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0. INTRODUCTION

This thesis is a contribution to the reverse mathematics of Π1
2-CA0. We study

this theory with respect to the property of Ramsey.

The axiom system which is mainly used in mathematics is ZFC. Neverthe-
less, to formalize big parts of ordinary (i.e. not set theoretic) mathematics,
the full strength of ZFC is not needed. Most sets which are constructed in
pure mathematics are already contained in a small initial segment of the con-
structible universe L, in particular they are of rank less than ω + ω. There
are some exceptions, for example Martin’s proof of Borel determinacy (see
[Mar85]) which requires sets from Lω1 , and these sets of higher type are re-
ally necessary as Friedman showed in [Fri71]. But even this proof is far from
using the full strength of ZFC.

One axiom which contributes very much to the strength of ZFC is the
power set axiom, and it turned out that it is possible to formalize wide parts
of ordinary mathematics without using this axiom at all. That might be
surprising because in a straightforward formalization of ordinary mathemat-
ics in ZFC, the power set axiom is heavily used. We need it for example to
talk about the real numbers as a set and not only as a class, which makes it
possible to talk about measures, i.e. sets of sets of real numbers. Neverthe-
less, it has turned out that one can develop even measure theory to a good
extent in weak theories without power set axiom, see for example [Sim99].
This raises the question to find axiom systems which are strong enough to
develop ordinary mathematics inside them such that the full strength of the
axiom systems is really used.

First steps in that direction were done by Hilbert and Bernays in the
chapter “Formalismen zur deduktiven Entwicklung der Analysis” in [HB70].
The formalism presented there was the predecessor of today’s second order
arithmetic (SOA). The language of SOA is a two-sorted language and con-
tains variables for natural numbers and sets of natural numbers (i.e. reals).
SOA is much weaker than ZFC, but it is still strong enough to develop broad
parts of mathematics in it. The reason is that many objects which are rel-
evant in ordinary mathematics can be coded into reals even if they are of
higher type when they are developed in stronger axiom systems like ZFC.
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For example a continuous function on the real numbers is at first sight a
subset of R × R, therefore essentially an element of the power set of R, but
it can be coded in a single real number by coding only the countably many
values of rational points. Another example is measure theory. Although it is
not possible to code each Lebesgue-nullset into a real (since there are more
than |R| Lebesgue-nullsets), one can develop some measure theory in SOA.
The identity outside of a Lebesgue-nullset is an equivalence relation on the
measurable functions, and one encodes the equivalence classes of Lebesgue-
measurable functions instead of the functions themselves. In that way it is
possible to talk about mathematical objects which are encodable into real
numbers.

If one has proved a theorem of ordinary mathematics in (a subsystem of)
SOA, the question remains whether the main axioms which were used are
really used in their full strength and can not be replaced by some weaker
axioms. To answer this question one can take the theorem as an axiom
and try to prove the main axioms back from the theorem. This is the main
idea of the program of reverse mathematics which was originated by Harvey
Friedman and pursued by Simpson and many others. It turned out that
there are five main subsystems of SOA such that many theorems of ordinary
mathematics are equivalent to one of these subsystems (see [Sim99]). For
example, take the subsystem ACA0 (which is an abbreviation for arithmetical
comprehension axiom) which is a conservative extension of Peano arithmetic.
ACA0 is equivalent over a weak base theory to the theorem of Bolzano-
Weierstraß, i.e. every bounded sequence of real numbers has a convergent
subsequence, and to the theorem that every countable vector space over a
countable field has a basis. The strongest of these five subsystems is Π1

1-CA0

which is SOA with comprehension restricted to Π1
1-formulas with parameters.

It is for example equivalent over a weak base theory to the Cantor Bendixon
theorem which says that every closed subset of R is the union of a countable
set and a set which has no isolated points.

Recently first results about the reverse mathematics of Π1
2-CA0 were

proved. Carl Mummert in [MS05] showed that a metrization theorem of
topology is equivalent to Π1

2-CA0 over Π1
1-CA0. Michael Möllerfeld and I

showed that Π1
2-CA0 shows the same Π1

1-sentences as ACA0 together with
the assertion “all subsets of the Bairespace which are defined by Boolean
combinations of Σ0

2-sets are determined”.
In this thesis we study the reverse mathematics of Π1

2-comprehension with
respect to the property of Ramsey. The property of Ramsey is a combinato-
rial property concerning sets of real numbers and is defined as follows. Let
X ⊂ P(ω) be a set of real numbers. Then an infinite set H ⊂ ω is homoge-
neous for X if either each infinite subset of H is in X or each infinite subset of
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H is not in X . X has the property of Ramsey iff there exists a homogeneous
set. In the first case we say that H accepts X , in the second case H avoids
X .

In ZFC with the axiom of constructibility it is provable that there exists
a ∆1

2-set of reals which does not have the property of Ramsey. On the other
side, Tanaka showed that Σ1

1-MI0, a subsystem of SOA which asserts that
each Σ1

1-definable monotone operator has a smallest fixed point and which is
much weaker than Π1

2-CA0, already proves that each Σ1
1 set has the property

of Ramsey. This shows there is no level of the analytic hierarchy which char-
acterizes Π1

2-CA0 in terms of Ramseyness. Hence we have to find another
way to characterize the Ramsey-strength of Π1

2-CA0. We will show that
Π1

2-comprehension shows the same Π1
1-sentences as a theory of autonomous

iterated Ramseyness, called R-calculus. The R-calculus guarantees the exis-
tence of homogeneous sets for all sets of reals which are first order definable
and may use other homogeneous sets of already defined sets of reals. The
homogeneous sets are uniformly in set parameters which occur in the defining
formula of the set of reals.

In chapter 1, we give an overview of the reverse mathematics of the
property of Ramsey for theories weaker than Π1

2-CA0 and introduce the R-
calculus.

The proof of the main theorem heavily depends on the work of Michael
Möllerfeld who characterized Π1

2-CA0 in terms of generalized recursion theory,
see [Möl02]. In chapter 2, we present some of his results which are necessary
for this work. He showed that Π1

2-CA0 shows the same Π1
1-sentences as a

system of iterated nonmonotone inductive definitions called σ-calculus. We
especially need his game-quantifiers which are generalizations of the common
first order quantifiers. Informally they can be defined by the following clauses.

• ∃0xϕ(x) ↔ ∃xϕ(x)

• ∃n+1xϕ(x) ↔ (∀nx0)(∀nx1)(∀nx2) · · ·
∨
m∈N ϕ(〈x0, . . . , xm〉)

• ∀nxϕ(x) ↔ ¬∃nx¬ϕ(x)

Möllerfeld introduced the theory aame which is a subsystem of SOA and
has comprehension for all first order formulas which may contain game-
quantifiers. The second clause of our informal definition is expressed by
talking about least fixed points of inductive definitions (which eliminates the
infinite formula in the second clause). He showed that aame proves the same
Π1

1-sentences as Π1
2-CA0. At the end of chapter 2 we show that a modifi-

cation of Möllerfeld’s σ-calculus with some additional transfinite induction
called σ+-calculus shows the same Π1

1-sentences as Π1
2-CA0.
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In chapter 3, we embed the R-calculus into the σ+-calculus which implies
that each Π1

1-sentence which is provable in the R-calculus is provable in

Π1
2-CA0. Let ϕ(X, ~Y ) be a formula in the language of the σ+-calculus with

free set variables X and ~Y and without second order quantifiers. Then for
each fixed parameters ~Y , ϕ defines a set of real numbers (which is only a

class in SOA). We have to build a set term H(~Y ) uniformly in ϕ such that

for all ~Y , H(~Y ) is homogeneous for the set of reals coded by ϕ(X, ~Y ). Since
Möllerfeld showed that aame and the σ-calculus prove the same L2-sentences
it suffices to construct in a uniform way homogeneous sets for all sets of reals
which are first order definable with the use of game-quantifiers. In 3.1, we
introduce codes in R for these sets of reals.

