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Abstract

Peer reviewers at many funding agencies and scientific journals are
asked to score submissions both on individual criteria and overall. The
overall scores should be some kind of aggregate of the criteria scores.
Carole Lee identifies this as a potential locus for bias to enter the peer
review process, which she calls commensuration bias. Here I view the
aggregation of scores through the lens of social choice theory. I argue
that in many situations, especially when reviewing grant proposals, it
is impossible to avoid commensuration bias.

1 Introduction

Peer review is one of the linchpins of the social organization of science.
Whether as a grant proposal, manuscript, or conference abstract, just about
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every piece of scientific work passes through peer review, often multiple times.
Yet philosophers of science have paid surprisingly little attention to peer re-
view (exceptions include Zollman 2009, Lee 2013, Avin forthcoming).

The linchpin role of peer review means that it is particularly important
to understand biases in peer review. There is now a fairly large empirical
literature studying gender bias, racial bias, prestige bias, publication bias,
and many other forms of bias (see Lee et al. 2013, for a review). In addition
to empirical questions, there are conceptual questions to be answered about
defining, identifying, and distinguishing different biases and analyzing their
potential effects (Lee et al. 2013, Saul 2013, Heesen 2018, Heesen and Romeijn
2018).

This paper focuses on a new type of bias identified by Lee (2015), which
she calls commensuration bias. Commensuration is the activity of aggregat-
ing different quantities into a single number. Noting that many peer review
processes ask reviewers to score submissions on some criteria as well as giving
an overall score, Lee introduces commensuration bias to capture situations
in which the act of commensuration is a locus at which bias gets introduced.
She points at a number of phenomena that seem to fall under this label.

Lee distinguishes two types of commensuration bias. The first type, which
is her primary focus and for which she provides substantial evidence, refers
to peer review practices that privilege one of the individual criteria. Lee
(2015, section 3) argues that current journal peer review practices overweight
“intellectual significance” (narrowly interpreted as statistical significance),
resulting in biased estimates of effect sizes in the published literature. Grant
agencies, Lee goes on to argue, overweight methodological criteria relative to
novelty, which in the aggregate ends up promoting conservatism.

A potential difficulty in identifying this type of commensuration bias is
that it requires a substantive view on what counts as overweighting a crite-
rion. For this reason I will invoke the first type of commensuration bias only
in the particularly stark case where a peer reviewer gives a higher overall
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score to a grant proposal (or paper, but I will focus mostly on grant propos-
als) whenever it scores higher on the privileged criterion. This is especially
problematic because it reduces the other criteria to tie-breakers, contrary to
the (intuitive) idea that all criteria should receive some genuine weight.

Second, reviewer idiosyncrasies or biases may lead to “deviation from
the impartial weighting of peer review criteria” (Lee 2015, 1273). To make
this a little more precise, I will say that commensuration bias has occurred
whenever two grant proposals receive identical scores on the individual cri-
teria, but their overall scores differ. To illustrate this definition, consider the
following two fairly different ways of instantiating it.

Suppose a peer reviewer is (explicitly or implicitly) socially biased, that
is, her judgment of the quality of a grant proposal is affected by prejudice
based on the gender, race, or other social characteristics of the scientist or
scientists responsible for the work. One point in the peer review process
where such bias might have an effect is in commensurating criteria scores
to an overall score. The reviewer might go so far as to rate one proposal
(written by a woman, say) higher than another proposal (by a man) on all
criteria, but nevertheless give a higher overall score to the latter proposal.
This would be an example of the second type of commensuration bias.

Alternatively, suppose that for a particular reviewer the overall score of a
proposal depends, in addition to its individual scores, also on the individual
scores of one or more other proposals. This is an example of the second type
of commensuration bias because it violates the principle of identical overall
scores for identical individual scores. More generally, it militates against the
widespread idea that a proposal’s score can be determined by looking (only)
at it.

My aim in this paper is to use social choice theory to argue that rather
than being a fringe phenomenon, commensuration bias is impossible or at
least very hard to avoid in any peer review context where multiple criteria or
multiple reviewers are used. Section 2 sets up the social choice framework,
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focusing on a single reviewer scoring a set of grant proposals. Section 3 gives
the main argument, based on a well-known impossibility theorem. Section 4
considers the case of multiple reviewers and section 5 combines the two cases
studied in the preceding sections. Section 6 contrasts peer review of grant
proposals (my main focus in this paper) with peer review at journals, and
section 7 concludes.

2 Peer Review As an Aggregation Problem

Consider a peer reviewer a1, tasked with scoring m grant proposals x, y, . . ..
Suppose that the funding agency asks her to score the proposals on k criteria
c1, . . . , ck. For example, the National Institutes of Health (2017) use the fol-
lowing criteria: “significance”, “investigator(s)” (suitability of the applicants
to carry out the research), “innovation”, “approach”, and “environment”
(suitability of the research environment).

