they did not use diagrams, and therefore 
the geometrical model was completely left unnoticed.  
As an example let us look closer at tablet YBC 6967 from Yale University, written in 
the Akkadian dialect around 1500 BC. Concerning this problem Neugebauer writes 
the following2:  

                                                 
2 Neugebauer and Sachs, 1945, 129-30. The Babylonians used the sexadecimal number system, in 
which the unit is represented by Neugebauer as 1,0. We changed this to decimal numbers and added the 
reconstructed text fragments for easier reading, which leaves the problem text otherwise intact. 
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The problem treated here belongs to a well known class of quadratic 
equations characterized by the terms igi and igi-bi (in Akkadian igūm 
and igibūm respectively) (..) We must here assume the product  

60xy =  (0.1) 
as the first condition to which the unknowns x and y are subject. The 
second condition is explicitly given as 
 7x y− =  (0.2) 
From these two equations it follows that x and y can be found from  

 
27 7, 60
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a formula which is followed exactly by the text, leading to x = 12 
and y = 5. 
 

Important here is that Neugebauer claims that equations are ‘explicitly given’ and that 
the problem is ‘found from a formula which is followed exactly by the text’. The 
English translation given by Neugebauer allows us to check these claims. For the 
‘explicitly given’ equation  we read ‘The igibūm exceeds the igūm by 7’. This indeed 
corresponds with the equation (0.2). For the formula we read ‘As for you – halve 7, by 
which the igibūm exceeded the igūm, and the result is 3.5. Multiply together 3.5 with 
3.5 and the result is 12.25. To 12.25, which resulted you, add 60, the product and the 
result is 72.25. What is the square root of 72.25: 8.5. Lay down 8.5, its equal and then 
subtract 3.5, the takīlum, from the one, add it to the other. One is 12, the other 5. 12 is 
the igibūm, 5 the igūm’. Again the text seems to correspond with the formula. There 
are two minor details here: the ‘lay down’ part sounds a little strange in this context, 
and Neugebauer adds ‘we have refrained from translating takīlum’, because no sense 
could be given to it.  
For Høyrup, the unknowns, igibūm and igūm, are represented by the sides of a 
rectangle (Høyrup 2002, 55-6). The term ‘product’ used by Neugebauer should be 
read as ‘surface’, ‘square root’ as ‘equal side’ or the side of a square surface and 
adding means appending in length. Høyrup also gives an interpretation for the term 
takīlum, which should be read as ‘make-hold’, or making the sides of a rectangle hold 
each other. Only within a geometrical interpretation does it make sense to lay down 
something. Using a rectangle with sides igibūm and igūm, now everything fits 
together. The igibūm is 7 longer than the igūm. Cutting that part in half leads us to 
figure 1: 

 
Figure 1: an example of the geometric algebra from the Babylonians. 
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If we paste one of the halves below the rectangle at the length of the igūm we obtain a 
figure with the same surface, equal to 60.   

 
Figure 2: Cut and paste method for solving quadratic problems. 

The part in the lower left corner must be a square, as its sides are both 3 ½. We can 
thus determine its surface as 12 ¼. The complete figure must also be a square with 
sides equal to igūm plus 3 ½. We know that the total surface is 72 ¼, the ‘equal side’ 
of that square therefore is 8 ½. That leads us to a value of the igūm of 5. Pasting the 
cut-out half back to its original place gives a length of the igibūm of 12. 
We are presented here with a completely different interpretation of that of 
Neugebauer. Høyrup accounts for anomalies in the standard interpretation and gives 
strong arguments for the reading of terms and actions in the geometrical sense. In this 
new interpretation there is no place for formulas. Babylonian algebra does not solve 
equations, as the concept of an equation was absent. But it fits our definition of 
algebra: the method is unquestionably analytical, it uses the unknowns igūm and 
igibūm and they are represented as abstract entities, namely the sides of a rectangle. 
We can also consider this to be a form of model-based reasoning as elementary 
geometry functions here as a model for solving arithmetical problems. In the rest of 
this paper we will consider the symbolic as a model for solving algebraic problems on 
the same par as geometry was for Babylonian and Arab algebra.  

