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Abstract

It is well-known that some scientists are more prominent than oth-
ers. But what makes one scientist more prominent than another? I
propose a possible mechanism that produces differences in prominence:
scientists’ desire for information. In a model of a scientific community
exchanging information, I show that this mechanism indeed produces
the kind of patterns of prominence that are actually observed. I dis-
cuss the implications of this result for three possible explanations of an
individual scientist’s prominence: an explanation based on scientific
merit, an explanation based on epistemically irrelevant factors (e.g.,
gender bias or charisma), and an explanation based on epistemic luck.
Depending on which of these explanations is correct one may draw
different conclusions about a scientist based on prominence. I discuss
policy recommendations that result from this, including suggestions
about when it is appropriate to use measures of prominence (e.g.,

citation metrics) in giving out grants and awards.
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1 Introduction

Academic superstars are a familiar phenomenon. These scientists write the
papers that everyone reads and talks about, they make media appearances,
give presidential addresses, and they win grants and awards. The work of
an academic superstar generally attracts more attention than that of the
average scientist.

Quantifying attention as the number of citations to their papers, sociol-
ogists found an easy way to identify academic superstarsﬂ They also noted
that superstars are rare: the vast majority of scientists receives no more than
a handful of citations, while a rare few get extremely many (Price||1965, |Cole
1970)). More recent work confirms that the distribution of the number of
papers with a given number of citations follows a “power law”ﬂ

In this paper I ask why superstars exist. Why does some scientists’ work
receive more attention than others’? What characteristics of individual sci-
entists contribute to their work receiving more or less attention]

I propose a possible mechanism that could be responsible for producing
the patterns that are actually observed (in particular, the existence of su-
perstars). The mechanism I propose is scientists’ desire for information. In
section [2] T set up a model of information exchange among scientists. I state
some theorems of this model in sections [3] and [, My goal in these three

sections is to establish something like the following claim.

Claim 1. If, in choosing whose work to read, scientists are motivated only

by gathering as much information as possible given their means, then the

'Kieran Healy recently did this for the field of philosophy, in a blog post which was
widely discussed in informal circles in philosophy (see http://kieranhealy.org/blog/
archives/2013/06/18/a-co-citation-network-for-philosophy/).

“This means that the number of papers that gets cited n times is proportional to n=%

for some «. |[Redner| (1998) estimates « to be around 3.
3The standard explanation in the literature for power law distributions is through

preferential attachment models (Barabasi and Albert|[1999)). However, such models do
not include characteristics of individual scientists or papers. A more detailed comparison
between preferential attachment models and the model of this paper is given in section E}
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patterns of interaction that emerge are highly imbalanced: some scientists

get a lot of attention, while most get very little.

Insofar as I succeed in establishing this claim, it shows that scientists’
desire for information (which is surely one of scientists’ many motivations)
can work as a mechanism that leads to the existence of academic superstars.

Next, I compare and contrast three explanations of how an individual
scientist becomes an academic superstar (sections[f [6] and [7). Two of these
are familiar from the literature and one is novel. In each case, I discuss how
the mathematical results from sections [3| and 4] bear on the explanation, as

well as policy recommendations that follow from the explanation.

2 The Model and the Assumptions

The goal of this model is to capture important aspects of the way scientists
exchange information. In order to facilitate mathematical analysis, some
abstractions and simplifications have to be made. Here I indicate and defend
the most important of those.

A set of scientists I is assumed to be given, where each element i € [
represents an individual scientist. This may be an arbitrary set of scientists,
but the most natural way to think of it is either as the practitioners of some
given scientific discipline (small or large) or as all of science. I is assumed to
be finite.

The scientists are interested in learning something about the world. There
is a set of worlds €2 that the scientists consider possible, and scientists are

interested in distinguishing between these worlds or sets of them[] I make

4Different scientists may consider different worlds possible, or may be interested in
different distinctions. The assumption of a single set of worlds €2 does not rule this out:
if €; is the set of worlds scientist 7 considers possible, define 2 as the Cartesian product
of Q; for all 7 € I, but allow a scientist ¢ to distinguish between two possible worlds only
if they differ in their i-th index. Everything in this paper is consistent with this way of
setting things up.



no assumptions about the cardinality of €2, which distinctions the scientists
are or are not interested in making, or about any probability or plausibility
ordering the scientists might have over worlds.

Each scientist learns something about the world through her own research:
say, the outcome of her experiments. Suppose there are m experiments one
might do. These are modeled as m probability distributions £, ..., F;, that
one might draw from. Let n(i, j) be the number of times scientist i performs
experiment j (1 < j < m). Then her research yields, among other things,
n(7,j) random variables X;;1, ..., X} n¢.j), where each of these random vari-
ables has probability distribution Fj.

That scientists may learn from experiments is reflected by the fact that
the probability distributions of the experiments may depend on the possible
world the scientist is in. I make no assumption on the form this dependence
takes.

I refer to the collection of experiments performed by a given scientist ¢ as

her information set A;. So

A= {Xjn [1 <5 <m 1 <k <nlij)}

Each scientist publishes her information in a paper. For simplicityﬂ I
assume that each scientist publishes a single paper, and that this paper
contains all the information in her information set. Thus I can refer to
each i € I interchangeably as a scientist or a paper. Call the ordered pair
C=(1,{A;| i€ 1}) a scientific community.

Now the scientists form “connections”. The benefit of a connection is to

5 A slight generalization of my model would have separate sets of scientists and papers,
with an information set for each paper. Connections (as defined below) would then go
from scientists to papers. The measure of prominence I define below would be defined
for each paper, and all my results (in particular theorem @ would hold under the same
assumptions. The measure of prominence of a scientist could then be taken to be the
sum of the measures of prominence of her papers, and the results would be essentially the

same, but with more complex notation.



obtain the information in the other scientist’s information setf] Connections
may be interpreted as scientists reading each other’s papers: i connects to i’ is
short for i reads i"’s paper and thereby learns the realization of each random
variable in information set A;.

Importantly, connections are one-sided (or directed). So a scientist may
form a connection to another scientist on her own initiative, without needing
the other scientist’s consent. By doing so she learns the contents of the other
scientist’s information set, but the other scientist does not learn anything.

These assumptions yield a realistic model of the type of information ex-
change that occurs when scientists read each other’s work. A scientist can
read another’s paper without prior consent. By reading a paper the scientist
obtains some information from the other scientist but no information flows
in the reverse direction.