Reviewer a1 reads the proposals and scores them on the various criteria.
For any proposal x, I write s1j(x) for the score reviewer a1 assigns to that
proposal on criterion cj. The scores s1j(·) are assumed to be real numbers.
The index “1” for reviewer a1 is just a placeholder for now; other reviewers
will be introduced in section 4.

In addition to the criteria scores, the reviewer is asked to give an aggregate
or overall score to each proposal. At the National Institutes of Health (2017),
for example, this is called the overall impact score. I write s1(x) for the overall
score assigned to proposal x, which is again assumed to be a real number.

The overall scores assigned by reviewer a1 induce a ranking of the grant
proposals: proposals with a higher score are implicitly judged to be better
than proposals with a lower score. This induced ranking will be the main
object of interest in the next section, so I introduce some notation for it. For
any two proposals x and y, xP1y denotes the proposition s1(x) > s1(y), i.e.,
“reviewer a1 ranks x strictly higher than y”. Similarly, xR1y denotes s1(x) ≥
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s1(y) or “x ranks at least as high as y”, and xI1y denotes s1(x) = s1(y) or
“x and y rank equally”.

In social choice theory, a reviewer’s individual criteria scores (i.e., the
collection of each of her criteria scores for each proposal) is called a profile.
A function, defined on some given domain of profiles, which assigns to each
profile a corresponding set of overall scores, will be called a commensuration
function.

The first substantive question I address is: how much information is con-
tained in the individual criteria scores? In other words, which profiles should
be treated as identical by the commensuration function? The question breaks
down into two further questions. What kind of scale are the criteria scores
measured on? And can scores be meaningfully compared across different
criteria? I take the two questions in turn.

Numerical quantities are usually regarded as being measured on one of
four types of scales: ordinal, cardinal, ratio, or absolute (e.g., Tal 2017, sec-
tion 3.2). An ordinal scale orders the objects being measured by size (in
this case: orders the grant proposals from best to worst on a given criterion)
but the magnitude of differences is meaningless. In the present context this
means that if two profiles differ only in that one is obtained from the other by
applying a positive monotone transformation to the criteria scores the com-
mensuration function should give them the same overall ranking; otherwise
the ranking would be sensitive to meaningless differences in the way scores
are represented numerically.

A cardinal (or interval) scale differs from an ordinal scale in that the size of
differences is meaningful. If a criterion is measured on a cardinal scale only
positive affine transformations can be applied without loss of information.
Temperature as measured on the Celsius or Fahrenheit scales is the standard
example.

A ratio scale has a meaningful zero. As a result statements like “this
object’s measurement is twice that object’s measurement” make sense when
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measurements are on a ratio scale. In this case multiplication by a posi-
tive constant is the only transformation that can be applied without loss of
information. Standard examples are length and weight.

An absolute scale has a meaningful zero and a meaningful unit. This
yields a unique scale in the sense that only the identity transformation can
be applied without loss of information.

For the types of criteria considered here, it seems quite unrealistic to me
to assume that scores are given on a more informative scale than a cardi-
nal one. For ratio or absolute scales to apply, there would have to be an
empirically meaningful sense in which grant proposals could be said to have
zero significance, or zero innovativeness, or for the investigator to have zero
suitability to carry out the research. Or equivalently, statements like “This
proposal is twice as innovative as that one” or “University X is twice as
suitable for carrying out proposal x as Institute Y is for proposal y” would
have to be among the types of claims peer reviewers make. For the types
of criteria scored in the process of grant proposal peer review, however, I do
not think that level of information is typically available. So I will assume
throughout this paper that criteria scores (and overall scores) are measured
on an ordinal or cardinal scale (for the formal results, it does not matter
which).

How about intercriteria comparability? Here the question is whether
statements like “proposal x is more significant than that the applicant of
proposal y is suitable” are meaningful, or even something like “the difference
between proposal x and proposal y’s score on innovation is larger than the
difference in their scores on approach”.

If reviewers are given a numerical scale to score proposals on (say, a 1
to 5 scale), these types of statements could technically be used to compare
proposals’ scores on different criteria. But I do not think peer reviewers
would typically regard such claims as useful or informative. They would
more likely say something like “While we have scored the proposals on this
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scale, differences in scores should be interpreted more qualitative than that”.
So I assume that there is no intercriteria comparability.

To be clear, if some degree of intercriteria comparability could plausibly
be taken to be implicit in the individual criteria scores, or if these scores
could realistically be interpreted as being measured on a ratio scale or an
absolute scale, then the results to be discussed in the next sections would
not hold. See Sen (1970), List (2004, section 3), or Okasha (2011, section 6)
for further discussion of measurability and intercomparability.

3 Aggregating an Individual Reviewer’s Scores

What properties should a commensuration function have? In particular,
what needs to be true for it to be free of commensuration bias?

Universal Domain (U) The domain of the commensuration function is
the set of all possible profiles of criteria scores.