In 3.2 we give a proof in ZFC + CH that all these sets of reals have
homogeneous sets. For this we use that the sets of reals which locally have
the property of Ramsey form a σ-algebra, and this σ-algebra contains a
σ-ideal which is ccc. By “local Ramseyness” we mean the following. Let
F ⊂ P(ω) be an ultrafilter with some additional closure properties, called
Ramsey ultrafilter (to prove that such an F exists one uses CH). We say
that an infinite H ⊂ ω locally accepts the (code of a) set of reals X at a
finite sequence of natural numbers s if all subsets of H which begin with
s are in X. We denote this by hom+(s,H,X). hom−(s,H,X) means that
H avoids X at s and is defined analogously. Finally hom(s,H,X) means
hom+(s,H,X) or hom−(s,H,X). We now define

CF := {B ⊂ P(ω) | (∀s)(∀S ∈ F )(∃S ′ ⊂ S)[S ′ ∈ F ∧ hom(s, S ′, B)]}

and

IF := {B ⊂ P(ω) | (∀s)(∀S ∈ F )(∃S ′ ⊂ S)[S ′ ∈ F ∧ hom−(s, S ′, B)]}.

Then CF is a σ-algebra containing all open sets and IF is a σ-ideal and
ccc (here antichain means that the intersection of each two sets is in IF ).
This is due to Mathias, see [Mat77]. We then show that each σ-algebra on
sets of reals which contains a ccc-σ-ideal is closed under ∃n and ∀n; here we
understand ∃n as operator on sets of reals via ∃nsXs := {x | ∃ns(x ∈ Xs)}.
To prove this we approximate the new set by sets of the σ-algebra in a
transfinite recursion along a countable wellordering. The sets occurring in
this approximation decrease monotonely, and they decrease fast with respect
to the ideal, i.e. at each successor step the approximating set differs from its
predecessor on a set not in the ideal. Since the ideal is ccc, these sets become
eventually constant before ω1.

Unfortunately, this proof does not directly transfer to SOA. We have to
deal with two main problems.
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• We do not have a wellordering of length ω1 which we can use for the
transfinite recursion mentioned above.

• We cannot talk about the ultrafilter F directly.

In chapter 3.3, we deal with the first problem. The idea is as follows. We
already mentioned that the recursion comes to a halt after countably many
steps since the ideal is ccc. This in turn is the case because we can index
each B ∈ CF\IF by

i(B) := min{s | (∃S ∈ F )hom+(s, S,B}.

If B1 and B2 have the same index, then (∃S ∈ F )hom+(i(B1), S, B1 ∩ B2)
and B1 ∩ B2 6∈ IF . Hence each two elements of an antichain have different
indices, and because there are only countably many indices each antichain
is countable. This helps us to find a suitable wellordering for our transfinite
recursion, because as lined out above, at each successor step of the itera-
tion we have a witness which is not in the ideal. Since two witnesses are
always disjoint, each index occurs at most once. This gives us a canonical
wellordering which can be constructed simultaneously with the iteration.

This wellordering makes it possible to wrap this transfinite recursion into
a nonmonotone fixed point, where each stage of the fixed point corresponds to
one step of the iteration. Here the main axioms of the σ+-calculus are used.
In chapter 3.3, we develop the technique of wrapping transfinite recursions
with a simultaneous generated wellordering into a fixed point in general.

In chapter 3.4, we apply this to our situation and embed the R-calculus
into the σ+-calculus. Here we also deal with the second problem mentioned
above. We do not need a whole Ramsey ultrafilter for our construction, but
we can construct a filter simultaneously with our induction which contains
sufficiently many sets.

In chapter 4, we prove the other direction by embedding the theory aame
into the R-calculus. For this we introduce bounded versions of the game-
quantifiers which are informally defined by the following clauses.

• (∀1x ≤ B)ϕ(x) :⇔ ∃k∃f∀n[f(n) ≤ BDk(n) ∧ ϕ(〈f(0), . . . , f(n− 1)〉)]

• (∃n+1x ≤ B)ϕ(x) :⇔ (∀nx0 ≤ B)(∀nx1 ≤ B) · · ·
∨
m∈ω ϕ(〈x0, . . . , xm〉)

• (∀nx ≤ B)ϕ(x) :⇔ ¬(∃nx ≤ B)¬ϕ(x)

The bound B is always an infinite set of natural numbers, and BDk is B
without its least k elements. BDk(n) is the n’th element of BDk if BDk is or-
dered increasingly. It follows directly from König’s lemma that the bounded
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∀1-quantifier can be expressed arithmetically, because we only have to look
for paths in the finitely branching tree which is left from B. This carries over
to all game quantifiers, i.e. the bounded quantifier is of less complexity than
the corresponding unbounded quantifier.

Let Qn be ∃n if n is even and ∀n if n is odd. If H1(m) ≤ H2(m) for each
m, we have a monotonicity property

(Qnx ≤ H1)ϕ(x) → (Qn ≤ H2)ϕ(x) → (Qnx)ϕ(x),

hence the bounded quantifiers in some sense converge against the unbounded
one if the bounds become thin enough.

To embed aame into the R-calculus, we prove that

(Qnx)ϕ(x, ~y) ↔ (Qnx ≤ H)ϕ(x, ~y),

where H is a homogeneous set for R~y := {X | (Qnx ≤ X)ϕ(x, ~y)} for each ~y.
This reduces the complexity of (Qnx)ϕ(x, ~y) and allows us to prove compre-
hension for this formula.

In chapter 5, we collect some consequences of the proof of our main the-
orem. In 5.1, we introduce and examine an analogon to recursive and hyper-
arithmatical encodibility (see [Sol78]) for the σ-calculus. In chapter 5.2, we
use our technique from chapter 3.4 to prove that the σ+-calculus shows that
each set definable in the σ+-calculus has the property of Baire. In chapter
5.3, we give reasons why Lebesgue-measurability can not be treated in this
way. In chapter 5.4, we look at our results if the Bairespace is replaced by
the space of monotone sequences of ordinals less than κ of length κ for an
inaccessible cardinal κ.
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1. REVERSE MATHEMATICS OF THE PROPERTY OF
RAMSEY

1.1 The property of Ramsey

The problem of Ramsey is the following question: Given a set X of reals (i.e.
a set of sets of natural numbers), is there a infinite set H of natural numbers
such that either all infinite subsets of H are in X or all infinite subsets of H
are not in X? Such a set H is called homogeneous for X. We say that H
accepts (avoids) X iff all infinite subsets of H are (not) in X.

It is easy to see that ZFC proves the existence of a set of reals which does
not have the property of Ramsey. Define the equivalence relation

X ∼ Y ⇔ X4Y is finite

and let X∗ be a chosen representative of the equivalence class of X. Then

{X | the number of elements of X4X∗ is even}

does not have the property of Ramsey.
Under V = L we can compute the complexity of this set. Let <L be the

∆1
2-wellordering of the reals. For X ⊂ ω and y ∈ ω, let X(y) be the set which

arises from X by changing finitely many elements of X in a way coded by y.
Then the set of representatives

M := {X ⊂ ω | (∀y ∈ ω)¬[X(y) <L X]}

is also ∆1
2. Define

A := {X ⊂ ω | (∃y ∈ ω)X(y) ∈M and |X4X(y)| is even}.