Another assumption I make is that the process of forming connections
happens relatively quickly compared to the process of doing experiments.
More precisely, in this model scientists do not perform new experiments
while they are forming connections. What experiments each scientist has
done is assumed to be fixed background information when they make deci-
sions about whom to connect to. Moreover, individual scientists know this
background information: they are aware of which scientists have performed
which experiments/]

I argue that these assumptions are close enough to the truth for present
purposes. Relative to the time and cost involved in designing and running an

experiment, reading (and subsequently citing) someone else’s paper is a very

6Scientists learn each other’s evidence, not each other’s conclusions as expressed, say,
in a posterior probability. In this sense my model differs from that of |[Aumann| (1976).
One reason for doing it this way is to make sure substantial information is exchanged. If
scientists only learn each other’s posterior on some set of possible worlds, [Aumann[s result
guarantees that repeated exchange of posteriors will make them equal, but this does not
necessarily mean that anyone has learned anything (see |Geanakoplos and Polemarchakis
1982, proposition 3).

In other words, every scientist knows the numbers n(i, j) for each i and j.



short-term activity. The assumption that scientists know whom to connect
to to get certain information is justified by the further observation that the
time required to search for papers on a certain subject (perhaps looking at
some titles and abstracts) is itself negligible compared to the time required
to actually read papers and obtain the information in them. Additionally,
in relatively small scientific communities this assumption may be justified
because everyone knows what everyone else is working on through informal
channels.

The next question is which connections are actually formed. This obvi-
ously depends on the goals of the individual scientists. I do not assume that
scientists are fully rational. Instead I make some specific, much weaker, as-
sumptions about their behavior that amount to a kind of bounded rationality.
I state and defend these assumptions in section [3]

Individual scientists are allowed to choose their connections sequentially.
That is, their decision which scientist to connect to next may depend on the
information learned through previous connections.

I think these bounded rationality assumptions and the sequential deci-
sions assumption allow enough flexibility to capture the ways scientists might
act on their desire for information. However, I will also defend these assump-
tions from a Bayesian perspective by proving that fully rational Bayesian
scientists may satisfy them (see theorems [11|and [12]in section [4]).

Consider the graph or network formed by viewing each scientist as a node,
and drawing an arrow (called an arc or directed edge in graph theory) from
node i to node " whenever scientist ¢ forms a connection with scientist 7'.
More formally, define the network G = (I, {(i,4') € I* | i connects to 7'}).

In order to study the prominence of individual scientists in G, I need a
measure of prominence. A natural measure suggests itself: the number of
scientists that read the individual’s work. In the network, the number of
scientists who read i’s work is simply the number of arrows ending at . In
graph-theoretical terms, this is the in-degree of node i. So the in-degree can

be used as a measure of the prominence of scientists in the community. This



idea is illustrated in figure

Figure 1: Two networks for small scientific communities. On the left, scientist
7 is prominent because she has an in-degree of 6 while the other scientists in
her community have an in-degree of 0. On the right, all scientists are equally

prominent, having an in-degree of 1.

If a scientist learns something from another scientist, she will usually
acknowledge this fact in future work by citing the paper she read. In general,
one may expect the papers that a given scientist cites to be highly correlated
with the papers she read. So the measure of prominence based on in-degree
I have just defined should in practice match up closely with citation metrics.

If, as I have suggested, some scientists get many citations and some very
few, then one should expect large differences in in-degree among scientists. I
will prove that this is indeed the case in my model (assuming the community
is large enough). This is how I substantiate claim

It may be remarked that in the literature there is already a standard
explanation for this pattern of large differences in in-degree. This explanation
is fleshed out in so-called preferential attachment models. In a preferential
attachment model new nodes (papers) form links (citations) to older nodes
proportional to the number of links that older node already has. So any
paper that already has twice as many citations as some other paper is also
twice as likely to be cited by future papers.

It can be shown that this generates a power law distribution of citations

with an exponent equal to three (Barabasi and Albert||1999). This is very



close to what is observed in real citation data (Redner|[1998). While this is
interesting and illuminating as far as it goes, it is not fully satisfying for at
least two reasons.

First, it gives no insight in why the difference between the two papers
appeared in the first place (the model needs to start with some citations al-
ready in place for the probabilities of new connections to be well-defined). By
not including any characteristics that distinguish papers from one another,
it offers nothing to someone who wants to predict in advance which of two
forthcoming papers will be more highly cited.

Second, it says nothing about what motivates scientists in choosing to
cite one paper rather than another. Preferential attachment models merely
stipulate that scientists cite older work proportional to its number of existing
citations, without giving any decision theory explaining what makes this
behavior rational (or irrational).

For these two reasons preferential attachment models are a non-starter if
one is interested in determining whether it is good or bad for science that
citations follow a power law. It should be clear from the above that the
model in this paper avoids these issues.

My model is obviously unrealistic in portraying science as consisting of
one round of experiments and one round of connections. In reality, scientists
may form many connections over time, interspersed with experiments. The
model can be viewed as looking only at a small period of time in a scientist’s
career, say, the time connected with a single research project: doing some
experiments and exchanging results with epistemic peers.

In terms of the dynamic model of epistemic inquiry by [Kelp and Douven
(2012), my model may be viewed as zooming in on one deliberative round and
one disclosive round. Afterward the scientists take what they have learned
as prior information into the next set of rounds.

In conclusion, I do not claim to have given a definitive model of informa-
tion exchange in science. My goal is merely to describe some aspect of it,

in particular the idea that each scientist has access to different information



(scientists are heterogeneous in this respect) and that this plays a role in
motivating other scientists to read or cite them. The model ignores certain
complicating factors, e.g., how sequential choices to form connections may
interact with the choice of experiment (the latter being taken as exogenous).

In general, if the model seems too simple to be realistic I would argue that
this is a virtue. Similar results should be expected in any (more realistic)
model that includes my model (or something close to it) as a special case.
Specific arguments would be needed to show that making the model more

realistic would undo my results.

3 Superstars in the Model

Say that two scientists ¢ and ¢ have the same information set (4; = Ay) if
they have done each experiment the same number of times: n(i, j) = n(7, j)
for all j € {1,... ,m}ﬁ I can then ask what proportion of scientists in the

community has the same information set as some given scientist.