This requires that no combination of criteria scores is ruled out in advance.
What this means is perhaps best explained by considering what the alterna-
tives are. One way to circumvent (U) is to declare certain combinations of
criteria scores impossible either descriptively (“any innovative proposal must
have a suitable investigator by definition so we will never see a proposal with
a high score for innovation but a low score for investigator”) or normatively
(“reviewers should avoid sending mixed messages by giving very high scores
on some criteria and very low scores on others”). Another is to declare pro-
posals with certain combinations of criteria scores unratable, giving them no
overall score at all.

Neither of these routes is very attractive. While violating (U) perhaps
does not constitute a bias in the same sense as violating the other require-
ments does, any reasonable function describing how a peer reviewer at a
grant funding agency approaches commensuration should avoid ruling out
combinations of criteria scores in advance, and hence should satisfy (U).
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Weak Pareto (P) If a proposal scores higher than another proposal on all
criteria it should get a higher overall score, i.e., s1j(x) > s1j(y) for all
criteria cj entails xP1y.

If the reviewer unanimously ranks a proposal higher than another on all
criteria, it would be quite strange for her to then turn around and give a lower
overall score to the former proposal. In such a case one might reasonably say
that some kind of bias has influenced the way the reviewer has moved from
the criteria scores to the overall scores.

For example, we could imagine this happening with a gender biased re-
viewer, as described in section 1. Similarly, a reviewer might violate (P)
due to racial bias or prestige bias. Alternatively, she might violate (P) in a
more idiosyncratic way, giving a higher score to some proposal with lower
criteria score without an identifiable underlying bias. While this kind of arbi-
trariness is arguably less bad than commensuration bias motivated by social
bias (as it need not track and therefore exacerbate wider social patterns of
discrimination), it still counts as commensuration bias as it privileges one
proposal over another despite better criteria scores, thus introducing bias at
the commensuration step of the peer review process.

Non-Dominance (Dom) It is not the case that one criterion dominates
all the others, i.e., there does not exist a criterion cj such that for any
profile and for any two proposals x and y, s1j(x) > s1j(y) implies xP1y.

Failure of (Dom) would be an extreme case of the first type of commensura-
tion bias, described by Lee (2015, section 3). In such a case one criterion can
overrule all others, which seems to go against the spirit of asking reviewers
to score proposals on multiple criteria and then “weigh” these scores to come
to an overall score. While there may be some cases where one criterion just
is more important than the others, I take it that more typically the intention
behind asking a reviewer to score proposals on multiple criteria is for her to
lend real weight to each one. If (Dom) is violated, however, all but one of the
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criteria are irrelevant to the overall score, except perhaps in a lexicographic
sense, i.e., by acting as a tie-breaker.

Independence of Irrelevant Alternatives (I) The relative overall rank-
ing of two proposals x and y depends only on the criteria scores of those
two proposals. That is, if two profiles give the same criteria scores to x

and y (s1j(x) = s′
1j(x) and s1j(y) = s′

1j(y) for all criteria cj) then they
should rank x and y the same (xR1y if and only if xR′

1y).

This requirement follows from the following principle: in order to assess the
merit of a particular proposal, one needs to read only that proposal. In par-
ticular, a proposal’s overall score should depend only on its criteria scores (so
this is consistent with the idea that reading background literature or other
proposals can improve the quality of a reviewer’s judgment as suggested by
Jayasinghe et al. 2003, section 6.2 and Marsh et al. 2008, pp. 163–164).
Hence, if a particular proposal receives the same criteria scores on two dif-
ferent profiles, it should receive the same overall score on these profiles. So if
two proposals x and y receive the same criteria scores on two profiles, both
should get the same overall score, which entails they should be ranked the
same (xR1y if and only if xR′

1y). Violating (I) thus means violating the
principle that overall scores should depend only on criteria scores, thereby
instantiating the second type of commensuration bias.

Putting this in terms more familiar to social choice theorists, (I) says that
how two proposals are ranked is not allowed to depend on how either of them
ranks with respect to some third proposal. As is often pointed out, this is
a fairly restrictive requirement which does a lot of the heavy lifting in the
proof of Arrow’s impossibility theorem. In the present context, it says that
the reviewer should not take into account which bundles of proposals are
likely to get funded based on her scores. The following example illustrates
why one might take this to be an unreasonably restrictive requirement.

Consider two proposals x and y on fairly disparate topics. For example,
suppose both proposals are submitted to the NIH, but proposal x concerns
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a comparative study of different antibiotics whereas proposal y focuses on
genetic determinants of cardiovascular disease, say. If there are a number of
other strong proposals having to do with antibiotics but few or none focusing
on genetics it may well seem reasonable to the reviewer to give a high overall
score to proposal y, giving it a good chance to be funded. But if instead
many other proposals focus on understanding the causes of various diseases
but few actually study treatments the reviewer might want to give a high
overall score to proposal x. In particular, we might imagine that proposals
x and y are exactly the same in both scenarios, receiving the same criteria
scores, but with proposal y scoring higher overall in the former scenario, and
proposal x scoring higher overall in the latter.

