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Abstract

In economics, the concept of time discounting introduces weights on
future goods to make these less valuable. Yet, both the conceptual
motivation for time discounting and its specific functional form re-
main contested. To address these problems, this paper provides a
measurement-theoretic framework of representation for time discount-
ing. The representation theorem characterises time discounting factors
by representations of time differences. This general result can be inter-
preted with existing theories of time discounting to clarify their formal
and conceptual assumptions. It also provides a conceptually neutral
framework for comparing the descriptive and normative merits of those
theories.

1 Introduction

It is standard practice in economics to introduce weightings that evaluate
the temporal dimension of a prospect. Such weightings are performed by
time discounting factors that make goods in the far future less valuable than
those in the near future. Famously, time discounting is a heavily contested
concept, both normatively and descriptively (Loewenstein and Elster, 1992).
Normatively, it is often questioned whether time discounting is justified at
all. Despite this fact, in the spirit of Ramsey (1928), time discounting is
deeply entrenched in economic modelling: “It is assumed that we do not
discount later enjoyments in comparison with earlier ones, a practice which
is ethically indefensible ... we shall, however, ...include such a rate of dis-
count in some of our investigations.” Descriptively, there is no consensus on
the correct conceptual motivation and functional form of discounting factors
(Frederick et al, 2002). The normative and descriptive problems concerning
time discounting have generated much disagreement, as reviewed by Loewen-
stein and Read (2003). This fact renders scientific and policy debates about
intertemporal decisions, such as those related to pension systems, public
investment and climate change, deeply challenging.



This paper embarks from the supposition that the underlying problem of
discussing time discounting lies in the absence of a general representational
framework that allows one to compare the different proposals. Here, time
discounting is discussed within the framework of the representational theory
of measurement (Krantz et al, 1971; Suppes, 2002). It is used to develop a
general representational framework of discounting factors by representations
of time difference. This makes transparent the fact that any time discount-
ing theory needs to endorse a numerical representation of some qualitative
evaluation of time difference. In the general measurement-theoretic frame-
work, the qualitative concept of time difference is a formal notion that can
accommodate the range of substantial interpretations used in existing the-
ories of time discounting. Those interpretations determine the exact nature
of the time difference evaluation that the discounting factor represents in
the given theory. Hence, the representational strategy pursued in this pa-
per renders transparent the formal and conceptual assumption common to
theories of time discounting.

The paper proceeds as follows. Section 2 gives an overview of the concept
of time discounting. Section 3 contains the general measurement-theoretic
representation of time differences. Section 4 discusses substantial interpreta-
tions of time difference. Section 5 provides time discounting functions with
the representation thus obtained. Section 6 concludes.

2 Time Discounting

Theories of time discounting usually formulate time discounting functions.
Those functions assign numerical values to points in time which are then
used to weight the goodness of consequences occurring at those times. For-
mally, a general time discounting function can be described as follows.

Definition 1 (Time discounting function) A time discounting function
D is a decreasing mapping D : T — (0,1], from a set of time points T to
the real interval (0,1] such that D(0) = 1.

Accordingly, values between 0 and 1 are assigned to time points such that
the later the point in time, the lower the value that is assigned to it. This
definition is not intended to rule out the possibility of endorsing a more
general discounting function such as D : T' — R. Rather, it reflects common
properties of the discounting functions endorsed by many time discounting
theories. The different approaches to time discounting formulate time dis-
counting functions that are by and large special cases of Definition 1, offering
more specific restrictions on what values time discounting factors can take
and an interpretation as to why it should be used to discount for time.