Definition 2 (relative frequency of information). A function ¢ describes the
relative frequency of information in a scientific community C = (I,{A4; | i €
I}) (I will abbreviate this as “C satisfies ¢”) if for all information sets A

_ieI|A =AY
- 1 H

q(A)

8Technically the two information sets will not be equal. For example if each scientist
has only done experiment 1 once then A; = {X;,1} and Ay = {X1,.1}. These sets
are different because the random variables differ in their second index. It would be more
correct to define an equivalence relation on information sets such that two information
sets are equivalent (rather than equal) if and only if n(i,j) = n(i/,j) for all 1 < j < m.
Any occurrences of equality of information sets in the remainder of this paper should then
be replaced with equivalence. This can be done (see Heesen|[2014), but I have chosen to

avoid these complications here.
9|S| denotes the cardinality of the set S, which is simply the number of elements of S

if S is finite (as all sets to which I apply |- | in this paper are).



Let 6¢ denote the sequential decision procedure for a scientist i. The
procedure tells ¢ whom (if any) of the other scientists in the set I to connect
to at any given time. Formally, 6¢ is a function whose output is a sequence
of members of I (interpreted as the scientists i connects to). It is a function
of the information sets of the other scientists: the n + 1-st element of the
sequence may depend on the values of the random variables in the information
sets associated with the first n elements of the sequence.

Since decisions to connect may depend on the values of certain random
variables, such decisions may themselves be viewed as random. This is the
significance of any subsequent use of probabilities and expectations.

Abusing notation, I let 6¢ denote both the sequential decision procedure
and the number of connections made under that procedure. Since the former
is a random variable, so is the latter. Similarly, let 6¢(A) denote the number
of connections made to scientists with information set A (i.e., the number
of 7 such that ¢ connects to i and Ay = A). This is again a random variable.

This brings us to the first assumption on the way scientists choose their
connections. It says that scientists are unlikely to connect to a large number

of other scientists.

Assumption 3 (Uniformly Bounded Connection Probabilities). For any rel-
ative frequency q, information set A, and € > 0, there exists N.(A) such that
foralln > N.(A), for allC that satisfy q and for alli € I, if Pr (55(/1) > 1) >
0 then

nPr(57(A) > n|0¢(A) > 1) <e.

Note a number of consequences of this definition. First, ¢(A) > 0 for all A. Second,
q(A) > 0 if and only if at least one scientist in I has information set A. Third, ¢ sums
to one. Fourth, since only finite sets of scientists I are considered, a function ¢ can meet
this definition only if ¢(A) is a rational number for all A. Fifth, if there exists a set of
scientists that satisfies g then there exist arbitrarily large sets of scientists that satisfy q.

When I prove results below for any relative frequency ¢ this should be read as applying
to any function ¢ that satisfies this definition for at least one finite set of scientists I.

10



The bound on the connection probabilities is uniform in the sense that
N:(A) is not allowed to depend on i (so the bound is the same for all sci-
entists) or C (so the bound is the same regardless of how many scientists
are available to connect to). If N.(A) were allowed to depend on i and C,
assumption (3| would follow simply from assuming E [65] < 00.

Assumption [3| has some plausibility as a principle of bounded rationality.
It says that there is some number n such that no scientist has more than
a negligible probability of reading the work of more than n other scientists.
For a defense of this assumption from the perspective of Bayesian rationality
I refer to theorem 12l

The second assumption on the way scientists choose says that they prefer

to get more information rather than less from a connection.

Assumption 4 (Never Consider Subsets). A scientist will not connect to a

second scientist © whenever a third scientist i’ is available to connect to and

A; C Ay E

From a bounded rationality perspective, this assumption is plausible if
each random variable in an information set provides independently valuable
information. Theorem defends this assumption from the perspective of
Bayesian rationality.

As indicated in section [2| the in-degree of a node (i.e., a scientist) is a
measure of the prominence of that node in the network. The in-degree d(7)

of a scientist ¢ is defined by

d(i) = |{i" € I | i’ connects to i}|.

Whether i’ connects to i depends on 65. Since §% is random, d(i) is random.

Its expected value is

E[d(i)] => Pr (i’ connects to i | 55) :

el

0A; c Ay means that n(i,j) < n(i’,j) for all j € {1,...,m} and n(i,j) < n(i’, j) for
at least one j. A technical remark analogous to footnote |§| applies here.
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The only feature that distinguishes among individual scientists is their infor-
mation set. Scientists with the same information set are, at least as far as the
model is concerned, indistinguishable in the eyes of the other scientists. Thus

it makes sense to group them together, and consider their average in-degree.

Definition 5 (average in-degree and expected average in-degree). Let C be
a scientific community and let ¢ describe the relative frequency of infor-

mation in C. The average in-degree of scientists with information set A,

denoted d(A), is

ﬂm:q%&ﬂ S i),

ZEIA,L:A
The expected average in-degree of scientists with information set A, denoted
E[d(A)], is

E[d(A)] = Y El)].

icl: A=A

With this definition in hand the main result can be stated. It states that
if the set of scientists is sufficiently large, the expected prominence of a given
scientist increases rapidly (faster than linearly) in the size of her information

set.

Theorem 6 (Supermodularity of the expected average in-degree). For any
relative frequency q there exists a number N such that for all communities C
satisfying q and assumptions @ and |4}, if |I| > N then for all information
sets A and B with g(AU B) >0

E[d(AUB)] +E[d(AN B)] > E[d(A)] +E [d(B)] .

The theorem is important because it shows that the patterns of infor-
mation exchange in my model reflect the patterns that can be seen in real
citation networks (compare this to claim . That is, most papers have few
citations, while a rare few have a great number of citations (Price||1965, Cole

1970, Redner|1998)).
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The theorem is proved in [Heesen (2014). The idea behind the proof
is as follows. Let A and B be information sets with ¢(A U B) > 0. By
assumption [ no scientist will connect to a scientist with information set A
or B unless she has already connected to all scientists with information set
AU B in the community]"]

If there were infinitely many scientists with information set A U B, then
she would never run out of such scientists. Thus, she would never connect
to a scientist with information set A or B, and so E[d(A)] = E[d(B)] = 0,
which makes the result of the theorem trivially true.

It follows that if there are only finitely many scientists with information
set AUB, E[d(A)]+E[d(B)] will be small as long as it is unlikely that anyone
connects to all of them. Assumption [3] guarantees that this is the case for a

sufficiently large community of scientists.

4 Bayesian Scientists

In the previous section I stated an important result (theorem @, which gives
sufficient conditions for the presence of superstars in my model. However, the
conditions involved two important assumptions on the way scientists choose
whom to connect to.

This section sets up the situation faced by scientists in my model as a
Bayesian decision problem. It sheds further light on assumptions 3| and 4| by
stating, for each assumption, a set of conditions sufficient to guarantee that
the optimal Bayesian sequential decision procedure satisfies it (see DeGroot
2004, chapter 12, for a more comprehensive treatment of Bayesian sequential
decision problems and further references).