The concept of a symbolic equation 
The current consensus is that symbolic algebra originated with Viète at the end of the 
sixteenth century and is characterized by the study of the structure of equations rather 
than arithmetical problem solving by algebraic procedures (Mahoney, 1980). In his 
Algebra, Viète (1591) introduced the use of the vowels A, E, I, O and U to represent 
unknowns, and the use of consonants for the constants and coefficients of an equation, 
as in 3 2 2A B A B Z+ = . This was further adapted by Descartes in his Geometry of 1637 
with the use of the last letters of the alphabet for unknowns and the first letters for 
constants and coefficients. This is basically the notation system we still use today. 
Little attention has been given in the literature to the influences that led to this system 
of symbolic representation. A notable exception is Cifoletti (1992). In our opinion, the 
road to symbolic algebra was paved by several previous stepping stones that have 
been functional in developing the symbolic mode of reasoning. The major obstacle in 
recognizing the importance of previous developments has been the confusion between 
the use of symbols and symbolic reasoning. As will be demonstrated below, several 
instances of symbolic reasoning in algebraic problem solving can be identified while 
no symbols are being used. To put it more strongly: symbols are introduced as a 
result of symbolic reasoning. Viète’s study of the structure of equations and his 

60 

12 ¼  
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introduction of symbolism was the result of the emergence of the concept of a 
symbolic equation during the sixteenth century.  
In our project we looked behind the conceptual barrier and analyzed about thirty 
algebraic manuscripts and books written between 1460 and 1577 for methods and 
models in solving arithmetical problems. We approached the original texts from the 
viewpoint that the concept of an equation was not yet developed. In order to follow 
the problem-solving processes, we divided the original text in relevant fragments, 
accompanied by a meta-description in symbolic form. Our methodology of structural 
analysis follows that of Høyrup (2002) and further presupposes that a mathematical 
object can be considered to be present when firstly, it is consistently referred to within 
similar contexts, secondly, if it is acted upon by mathematical operations. We have 
looked in detail for the reference to and manipulation of unknowns and equations. We 
consider a symbolic mode of representation to be present when the meta-description 
corresponds to a reasonable degree with the actual text. According to these criteria the 
concept of an equation was completed in Buteo’s Logistica of 1559. In summary, the 
six stages of development that have been functional for the process of concept 
formation are as follows: 

1. The expansion of arithmetical operators to polynomials. A process of 
expansion has allowed to apply the operations of addition, subtraction, 
division and multiplication to other entities than natural numbers. This 
expansion process can be viewed both from the viewpoint of the objects as 
well as that of the operators. Arab algebra introduced operations on 
polynomial terms, which is clearly an expansion of the operator. Basic 
operations on numbers, such as addition or multiplication, were, in the 
fifteenth century, commonly applied to the sum of terms using one unknown: 
“1/3 von 6 ∂ minner 300 ist 2 ding minder 100” (6x – 300 divided by 3 is 2x – 
200) (Amann, 1461, f.155r). In his introduction to his Arithmetica, Cardano 
(1539) treats the operators one by one and discusses its application to whole 
numbers, fractions, irrationals and polynomial expressions. In this way, 
polynomials, which he calls de numeratione denominationem, can be viewed 
as an expansion of the number concept. 

2. Equating polynomial expression. The very idea of an equation is based on the 
act of equating polynomial expressions. In fact, the Latin terms aequatio and 
aequationis refer to this action. Also the Sanskrit words samīcarana, 
samīcarā, or samīcriyā, used in Hindu algebra are often translated as 
‘equation’. The rationale for this is that sama means ‘equal’ and cri stands for 
‘to do’. However, we should be careful about interpreting these terms in the 
modern sense. They form an intermediate step in the emergence of the 
concept. Both in the literal and historical sense, it is in Cardano (1539) that we 
find the construction of an equation by equating polynomials (see figure 3). 

 
Figure 3: Cardano's construction of an equation by equating polynomial expressions. 