The type of reasoning the reviewer seems to engage in here (“This pro-
posal should get a high overall score because there are few other strong
proposals in this area, whereas I will give that one a lower score to avoid
funding too many proposals in that area.”) is ruled out by (I). Yet I am sym-
pathetic to a reviewer who would like to include such considerations—call
them “bundle considerations”—in her scoring. So where does this leave the
argument that violating (I) constitutes an instance of commensuration bias?

First, note that the guidelines given to reviewers by grant agencies seem
to rule out using bundle considerations in coming to overall scores. The NIH,
for example, explicitly lists in its instructions to reviewers all factors that are
supposed to enter into determining the overall score (called “impact score”).

The impact score for an application is based on each individual
reviewer’s assessment of the scored criteria plus additional cri-
teria regarding the protection and inclusion of human subjects;
vertebrate animal care and welfare; biohazards, and criteria spe-
cific to the funding opportunity. (National Institutes of Health
2017)

The “scored criteria” mentioned in this quote refers to the previously listed
criteria: significance, investigator(s), innovation, approach, and environment.
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So at least according to the NIH, reviewers are supposed to consider proposals
exclusively on their own merit.

Moreover, this way of thinking seems to be typical among funding agen-
cies and among peer reviewers and academics more generally. It is common
to speak of the quality of a paper or a proposal, in a way that strongly sug-
gests that this is an inherent feature of the work not dependent on bundle
considerations. And peer review is commonly thought to be about identify-
ing this quality, e.g., it is “the means by which one’s equals assess the quality
of one’s scholarly work” (Eisenhart 2002, 241), whereas bias may be defined
as “any systematic effect on ratings unrelated to the true quality of the ob-
ject being rated” (Blackburn and Hakel 2006, 378, emphasis mine). Bundle
considerations reflect a deviation from this view, and more specifically from
the NIH’s reviewer instructions, and in that sense might be said to bias the
process.

At this juncture one might correctly point out that I have changed the
terms of the discussion. Previously I was making normative claims about
what unbiased commensuration should look like, but now I am making a
descriptive claim about what funding agencies like the NIH might perceive
as bias, without arguing that they are normatively right to do so. In fact I
have already suggested that I think they may be wrong to do so, and that
bundle considerations may well be a reasonable factor for the reviewer to
take into account in determining her overall scores.

However, even if one insists on the importance of bundle considerations,
violating (I) introduces bias. The reason for this is that bundle considerations
can be incorporated into the framework as an extra criterion. In the example
above I sketched two scenarios in which one or the other of two identical
proposals seemed preferable due to the available alternatives. But identical
proposals need not receive identical criterion scores if one or more criteria
explicitly reference bundle considerations—in fact this is a fallacy encouraged
by the widespread view that a proposal’s merit depends only on it. We
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could either add a criterion (perhaps “uniqueness”) or use one of the existing
criteria (innovation) to reflect in the criteria scores the fact that one proposal
stands out by being different.

Once all relevant factors are represented in the criteria scores, the idea
that identical criterion scores should lead to identical overall scores once
again seems reasonable, in fact almost a tautology. With all relevant factors
represented in the criteria scores, ranking proposals with identical scores
differently by definition means that an irrelevant factor has entered into the
overall scores. Since this bias is introduced at the commensuration step, we
again end up with commensuration bias.

Taking stock, I have argued that a peer reviewer asked to score grant
proposals on both a set of criteria and overall should satisfy requirements
(P), (Dom), and (I) if she is to avoid commensuration bias. If, moreover, the
criteria are scored on ordinal or cardinal scales that are not intercomparable,
and she is to provide overall scores regardless of what combination of criteria
scores she decides to give, she faces the following problem.

Theorem 1 (Arrow 1951). If there are at least three proposals (m ≥ 3), it
is impossible for a commensuration function to simultaneously satisfy (U),
(P), (Dom), and (I).

This is Arrow’s famous impossibility theorem. In the present context it says
that it is impossible for a reviewer to score a set of at least three proposals
without falling prey to commensuration bias. This interpretation of the the-
orem follows from the arguments given above that violating any of the four
requirements constitutes a form of commensuration bias.

While some variations will be considered below, this is the main result of
the paper. It is a significant strengthening of the conclusions of Lee (2015).
Where Lee introduced the concept of commensuration bias and provided
evidence that this type of bias occurs, I have argued that commensuration
bias necessarily occurs in a wide range of peer review processes of grant
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proposals (the applicability of this argument to journal peer review is one of
the variations to be considered below).