Recall that  is the set of possible worlds considered by the scientists.
Let P = (2, W, §) be a probability space, i.e., W is a o-field of subsets of
and £ : W — [0,1] is a probability measure (think of £ as the scientist’s

W Assuming A € AUB and B C AU B. If this does not hold then either A or B is
equal to AU B. In that case the inequality of the theorem holds trivially.
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prior). Let £(A4,...,A,) denote the probability measure obtained by Bayes
conditioning ¢ with respect to the random variables in the information sets
A, .. A,

Recall the definition of information set:

A= {Xup [ 1<) <m 1<k <nfi,j)}

So far the only assumption on the random variables has been that Xj;
follows some common distribution Fj for all ¢ and k. An important special
case is the one where the random variables also satisfy an independence

condition.

Definition 7 (simple scientific community). Call the scientific community
C = (I,{A; | i € I}) simple relative to a probability space P = (2, W, §) if
for all W € W X,  is independent of X/ ;s given W unless i =7/, j = 7',
and & = k' (conditional independence) and X, x|W ~ F;|W (conditional

identical distributions).

In order to turn the question whom a Bayesian scientist would connect to
into a Bayesian decision problem something is needed to evaluate the state
the scientist is in after she finishes connecting. For this purpose, I introduce

a terminal decision.

Definition 8 (decision problems and procedures). A decision problem D =
(C, D) is an ordered pair consisting of a scientific community C and a set D
of terminal decisions. A (sequential) decision procedure § for D is a function
that outputs a sequence iy, s, ..., is of members of I (where, as before, § is
used to denote the length of the sequence, i.e., the number of connections) and
a terminal decision ds € D. For any n, 7,1 may depend on the information
sets A;,,...,A; . ds may depend on A;,, A ., A;;. Let Ap denote the set

119 Ll -

of all decision procedures for D.

It remains to define a way of evaluating decision procedures. This evalu-

ation depends on three things: the loss function (which gives the disutility of

14



a terminal decision in a possible world), the cost of connecting (a disutility
associated with each connection)m , and the subjective probability of being

in a given possible world.

Definition 9 (sequential risk function). Let P be a probability space and D
a decision problem. Let ¢(w, d) be the loss associated with terminal decision
d € D in world w € €. The risk of an immediate decision is defined (relative
to P) as

po(6.d) = [ tw.d)de(w)
for all d € D.

Let ¢ > 0. Then the risk under loss ¢ and cost of connecting c is defined

(relative to P) as

p<€7 5) =E [pO(é(AiuAiw e ')7 d5) + C(S]
for all 6 € Ap.

Chow and Robbing| (1963| theorem 1) prove that for any decision prob-
lem there is a decision procedure that minimizes the risk. This justifies the

following definition.

Definition 10 (optimal procedure). Let P = (2, W,€£) be a probability
space and D = (C, D) a decision problem. Let p be a risk function (for some
loss ¢ and cost of connecting ¢). For any information set A, define 6% to be
an optimal decision procedure after conditioning on A, i.e., a procedure (pick

an arbitrary one if there are multiple) that satisfies

12This aspect of the model may reflect such real world costs as the opportunity cost of
the time spent reading the paper. Alternatively, it may be viewed as a technical device
preventing scientists from connecting to every scientist: it is a theorem that Bayesian
scientists always prefer more information over less if the information is free (Good||{1967)).
Ruling this out allows me to study whose information the scientists consider to be more

valuable.
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p(£(4),03) = inf p(§(4),9).

This notation allows me to compare the optimal procedures after a con-
nection has been made. I can now state a theorem to the effect that a close

analogy of assumption [4 holds in this Bayesian framework.

Theorem 11. Let P = (Q,W,&) be a probability space and D = (C, D)
a decision problem, with C simple relative to P. Let p be a risk function
(specified relative to P for a given loss function ¢ and cost of connecting ¢ >

0). Suppose that i’s information set contains at least as much information
as i ’s: A; C Ay. Then

E[p(6(40),05,)] + ¢ > E[p (6(40),0%,)] + .
The inequality is strict if and only if there is a set of possible outcomes of Ay
with positive probability such that if X, = X x for all1 < j < m and for

all 1 < k <n(i,j), 6%, is not optimal when conditioning on Ay :

p(£(An),0%,) > p (8(A0),07,).

This result says that there always exists an optimal decision procedure
that satisfies assumption [4] If all information is relevant (in the sense speci-
fied in the theorem) then every optimal decision procedure satisfies assump-
tion [l A proof of the theorem is in [Heesen| (2014).

Let 6% (A) denote the number of scientists with information set A that

procedure 5%_ connects to. This notation is needed to state the final theorem.

Theorem 12. Let P = (2, W, &) be a probability space, D a set, and p a
risk function (specified relative to P for a given loss function ¢ and cost of

connecting ¢ > 0). For any relative frequency q, € > 0, and information
set A, there exists N.(A) such that for alln > N.(A), ifC = (I,{A; |i € I})
is a scientific community satisfying q with C simple relative to P, D = (C, D)

16



the associated decision problem, i € I a scientist, and Pr (52(/1) > 1) > 0,
then

nPr(65,(4) > n| 65 (A) > 1) <e.

This shows that a scientific community in which each scientist has the
same prior £ and the same risk function p satisfies assumption Note
that scientist ¢ gets the information in information set A; from her own
experiments, and updates on that. This is why 522_ is the correct optimal
procedure for herE For a proof of the theorem I refer once again to Heesen
(2014]).

Theorems|l1jand [12|can be read in three ways. The first reading is norma-
tive: if the standards of Bayesian rationality apply to scientists in my model,
then it follows that they should satisfy the two assumptions of theorem [6]
The second reading is descriptive: if actual scientists behave approximately
like fully Bayesian agents, then they will (approximately) satisfy the two
assumptions. The third reading justifies my earlier claim that the two as-
sumptions represent a form of bounded rationality: the theorems show that
the assumptions are necessary requirements of rationality (and it is easy to
show that they are not sufficient).

It follows from theorems [11{and |12 that a large enough group of Bayesian
scientists with identical priors and risk functions will satisfy the requirements
of theorem [6] That is, the expected average in-degrees of these scientists are

a supermodular function of their information sets.