3. Introduction of the second unknown. The importance of the use of multiple 
unknowns in the process leading to the concept of an equation cannot be 
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overestimated. The very first instance in the western world can be attributed to 
the Florentine abacus master Antonio de’ Mazzinghi, who wrote an algebraic 
treatise around 1380. The text is extant only from a witness account (Arrighi, 
1967). Maestro Antonio used two unknowns simultaneously to solve a single 
problem. The solution method was copied almost literally by Luca Pacioli in 
his Summa of 1494, and further discussed by Cardano both in his Arithmetica 
and the Ars Magna (Witmer, 1968). The method was known in the early 16th 
century under the term regula quantitates.  

4. Expansion of arithmetical operators to equations. Given an operational 
definition of the concept of an equation it is important to look for problem-
solving methods which perform operations on an equation. The first explicit 
use of a multiplication of an equation is found in Cardano (1539, f. HH1r) 
where he uses two unknowns to solve a linear problem. Eliminating one 
unknown, he arrives at an equation, expressed in the second unknown, which 
he multiplies with 35, as shown in figure 4. 

 
8 2{80 2 }
35 35 {2808 72 } {39 }

35

y
y y

=
→ = → =

Figure 4: the first operation on an equation. 

5. Introduction of letters for multiple unknowns. The use of letters to represent 
multiple unknowns was not an invention by Viète but originated in a book by 
Stifel (1544, f. 252r). Stifel uses the letters A, B and C and also proposes a 
notation for the powers and products of unknowns. However, Stifel (1545, 
252r) graciously acknowledges that he had obtained the idea from Christoff 
Rudolff and Cardano. For the square of B, Stifel uses the equivalent of Bx2 
rather than BB, while x2B should be read as the product of x2 and B. The first 
to use the format AA for a square is Valentin Mennher (1556, Qvir-Qviv, 1565, 
Ffviiir- Ffviiiv).  

6. Systematic manipulation of linear equations to eliminate unknowns. The basic 
concept of a symbolic equation was completed by Buteo (1559) who not only 
performs operations on equations but also adds and subtracts two equations in 
a systematic way to solve a set of linear equations. In several problems solved 
by Buteo, the text corresponds very closely with our meta-description in 
modern symbolism. His method was further refined by Gosselin (1577) from 
which we know that he had some influence on Viète (Cifoletti 1993). 

 
The concept of an equation was thus the result of a process that spans two centuries, 
exchanging the geometrical model with a symbolic one. The symbolic model allowed 
to solve arithmetical problems, making abstraction of the actual value or values of an 
indeterminate. 

The acceptance of symbolism 
Despite the accomplishments of sixteenth-century algebraists, it took many more 
years before the power of symbolic reasoning for arithmetic problems solving was 
fully acknowledged and accepted. In an influential algebra text book of the early 
seventeenth century by Clavius (1608) there is no use of multiple unknowns nor 
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evidence of the advanced techniques of Buteo and Gosselin in solving linear 
problems. In fact, several publications show conceptual difficulties with some basic 
facts of symbolic reasoning which we now take for granted. Antoine Arnauld, who 
wrote an important philosophical work know as The Logic of Port-Royal (Arnauld, 
1662), also published a book on geometry (Arnauld, 1667). There he gives an 
example of symbolic rules that he considers to be against our basic intuitions on 
magnitudes and proportions. His reasoning goes as follows. Suppose we have two 
numbers, a larger and a smaller one. The proportion of the larger to the smaller one 
should evidently be larger than the proportion of the smaller to the larger one. But if 

we use 1 as the larger number and – 1 as the smaller one this would lead to 1 1
1 1

−
>

−
, 

which is against the rules of algebra. Witnessing the multiple instances in which this 
discussion turns up during the seventeenth century, the clash between symbolic 
reasoning and classic proportion theory, taught within the quadrivium, was 
experienced as problematic. Also Leibniz found it important enough to write an article 
about it (Leibniz, 1712, 167). He acknowledges the problem as a genuine one, but 
states that the division should be performed as a symbolic calculation, the same way 
as we do with imaginary numbers. Indeed, when blindly applying the rules of signs 
there is no problem at all. When dividing a positive number by a negative one, the 
result is negative, and dividing a negative number by a positive one, the result is also 