Then A is a ∆1
2-set which has not the property of Ramsey. We have proved

the following well known theorem.

Theorem 1.1.1. ZFC +V = L proves the existence of a ∆1
2-set which is not

Ramsey. Hence ZFC does not prove that each ∆1
2-set is Ramsey.

Silver proved the following theorem.
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Theorem 1.1.2. ZFC proves that every Σ1
1-set has the property of Ramsey.

If there exists a measurable cardinal then each Σ1
2-set has the property of

Ramsey.

For the proof see [Sil70]. Ellentuck gave a different proof for the first
assertion in [Ell74].

1.2 The property of Ramsey in second order arithmetic

We will give a short overview of the reverse mathematics of the property of
Ramsey for subsystems of second order arithmetic which are weaker than
Π1

2-CA0. For subsystems of second order arithmetic, see [Sim99]. Some
methods used for these weaker systems will reoccur in the proof of our main
theorem 1.3.4. The following theorem is due to Mansfield [Man78]. Avigad
[Avi98] gave the following simplified proof.

Theorem 1.2.1. ATR0 proves that every open set has the property of Ram-
sey.

Proof. Let S be a code of the open set O, i.e. a real X is in O iff an initial
sequence of X is in S. From now on we identify a set of natural numbers X
with the sequence which orders the elements of X increasingly, and sequences
are always monotone sequences. Assume that there is no homogeneous set
which avoids O. Let

T := {s | no subsequence of s is in S}.

Then T is a tree and wellfounded by our assumption. By recursion on the
Kleene-Brouwer ordering of T , we will define a set Us for each monotone
sequence s and label each s either as good or bad such that the following is
true:

1. Us is infinite for each s

2. Us⊂f Ut (i.e. Us\Ut is finite) for t ≤KB
T s

3. if s is good then for all n ∈ Us, s_〈n〉 is good

4. if s is bad then for all n ∈ Us, s_〈n〉 is bad

For s 6∈ T , we put Us := ω and label s good if the shortest initial sequence of
s which is not in T is in S, otherwise s is bad. To label the elements s of T
by recursion on its Kleene-Brouwer ordering, we need the following lemma.
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Lemma 1.2.2. Suppose that for each t ≤KB
T s the set Ut satisfies the con-

ditions 1. and 2. Then there is an infinite set Z such that Z ⊂f Ut for each
t ≤KB

T s.

Proof. If s is the ≤KB
T -minimal element let Us := ω, if s is the successor of

t let Us := Ut. In the limit case, we take a diagonal intersection. Let (ti)i∈ω
be an enumeration of the t ≤KB

T s. Let u0 be the least element of Ut0 and
ui+1 the least element of⋂

j≤i

{x ∈ Uti | x > ui}.

Then Z := {ui | i ∈ ω} fulfills the claim.

We now define the sets Us and label each s as good or bad by recursion
along ≤KB

T . At stage s, by the lemma choose an infinite set Z such that
Z ⊂f Ut for each t ≤KB

T s. Let W := {n ∈ Z | s_〈n〉 is good}. If W is
infinite, then s is good and Us := W . Otherwise, s is bad and Us := Z\W .

We first prove that 〈〉 is good. If not, we could build an infinite increasing
sequence x1, x2, . . . such that every subsequence is bad by taking x0 ∈ U〈〉
and xn+1 ∈

⋂
t⊂〈x1,...,xn〉 Ut (this set is not empty since U〈〉⊂f Ut for each t).

By our assumption X := {xi | i ∈ ω} has a subset which is an element of O,
i.e. we have a finite sequence s ∈ S with elements from X. Take s minimal
with that property, i.e. all proper subsequences of s are not in S. Then s is
not in T and any proper initial segment is in T , so by definition s is good,
which is a contradiction because s is a subsequence of X. This finishes the
proof that 〈〉 is good.

As above, we construct a set X every increasing subsequence of which
is good. We claim that every infinite subset Y of X is in O. Since T is
wellfounded, there is a shortest initial sequence s of Y which is not in T .
Since s is good we have s in S, hence Y ∈ O.

The notion “s is good (bad)” can be interpreted as “the set O is locally
big (small) at s” in the following way: For a finite monotone sequence s and
an infinite set X let

[s,X] := {Y | Y infinite ∧ Y ⊂ s ∪X ∧ s is an initial sequence of Y }.

Then “s is good (bad)” implies [s,X] ⊂ O ([s,X] ⊂ Oc) for some suitable
infinite set X. This is true because like in the above proof you can choose X
in a way that each sequence which starts with s and continues in X is good
(bad). We will often use this notion of locally big or small sets in the proof
of our main theorem.
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We could even prove a slightly stronger result than theorem 1.2.1: For
each open set O and each [s,X] there exists an infinite homogeneous set
H ⊂ X such that either [s,H] ⊂ O or [s,H] ⊂ Oc. A set with this property
we call completely Ramsey. The proof is analogous to 1.2.1. We define

T := {t ⊂ X | for no subsequence t′ of t, s_t′ is in S}

and start with Us := X instead of Us := ω for the ≤KB
T -minimal element s.

Then we can assure that all sets Ut are subsets of X.
Notice that the lemma in the proof of 1.2.1 somehow replaces the use of

an ultrafilter. If we would carry out the proof in a stronger axiom system (for
example ZFC) where we can talk about a non principal ultrafilter on ω, the
lemma becomes superfluous by labeling s good and Us := {n |s_〈n〉 is good}
if {n | s_〈n〉 is good} is in the ultrafilter; otherwise s is bad and Us :=
{n | s_〈n〉 is bad}. In the rest of the proof we only need that the intersec-
tion of finitely many Us is infinite which we now obtain from the ultrafilter
property instead of the lemma.

When we prove our main theorem, the situation will be similar: We will
have a proof which uses a non principal ultrafilter on ω and formalize it
in a subsystem of second order arithmetic by exploiting that not the whole
ultrafilter is used in the original proof. We construct the filter by recursion
with properties like 1. and 2. in the above proof, and when we need the
property of an ultrafilter for a special set A, by 1. and 2. we always can add
either A or Ac to the filter we have constructed until this point. At limit
stages we will use an argument similar to the lemma in the above proof.

[Sim99] gives a simple proof (due to Jockusch) of the reversal of theorem
1.2.1.

Theorem 1.2.3. RCA0 proves that the Ramsey theorem for clopen sets im-
plies arithmetical transfinite recursion.

For the proof of the next theorem see [Sim99], theorem VI.6.4.

Theorem 1.2.4. RCA0 proves that the following is equivalent:

• Π1
1-CA

• Σ0
∞-RT, i.e. “each arithmetical set is Ramsey”

• ∆0
2-RT

The following theorem is due to Tanaka (see [Tan89]).

Theorem 1.2.5. ACA0 proves that Π1
1-TR is equivalent to ∆1

1-RT.
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In [Tan89] Tanaka further considers a system of Σ1
1 monotone inductive

definitions called Σ1
1 −MI0 which is ACA0 plus the assertion that any Σ1

1-
definable monotone operator Γ has a smallest fixed point. He proves (in
[Tan89]):

Theorem 1.2.6. ACA0 proves that Σ1
1 −MI0 is equivalent to Σ1

1-RT.

The following tabular summarizes the previous results.

Theory Ramsey strength Reference

ZFC < ∆1
2 [Jec03], corollary 25.28

Σ1
1 −MI0 Σ1

1 [Tan89]

Π1
1-TR ∆1

1 [Tan89]

Π1
1-CA0 ∆2

0, Σ0
∞ [Sim99], theorem VI.6.4.