Corollary 13. Let P = (2, W, &) be a probability space, D a set, and p a
risk function (specified relative to P for a given loss function ¢ and cost of

connecting ¢ > 0). For any relative frequency q there exists a number N

13This is important here, because all scientists are assumed to have the same prior
before seeing their own information set. In the setting of theorem only one scientist
is considered at a time, so there is no need to do the same thing there: one may assume
that her prior incorporates the information from her own information set and any previous

connections.
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such that for all communities C = (I,{A; | i € I) satisfying q with C simple
relative to P the following holds. For any i € I there exists a procedure (52_
that is optimal for scientist i facing decision problem D = (C, D) and such
that if every scientist i follows procedure 551_ and if |I| > N then for all
information sets A and B with (AU B) > 0

E[d(AUB)] +E[d(AN B)] > E[d(A)] +E [d(B)] .

This concludes my discussion of the mathematical results of my model.
Recall that the main goal of this paper is to investigate potential explana-
tions for differences in prominence among scientists. The key mathematical
contributions to this question are theorem [ and its Bayesian analogue corol-
lary [13]

The former result says that, subject to some assumptions, small differ-
ences in the initial information possessed by scientists lead to large differences
in the number of connections to those scientists. The latter result shows that
a community of Bayesian scientists may satisfy these assumptions. The two
results together show that in a wide range of circumstances, academic super-
stars arise even if scientists are only motivated by their desire for information.

In the next three sections, I discuss in more detail three potential expla-
nations of how an individual scientist might become a superstar. In each
case | will say something about how the mathematical results obtained here

relate to this explanation.

5 The Scientific Competence Explanation

The first explanation claims that differences in the number of times scientists’
papers get read are the result of differences in the quality of their work. The
thought is simple: better scientists obtain more information relevant to a
given problem in less time, and having more information leads to more people

wanting to read their papers.
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The idea that high quality papers get cited more is fairly common in
the literature. In fact (Cole and Cole (1967, 1968) simply identify the two,
using citations as a measure of quality in pursuing the question whether
quality of publications is important in getting recognition for one’s research.
Cole and Cole| (1971)) and (Clark]| (1957, chapter 3) give some support for this
identification, while Lindsey| (1989)) criticizes it. Assuming that reading and
citing a paper are highly correlated, it follows immediately that high quality
papers get read more. If competent scientists tend to produce high quality
papers, then competent scientists can expect their papers to be read more.
Rosen| (1981) shows that this is true in an economic model where scientists
put value on reading papers by scientists with high talent.

One scientist could be more competent than another for any number of
reasons, ranging from a higher general intelligence to better training to some-
thing as seemingly trivial as having a better eye for accurate measurement
readings. Any of these reasons could be sufficient for one scientist ending up
with better data than the other.

It is then easy to see how the model considered in this paper fleshes out
the details of the explanation. Consider the following toy model. Suppose
there is a set P of propositions that scientists want to learn the truth-value
of. Assume that a scientist can be either competent or incompetent. Each
incompetent scientist learns the truth-value of m propositions in P, while
each competent scientist learns the truth-value of n propositions in P, with
m < n. This is an instance of the model described in section

Since the competent scientists obtain strictly more information than the
incompetent ones, it follows from theorem [f] that competent scientists can
expect their information to be in higher demand than incompetent scientists.
While this is just a toy model, it is easy to see how the model in this paper
can also capture situations where the relation between the competence of
a scientist and the information she learns is more complicated. Theorem [0]
guarantees that more competent scientists can expect their papers to be read

more often than less competent scientists in each of these situations, as long
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as competence is somehow correlated with information.

If the scientific competence explanation is broadly correct, it yields an
easy way of figuring out which scientists are competent and which ones are
not: the competent ones are the ones that get cited the most (assuming that
being read and being cited are correlated). So under this explanation one
can infer in both directions: from competence to many citations and from
many citations to competence.

What policy recommendations result from this explanation? If the reason
scientists read some scientists more than others is because these scientists are
better scientists and thus have more valuable information, it would seem to be
best for everyone if this situation was maintained. Individual scientists gain
the most by reading those scientists who have the most relevant information,
and it also seems to be in the interest of science as a whole that its best
work gets the most attention. Policy makers trying to promote the epistemic
output of science would do well to stay away from policies that would hinder
this process.

All seems well so far (from the perspective of science as a whole). But
of course the fact that the scientific competence explanation in combination
with theorem [0] makes a coherent story does not prove that story to be the

correct one. In the next two sections I discuss two alternatives.

6 The Sociological Explanation

The second explanation I will consider is what I call the “sociological expla-
nation”. This explanation claims that certain epistemically irrelevant factors
cause some scientists’ work to garner more attention than others’. The lit-
erature identifies many factors that influence a scientist’s prominence (mea-
sured in terms of being able to get work published, getting citations, receiv-
ing awards, their work being viewed as “credible”, etc.). Some such factors
include the scientist’s (or her institution’s) reputation (Merton|1968), the

reviewers that get assigned to her work (Cole et al|[1981), age (Kuhn/|{1962,
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Zuckerman and Merton/|1973), whether the work is available through open
access (Greyson et al.2009), being associated with prestigious scientists (La-
tour and Woolgar [1986), and prejudice based on gender, race, or academic
affiliation (Fricker|2007).

What these factors have in common is that they are presumably epis-
temically irrelevant: white male scientists at prestigious institutions may get
read more, but this is no indication that their work is of higher quality than
that of their peers. If these factors are indeed causing some scientists’ work
to get more attention than others’, it would appear that the work of some
scientists is getting overvalued (and that of others undervalued) relative to
their epistemic merit. For example, [Hutchison makes this point about the
role of gender in the field of philosophy: “[W]omen in philosophy are partic-
ularly susceptible to having their credibility underestimated, and thus being
denied authority for the wrong reasons” (Hutchison| 2013} p. 111)@

From the perspective of, say, funding agencies, this is a serious prob-
lem. They try to give grants based on merit, i.e., based on who is likely to
make good contributions to science in the future. But if merit is (partially)
measured by prominence (e.g., via citation metrics), the agencies will find
themselves exacerbating existing biases, rather than rewarding excellence.
Because of this and other reasons, if the sociological explanation is true, one
should want to reduce or eliminate its effects (and expect overall scientific
output to be improved by doing so).

Epistemically irrelevant factors like the ones I just discussed are com-
pletely absent in the model of section [2] How attractive a given scientist’s
work is depends only on the information they have concerning the epistemic
problem(s) scientists are facing. I have shown that in this model some scien-
tists get read much more than others. What exactly does this show regarding

the sociological explanation?

4Healy (see footnote |I) seems to endorse this hypothesis as a way of explaining
why women are underrepresented in his dataset (see http://kieranhealy.org/blog/

archives/2013/06/24/citation-networks-in-philosophy-some-followup/).
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It is important to emphasize that my model does not show the sociological
explanation to be wrong. Epistemically irrelevant factors certainly exist in
real life, and it is entirely possible that they contribute to the phenomenon
that some scientists get read more than others.