negative. Therefore  1 1
1 1

−
=

−
. It is important to point out that these rules posed no 

problems in the abacus tradition before 1500. In the Summa, Pacioli lists the rules of 
signs for the arithmetical operations including division: ‘A partire piu per meno nevē 
meno. A partire meno per piu nevē meno’ (Pacioli, 1494, f. 113r). This shows that the 
symbolic way of reasoning to resolve the paradox, as proposed by Leibniz, was 
common practice in the abacus tradition. Although we do not find the symbols for 
division, negative numbers and equations in Pacioli or his predecessors, the common 
application of these operations provides evidence of  a symbolic mode of reasoning. 
As pointed out by Leibniz, imaginary numbers can best be defined by listing the 
symbolic calculations that are possible on those objects. While Cardano still struggled 
with the interpretation of 15− , he was “putting aside the mental tortures involved” 
and performed the operation (5 15)(5 15)+ − − −  correctly to arrive at 25 + 15 
(Cardano 1545, 219). Bombelli later defined imaginary numbers by the eight 
combinatorial operations that are possible with the products of the negative and 
positive roots of plus and minus one. Note the correspondence with Pacioli’s rules of 
sign when Bombelli gives: “Più [radice] di meno via più [radice] do meno fa meno” 
for ( )( )1 1 1− − = −  or “Meno [radice] di meno via più [radice] do meno fa più” for 

( )( )1 1 1− − − = +  (Bombelli 1572, 169). These operations defined imaginary 

numbers within the symbolic model. The interpretation of its arithmetical equivalence 
still remained a mystery. Cardano (1663, VI, 373) later called it ‘something of 
recondite nature’ (natura abscondita). It took two more centuries to arrive at a 
geometrical interpretation of complex numbers.  

Interplay between object and model 
Within the model-based reasoning framework, the interplay between the arithmetic on 
the object level and the model on the representational level is purposeful for the 
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problem-solving process. The example given from Babylonian algebra shows how the 
cut-and-paste operations on the geometrical model are combined with operations from 
arithmetic to arrive at the values for the unknowns. After pasting back the cut-out 
halve, the length of the side of the rectangle can be determined by arithmetical 
addition. The problem-solving process switches between geometrical and arithmetical 
operations. Also the symbolic model cannot function on its own. The interplay 
between symbolic operations and arithmetical reasoning is crucial to avoid the trap 
falls of symbolic reasoning. An andequate example of possible dangers of blind 
manipulation of signs is one ‘proof’ from A budget of Paradoxes by August de 
Morgan (1859). Take some time to notice where the problem is located:  
 

Suppose we start from the identity x = 1 
multiplying each side with x gives 2x x=  
subtracting one leads to 2 1 1x x− = −  

dividing by x – 1 gives 
2 1 1

1 1
x x
x x
− −

=
− −

 

splitting the square binomial gives 
( 1)( 1) 1

1 1
x x x

x x
− + −

=
− −

 

which allows us to simplify as 1 1x + =  
and this results in x = 0 

 
Although the rules of algebra have been applied correctly on the symbolic level, the 
fourth step was not allowed because we have divided by x – 1 while x had the value 
one. Division by zero leads to the contradictory conclusion of x being equal to one as 
well as zero. However, the only way to avoid the mistake is to shift to the object level 
for a moment and to determine the value of the unknown. This shows that we cannot 
completely abandon the arithmetic behind the symbols. The liberating effect of the 
symbolic model is so strong that we might be led to conclude that operations on 
symbols is all that we need. This standpoint is advocated most strongly by the 
formalism of Hilbert. Within formalism the objects of mathematics are the signs 
themselves. Hilbert went so far as to state that: “I find the objects of the theory of 
numbers in the signs themselves, whose form we can recognize universally and 
surely, independently of place and time and the special conditions attending the 
production of the signs as well as of insignificant differences in their elaboration” 
(Hilbert 1922, 162). With ‘insignificant differences in their elaboration’ he seems to 
suggest that the ideas represented by the signs remain conserved throughout historical 
developments. But historical evidence precisely shows that significant shifts in the 
meaning of basic concepts leads to important developments such as that of symbolic 
algebra. Due to the interplay between the object level and the model, formalism is not 
the adequate framework to explain the function of symbolism. Let us look at some 
alternatives. 