One might be disappointed by this result, but there is a more optimistic
interpretation. As is commonly suggested for Arrow’s theorem as well as
other impossibility results, rather than focusing on the impossibility one can
interpret the theorem as giving a typology of possibilities. In light of the
theorem, peer review will be biased in some way or other. The conditions of
the theorem can then be interpreted as ways in which peer review might be
biased, which one can then evaluate relative to one another.

Is the type of commensuration bias that results from violating (P) to be
preferred over the type that results from violating (I)? Or should the problem
be avoided by effectively having only a single criterion—violating (Dom); by
restricting the possible combinations of criteria scores—violating (U); or by
broadening the informational basis so that criteria scores are measured on
ratio scales or are somehow made intercomparable?

I have argued that the latter two options present major practical diffi-
culties. But in concluding this section I want to emphasize that one can
accept my main argument—that commensuration bias is a necessary feature
of grant peer review as currently practiced—even if one disagrees about what
can or should be done in light of this.

4 Aggregating Reviewers’ Overall Scores

There is another problem of aggregation that comes up in the context of
grant proposal peer review. This is the problem of aggregating the (overall)
scores given to the proposals by multiple reviewers into a single final ranking
that will be used to decide which proposals should be funded. The problem is
structurally very similar to the problem of commensurating a single reviewer’s
criteria scores, as I will now show by putting it into the same framework and
demonstrating how Arrow’s theorem comes up a second time over.
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Before I focused on a single peer reviewer. Now consider n reviewers
a1, . . . , an, again tasked with ranking m proposals. In this section I set aside
the notion of criteria, or alternatively, I assume that the problem of aggre-
gating the reviewers’ judgments on the criteria into a single ranking of the
proposals has somehow been solved.

Instead I assume only that each peer reviewer has scored the propos-
als. For reviewer a1 these scores are given by the function s1 discussed in
section 2. Analogously, for any reviewer ai their scores are given by the func-
tion si. Once again the question rises on what type of scale these scores are
measured and whether they are intercomparable. For the same reasons given
in section 2, I think the scores should be interpreted as being on a interval
scale (or possibly merely an ordinal scale) as there does not seem to be a
meaningful zero.

The issue of interreviewer comparability is less clear. Arguably some de-
gree of comparability can be achieved through reviewer instructions. For
example, reviewers might be told explicitly which numerical scores are ap-
propriate for proposals they should definitely be funded, should be funded
if possible, borderline cases, etc. This might be supplemented with further
instructions regarding the circumstances under which a proposal should be
viewed as falling into one of these categories. And funding agencies do in
fact give these types of instructions to their reviewers.

On the other hand it is not at all clear that each reviewer will apply these
instructions in the same way. Anecdotally at least, the notions of “soft” and
“harsh” reviewers are familiar (not to mention busy reviewers who fail to
read instructions). In order to set up the closest possible analogy with the
case of commensuration by a single reviewer, for the moment I will assume
that there is no interreviewer comparability. But I return to this issue in the
discussion below and in the next section.

The program director receives the peer reviewers’ scores. Her task is to
give a single ranking of the proposals, such that depending on the funding
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available, a cutoff point can be chosen: proposals above the cutoff (often
called “the payline”) will be funded. It is not uncommon for the cutoff point
to be chosen after the ranking exercise, so that a complete ranking is indeed
needed. At many funding agencies, these decisions are made by a panel
rather than a single program director. Where I write “program director”
below this should not be read as excluding that possibility.

The final ranking is denoted R, where xRy denotes “x ranks at least as
high as y in the final ranking”. As before we have the associated relations
I for proposals ranked equally and P to denote ranking strictly higher. If
the program director is to be free of commensuration bias, the final ranking
must be related to the individual reviewer scores in a sensible way.

A combination of reviewer scores—an n-tuple (s1, . . . , sn)—is called a pro-
file. We are interested in a function that assigns to a profile a corresponding
final ranking. To distinguish it from the function discussed previously, I will
call such a function an aggregation function.

Universal Domain (U) The domain of the aggregation function is the set
of all possible profiles of reviewer scores.

As each reviewer is presumably ranking the proposals independently, there is
little reason to think that any combination of reviewer scores can or should
be excluded a priori. At least in the case of a top medical journal, peer
reviewers have been found to agree with each other’s judgments “at a rate
barely exceeding what would be expected by chance” (Kravitz et al. 2010,
3). If this finding can be generalized to the case of grant proposal review, it
would give a positive reason to expect reviewer scores to be all over the map.
Since the program director generally does not have the freedom to decide not
to produce a final ranking in difficult cases, it seems that violating (U) is not
a realistic way to avoid commensuration bias.

Weak Pareto (P) If a proposal scores higher than another proposal ac-
cording to all reviewers it should be higher in the final ranking, i.e.,
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si(x) > si(y) for all reviewers ai entails xPy.

If the program director were to go against a unanimous judgment from the
reviewers that one proposal is better than another she would seem to have
inserted her own opinion into the process, contrary to her task which is to
passively aggregate the reviewer scores. This would be a form of the second
type of commensuration bias as identical scores would not produce identical
rankings.