What the model does show is that the presence of epistemically irrelevant
factors is not necessary for the phenomenon of interest to arise. I have shown
that even if scientists were (counterfactually) completely blind to epistemi-
cally irrelevant factors, some scientists would still get read more than others.
Moreover, the degree to which they are read more might seem dispropor-
tionate to the difference in quality between them and the scientists whose
work gets read less. Thus, I have disproven claims like the following: “The
fact that some scientists’” work gets read much more than other scientists’
work shows (by itself!) that scientists’ decisions whom to read are biased by
epistemically irrelevant factors”.

The above claim would be true if the sociological explanation was the only
possible explanation, but I have shown that it is not: it is (mathematically)
possible for the phenomenon of interest to arise in the absence of epistemically
irrelevant factors, due to scientists having different information.

To summarize: under the sociological explanation, epistemically irrele-
vant factors cause different scientists’ work to get different levels of atten-
tion. If this is right, it suggests first that one cannot infer from the number of
citations of a paper anything about its (epistemic) quality, and second that
policy that encourages scientists to pay (more) equal attention to different
scientists’ work is a good idea. The model in this paper ignores epistemically
irrelevant factors, thereby showing that alternatives to this story exist, but
the model certainly does not prove the sociological explanation to be false.

The policy recommendations resulting from the sociological explanation
are completely opposite to those resulting from the scientific competence
explanation. If epistemically irrelevant factors are driving who gets read,
it appears to be a good idea to try to remove those factors or counterbal-

ance their effects. If scientific competence (an epistemically relevant factor)
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drives who gets read, it would be wholly counterproductive to implement
such policies.

It is quite plausible that in reality both epistemically relevant and epis-
temically irrelevant factors contribute to the differences in prominence among
scientists. This complicates the issue even further: all things considered,
should policy makers be trying to level out these differences or not? Such
attempts could help or harm science, and it is difficult to figure out which.

One thing can be said with relative confidence: policies that remove epis-
temically irrelevant factors or make scientists less sensitive to them, without
directly influencing scientists’ decisions (say, about whom to read), should
only have positive effects. Such policies should make it more likely that if
there are differences among scientists in terms of the amount of attention
their work gets, these differences exist for the right reason, i.e., an epistemi-
cally relevant one.

However, this conclusion assumes that factors that influence who gets
read can be neatly separated into epistemically relevant and epistemically
irrelevant ones. The third and final explanation I consider challenges the

neatness of this distinction.

7 The Epistemic Luck Explanation

Some scholars have identified dealing with anomalies or unexpected results
as a central feature of scientific research (Kuhn/|1962, Dunbar and Fugel-
sang2005). The third explanation proceeds from the assumption that some
amount of luck is involved in getting the kind of unexpected result that leads
to an important paper. Under this explanation, it is the lucky rather than
the competent scientists who end up with the largest information set and
thus get read the most.

Stories involving epistemic luck (or serendipity) are very common in the
history of science (Roberts |1989, van Andel |1994)). Penicillin’s ability to

kill bacteria, for example, was discovered when a Petri dish was accidentally
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left open overnight. Such lucky accidents plausibly have nothing to do with
the scientist’s competence, or even any specific sociological factor (but see
McKinnon|2014] and Merton and Barber|2004, chapter 9, for some discussion
of the relation between luck and merit).

A variation on the toy model I considered above shows how this could
function as an explanation for the phenomenon of interest. Suppose there is
a set P containing n propositions that scientists want to learn the truth-value
of. In this simple model, each scientist has a chance « of learning the truth-
value of any given proposition, independent of all other propositions and
scientists. The lucky scientists who learn the truth-value of all n propositions
(which happens with probability o) have the highest expected in-degree in
this model (this follows from theorem @ see also |Anderson! 2011}, section 3,
for a detailed discussion of this particular model).

This toy model shows that even in the absence of either sociological factors
or differences in competence one might get different information sets, which
lead to some scientists being read much more often than others. As far as
I am aware, the idea that some scientists could be more prominent than
others without sociological factors or differences in competence causing this
phenomenon has never before been explicitly suggested in the literature. Yet
the above shows how this may happen in a mathematically precise sense.

It is interesting to note that if the scientific competence and the epistemic
luck factor are brought into play at the same time, the luck factor can easily
drown out the competence factor.

To see this, consider again the toy model where there are n propositions
the scientists want to learn about, and there is a fixed probability of learn-
ing any given proposition, independent of the other ones. To reflect the
competence factor, assume that there are two types of scientists: average
ones, whose probability of learning a proposition is a, and good ones, whose
probability of learning a proposition is § (0 < a < 5 < 1).

Let p denote the proportion of good scientists (so 1 — p is the proportion

of average ones). It seems plausible that good scientists are relatively rare:
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most scientists are of average quality. Now it turns out that if good scientists
are sufficiently rare, the chance that a scientist with high in-degree is a good
scientist may be arbitrarily small.

To make this more precise, suppose one draws a scientist at random from
the population. Let g denote the proposition that the scientist drawn is a
good scientist (so —g means drawing an average scientist) and let h denote

the proposition that the scientist drawn has a high in-degree.

Proposition 14. Assume that average scientists learn with probability o and
good scientists learn with probability B (where 0 < a < 8 < 1 and the prob-
ability of learning any given proposition is independent of the probability of
learning any other proposition). Then for all € > 0 there exists a proportion
of good scientists p € (0,1) such that Pr(g | h) <e.

Proof. Let € > 0. If ¢ > 1 then Pr(g | h) < ¢ is true for any p. Otherwise
choose

B ae
Bl —e)+ane’

It follows from theorem 6] that those scientists who learn all n propositions will

p

have the highest in-degree (see also |Anderson |2011} theorem 5). Therefore

Pr(h | g) = ",
Pr(h | —g) = a",
ae
P pr— pr—
r(g) =p Fii—e) T o
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P - = 1 — =
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Pr(h | g) Pr(g)
Pr(g | h) =
1) = Beh T9) Prlg) + Prh | —g) Pr(=g)
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So I can make the proportion of high in-degree scientists who are good
scientists arbitrarily small by making the overall proportion of good scientists
very small. If one thinks that both scientific competence and epistemic luck
have a role to play in determining how much valuable data a scientist obtains
from her experiments, and if one also thinks that good scientists are quite
rare, then if a scientist gets read a lot (and gets cited a lot, if getting cited
and getting read are correlated) it is not good evidence that she is a good
scientist. Thus the inference from many citations to competence that is valid
when the scientific competence explanation is the only correct one is invalid
if epistemic luck is a factor.