Approaches to symbolism 
What is so specific about symbolic reasoning? What makes symbolism so powerful 
that it has completely conquered mathematical and scientific discourse since the 
seventeenth century? Many philosophers, from Descartes and Leibniz to Peirce and 
Cassirer, have written extensively about the role of symbolism in mathematical 
problem solving. From the MBR point of view, we are interested in the way the 
symbolism contributes to the formation of new concepts in mathematics. As such, the 
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role attributed to symbolic reasoning surpasses its problem-solving function. The 
symbolic not only allows us to solve mathematical problems with ease, it also 
functions in a creative way. Symbolism constitutes a mechanism for the creation of 
new concepts. One of the major contributions of Kant’s Critique of PureRreason was 
to recognize the productive constructive function of concept formation. Mathematical 
concepts do not come from mere abstraction. They involve an act of free 
combination, or synthesis, as Kant called the process. He gives the example of a cone 
as ‘the product of the arbitrary  representation of a right-angled triangle which is 
rotated on one of its sides’ (Kant, 2:276, Walford, 1992). Specific for symbolism, this 
act of synthesis is embedded in the signs used to represent the concept. The 
transcendental function of symbolism from Kant is further conferred by Cassirer 
(1957, vol. 3, 382): 
 

Either the mathematical signs may be regarded as an end in themselves, as the 
actual objects of mathematical knowledge, or else some sort of intellectual life 
must be breathed into them; and it seems that this can be done only if we refer to 
something other, something outside themselves, and understand them as 
symbolic representations of this other. But once the road has been taken, once 
transient meaning is imputed to the figures of mathematics, no further limit 
seems to be imposed on thought: from transient meaning it is driven inexorably 
to transcendent meaning.  

 
Conceding to a creative function of mathematical symbolism, and warned by Cassirer 
about the road to be taken, we would like to get a closer grip on the transcendental 
aspect. Cassirer remains rather vague about this and talks about “a peculiar and 
independent, self contained world of meaning according to an inherent formative law 
of its own”, which gives the symbolic forms their special meaning (Cassirer, 1957, 
383). Symbolic forms thus represent mathematical objects but add something 
selfcontained, which we experience as creative and specific to concepts. What 
comprises this something extra? A highly original interpretation could be found in 
Foucault’s archeology of the human sciences (Foucault, 1966). Specifically alluring 
about Foucault’s analysis is that his archeological approach is historical. Moreover, he 
situates an important historical transformation in symbolic representation in the 
sixteenth century. He analyses the basic human activities of representing, speaking, 
classifying and exchanging within the Renaissance context of mercantilism. This is 
the context in which we see the emergence of symbolic algebra. Foucault (1966, 29) 
calls the transformation process a superimposition of semiotics and hermeneutics. 
Hermeneutics is concerned with the discovery of the meaning of signs we use in 
language. Semiology, on the hand, attempts to define signs, and to discover how and 
by what laws signs are linked. According to Foucault, these two were superimposed 
during the sixteenth century. As an illustration he refers to the discussion on the 
symbolic function of signs in The Art of Thinking (Arnauld and Nicole, 1662). The 
classic theory of signs is based on a threefold relationship. You have the sign, which 
represents the signified, through a signifying theory. The signifying theory is 
necessary to link the symbol to the represented object and does so unequivocally. An 
evident example are religious symbols. Without knowledge of iconographical theory 
it becomes impossible to understand the reference to the sun and the moon by the 
monographs IHS and MA on medieval paintings, which stand for Jesus and Maria. 
However, in discussing the role of symbols during the seventeenth century Arnauld 
talks about a two-fold relationship: “the sign includes two ideas, one of the thing 
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which represents, the other of the thing represented. Its nature consists of prompting 
the second by the first” (Arnauld 1996, 35). So how did the signifying theory 
disappear from the picture? It did not. The representative function became embedded 
in the sign. The nature of the symbol consists of prompting the signified by the sign. 
Therefore, the representational function merged with the symbol. According to 
Foucault, this made it impossible to have a theory of signs separate from an analysis 
of meaning. Foucault’s analysis complements the transcendental function attributed to 
symbols by Cassirer. In a discussion on real and unreal elements in geometry, Cassirer 
specifically refers to a mechanism of embedding the representative function into the 
sign in the creation of new mathematical concepts (Cassirer,  1957, 397): 
 

Here again it is unnecessary to introduce the unreal elements as individuals 
leading some sort of mysterious existence side by side with the real points; the 
only logically and mathematically meaningful statement that can be made about 
them refers to the existence of relations that are embodied and expressed in 
them. But of course symbolic thinking of mathematics does not content itself 
simply with apprehending these relations in abstracto; it demands and creates a 
special sign for the logical and mathematical relationship that is present in them 
and ultimately treats the sign itself as a fully valid, legitimate, mathematical 
object. 
 