Non-Dictatorship (D) It is not the case that one reviewer dominates all
the others, i.e., there does not exist a reviewer ai such that for any
profile and for any two proposals x and y, si(x) > si(y) implies xPy.

Just as requirement (P) rules out one form of bias for or against specific
proposals, requirement (D) rules out a particularly strong bias in favor of
one reviewer. Arguably, a certain respect for reviewers’ time and expertise
entails that they should be treated interchangeably. If two reviewers’ scores
were switched (i.e., all the same scores are reported but by different reviewers)
this should not affect the final ranking; anything short of this is a form of
the second type of commensuration bias.

This argument supports a requirement called “anonymity” (any two pro-
files in which the same scores are reported but by different reviewers should be
treated the same by the aggregation function) which is also sometimes used
in social choice theory and is strictly stronger than (D). I use the weaker
requirement (D) here because it is all that is needed for the theorem below
and to preserve the close analogy with the previous section. Contrary to
anonymity, (D) allows reviewers to have specific areas of expertise or even
for some reviewer’s scores to count more heavily than others’, as long as it is
not the case that one reviewer can overrule the others on all proposals and
regardless of how strongly the others disagree.

Independence of Irrelevant Alternatives (I) The relative final ranking
of two proposals x and y depends only on the reviewer scores of those
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two proposals. That is, if two profiles give the same reviewer scores to
x and y (si(x) = s′

i(x) and si(y) = s′
i(y) for all reviewers ai) then they

should rank x and y the same (xRy if and only if xR′y).

The discussion here is largely analogous to the discussion of requirement (I)
in the previous section. Because the program director’s task is simply to pas-
sively aggregate the reviewers’ scores, and because “bundle considerations”
are either ruled out by the background assumption that a particular pro-
posal’s merit depends only on the proposal itself or are already incorporated
into the individual reviewers’ scores, two proposals x and y that receive iden-
tical scores on two profiles should be perceived as being equally meritorious
on either profile, and so should be ranked the same (either x outranks y on
both profiles, or vice versa, or they are ranked equally). Any deviation from
this—and hence any violation of requirement (I)—should be regarded as an
instance of commensuration bias.

The argument for requirement (I) is stronger in this case than in the
setting of the previous section. As I have imagined it here, the program
director that comes up with the final ranking is supposed to be completely
passive, which is to say she defers to the expertise of the peer reviewers and
aggregates their scores with minimal insertion of her own opinions. Arguably
then, any bundle considerations should be reflected in the reviewers’ scores,
and not in the process by which they are aggregated.

Structurally speaking, both the framework and the requirements just de-
scribed are exactly the same as those discussed previously. It should be no
surprise, then, that the same theorem holds.

Theorem 2 (Arrow 1951). If there are at least three proposals (m ≥ 3), it
is impossible for an aggregation function to simultaneously satisfy (U), (P),
(D), and (I).

Given my arguments that violating each of the requirements constitutes com-
mensuration bias, the theorem says that it is impossible to avoid commensu-
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ration bias, or alternatively that commensuration bias is a necessary feature
of the type of peer review process studied here.

As an aside, I note that theorem 2 is directly analogous to Arrow’s orig-
inal theorem, in the sense that what is being aggregated are n voters’ (here:
peer reviewers’) preference rankings of a set of options (here: proposals).
By contrast, theorem 1 of the previous section involves a reinterpretation of
Arrow’s result, in which different criteria act as “voters”. This reinterpreta-
tion is instead analogous to Zwart and Franssen (2007) and Okasha (2011),
who applied social choice theory to the problems of verisimilitude and theory
choice, respectively.

The assumption of no interreviewer comparability is crucial to the theo-
rem above, as noted in the following proposition.

Proposition 3. If reviewer scores are comparable (i.e., are measured on the
same scale), there exist aggregation functions that simultaneously satisfy (U),
(P), (D), and (I).

For example, if reviewer scores are measured on intercomparable interval
scales, the four requirements are satisfied by a utilitarian rule that assigns a
weight to each reviewer (with at least two reviewers receiving nonzero weight)
and ranks a proposal above another if and only if the weighted average of
the reviewer scores of the former is higher than the latter.

Since I have suggested that (some degree of) interreviewer comparability
may hold in the case of grant peer review, whereas intercriteria comparability
seems highly unlikely, an escape route from the version of Arrow’s theorem
discussed in this section appears that is not open to the version discussed in
the previous section. The next section raises the question whether combining
the two frameworks allows one to avoid commensuration bias altogether.
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5 Multiple Criteria and Multiple Reviewers

The following objection might be raised against the argument of the pre-
vious section: the information given to the program director is needlessly
impoverished. She was only given the reviewers’ overall scores to work with,
but at many funding agencies reviewers are asked to score proposals on a
number of criteria as well as giving overall scores (as discussed in sections 2
and 3). Would the program director be able to escape Arrow’s theorem by
considering reviewers’ criteria scores?