For instance, time preference theories of time discounting calculate the
discounting factor for each point in time as follows: D, (t) = §'. The dis-



counting factor § is given by a constant discount rate r, i.e. 6 = 1/(1+r),
which reflects the weight that is attached to ¢t + 1 in ¢. The discount rate is
determined by the degree to which an agent is time impatient, his so-called
time preferences. The impatience captured by time preferences is taken to

be an important psychological fact common for many agents.
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Figure 1: Discounting Functions

More recently, theories of hyperbolic discounting have been proposed,
intended to reflect empirical evidence of the ‘myopia’ of real-world agents
(Angeletos et al, 2001; Frederick et al, 2002). In those theories, the near
future is more heavily discounted than in exponential discounting and there
is similar or less time discounting for the far future. Hyperbolic discount-
ing theories motivate time discounting in a variety of ways, for instance, as
arising due to the way individuals perceive of delays, as reflecting fundamen-
tal risk and uncertainty, or as reflecting changes in the agent’s preferences.

Figure 1 displays the graphs of exponential and hyperbolic discounting func-
tions.!

'Figure 1 displays the graphs of the following functions: Exponential discounting:
D(t) = 6*; Hyperbolic discounting for delay: D(t) = 1/t; Hyperbolic discounting for
delay and discount rate: D(¢) = 1/(1+ rt); Generalised (hyperbolic) discounting: D(t) =

1 ift=0
1/(1+ at)”/*; Quasi-hyperbolic discounting: D(t) = " Parameters: o = .7,
/( )7 Q yp g D(t) 85" ift>0.
B=.8,v=.9, 6 =.8 (ie. given by 1/(1+ r), where r = .25).



The question which of these aforementioned theories of time discounting
is the correct one, both normatively and descriptively, has not been resolved
(overviews of the debate can be found in Frederick et al, 2002; Loewen-
stein and Read, 2003). This is due to the fact that these theories motivate
discounting for time by different concepts.

From a foundational perspective, such disputes should be resolved by
analysing the theories according to their frameworks of representation and
measurement. Indeed, for many other contentious concepts in the foun-
dations of economics, descriptive and normative debates can be explored
systematically by going back to underlying theories of measurement and
representation. Consider as an example expected utility theory, where nor-
mative and empirical problems have been debated with regards to the struc-
ture of the representation of expected utility (for instance, whether certain
axioms are normatively justifiable, formally avoidable and empirically veri-
fiable). Yet, competing theories of time discounting operate in representa-
tional frameworks that are radically different from each other. This creates
the need for a framework which can facilitate a comparison of the kinds
of qualitative properties that are represented numerically by a discounting
factor in the different theories.

The remainder of this paper provides a general measurement-theoretic
representation of time discounting. The strategy of representation is as
follows: first, a measurement-theoretic representation of time difference is
offered. Second, it is discussed how the different theories of time discounting
interpret time difference. Third, it is shown how time discounting factors can
be given by using the representation of time difference. This representation
can serve as a neutral framework for comparing both the descriptive and
normative merit of the competing theories.

3 Representing Time Difference

The representation of time difference developed here rests on a formal frame-
work of measurement and representation developed in Krantz et al (1971).
In Krantz et al (1971, 170), absolute-difference structures are introduced to
measure differences along a single dimension between pairs of elements in
a set. That is, it is asked whether the absolute difference between a pair
of elements ¢qr € @ is larger than the absolute difference between the pair
st € @ on some dimension of comparison. For instance, if those elements are
food items, the pairs could be compared with regards to their difference in
sweetness. Upon those comparisons satisfying the following definition, the
absolute differences between pairs of elements can be represented numeri-
cally, unique up to an affine transformation.

Definition 2 (Absolute-difference structure. Krantz et al, 1971, 172)
Suppose @ is a set with at least two elements and = is a binary relation on



Q x Q. The pair (Q x Q, =) is an absolute-difference structure iff, for all
q,7,8,t,q,r", st €Q, and all sequences q1,q2,...,q,... € Q the following
axioms hold:

1. Weak ordering. (Q X Q, =) is a weak order.
2. Symmetry. If q # r, then qr ~ rq > qq ~ rr.
3. Well-Behavedness.

(i) If r # s, qs = qr,rs and rt = rs, st, then qt = gs,rt.
(ii) If qs = qr,rs and qt = qs, st, then qt = rt.