ATR0 Σ0
1, ∆0

1 [Sim99], Theorem V.9.7

Tab. 1.1: Ramsey strength

1.3 A system of autonomous iterated Ramseyness

We define an axiom system based on second order arithmetic which pos-
tulates the existence of all sets which are first order definable by iterated
Ramseyness, called R-calculus. We will claim axiomatically the existence of
homogeneous sets for first order definable sets of reals. It would be convenient
to have the sharper property that for countably many first order definable
sets of reals there always is an infinite subset of ω which is simultaneously
homogeneous for all these sets. Unfortunately, such a system is inconsistent
as the following example shows. Define

Rs := {X | s ⊂ X ⊂ ω ∧X is infinite}

for each finite subset s of ω. Assume that H is homogeneous for all Rs. For
h ∈ H, H can not avoid R{h}, but since H\{h} 6∈ R{h} it can not accept R{h}
either.

To avoid this contradiction we only claim the existence of a set which
becomes homogeneous after removing an initial segment.
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Definition 1.3.1 (language of the R-calculus LR). LR is the language L2 of
second order arithmetic extended by the following clause:

If ϕ(~x,X) is a first order LR-formula then R~xXϕ(~x,X) is a set term
of LR. The free variables of R~xXϕ(~x,X) are the free variables of ϕ(~x,X)
except for ~x and X.

The intended meaning of R~xXϕ(~x,X) is a set such that for all ~x, we
can remove an initial segment of R~xXϕ(~x,X) such that the remaining set is
homogeneous for {X | ϕ(~x,X)}.

Definition 1.3.2 (R-calculus). The R-calculus comprises the axioms of
ACA0(LR) (ACA0 in the language of LR, that means we have comprehension
for all first order LR-formulas) and the following schemes for all first order

formulas ϕ(~x, ~z,X, ~Z):

• ∀~Z∀~zR~xXϕ(~x, ~z,X, ~Z) is infinite

• ∀~Z∀~z∀~y∃k
[
∀∞Y

(
Y ⊂ (R~xXϕ(~x, ~z,X, ~Z))Dk → ϕ(~y, ~z, Y, ~Z)

)
∨ ∀∞Y

(
Y ⊂ (RX~xϕ(~x, ~z,X, ~Z))Dk → ¬ϕ(~y, ~z, Y, ~Z)

)]
,

where XDn is X without the least n− 1 elements of X and ∀∞Y (. . . ) is an
abbreviation for ∀Y

(
(∀n)(∃m > n)m ∈ Y → . . .

)
and means “for all infinite

sets Y ”.

We introduce subsystems of the R-calculus which only allow a certain
number of R-nestings.

Definition 1.3.3 (subsystems of the R-calculus). Let LR0
:= L2. If ϕ(~x,X)

is an LRn-formula, then R~xXϕ(~x,X) is an LRn+1-set term. ϕ is an LRn-
formula iff it contains only LRn-set terms. The Rn-calculus is a theory in the
language LRn and contains the axioms of the R-calculus which are in LRn .

Our goal is to prove the following theorem.

Theorem 1.3.4. The R-calculus and Π1
2-CA0 prove the same Π1

1-sentences
of L2.

We introduce a second system of autonomous iterated Ramseyness where
the crucial axiom scheme has a more canonical form than in the R-calculus.
This new calculus contains additionally some uniform recursion along the
natural numbers.
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Definition 1.3.5 (language of the RI-calculus LRI). LRI is the language L2

of second order arithmetic extended by the following clause:
If ϕ(X) is a first order LRI-formula then (RXϕ(X))(Uϕ) with a new free

variable Uϕ is a set term of LRI . The free variables of (RXϕ(X))(Uϕ) are
the free variables of ϕ(X) except for X and a new free variable Uϕ.

If ψ(x, y,X) is a first order LRI-formula then IxyXψ(x, y,X) is a set
term of LRI . The free variables of IxyXψ(x, y,X) are the free variables of
ψ(x, y,X) except for x, y and X.

The intended meaning of (RXϕ(X))(Uϕ) is a subset of Uϕ which is
homogeneous for {X | ϕ(X)}. IxyXψ(x, y,X) codes an ω-iteration of ψ-
comprehension.

Definition 1.3.6 (RI-calculus). The RI-calculus comprises the axioms of
ACA0(LRI) and the following schemes for all first order formulas ϕ(X) and
ψ(x, y,X):

∀Uϕ
[
∀∞Y

(
Y ⊂ (RXϕ(X))(Uϕ) → ϕ(Y )

)
∨∀∞Y

(
Y ⊂ (RXϕ(X))(Uϕ) → ¬ϕ(Y )

)]
,

∀Uϕ[(RXϕ(X))(Uϕ) ⊂ Uϕ]

∀Uϕ[(RXϕ(X))(Uϕ) is infinite]

and

∀z[ψ(z, 0, ω) ↔ z ∈ (IxyXψ(x, y,X))0]∧

∀z∀w[ψ(z, w + 1, (IxyXψ(x, y,X))w) ↔ z ∈ (IxyXψ(x, y,X))w+1].

As in the definition of the R-calculus, ϕ and ψ may contain further parame-
ters ~Z and ~z. From now on, we will suppress them in most cases.

Lemma 1.3.7. Each L2-sentence provable in the R-calculus is provable in
the RI-calculus.

Proof. We define an embedding ∗ : LR → LRI which is the identity on L2 and
show that the translations of the axioms of the R-calculus are provable in the
RI-calculus. A first idea could be as follows: We construct the homogeneous
set by an iteration. We start with ω, and at the m-th step we take a subset
that is homogeneous for ϕ((m)0, . . . (m)n, X). Then for all ~y the intersection
of these sets is homogeneous for ϕ(~y,X). The problem is that this intersection
could be finite or even empty. We therefore change our construction as
follows: If X is the set at the m-th step of the iteration, we remove only
elements which are bigger than the m-th element of X and leave the first m
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elements unchanged. So we construct a kind of a kernel which grows with the
induction and whose elements are never removed in the future. Then for each
~y we can remove an initial segment of this kernel such that the remaining set
is homogeneous for ϕ(~y,X).

For each LR-formula ϕ(~y, Z) we define an LRI-formula

ϕ̃(x, y, Z) :≡
(
y ∈ Seq∧x ∈ (RXϕ∗((y)0, . . . (y)n−1, X))(Z.y)

)
∨x ∈ ZEy,

where n is the length of the sequence coded by y, XEy is the set of the y
least elements of X and X.y := X\XEy. We abbreviate I := IxyZϕ̃(x, y, Z)
and define

(R~yXϕ(~y,X))∗ :=
⋃
z

((I)z)
Ez.

Since

(I)y = RXϕ∗((y)0, . . . , (y)n−1, X)(((I)y−1)
.y) ∪ ((I)y−1)

Ey

we obtain

((I)y)
.y ⊂ RXϕ∗((y)0, . . . , (y)n−1, X)(((I)y−1)

.y),

so ((I)y)
.y is homogeneous for ϕ∗((y)0, . . . (y)n−1, X) and it suffices to show

for all y⋃
z

((I)z)
Ez ⊂ (I)y.

If z ≥ y we have ((I)z)
Ez ⊂ (I)z ⊂ (I)y, if z < y we obtain ((I)z)

Ez =
((I)y)

Ez ⊂ (I)y because of ((I)x)
Ex = ((I)y)

Ex for all y > x.