Moreover, I noted that funding agencies may attempt to enrich the infor-
mational basis by instructing reviewers on how to use the numerical scales
on which proposals are scored. This offers an escape route from the impos-
sibility presented in theorem 2. Does interreviewer comparability provide an
escape from both versions of Arrow’s theorem?

This section addresses both of these points by considering a “double” ag-
gregation framework in which multiple reviewers score proposals on multiple
criteria. The program director needs to extract from these scores a single
ranking that will determine which proposals get funded. The development
in this section closely follows List (2004).

It is worth noting that earlier work by McKelvey (1979) already estab-
lished important difficulties in forming a ranking when evaluating alternatives
on multiple dimensions. However, for McKelvey’s results to apply to grant
proposal review one would have to assume the existence of an infinity of
proposals with arbitrarily small differences between them. Hence I take his
work to be less immediately relevant to the present case.

Suppose there are n peer reviewers a1, . . . , an scoring m proposals on k

criteria c1, . . . , ck. For any proposal x, let sij(x) denote the score reviewer ai

assigns to x on criterion cj. As before, assume that these scores are given on
a cardinal or ordinal scale, i.e., there is no meaningful zero. For the moment,
I make no assumption on intercomparability.

The final ranking determined by the program director is denoted by the
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relation R and the derivative relations I and P , as in the previous section.
A double aggregation function assigns a final ranking to any profile—an n ·k-
tuple (s11, . . . , snk)—in its domain, which is some given subset of all possible
profiles.

In order to avoid falling prey to commensuration bias, a double aggre-
gation function needs to satisfy a number of conditions. The first three of
these are straightforward generalizations of the conditions given in previous
sections. The arguments for why violating these requirements constitutes
commensuration bias are unchanged from those given above. Note that the
versions of (P) and (I) given here are somewhat weaker due to their an-
tecedents being stronger, requiring agreement between all reviewers and all
criteria.

Universal Domain (U) The domain of the double aggregation function is
the set of all possible profiles of criteria scores.

Weak Pareto (P) If a proposal scores higher than another proposal on
all criteria according to all reviewers it should be higher in the final
ranking, i.e., sij(x) > sij(y) for all criteria cj and reviewers ai entails
xPy.

Independence of Irrelevant Alternatives (I) The relative final ranking
of two proposals x and y depends only on the criteria scores of those
two proposals. That is, if two profiles give the same scores to x and y

(sij(x) = s′
ij(x) and sij(y) = s′

ij(y) for all reviewers ai and criteria cj)
then they should rank x and y the same (xRy if and only if xR′y).

Following List (2004), I formulate three versions of a non-dictatorship con-
dition. The first one requires that no single individual reviewer acts like a
dictator, without specifying how her criteria scores are aggregated. The sec-
ond one requires that no single criterion dominates the final ranking, without
specifying how individual reviewers’ scores on that criterion are aggregated.
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The third and weakest version only rules out that a single score function (i.e.,
a single reviewer’s scores on a single criterion) dominates the final ranking.

Non-Dictatorship (D) There does not exist a reviewer ai and a strictly
increasing function f : Rk → R such that for any profile and for any two
proposals x and y, f(si1(x), . . . , sik(x)) > f(si1(y), . . . , sik(y)) implies
xPy.

Non-Dominance (Dom) There does not exist a criterion cj and a strictly
increasing function f : Rn → R such that for any profile and for any two
proposals x and y, f(s1j(x), . . . , snj(x)) > f(s1j(y), . . . , snj(y)) implies
xPy.

Non-Double-Dictatorship (DD) There does not exist a reviewer ai and
a criterion cj such that for any profile and for any two proposals x

and y, sij(x) > sij(y) implies xPy.

If there is neither interreviewer comparability nor intercriteria comparability
the double aggregation problem reduces to a regular aggregation problem
with n · k individuals. Hence Arrow’s theorem applies, and in the present
framework says the following.

Theorem 4 (Arrow 1951). If there is neither interreviewer comparability nor
intercriteria comparability and there are at least three proposals (m ≥ 3), it
is impossible for a double aggregation function to simultaneously satisfy (U),
(P), (I), and (DD).

As I suggested above, however, it may be reasonable to expect some degree of
interreviewer comparability, as reviewers may be instructed to score proposals
in broadly similar ways. The following theorem applies to this scenario.

Theorem 5 (Roberts 1995 / List 2004). If there is interreviewer compara-
bility but not intercriteria comparability and there are at least three proposals
(m ≥ 3), it is impossible for a double aggregation function to simultaneously
satisfy (U), (P), (I), and (Dom).
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This answers the questions from the beginning of this section. Despite inter-
reviewer comparability, and despite the broader informational basis provided
by the presence of scores on multiple criteria from multiple reviewers, an ana-
logue of theorem 1 of section 3 goes through. In this most general version
of the model it still turns out that it is impossible to avoid commensuration
bias.