4. Weak Monotonicity. Suppose that qs = qr,rs. If qr = ¢'v" and rs =
r's', then qs = ¢'s'; moreover if either qr = ¢'v’ or rs = r's’, then
qs = q's.

5. Solvability. If qr = st, then there exists t' € Q, such that qr = t'r and
qt’ ~ st.

6. Archimedean property. If q1,q2,...,qi,... is a strictly bounded stan-
dard sequence (i.e., there exist t',t" € Q, such that for alli =1,2,...,
t' " = g1 = G and qig1Gi ~ G2q1 = q1q1), then the sequence is
finite.

In this definition, the set ) can be interpreted as a large collection of con-
sequences, and P C @) can be prospects. For example, take the prospect of
a dinner P = {q,r,s,t}, where ¢ = starter, r = main, s = dessert and t =
coffee. According to the above definition, pairs of elements in this prospect
can be compared according to their absolute differences on a single dimen-
sion. For instance, the consequences of the dinner prospect can be compared
with regards to their sweetness. In order to do so, the absolute differences
of pairs of elements are ordered according to . Take the pairs gr (starter,
main) and st (dessert, coffee). If the difference in sweetness between main
and starter is smaller than that between coffee and dessert, then ¢r < st.
The symmetry condition on this ordering states that the absolute differ-
ence between pairs of elements is independent of their ordering, i.e. when
comparing the absolute difference in sweetness between starter and main
to another pair of consequences, it does not matter whether we write gr or
rq. Moreover, if there are two consequences that differ in sweetness (that
is, we are not looking at the absolute difference in sweetness between, e.g.
the dessert and itself), then their absolute difference in sweetness is strictly
larger than that of those items with themselves (i.e. qr ~ rq = qq ~ rr).2
The other conditions (3.-6.) ensure richness of the ordering =.

2In order to to deal with different consequences that are equivalent on the dimension
of comparison, it has to be assumed that elements in @) can be interpreted as denoting
equivalence classes of elements that are similar under the dimension of comparison.



The above measurement procedure can be interpreted in a variety of
ways. In order to do so, one has to define what the elements in Q) are
taken to be, what their single dimension of comparison is and then interpret
the above conditions on the ordering = of the difference between pairs. In
the example of the dinner, one could for instance change the single domain
of comparison to that of time difference. Then, = reflects the absolute
difference in time between all elements of the dinner. For instance, the time
difference between starter and main ¢r could be larger than that between
dessert and coffee st, due to slow service in the restaurant, such that qr > st.
The next section will discuss how to interpret this notion of time difference
to capture the conceptions of time underlying the different theories of time
discounting.

Note that absolute differences ordered accordingly do not need to corre-
spond to any supposedly objective standard that is externally given, such as
sweetness defined in terms of sugar content in food items or time difference
as it is given by a clock. What is crucial is the fact that one can identify
one dimension on which absolute differences between pairs of elements are
compared, and upon the comparison satisfying the conditions in Definition
2, the ordering = it yields can be represented numerically in the following
way.

Theorem 3 (Interval representation. Krantz et al, 1971, 173) If (Qx
Q, =) is an absolute-difference structure, then there exists a function ¢ :
Q — R such that for all ¢,7,s,t € Q,

qr = st iff (@) —(r) | = [ ¢(s) —e(t) |

If ¢ is another function with the same property, then ¢’ = ap + 3, where
a,feR a#0.

According to the above theorem, it is possible to numerically represent the
qualitative differences between pairs of elements in a set (). That is, in the
context of measuring absolute differences between consequences on a single
dimension, a number ¢ € R can be assigned to any consequence ¢, r, s,t € @
such that for any two consequences, the absolute difference of the numbers
assigned to them adequately reflects their absolute difference when compared
to any other pair of elements. Moreover, the assigned numbers are unique
up to affine transformation.