2. SOME CHARACTERIZATIONS OF Π1
2-CA0

Möllerfeld showed in [Möl02] that Π1
2-CA0 is strongly connected to other

subsystems of second order arithmetic which we will introduce in this chapter.
The µ-calculus is a system of iterated monotone inductive definitions, the
σ-calculus is its nonmonotone analogue. The theory aame can talk about
generalizations of the quantifiers ∀ and ∃ which can be described by games.
Möllerfeld showed that these three theories prove the same L2-sentences.
Moreover, he showed that they prove the same Π1

1-sentences of L2 as Π1
2-CA0.

In the last part of this chapter, we introduce the σ+-calculus, a variation of
the σ-calculus which proves the same Π1

1-sentences but has more transfinite
induction.

2.1 The µ-calculus

A monotone inductive definition is given by an operator Γ : P(ω) → P(ω)
which is monotone, i.e. X ⊂ Y → Γ(X) ⊂ Γ(Y ). A fixed point of Γ is a
set F such that Γ(F ) = F . To see that each monotone operator has a fixed
point we define the stages of the inductive definition given by Γ as follows:

• I0 := ∅

• Iα+1 := Γ(Iα)

• Iλ := ∪α<λIα for λ ∈ Lim
By monotonicity of Γ we obtain Iα ⊂ Iβ for α ≤ β, therefore the stages Iα

have to be eventually constant before ω1 by cardinality reasons. This shows
that a fixed point always exists. A least fixed point of Γ is a fixed point of Γ
which is a subset of each fixed point of Γ. If Iα = Γ(Iα) then Iα is the least
fixed point of Γ.

We want to talk about monotone operators and its least fixed points
in a theory which is based on second order arithmetic. An operator Γ is
represented by a formula ϕ(x,X) via Γ(X) = {x | ϕ(x,X)}. If ϕ(x,X) is
X-positive (i.e. X occurs in ϕ only inside an even number of negations),
then the operator given by ϕ is monotone. A theory which formalizes the
theory of iterated monotone inductive definitions is the µ-calculus.



16 2. Some characterizations of Π1
2-CA0

Definition 2.1.1 (Language of the µ-calculus Lµ). We start with the lan-
guage of second order arithmetic and add a set-constructor µ: For each
X-positive formula ϕ(x,X) which contains no second order quantification
we add a set term µxXϕ(x,X) which intends to denote the least fixed point
of the monotone operator Γϕ(X) := {x | ϕ(x,X)}. The free variables of
µxXϕ(x,X) are the free variables of ϕ(x,X) except for x and X. A free
variable Y occurs positively in t ∈ µxXϕ(x,X) (t 6∈ µxXϕ(x,X)) iff ϕ is
Y -positive (Y -negative). ϕ may contain further µ-terms such that nestings
of fixed points are possible.

Definition 2.1.2. Let ϕ(x,X) be an X-positive formula. Then

• Cl(ϕ,Z) :≡ ∀x(ϕ(x, Z) → x ∈ Z)

• EFP(z, ϕ) :≡ ∀Z(Cl(ϕ,Z) → z ∈ Z)

• LFP(Z,ϕ) :≡ Cl(Z,ϕ) ∧ ∀x(x ∈ Z → EFP(x, ϕ)).

The formulas mean “Z is closed under ϕ”, “z is in each fixed point of ϕ”
and “Z is the (with respect to set inclusion) least fixed point of ϕ”. The
first part of the conjunction in the definition of LFP we call the first fixed
point axiom, the second one is the second fixed point axiom.

Lemma 2.1.3. ACA0 proves for each X-positive formula ϕ

∀Z
(
[∀z(z ∈ Z ↔ EFP(z, ϕ))] → LFP(Z,ϕ)

)
.

Proof. We only have to show Cl(Z,ϕ), hence assume ϕ(x, Z). We have to
show x ∈ Z, i.e. EFP(x, ϕ). Hence assume Cl(ϕ,X), and we have to show
x ∈ X. Cl(ϕ,X) together with ∀z(z ∈ Z ↔ EFP(z, ϕ)) implies Z ⊂ X,
therefore ϕ(x,X) since ϕ is X-positive. This implies x ∈ X by Cl(ϕ,X).

Definition 2.1.4 (µ-calculus). The µ-calculus is formulated in Lµ and con-
tains the following axioms:

• the axioms of ACA0 (see [Sim99]) with comprehension for all Lµ-
formulas without second order quantifiers

• LFP(µxXϕ(x,X), ϕ(x,X)) for each X-positive ϕ without second order
quantifiers

If we order the elements of a fixed point according to the stage Iα in which
they first enter the fixed point we obtain a prewellordering. The general
definition of a prewellordering is as follows.
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Definition 2.1.5. �, ≺ is a prewellordering on P iff

• ∀x(x ∈ P → x � x)

• ∀x, y(x � y → x ∈ P )

• ∀x, y(x � x ∧ y 6� x→ x ≺ y)

• ∀x, y(x ≺ y → x � y)

• ∀x, y, z[x ≺ y � z → x ≺ z]

• ≺ is wellfounded

We abbreviate this by PWO(P,�,≺).

Lemma 2.1.6. PWO(P,�,≺) implies

• ∀x(x 6≺ x)

• ∀x(x ∈ P ↔ x � x)

• ∀x, y(x ≺ y → y 6� x)

• ∀x, y(x ∈ P ∧ y 6∈ P → x ≺ y)

• ∀x, y, z(x � y ∧ y � z → x � z)

• ∀x, y, z(x � y ∧ y ≺ z → x ≺ z)

• ∀x, y(x ∈ P ∧ y 6≺ x→ x � y).

Lemma 2.1.7 (stage comparison). For each X-positive Lµ-formula ϕ(x,X)
there exist uniformly in ϕ relations �ϕ and ≺ϕ such that the µ-calculus proves

PWO(µxXϕ(x,X),�ϕ,≺ϕ)∧∀x∀y[x �ϕ y ↔ x ≺ϕ y∨ϕ(x, {z |z ≺ϕ x}]).

Proof. In [Tap99] there is a proof of this theorem for the theory ID1 (which
can talk about fixed points of monotone operators but does not admit nest-
ings of fixed points like the µ-calculus), and this proof transfers to the µ-
calculus.
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2.2 The σ-calculus

For a nonmonotone operator Γ (i.e. an arbitrary Γ : P(ω) → P(ω)), a least
fixed point in the above sense does not need to exist. For example, take an
operator Γ such that 0 ∈ Γ(X) ⇔ 0 6∈ X. To obtain a suitable notion of a
fixed point of a nonmonotone operator we alter the definition of the stages
as follows:

• Jα := Γ(J<α) ∪ J<α

• J<α := ∪β<αJβ

We call J∞ := ∪αJα the fixed point of the nonmonotone inductive defi-
nition. By the definition of the stages, we again obtain Jα ⊂ Jβ for α ≤ β,
and the stages Jα become eventually constant before ω1. We define a stage
comparison relation by

• x � y ⇔ ∃α[x ∈ Jα ∧ y 6∈ J<α]

• x ≺ y ⇔ ∃α[x ∈ Jα ∧ y 6∈ Jα].

Then the stage comparison relation �,≺ of the fixed point of Γ is the unique
PWO such that

∀x∀y[x � y ↔ x ≺ y ∨ x ∈ Γ({z | z ≺ y})].

Möllerfeld’s σ-calculus is a system of iterated nonmonotone inductive
definitions. It has a set term σxXϕ(x,X) for each formula ϕ which is
intended to code the stage comparison relation � of the operator given
by Γ(X) := {x | ϕ(x,X)}. Then the fixed point J∞ is represented by
I(σxXϕ(x,X)) with I(X) := {x | x �X x}, where �X is the relation coded
by X. We now give a formal definition of the σ-calculus.