Mathematical objects are thus created by the embodiment of their logical and 
mathematical relations which are represented in their sign. In the following we will 
apply this historical transformation of symbolism and the mechanism of embedding 
the representative function to the emergence of symbolic algebra. 

The equality symbol 
In a seminal work, Cajori gives a very comprehensive overview of the history and 
development of mathematical notations (Cajori, 1928-9). Cajori uses the terms sign, 
notation and symbol interchangeably and does not recognize the specific function of 
symbols. As a result of the appreciation of symbolism discussed above, we should be 
able to demonstrate the role in concept formation for some specific symbols. As a 
prime example let us look at the equality symbol. The equality sign evidently refers to 
the arithmetical equivalence of two expressions left and right from the sign. For 
example, the expression 3 + 5 = 8 denotes the arithmetical equivalence of the sum of 
three and five with eight, as well as of eight with its partitioning into the numbers 
three and five. However, if we look at the historical moment in which the equality 
sign was introduced, we arrive at a very different picture. The equality sign as we now 
use it, was introduced in a book on algebra by Robert Recorde. He chose the sign of 
two parallel lines ‘because no two things can be more equal’. This often quoted 
citation ignores the more important motivation for introducing the sign. Firstly, the 
equation sign was not introduced, either in his lengthy introduction, discussing the 
basic operations of arithmetic and extraction of roots, or in the dialogue on operations 
on polynomials or the rule of proportion. He introduced the sign in the chapter on the 
resolution of algebraic equations ‘For easie alteration of equations … And to avoid 
the tediouse repetition of these woordes: is equalle to: I will sette as I doe often in 
woorke use, a paire of parralle …  lines of one lengthe, thus : ==, bicause noe 2, 
thynges, can be moare equalle’, (Recorde 1557, fol. Ffiv). The use of the sign is thus 
specifically motivated by the alteration, or manipulation of equations. From this quote 
we can read the specific representational function that makes the equality sign a 
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symbol of a new mathematical concept. In addition to its direct reference to 
arithmetical equivalence, the equality symbol also represents the combinatorial 
operations which are possible on an equation. These operations include adding or 
subtracting homogeneous terms on both sides of the equation, dividing or multiplying 
an equation by a constant or unknown (introduced by Cardano) and adding or 
subtracting two equations (introduced by Buteo). The equality sign symbolizes the 
algebraic equation. We have argued above that the concept of an equation fully 
emerged around 1560. We also stated that symbols are introduced as a result of 
symbolic thinking. The introduction of the equality symbol is historical evidence for 
the introduction of a symbol representing a newly emerged mathematical concept.  