For some dimensions of comparison, it is possible to identify a specific
element p € @ to which the above representation can be normalised to.
Generally, such a normalisation is permissible if p an absolute (or true) zero
point.

Corollary 4 (Normalisation) Let ¢ be a representation of (Q x Q, ).
Then ¢* is a normalisation of ¢ iff ¢* = ¢ + B and ¢*(p) = 0. If ¢"* is



another function with the same property, then ©"™* = ap*, where a € R, a0 >
0.

Proof. Immediate from the properties of the interval representation in The-
orem 3. [

The above statement asserts that the interval scale given in Theorem 3 can
be normalised to an absolute zero which gives a ratio scale on which only
multiplicative transformations are allowed.

The representation and its normalisation establish the ratio-scale mea-
surement of absolute differences between consequences in () with respect to
a single dimension. In the context of the dinner example and the sweetness
dimension of comparison, this means that all consequences in the dinner are
assigned a real number ¢ € R that reflects the ordering in absolute difference
of sweetness between all possible pairings. For instance, take the following
sweetness ordering of the dinner consequences: st = sr = gt ~ gs > rt = rq.
According to Theorem 3, this can be represented numerically, for instance:
©(q) = 55, (r) = 50, p(s) = 105, ¢(t) = 5. Furthermore, if there is an
element that has maximal or minimal sweetness, then the numerical repre-
sentation can be normalised. Suppose an agent has an espresso with no sugar
for coffee and that this is minimally sweet. Then, according to Corollary 4,
©* = ¢ — 5 such that ¢*(t) = 0.

Interpreting the above framework with other dimensions of difference
comparisons, similar orderings and representations can be derived. In the
context of time difference, it is indeed also possible to normalise the repre-
sentation to a ratio scale, taking the present as an absolute zero, as it is the
natural viewpoint from which prospects and courses of actions are assessed.
Indeed, the normalisation also captures the idea of tenses in the formal-
ism, since all consequences in the past take a value smaller than zero (i.e.
©* € R™ for all [,m,n,o0,... € Q < p ) and all consequences in the future
take a value larger than zero (i.e. p* € RT for all ¢,7,s,t,... € Q > p). It
is also possible to normalise to any other time point in the past or future,
which is plausible when there is a specific point in time from which tem-
porally extended prospects are analysed. For most applications and indeed
for representing time discounting, normalising to the present is the most
plausible option.

This also yields the possibility to specifically analyse time differences
between p and other elements in the set ). Notably, from the normalisation
the following statement follows immediately: gp < rp iff |©(q)| < |p(r)].
Hence, consequences can be analysed directly with regards to their time
difference to the present. This simplified comparison of time difference will
be used to consider substantial interpretations of time difference that is
inherent in the different theories of time discounting.



4 Interpreting Time Difference

Time difference can be interpreted in a variety of ways. Firstly, it could be
interpreted as equivalent to clock-time. Indeed, the six axioms on the binary
relation = would follow immediately from the idea that clock-time can be
discretely represented by a succession of integers and that each consequence
corresponds to exactly one of those integers. The purpose of the framework
introduced here is however not to capture measurement of time as clock-
time, but to develop a framework that can compare what different theories
of time discounting take to be relevant about time difference.

The formal notion of time difference can be interpreted by the concep-
tions of time that are endorsed by the different theories of time discounting.
For all interpretations, () is a set of consequences and = orders pairs of
those according to their absolute time difference. However, the approaches
differ widely in how exactly that difference is interpreted and how rich the
description of the consequences needs to be.