Definition 2.2.1. For each (not necessarily X-positive) formula ϕ(x,X) let
IGF(ϕ,�ϕ) be an abbreviation for

PWO(�ϕ,≺ϕ) ∧ ∀x∀y[x �ϕ y ↔ x ≺ϕ y ∨ ϕ(x, {z | z ≺ϕ x}]),

where ≺ϕ is the irreflexive part of �ϕ, i.e. x ≺ϕ y ⇔ x �ϕ y ∧ ¬y �ϕ x.

Lemma 2.2.2. If ϕ(x,X) is a first order X-positive formula of L2 then
ACA0 proves

∀Z[IGF(ϕ,Z) → LFP(ϕ, I(Z))].
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Proof. see [Möl02], 3.17

Definition 2.2.3 (Language of the σ-calculus Lσ). We add a set constructor
σ to the language of second order arithmetic: For each (not necessarily X-
positive) formula ϕ(x,X) which contains no second order quantifiers we add a
set term σxXϕ(x,X). The free variables of σxXϕ(x,X) are the free variables
of ϕ(x,X) except for x and X. ϕ may contain further σ-terms, i.e. like in
the µ-calculus nestings of fixed points are possible.

Definition 2.2.4 (σ-calculus). The σ-calculus is formulated in Lσ and con-
tains the following axioms:

• the axioms of ACA0 with comprehension for all Lσ-formulas without
second order quantifiers

• IGF(ϕ(x,X), σxXϕ(x,X)) for each Lσ-formula ϕ without second order
quantifiers

Theorem 2.2.5 (Möllerfeld). The µ-calculus and the σ-calculus prove the
same sentences of second order arithmetic. Π1

2-CA0, the σ-calculus and the
µ-calculus prove the same Π1

1-sentences, so they are proof-theoretically equiv-
alent.

For the proof see [Möl02], theorems 3.21 and 10.6. We now introduce
some subsystems of the σ-calculus.

Definition 2.2.6 (σn-formulas and terms). The σ0-formulas are the Σ0
2-

formulas. If ϕ(x,X) is a σn-formula then σxXϕ(x,X) is a σn-term. If ϕ(X)
is an L2-formula where X occurs negatively and T is a σn-term, then ϕ(I(T ))
is a σn+1-formula.

Definition 2.2.7 (σn-calculus). The σn-calculus is the σ-calculus with fixed
point axioms only for σn-terms.

In the notion of [Möl02], the σn-calculus is Ind(πn2).

Lemma 2.2.8. The σ-calculus proves the same Lσ-sentences as the theory⋃
n∈ω(σn-calculus).

Proof. We only have to show that each Lσ-sentence provable in the σ-calculus
is also provable in

⋃
n∈ω(σn-calculus). It is sufficient to prove that for each

σm-term Tm there is a σm+1-term Tm+1 with (Tm)c = (Tm+1)1 because then
each formula which contains only σm-terms is equivalent to a σm+1-formula.
The proof is by induction on m. If Tm+1 is of the shape σxXϕ(x,X) for a
σm+1-formula ϕ, choose a σm+2-formula ψ such that
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• ψ(〈0, x〉, X) ↔ ϕ(x, (X)0)

• ψ(〈1, x〉, X) ↔
(
[∀yϕ(y, (X)0) → y ∈ (X)0] ∧ x 6∈ (X)0

)
.

Here we needed the induction hypothesis, because the σm-terms which oc-
cur negatively in ϕ occur positively and negatively in ψ and we replace the
positive occurrences by a negative occurrence of a σm+1-term by induction
hypothesis. Then (σxXϕ(x,X))c = (σxXψ(x,X))1.

In the rest of this section we present some of Möllerfeld’s results about the
σ-calculus. He showed in [Möl02] that the σn-calculus proves the existence
of β-model of the σm-calculus for m < n. A β-model is a model M such
that for all Σ1

1-sentences with parameters from M , ϕ is true iff ϕ holds
in M . The central notion which is used in the proofs of these results is
that of a Spector class which was first introduced by Moschovakis ([Mos74]).
Möllerfeld formalized his results in subsystems of second order arithmetic.
Roughly speaking, a Spector class is a set of sets of natural numbers which
is closed under the formations of fixed points of inductive processes.

Definition 2.2.9 (Spector class). Let s be a primitive recursive function
and e�, e≺ be natural numbers. Working in ACA0, let T be a set. Then
〈T, e�, e≺, s〉 is a Spector class iff

• PWO(T, (T )e� , (T )e≺)

• for each X-positive arithmetical formula ϕ(x, y,X), we have

∀y[(T )s(pϕq,y) = {x | ϕ(x, y, T )}].

If 〈T, e�, e≺, s〉 is a Spector class, we abbreviate ∃x[X = (T )x] by X ∈ T .

Spector classes are not closed under complements, i.e. X ∈ T does not
imply Xc ∈ T . By ∆(T ) we denote the self dual part of a Spector class, i.e.

X ∈ ∆(T ) ⇔ ∃x, y[X = (T )x ∧Xc = (T )y].

Lemma 2.2.10 (boundedness, [Möl02], 6.5). Let ϕ(~x,X+, Y +) be a first
order formula of L2 with no other free variables. Working in ACA0, let T
be a Spector class and P ∈ T\∆(T ). Let ≺∈ T be a prewellordering on P .
Then

∀~x∀y[ϕ(~x, P, T ) → (∃y ∈ P )ϕ(~x, P (≺ y), T )]

with P (≺ y) := {x ∈ P | x ≺ y}.
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Proof. Otherwise

∃~x∀y[y 6∈ P ↔ ϕ(~x, P (≺ y), T )],

which implies P ∈ ∆(T ), contradiction.

The next lemma provides an analogue of the hyperarithmetical hierarchy.

Lemma 2.2.11 (good parametrization of ∆, [Möl02], 6.7). For e�, e≺,
s there are natural numbers eI, eH and eĤ such that ACA0 proves: Let
〈T, e�, e≺, s〉 be a Spector class and

• I(T ) := (T )eI

• H(T ) := (T )eH

• Ĥ(T ) := (T )ceĤ.

Then

• ∀Z ∈ ∆(T )∃x ∈ I(T )[Z = (H(T ))x]

• ∀x ∈ I(T )[(H(T ))x = (Ĥ(T ))x]

• ∀x ∈ I(T )[(H(T ))x ∈ ∆(T )].

Proof. Let

• I(T ) := {〈a, b〉 | b ∈ T}

• H(T ) := {〈〈a, b〉, x〉 | b ∈ T ∧ x ∈ T (≺ b)a}

• Ĥ(T ) := {〈〈a, b〉, x〉 | b 6� 〈a, x〉}.

For the first assertion, let Z = (T )x and Zc = (T )y for some x, y. Applying
the boundedness lemma 2.2.10 for ϕ(x, y,X, Y ) :≡ ∀z[z ∈ (X)x ∨ z ∈ (Y )y]
and P = T , we obtain

ϕ(x, y, T, T ) → (∃b ∈ T )ϕ(x, y, T (≺ b), T ).

Since the premise follows from (T )x = (T )cy we obtain Z = T (≺ b)x from the
conclusion. We put u := 〈x, b〉, hence u ∈ I(T ) and Z = H(T )u.