If the epistemic luck explanation is the correct explanation of the phe-
nomenon that some scientists get read much more than most, what does
this mean for policy makers? If the sociological explanation is correct, policy
makers should do something, while if the scientific competence explanation is
correct, they should do nothing. If the epistemic luck explanation is correct,
things are not so clear.

On the one hand, scientists are reading scientists with the most useful
information. This seems like a good practice that one might not want to
disrupt. On the other hand, the scientists that are being read have the
most useful information because they got lucky, not because they are better
scientists. The prominence of these scientists says little if anything about
the quality of their work. So future work from those scientists is not more
likely to be interesting than that of a less prominent scientist.

This suggests a separation between two questions that might otherwise
have been easy to conflate. If one is interested in awarding credit (say, a Noble
prize) for past contributions to science, it seems reasonable to look primarily
at the informational value of the contributions, and not worry about whether
this value was primarily the result of exceptional competence or exceptional
luck. But if one is interested in who is most likely to make important future
contributions (say, when awarding research grants), it would be important

to recognize whether past success was due to competence or luck, as presum-
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ably competent scientists are more likely than average scientists to produce
valuable work in the future, while lucky scientists are not.

If the epistemic luck explanation is largely correct, it makes citation
counts specifically and prominence more generally much less useful as a way
of separating the wheat from the chaff when decisions concerning future
projects need to be made. This would be important to know not just for sci-
entists considering whom to read, collaborate with or hire for new projects,
but also for policy makers, funding agencies, future graduate students, and
the general public.

The epistemic luck explanation differs from the scientific competence ex-
planation in that it does not support the idea that having a high number of
citations can act as a signal indicating the merit of a particular scientist. In
this sense the epistemic luck explanation blurs the line between epistemically
relevant factors like scientific competence and epistemically irrelevant factors
like a scientist’s charisma, sex, or race.

As T alluded to in the previous section, it is entirely possible that more
than one of the explanations I have discussed is true. Perhaps both scien-
tific competence and epistemic luck contribute to differences in information
among scientists, which leads to some scientists’ work getting more attention
than others’, while epistemically irrelevant factors cause biases in scientists’
choices of whom to read that either exacerbate or weaken the effects of the
differences in information.

If this is correct, it is unclear whether policy addressing this phenomenon
will have a positive or negative overall effect (although policy aimed specif-
ically at reducing biases due to epistemically irrelevant factors may still be
defensible). One of the lessons from this paper should then be not to jump
to the conclusion that just because some scientists are more prominent than
others some particular factor must be causing it: there are many factors that
could cause this, and policy that would be a good idea if some particular
factor is the cause may be counterproductive if another factor is the cause,

or if multiple factors are at work.
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8 Conclusion

In this conclusion I emphasize two key take-aways from the paper. First,
theorem [0] shows that in my model, small differences in the information sci-
entists gain from experiments can lead to large differences in prominence,
such that a small group of scientists (the superstars) are widely read, while
the vast majority is more or less ignored. This shows that scientists’ desire
for information can, on its own, produce differences in prominence equal to
those observed in actual science. Thus, even when the differences in promi-
nence among scientists may appear to the naked eye to be too large to be due
to differences in quality, one should be careful not to conclude too quickly
that outside forces or biases have interfered with the scientific process.
Second, in thinking about what might cause the differences in information
that give rise to academic superstars, I have considered the novel proposal
that there might be an important role for luck or randomness. A lucky sci-
entist, in the sense of this paper, is one who obtained important scientifically
relevant information through luck. This suggests a distinction, relevant to
policy makers, that has not previously been emphasized. The distinction is
between funding that explicitly rewards past achievement (which a lucky sci-
entist would deserve) and funding that is based on the expectation of future
achievement. Since the lucky scientist is not more likely than an average
scientist to be successful in the future, it would be wrong to view her past
succes as a reason to award her funding of the latter kind. This shows that
one should be careful in using measures of past success (like citation metrics)

to decide who is likely to do well in the future.

References

Katharine A. Anderson. Collaboration network formation and the demand
for problem solvers with heterogenous skills. 2011. URL http://arxiv.
org/pdf/1112.5121v1.pdf.

28


http://arxiv.org/pdf/1112.5121v1.pdf
http://arxiv.org/pdf/1112.5121v1.pdf

Robert J. Aumann. Agreeing to disagree. The Annals of Statistics, 4(6):
1236-1239, 1976. ISSN 00905364. URL http://www. jstor.org/stable/
2958591.

Albert-Laszl6 Barabasi and Réka Albert. Emergence of scaling in random
networks. Science, 286(5439):509-512, 1999. ISSN 00368075. URL http:
//www.jstor.org/stable/2899318.

Y.S. Chow and Herbert Robbins. On optimal stopping rules. Zeitschrift
fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2(1):33-49, 1963.
ISSN 0044-3719. doi: 10.1007/BF00535296. URL http://dx.doi.org/
10.1007/BF00535296.

Kenneth E. Clark. America’s Psychologists: A Survey of a Growing Profes-
sion. American Psychological Association, Washington, DC, 1957.

Jonathan Cole and Stephen Cole. Measuring the quality of sociological re-
search: Problems in the use of the “science citation index”. The American
Sociologist, 6(1):23-29, 1971. ISSN 00031232. URL http://www. jstor.
org/stable/27701705.

Jonathan R. Cole. Patterns of intellectual influence in scientific research.
Sociology of Education, 43(4):377-403, 1970. ISSN 00380407. URL http:
//www.jstor.org/stable/2111839.

Stephen Cole and Jonathan R. Cole. Scientific output and recognition:
A study in the operation of the reward system in science. American
Sociological Review, 32(3):377-390, 1967. ISSN 00031224. URL http:
//www.jstor.org/stable/2091085.

Stephen Cole and Jonathan R. Cole. Visibility and the structural bases
of awareness of scientific research. American Sociological Review, 33(3):
397-413, 1968. ISSN 00031224. URL http://www.jstor.org/stable/
2091914.

29


http://www.jstor.org/stable/2958591
http://www.jstor.org/stable/2958591
http://www.jstor.org/stable/2899318
http://www.jstor.org/stable/2899318
http://dx.doi.org/10.1007/BF00535296
http://dx.doi.org/10.1007/BF00535296
http://www.jstor.org/stable/27701705
http://www.jstor.org/stable/27701705
http://www.jstor.org/stable/2111839
http://www.jstor.org/stable/2111839
http://www.jstor.org/stable/2091085
http://www.jstor.org/stable/2091085
http://www.jstor.org/stable/2091914
http://www.jstor.org/stable/2091914

Stephen Cole, Jonathan R. Cole, and Gary A. Simon. Chance and consensus

in peer review. Science, 214(4523):881-886, 1981. ISSN 00368075. URL
http://www.jstor.org/stable/1686309.