Time preference. Time preference theories of discounting evaluate
time differences according to the degree of impatience they induce in the
agent. Indeed, at the heart of these theories lies the idea that time impa-
tience of agents is both psychologically plausible and plays a major role in
intertemporal evaluations, as pointed out by the precursors of time prefer-
ence theories, such as Boehm-Bawerk, Fisher, Jevon and Pigou (Frederick
et al, 2002). In those theories, gp < rp iff a higher degree of impatience
is associated with r than with ¢, as no time impatience is associated with
p. With the additional assumption that r and p take a positive value un-
der a desirability evaluation, this captures time preferences as used in the
representations of Samuelson (1937) and Koopmans (1960).

Risk and uncertainty. Risk and uncertainty theories of time discount-
ing evaluate time differences according to the degree of fundamental risk or
uncertainty they induce. These theories, for instance Weitzman (2001), Gol-
lier (2002) and Halevy (2008), use time-indexed probability functions and
risk evaluations to motivate time discounting. Hence, ¢p < rp iff more fun-
damental uncertainty is associated with r than with ¢, as no fundamental
uncertainty is associated with p. Additional assumptions on how the risk
and uncertainty evaluation of time differences is delineated from risk and
uncertainty in goodness evaluations are needed to employ time discounting
functions thus motivated.

Preference change. Preference change theories of time discounting
evaluate time differences according to the degree of change in the proposi-
tional attitudes of agents. In those theories, the future goodness evaluations
of agents are discounted with their diminished present credibility due to
changes in preferences (Strotz, 1956; Frederick et al, 2002, 389). In those
theories, gp < rp iff there is more preference change associated with r than
with ¢, when compared to preferences at p. In order for this interpretation



to hold, richer descriptions of consequences have to be assumed (e.g. the
consequence ¢ is an agent-relative proposition “Agent A eats a dessert”),
such that the description specifically includes a reference to the agent whose
preferences change.

Delay. Delay theories of time discounting evaluate time differences ac-
cording to how agents perceive the delay they induce. In those theories,
initiated by Ainslie (1992) amongst others, empirical results on how agents
perceive of delays are generalised and used to motivate time discounting.
Hence, in this interpretation, qp < rp iff an agent perceives a longer delay
between rp than with ¢p, and no delay is associated with p.

In addition to those interpretations, there is a large class of time dis-
counting theories that combine the above interpretations of time difference
(overviews are in Frederick et al, 2002; Loewenstein and Read, 2003).

Interpreting time difference with the conceptual content from the differ-
ent theories of time discounting makes transparent how those theories es-
tablish the numerical representation of a qualitative concept. Furthermore,
it also makes transparent that the specific interpretation of time difference
has to motivate the normalisation of the numerical representation according
to Corollary 4. More generally, the framework given in this paper allows to
recast the conceptions of time discounting the different theories endorse in
terms of their inherent interpretation of time difference. This overcomes the
problem of the stark differences between the representational frameworks
those theories are stated in. It is now shown how time discounting factors
can be given by using the representation of time difference.

5 Time Difference Discounting

The numerical representation of absolute differences can be used for describ-
ing the consequences with regards to the single dimension of comparison.
Here, the representation are used to construct weights. More formally, it
is possible to formulate a discounting function which transforms the differ-
ences into discounting factors, which can be used as weights assigned to
consequences.

Theorem 5 (Difference discounting) There ezists a function Disc : R —
(0,1] such that

(i) Disc(0) =1,
(ii) Disc is strictly increasing on (—o0, 0] and strictly decreasing on [0, 00),
(111) Disc(¢*(q)) > Disc(e*(r)) < rp = qp, for all ¢,r € Q.