For the second assertion, take 〈a, b〉 ∈ I(T ). Since b ∈ T we obtain

x ∈ (H(T ))〈a,b〉 ↔ x ∈ T (≺ b)a ↔ 〈a, x〉 ≺ b

↔ ¬[b � 〈a, x〉] ↔ x ∈ Ĥ(T )〈a,b〉.

The third claim follows directly from the second.
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The next lemma says how we can make the first assertion of the previous
lemma effective, i.e. how to compute x primitive recursively from the T -
indices of Z and Zc.

Lemma 2.2.12 (index computation, [Möl02], 6.9). For e�, e≺, s there are
primitive recursive functions s∆, s1 and s2 such that ACA0 proves the fol-
lowing. If 〈T, e�, e≺, s〉 is a Spector class then

∀x0, x1

(
Tx0 = T cx1

→ [s∆(x0, x1) ∈ I(T ) ∧ Tx0 = (H(T ))s∆(x0,x1)]
)
.

If a ∈ I(T ) then (H(T ))a = (T )s1(a) = ((T )s2(a))
c.

Proof. To prove the first assertion, let

C := {c | ∃y[y 6∈ Tx1 ∧ 〈x0, y〉 6≺ 〈c, c〉]}.

Then there is a c0 such that C = (Tc0)
c. Towards a contradiction assume

c0 ∈ C. Then y 6∈ Tx1 , hence y ∈ Tx0 , and together with 〈x0, y〉 6≺ 〈c0, c0〉
this implies 〈c0, c0〉 ∈ T , hence c0 ∈ Tc0 = Cc, contradiction. From c0 6∈ C
we obtain

∀y[y ∈ Tx0 ↔ 〈x0, y〉 ≺ 〈c0, c0〉],

and the result follows for s∆(x0, x1) := 〈x0, 〈c0, c0〉〉.
s1 (s2 resp.) can be directly defined using s and e≺ (s and e� resp.).

Lemma 2.2.13 (comprehension in ∆, [Möl02], 6.8). For each e�, e≺, s there
is a primitive recursive function t such that for each first order L2-formula
ϕ(y, ~x,X1, . . . Xn) with no other free variables ACA0 proves: Let 〈T, e�, e≺, s〉
be a Spector class. Then we have for all ~x and all a1, . . . , an ∈ I(T )

• t(pϕq , 〈~x〉, 〈a1, . . . , an〉) ∈ I(T )

• H(T )t(pϕq,〈~x〉,〈a1,...,an〉) = {y | ϕ(y, ~x,H(T )a1 , . . . ,H(T )an)}.

Proof. Without loss of generality ϕ is of the form ϕ(y, x,X). ϕ̃(y, x,X+, Y −)
emerges from ϕ(y, x,X) by distinguishing the positive and negative occur-
rences of X, i.e. ϕ̃(y, x,X,X) ↔ ϕ(y, x,X). We compute T -indices of

{y | ϕ̃(y, x, Ts1(a), (Ts2(a))
c)} and {y | ¬ϕ̃(y, x, (Ts2(a))

c, Ts1(a))}

using s, and by lemma 2.2.12 we obtain the I(T )-index.

Lemma 2.2.14 ([Möl02],6.14). For each n there exists a σn-term Sn( ~X),
natural numbers e�n, e≺n and a primitive recursive function sn such that for

each σn-formula ψ(x, ~y,X, ~X) and each first order formula ϕ(x, ~y,X+, ~X)
the σn-calculus proves
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• I(Sn( ~X))〈pψq,〈~y〉〉 = I(σxXψ(x, ~y,X, ~X))

• x ∈ I(Sn( ~X))sn(pϕq,〈~y〉) ↔ ϕ(x, ~y, I(Sn( ~X)), ~X).

Let T n( ~X) := I(Sn( ~X)). Then for each ~X, 〈T n( ~X), e�n, e≺n, sn〉 is a Spector
class.

Proof. We prove the theorem by metainduction on n. Using the induction hy-
pothesis for n−1, we have an universal σn-formula Un, i.e. Un(pϕq , ~x, ~X) ↔
ϕ(~x, ~X); if n = 0 we just fix an universal Σ0

2-formula, if n > 0 then Un is

essentially x0 6∈ I(Sn−1( ~X))sn−1(pϕq,〈~y〉). We define

χn(z,X, ~X) :≡[z = 〈〈pψq , ~y〉, x〉 ∧ Un(pψq , x, ~y, (X)〈pψq,~y〉,
~X)]

∨[z = 〈〈〈pψq , w〉, ~y〉, x〉 ∧ 〈w, x〉 ∈ (X)〈pψq,~y〉].

Then χn is a σn-formula which satisfies

• χn(〈〈pψq , ~y〉, x〉, X, ~X) ↔ ψ(x, ~y, (X)〈pψq,~y〉,
~X)

• χn(〈〈〈pψq , w〉, ~y〉, x〉, X, ~X) ↔ 〈w, x〉 ∈ (X)〈pψq,~y〉

for each σn-formula ψ(x, ~y,X, ~X), hence

I(σxXχn(x,X, ~X))〈pψq,~y〉 = I(σxXψ(x, ~y,X, ~X)) (2.1)

and

I(σxXχn(x,X, ~X))〈〈pψq,w〉,~y〉 = (I(σxXχn(x,X, ~X))〈pψq,~y〉)w

= I(σxXψ(x, ~y,X, ~X))w.
(2.2)

We define Sn( ~X) := σxXχn(x,X, ~X). Then the first assertion follows from
(2.1).

The function sn is defined by recursion on the build up of ϕ as follows.
If ϕ is t(x, ~y) ∈ Xk, define ψ(x, ~y,X, ~X) :≡ x ∈ Xk; then

t(x, ~y) ∈ Xk ↔ x ∈ I(Sn( ~X))〈pψq,〈~y〉〉

by (2.1) and we define sn(pϕq , 〈~y〉) := 〈pψq , ~y〉.
If ϕ is of the shape t(x, ~y) ∈ X, we obtain a σn-formula ϕ̃ such that

• ϕ̃(〈0, x〉, ~y,X, ~X) ↔ χn(x, (X)0, ~X)

• ϕ̃(〈1, x〉, ~y,X, ~X) ↔ t(x, ~y) ∈ (X)0
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holds true. Hence

I(σxXϕ̃(x, ~y,X, ~X))0 = I(Sn( ~X))

and

t(x, ~y) ∈ I(Sn( ~X)) ↔ x ∈ I(σxXϕ̃(x, ~y,X, ~X))1 ↔ x ∈ I(Sn( ~X))〈〈peϕq,1〉,~y〉,

using (2.2) for the last equivalence. We therefore define sn(pϕq , 〈~y〉) :=
〈〈pϕ̃q , 1〉, ~y〉.

If ϕ is of the form ∀yϕ′(x, y, ~y,X, ~X) we choose ϕ̃ such that

• ϕ̃(〈0, x〉, ~y,X, ~X) ↔ χn(x, (X)0, ~X)

• ϕ̃(〈1, x〉, ~y,X, ~X) ↔ (∀y)x ∈ ((X)0)sn(pϕ′q,〈y,~y〉),

therefore

I(σxXϕ̃(x, ~y,X, ~X))0 = I(Sn( ~X))

and

(∀y)ϕ′(x, y, ~y,X, ~X)

↔(∀y)[x ∈ I(Sn( ~X))sn(pϕ′q,〈y,~y〉)]

↔x ∈ I(σxXϕ̃(x, ~y,X, ~X))1

↔x ∈ I(Sn( ~X))〈〈peϕq,1〉,~y〉

as in the previous case, using the induction hypothesis for the first equiva-
lence. Hence define sn(pϕq , 〈~y〉) := 〈〈pϕ̃q , 1〉, ~y〉.