The metaphorical basis of symbolism  
If the symbolic can be considered a model for concept development and reasoning in 
arithmetic and algebra, one can ask what the metaphorical basis is for this model. 
Where did the symbolic model originate from? Why did symbolism become accepted 
in the sixteenth century? In search of a tentative answer, let us look at another 
development taking place in the same era and context. Consider the following 
statement. The emergence of double-entry bookkeeping by the end of the fifteenth 
century was a consequence of the transformation from the traveling to the sedentary 
merchant, primarily in the wool trade situated in Italy and Flanders. Given the vast 
body of evidence from Renaissance economic history and the evident causal 
relationship, not many will contest the connection between bookkeeping and merchant 
activities. What about the toned-down statement ‘The emergence of symbolic algebra 
in the sixteenth century is to be situated within the socio-economic context of 
mercantilism’. Philosophers of mathematics who believe in an internal dynamics of 
mathematics will not accept decisive social influences as an explanation for the 
emergence of something as fundamental as symbolic algebra. At best, they will accept 
social factors in the acceleration or impediment of what they consider to be a 
necessary step in the development of mathematics. Also it seems difficult to pinpoint 
direct causal factors within economic history for explaining new developments in 
mathematics. However, the relationship between bookkeeping and symbolic algebra is 
quite remarkable. Many authors who have published about bookkeeping also wrote on 
algebra. The most notorious example is Pacioli’s Summa, which deals with algebra as 
well as bookkeeping, and the book had an important influence in both domains. But 
there are more. Grammateus (1518) gives an early treatment of algebra together with 
bookkeeping. The Flemish reckoning master Mennher published books on both 
subjects including one treating both in the same volume (1565). So did Petri (1583) in 
Dutch. Simon Stevin wrote an influential book on algebra (1585) and was a practicing 
bookkeeper who wrote a manual on the subject (1608). In Antwerp, Mellema 
published a book on algebra (1586) as well as on bookkeeping (1590). While there is 
no direct relationship between algebra and bookkeeping, the teaching of the subjects 
and the books published often addressed the same audience. Children of merchants 
were sent to reckoning schools (in Flanders and Germany) or abacus schools (in Italy) 
where they learned the skills useful for trade and commerce. There is probably no 
need for algebra in performing bookkeeping operations but some basic knowledge of 
algebraic rules was very useful in complex bartering operations or the calculation of 
compound interest. In an important study on the Florence mercantile context, in which 
a surprisingly large body of algebraic manuscripts originated, Van Egmond (1976, 67) 
concludes: “The abaci are, in brief, one of the products of the commercial revolution 
and the culture of sedentary merchants”. Given that these abaci produced over two 
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hundred treatises on algebra, some of quite sophisticated nature, the stated 
relationship between mercantilism and symbolic algebra becomes more credible.  
Finally, we would like to go one step further and rather than pointing out 
circumstantial factors that connect symbolic algebra with mercantilism, we are 
looking for direct influences for the transformation of symbolic thinking. Again, 
Foucault provides some important clues which we will apply to the influence of 
mercantilism on algebra. The first he calls the creation of value (Foucault 1966, 188). 
An essential aspect for the process of exchange in the Renaissance is the 
representation of value. ‘In order that one thing can represent another in exchange, 
they must both exist as bearers of value; and yet value exists only within the 
representation (actual or possible), that is, within the exchange or the 
exchangeability’. The act of exchanging, i.e. the basic operation of merchant activity, 
both determines and represents the value of goods. To be able to exchange goods, 
merchants have to create a symbolic representation of the value of their goods. All 
merchants involved must agree about this common model to complete a successful 
transaction. As such, commercial trade can be considered a model-based activity. 
Given the current global financial market and the universal commensurability of 
money we take for granted, we pass over the common symbolic representation as an 
essential aspect of trade. However, during the Renaissance, the value of money 
depended on the coinage and the precious metals contained in them. These differed 
between cities, and their comparison varied in time. Furthermore, exchange by barter 
did not involve money and could include several parties from different cities or 
countries. Exchange was therefore a difficult operation with a serious risk of 
misevaluation. There is ample evidence that algebra was used in assisting in the 
quantification of value. Especially in the early sixteenth century, separate sections in 
algebra books were devoted to bartering (e.g. Vanden Houcke, 1537, Fol 156v – 159r). 
We believe that the influence worked in both directions and that the creation of the 
symbolic representation of value also contributed to the development of symbolic 
algebra.  
Foucault also points to the symbolic function of money as a result of mercantilism 
(Foucault 1966, 174). Apart from the intrinsic value of the metals that functioned to 
measure and substitute the value of goods, money was given an additional symbolic 
function. The symbolic function of money referred to its reciprocity with wealth. 
‘Wealth has the power to be exchanged; to analyze itself into elements that authorize 
relations of equality and inequality; to signify itself by means of those completely 
comparable elements of wealth called precious metals’ (Foucault 1966, 179). As the 
actions and reciprocal relations of merchants, such as exchange, allegation of metals 
and bookkeeping became the basis for the symbolic and abstract function of money, 
so did the operations and the act of equating polynomials lead to the abstract concept 
of the symbolic equation. Both processes are model-based and use the symbolic as the 
model. Both involved a mechanism of embedding the representative function into the 
sign to create the modern conception of symbol.  
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