Proof. A number of functions fulfill these conditions. Consider the assign-
ment 2 — 1/(|z| + 1) that defines a function Disc from R to (0, 1]. Clearly,



Disc(0) = 1. This function is also strictly increasing on (—oo, 0] and strictly
decreasing on [0,00). To show that Disc has property (iii), consider any
q,7 € Q. We have

rp ap = [¢"(r) —¢*(p)| = |¢"(q) — ¥ (p)| (as " represents =)
™ (r)| = [¢™(q)] (by ¢*(p) = 0)
L+ ™ ()] = 1+ |¢"(q)]
1 1
<
L+ p*(r)] = 1+ |@*(q)]
Disco ¢*(r) < Disco ¢*(q) (by definition of Disc). O

T ¢ T

In this statement, the representation of differences between consequences is
used to formulate weights Disc(0, 1]. The weighting assigns the unit weight
to the element to which the difference representation is normalised, resulting
in no discounting at all. Farther, the difference discounting function assigns
a number in the real interval (0,1) to all other differences such that the
larger the difference, the lower the weight. This makes it possible to use
the function Disc o ¢* as a weight for differences of consequences. Such
difference discounting can be employed with regards to any single dimension
which is representable on a ratio scale according to the above measurement
procedure, for instance sweetness as well as time difference.

Any of the specific time difference interpretations introduced above can
be assumed to obtain a discounting function with a difference represen-
tation. As alluded to above, this does not mean that time differences thus
understood necessarily correspond to time as commonly understood as clock-
time. Hence, a correspondence between a measurement of time difference
and clock-time will need to be assumed explicitly in order to obtain a rep-
resentation of time discounting in terms of time differences that satisfies
Definition 1. The next definition expresses such a correspondence between
some externally given time index and the time differences in the above rep-
resentation.

Definition 6 (Correspondence between time difference and time)
Let T = {0,1,...} be a set of externally given time points, (Q x @, =) an
absolute difference structure and ¢* a ratio-scale representation of time dif-
ference. Correspondence between time difference and time holds iff ©* o T is
given by a mapping m : t — ©* such that m(0) = ¢*(p) and ¢*(q) < ¢*(r)
iff m(s) < mf(t), for all g,r € Q and for all s,t € T.

This definition asserts that each point in time ¢ € T is associated with a
consequence ¢ € @ and that furthermore a mapping from externally given
time points ¢ € T to numerical representations of time differences of conse-
quences ¢* is monotonic. Note that by Corollary 4, ¢*(p) = 0 and hence



corresponds to ¢ = 0 under any time difference interpretation that both
allows the normalisation and can be linked to clock-time. The latter is a
substantial conceptual assumption: after all, the degree of impatience, fun-
damental uncertainty, preference change or delay perception that is mea-
sured as time difference could be influenced by a number of other factors
and, for instance, fluctuate when compared to an externally given time in-
dex. The latter could indeed rule out that time difference thus understood is
an evaluation suitable for time discounting. However, due one can associate
the time difference with clock-time, time discounting as stated in Definition
1 can be obtained.

According to the above definition, time differences are taken into account
only for consequences for which ¢*(¢) > 0. Likewise, the externally given
time points 7' = {0, 1,...} are interpreted as present (¢t = 0) or future time
points (all ¢ > 0). The following general representation would indeed work
for an unrestricted *, however, since most time discounting functions are
concerned with the present and the future, restricting attention to positive
values simplifies the exposition. If there is such a correspondence between a
set of time points and the normalised representation of time difference *,
then time discounting according to time differences as stated in the above
difference discounting theorem is possible via the function Disco ¢* o T.

Theorem 7 (Time discounting with difference representation) Let (Q)x
Q, =) be an absolute time difference structure and ©* its ratio-scale repre-
sentation. If there is correspondence between * and a set of externally given
time points T, then the function Disco* oT is a time discounting function

D.

Proof. By Theorem 5, Discop* is a decreasing mapping from the ratio-scale
representation of time differences ¢* to a real interval (0, 1]. By Definition 6,
there is a monotonic mapping from time points T" to ¢*. Hence, Discop*oT
is a decreasing mapping from time points 7" to a real interval (0, 1] such that
Disc(¢*(p)) = 1 which satisfies Definition 1. [

The above statement concludes the development of a general representation
of time discounting functions by time difference: taking any pair of con-
sequences in ) and comparing their time difference with other pairs, each
consequence can be assigned a number ¢* that indicates their time difference
on a ratio scale with the present being assigned the value zero. ¢* is then
used to obtain the function Disco* oT" which behaves like a time discount-
ing factor. Hence, under the assumption of correspondence between time
difference and time, there is a time discounting function with a difference
representation.