Morris H. DeGroot. Optimal Statistical Decisions. John Wiley & Sons, New
Jersey, 2004.

Kevin N. Dunbar and Jonathan A. Fugelsang. Causal thinking in science:
How scientists and students interpret the unexpected. In Michael E. Gor-
man, Ryan D. Tweney, David C. Gooding, and Alexandra P. Kincannon,
editors, Scientific and Technological Thinking, chapter 3, pages 57-79.

Lawrence Erlbaum Associates, Mahwah, 2005.

Miranda Fricker. FEpistemic Injustice: Power and the FEthics of Knowing.
Oxford University Press, Oxford, 2007.

John D. Geanakoplos and Heraklis M. Polemarchakis. We can’t disagree for-
ever. Journal of Economic Theory, 28(1):192 — 200, 1982. ISSN 0022-0531.
doi: 10.1016/0022-0531(82)90099-0. URL http://www.sciencedirect.
com/science/article/pii/0022053182900990.

[.J. Good. On the principle of total evidence. The British Journal for the
Philosophy of Science, 17(4):319-321, 1967. ISSN 00070882. URL http:
//www.jstor.org/stable/686773.

Devon Greyson, Steven Morgan, Gillian Hanley, and Desy Wahyuni. Open
access archiving and article citations within health services and policy
research. Journal of the Canadian Health Libraries Association, 30(2):
51-58, 2009. doi: 10.5596/c09-014. URL http://dx.doi.org/10.5596/
c09-014.

Remco Heesen. Interaction networks with imperfect evidence. Technical
Report CMU-PHIL-191, Carnegie Mellon University, 2014. URL http:
//www.hss.cmu.edu/philosophy/techreports/191 Heesen.pdf.

30


http://www.jstor.org/stable/1686309
http://www.sciencedirect.com/science/article/pii/0022053182900990
http://www.sciencedirect.com/science/article/pii/0022053182900990
http://www.jstor.org/stable/686773
http://www.jstor.org/stable/686773
http://dx.doi.org/10.5596/c09-014
http://dx.doi.org/10.5596/c09-014
http://www.hss.cmu.edu/philosophy/techreports/191_Heesen.pdf
http://www.hss.cmu.edu/philosophy/techreports/191_Heesen.pdf

Katrina Hutchison. Sages and cranks: The difficulty of identifying first-rate
philosophers. In Katrina Hutchison and Fiona Jenkins, editors, Women
in Philosophy: What Needs to Change?, chapter 5, pages 103—126. Oxford
University Press, Oxford, 2013.

Christoph Kelp and Igor Douven. Sustaining a rational disagreement. In
Henk W. de Regt, Stephan Hartmann, and Samir Okasha, editors, EPSA
Philosophy of Science: Amsterdam 2009, volume 1 of The European Philos-
ophy of Science Association Proceedings, pages 101-110. Springer Nether-
lands, 2012. ISBN 978-94-007-2403-7. doi: 10.1007/978-94-007-2404-4__10.
URL http://dx.doi.org/10.1007/978-94-007-2404-4_10.

Thomas S. Kuhn. The Structure of Scientific Revolutions. The University of
Chicago Press, Chicago, 1962.

Bruno Latour and Steve Woolgar. Laboratory Life: The Construction of

Scientific Facts. Princeton University Press, Princeton, New Jersey, 1986.

D. Lindsey. Using citation counts as a measure of quality in science measuring
what’s measurable rather than what’s valid. Scientometrics, 15(3-4):189—
203, 1989. ISSN 0138-9130. doi: 10.1007/BF02017198. URL http://dx.
doi.org/10.1007/BF02017198.

Rachel McKinnon. You make your own luck. In Duncan H. Pritchard and
Lee John Whittington, editors, The Philosophy of Luck. Routledge, Lon-
don, 2014. Forthcoming.

Robert K. Merton. The Matthew effect in science. Science, 159(3810):56-63,
1968. ISSN 00368075. URL http://www. jstor.org/stable/1723414.

Robert K. Merton and Elinor Barber. The Travels and Adventures of
Serendipity: A Study in Sociological Semantics and the Sociology of Sci-
ence. Princeton University Press, Princeton, 2004.

31


http://dx.doi.org/10.1007/978-94-007-2404-4_10
http://dx.doi.org/10.1007/BF02017198
http://dx.doi.org/10.1007/BF02017198
http://www.jstor.org/stable/1723414

Derek J. de Solla Price. Networks of scientific papers. Science, 149(3683):
510-515, 1965. ISSN 00368075. URL http://www.jstor.org/stable/
1716232,

S. Redner. How popular is your paper? An empirical study of the citation
distribution. The FEuropean Physical Journal B - Condensed Matter and
Complex Systems, 4(2):131-134, 1998. ISSN 1434-6028. doi: 10.1007/
s100510050359. URL http://dx.doi.org/10.1007/s100510050359.

Royston M. Roberts. Serendipity: Accidental Discoveries in Science. John
Wiley & Sons, New York, 1989.

Sherwin Rosen. The economics of superstars. The American Economic Re-
view, 71(5):845-858, 1981. ISSN 00028282. URL http://www. jstor.org/
stable/1803469.

Pek van Andel. Anatomy of the unsought finding. Serendipity: Origin, his-
tory, domains, traditions, appearances, patterns and programmability. The
British Journal for the Philosophy of Science, 45(2):631-648, 1994. ISSN
00070882. URL http://www. jstor.org/stable/687687.

Harriet Zuckerman and Robert K. Merton. Age, aging, and age structure in
science. In Norman W. Storer, editor, The Sociology of Science: Theoretical
and Empirical Investigations, chapter 22, pages 497-559. The University
of Chicago Press, Chicago, 1973.

32


http://www.jstor.org/stable/1716232
http://www.jstor.org/stable/1716232
http://dx.doi.org/10.1007/s100510050359
http://www.jstor.org/stable/1803469
http://www.jstor.org/stable/1803469
http://www.jstor.org/stable/687687

	Introduction
	The Model and the Assumptions
	Superstars in the Model
	Bayesian Scientists
	The Scientific Competence Explanation
	The Sociological Explanation
	The Epistemic Luck Explanation
	Conclusion
	References