Finally, although in my opinion not as relevant to the case of grant pro-
posal reviewing, the previous theorem can be reinterpreted to apply when
there is intercriteria comparability but not interreviewer comparability.

Theorem 6 (Roberts 1995 / List 2004). If there is intercriteria comparability
but not interreviewer comparability and there are at least three proposals (m ≥
3), it is impossible for a double aggregation function to simultaneously satisfy
(U), (P), (I), and (D).

For the sake of completeness, I should mention that in the presence of both
interreviewer and intercriteria comparability, all the criteria can be satisfied
simultaneously. Possibilities similar to the one sketched at the end of section 4
then arise (see List 2004, sections 4.3 and 4.4, for more details). However, due
to the absence of intercriteria comparability (as discussed in section 2), this
does not make for a plausible response to the problem of commensuration
bias in grant proposal review.

6 Commensuration Bias At Scientific Jour-
nals

Lee (2013, section 3) argues for the existence of commensuration bias not
just at funding agencies, but also at top scientific journals. So far I have
focused exclusively on funding agencies. To what extent do my arguments
extend to peer review practices at journals?
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One important difference is that journals tend to use different peer re-
viewers for different papers. A single peer reviewer will not normally be
asked to review more than a few papers per year for a given journal. So the
framework as laid out here, in which a single reviewer scores all papers in a
given set, does not apply as naturally to journal peer review. In contrast, at
a funding agency it is more common that the same group of reviewers is used
for all proposals (or at least all proposals on a particular topic, or submitted
to a particular panel).

This point, however, need not be prohibitive to the application of the
social choice theory framework to journal peer review. At least from a for-
mal perspective, nothing prevents us from treating “Reviewer 1” (the first
reviewer to provide scores on each paper) as a single reviewer, and similarly
for “Reviewer 2” and so on. Assuming each paper has the same number
of reviewers this fits the framework laid out above. Then we can still ask
whether Reviewer 1 aggregates her criteria scores consistently in a way that
is free from commensuration bias, and whether the journal editor aggregates
the reviewer scores in an unbiased way.

If instances of commensuration bias are found, it may be less clear who
is to blame: if Reviewer 1 evaluates papers inconsistently, is that the fault of
any particular reviewer who acted as Reviewer 1 on one or more papers? But
even so, it identifies a problem in the peer review process: if requirements
(U), (P), (I), (D), or (Dom) are being violated, some papers are being treated
unfairly by the journal. This may, and arguably should, be something a
journal would want to fix. The question of blame is perhaps a bit of a red
herring.

Another difference between journals and funding agencies is that almost
all journals review and accept papers on a rolling basis, whereas funding
agencies usually evaluate all proposals in response to a particular call at
once. I argued above that funding agencies need to come up with a full
ranking of the proposals, as the payline is often not known until late in the
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process. Journals instead need to make binary decisions—accept or reject
this paper—with a page limit in mind. Moreover, compared to paylines,
page limits tend to be a little more fungible at printed journals (as backlogs
can be grown or shrunk up to a point) and much more fungible at online-only
journals.

So journals are probably better modeled as using some kind of threshold
on overall scores (i.e., a paper is accepted if it scores above the threshold,
with the threshold gradually adjusted over time in view of the page limit)
rather than creating a ranking of batches of papers. For this reason I think
the framework studied here does not apply neatly enough to journal peer
review to support the kind of claims I made about commensuration bias in
grant peer review. Adapting the framework to ask whether commensuration
bias necessarily arises in journal peer review I leave for future research. I
expect that similar results may be achieved in such a model.

7 Conclusion

This paper has argued that commensuration bias is a necessary feature of
peer review at funding agencies, assuming it is organized broadly along the
lines it currently is at for example the NIH.

I already mentioned that one might view Arrow’s theorem as giving a
typology of possibilities. For those who are committed to a form of grant
peer review as presently organized (with different criteria that are measured
on ordinal or cardinal scales that are not intercomparable), future research
could fruitfully investigate the different possibilities that arise when one of
the requirements (U), (P), (Dom), or (I) is weakened. While I have argued
that violating each of these makes for commensuration bias, this is not to
say that all forms of commensuration bias are equally bad.

Alternatively, one might consider more far-reaching reforms to peer re-
view. One proposal that appears to be gaining some momentum is the idea to
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fund grant proposals by lottery, usually combined with some minimal screen-
ing through peer review (Fang and Casadevall 2016, Guthrie et al. 2017, Avin
forthcoming). In other work I have suggested that the role of journal peer
review in science should be significantly reduced (Heesen and Romeijn 2018,
Heesen and Bright 2018). These suggestions may come with other down-
sides, but they would surely suffice to eliminate commensuration bias in peer
review.
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