The general representation theorem makes transparent the requirements
any theory of time discounting has to fulfil in a measurement-theoretic



framework: namely, a conceptual interpretation of time difference has to
be given that renders plausible both the representation and the normalisa-
tion procedure in an absolute-difference structure. Furthermore, to satisfy
Definition 1, there has to be correspondence between the normalised repre-
sentation and clock-time. Note that fulfilling these requirements does not
directly imply descriptive or normative plausibility with regards to discount-
ing utility in intertemporal decisions. Rather, the framework developed here
makes transparent that additional assumptions are needed to endorse the
time discounting of wtility. The general representational framework devel-
oped here relates to intertemporal decision-making as follows.

Remark 8 (Discounted Utility) Let P4, Pp C Q be two collections of
consequences, Py = {qa,ra,...} and Pg = {qB,rB,...}. Supposing the
above representation of time discounting, when weighting the goodness eval-
uations u(Py) and u(Pg) with time discounting functions thus obtained,
then

Pa Z Pp iff ZDiSC(SO*(QAt))“(QAt) > ZDisc(go*(th))u(th).
=0 t=0

Accordingly, time difference discounting functions can be integrated in util-
ity calculations as a weight. Note that the time discounting function as
introduced above gives weights that are completely independent of the util-
ity representation of preferences in the statement. Nothing more is required
than a common domain @ over which both preferences 77 and time differ-
ences = are defined.

Crucially, the descriptive and normative status of the above statement
will depend on the time difference interpretation given. This makes trans-
parent the fact that explicit justifications are needed to endorse time dis-
counting of goodness evaluations such as utility. Hence, the degree to which
one accepts the normative attractiveness of a particular interpretation of
time difference determines the degree of the normative appeal of discounted
utility.

This more general representational framework allows one to separate the
issue of interpreting time difference and the specific functional form of time
discounting. While the time discounting theories commonly endorse specific
functional forms, i.e. exponential (time preference) and hyperbolic (risk
and uncertainty, preference change, delay) discounting, the framework intro-
duced here allows for their development in the same general measurement-
theoretic framework. More specific conditions on the correspondence of
time and time difference give specific functional forms of exponential and
hyperbolic discounting (e.g. exponential discounting requires a constant cor-
respondence between time difference and time that gives a constant factor
v =|¢*(q) — ¢*(r)], for all consequences ¢, r € @ that correspond to subse-
quent points in time). For hyperbolic discounting, the correspondence has



to be declining. The plausibility of specific functional forms such as expo-
nential and hyperbolic discounting will then depend on how time difference
is interpreted, and how well the given interpretation can motivate additional
conditions on the correspondence between time difference and clock-time.

6 Conclusions

In the measurement-theoretic framework for time discounting provided in
this paper, a discounting factor is determined by a ratio-scale representa-
tion of time differences between consequences. This renders transparent the
formal and conceptual assumption common to theories of time discount-
ing. The general framework developed here has a number of applications
in foundational work regarding time discounting. Formally, the framework
can be employed to assess and render transparent formal assumptions that
those specific accounts of time discounting make. Conceptually, it can be
related to a number of interpretations of time differences, including time
preference, preference change, delay as well as risk and uncertainty. From
an empirical point of view, it can be asked whether existing accounts of
descriptive time discounting approaches satisfy the measurement conditions
needed to specify their functional form. Concerning a possible justification
of time discounting, the framework lends itself to a neutral comparison of the
normative appeal of different substantial interpretations of time difference.
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