Let T n( ~X) := I(Sn( ~X)). It remains to find e�n and e≺n such that

〈T n( ~X), e�n, e≺n, sn〉 becomes a Spector class. Choose χ̃n such that

• χ̃n(〈0, x〉, X, ~X) ↔ χn(x, (X)0, ~X)

• χ̃n(〈1, 〈x, y〉〉, X, ~X) ↔ χn(x, (X)0, ~X) ∧ y 6∈ (X)0

• χ̃n(〈2, 〈x, y〉〉, X, ~X) ↔ x ∈ (X)0 ∧ y 6∈ (X)0.

χ̃n is a σn-formula, and I(σxXχ̃n(x,X, ~X))1 and I(σxXχ̃n(x,X, ~X))2 code

a PWO of T n( ~X). Now we can compute e�n and e≺n with the first part of
the lemma.
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Lemma 2.2.15 ([Möl02],9.8). For each n, there exists a primitive recursive
function rn+1 such that for each a σn-formula ϕ(x,X, ~y, Y1, . . . , Ym) the σn+1-
calculus proves

∀ ~X∀~y(∀a1, . . . , am ∈I(T n+1( ~X)))

[rn(pϕq, 〈~y〉, 〈a1, . . . , am〉) ∈ I(T n+1( ~X))

∧ IGF(ϕ(x,X, ~y,H(T n+1( ~X))a1 , . . . ,H(T n+1( ~X))am),

H(T n+1( ~X))rn(pϕq,〈~y〉,〈a1,...,am〉))]

with I and H from lemma 2.2.11.

Proof. To simplify notations let m = 1 and a := a1. Choose ψ such that

• ψ(〈0, x〉, ~y,X, ~X) :≡ χn+1(x, (X)0, ~X)

• ψ(〈1, x〉, ~y,X, ~X) :≡ ∀z[z ∈ ((X)0)s1(a) ∨ z ∈ ((X)0)s2(a)]

∧ x ∈ ((X)0)s1(a)

• ψ(〈2, x〉, ~y,X, ~X) :≡ ∀z[z ∈ ((X)0)s1(a) ∨ z ∈ ((X)0)s2(a)]

∧ ϕ(x, (X)2, ~y, (X)1)

• ψ(〈3, x〉, ~y,X, ~X) :≡ ∀z[z ∈ ((X)0)s1(a) ∨ z ∈ ((X)0)s2(a)]

∧ ∀z[ϕ(z, (X)2, ~y, (X)1) → z ∈ (X)2] ∧ x 6∈ (X)2.

Then ψ is a σn+1-formula with

• I(σxXψ(x, ~y,X, ~X))0 = T n+1( ~X)

• I(σxXψ(x, ~y,X, ~X))1 = H(T n+1( ~X))a

• IGF(ϕ(x,X, ~y,H(T n+1( ~X))a), I(σxXψ(x, ~y,X, ~X))2)

• I(σxXψ(x, ~y,X, ~X))2 = (I(σxXψ(x, ~y,X, ~X))3)
c.

Therefore we can compute an T n+1( ~X)-index of I(σxXψ(x, ~y,X, ~X)) us-

ing the first part of lemma 2.2.14. Then we obtain T n+1( ~X)-indices of the
fixed point of ϕ and its compliment by sn (again from 2.2.14). Now we can
compute rn+1(pϕq , 〈~y〉, 〈a〉) using lemma 2.2.12.

We will need these results in section 2.5 when we prove that the σ-calculus
enriched by some transfinite recursion still proves the same Π1

1-sentences as
the σ-calculus.
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2.3 The theory aame

Möllerfeld introduces in [Möl02] a theory which can talk about generaliza-
tions of the quantifiers ∀ and ∃. A generalized quantifier Q on ω is a subset
of P(ω) such that

• ∅ 6∈ Q

• Q 6= ∅

• X ⊂ Y ∧X ∈ Q ⇒ Y ∈ Q.

Let (Qx)ϕ(x) be an abbreviation for {x | ϕ(x)} ∈ Q. We can interpret
the ∀- and the ∃-quantifier as generalized quantifiers by ∀ = {N} and ∃ =
{X ⊂ N |X 6= ∅}.

For each generalized quantifier Q the inverse quantifier Q := {Xc |X 6∈ Q}
is again a generalized quantifier. It holds Q = Q, (Qx)ϕ(x) ⇔ ¬(Qx)¬ϕ(x)
and ∃ = ∀.

For a generalized quantifier Q we define the next quantifier Q∨ by

(Q∨x)ϕ(x) :≡ (Qx0)(Qx1)(Qx2) · · ·
∨
n∈N

ϕ(〈x0, . . . , xn〉).

For example, (∃∨x)ϕ(x) holds if and only if for each function f : ω → ω there
is an n ∈ ω such that ϕ(〈f(1), . . . , f(n)〉). For the inverse quantifier we have

(∃∨x)ϕ(x) ⇔ ∃f∀nϕ(〈f(1), . . . , f(n)〉).

This quantifier is known as the Souslin-quantifier. We next introduce a hie-
rarchy of generalized quantifiers which arises from ∃ by taking inverse and
next quantifiers.

Definition 2.3.1 (game-quantifiers). Let

• ∃0 := ∃

• ∃n+1 := (∃n)∨

• ∀n := ∃n.

These quantifiers are called game-quantifiers because they can be de-
scribed by games. Take for example the formula ∃1xϕ(x). Imagine the fol-
lowing two player game: Player II plays natural numbers x1, x2, . . ., and
after finitely many (possibly zero) natural number player I says “stop”.
If x1, . . . , xn are the natural number played so far, then Player I wins if
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ϕ(〈x1, . . . , xn〉) is true, otherwise player II wins. Player I has a winning
strategy in this game iff ∃1xϕ(x) holds. For the games describing ∃n for
n ≥ 2, cf. [Hei03].

We now introduce a theory based on second order arithmetic in which we
can talk about the game-quantifiers. We first introduce the language of this
theory.

Definition 2.3.2 (the languages La and Lan). Let La be the language L2

extended by new quantifiers ∃n and ∀n for each n ∈ ω. In the inductive defi-
nition of the formulas the quantifiers ∃n and ∀n are treated like the quantifiers
∃ and ∀. By Lan we denote the language which contains only quantifiers ∃m
and ∀m for m ≤ n. The new quantifiers are among the first order quantifiers.

Definition 2.3.3 (the theories aame and aamen). The theory aame is for-
mulated in La and contains the following axioms and axiom schemes:

• the axioms from ACA0, with comprehension for all La-formulas without
second order quantifiers (which allows game-quantifiers)

• (∃0x)ϕ(x) ↔ (∃x)ϕ(x)

• (∃n+1x)ϕ(x, ~y, ~Y ) ↔ EFP(〈〉, ϕ(x, ~y, ~Y ) ∨ (∀nz)x_〈z〉 ∈ X)

• (∀nx)ϕ(x) ↔ ¬(∃nx)¬ϕ(x)

for an La-formula ϕ without second order quantifiers.
aamen is aame restricted to Lan .

Since ϕ(x, ~y, ~Y )∨(∀nz)x_〈z〉 ∈ X is X-positive it makes sense to consider

EFP(〈〉, ϕ(x, ~y, ~Y ) ∨ (∀nz)x_〈z〉 ∈ X). (2.3)

This second order formula replaces the infinite first order formula from the
definition of Q∨, and we can see as follows that both definitions have the
same meaning. Assume

(∀nx0)(∀nx1)(∀nx2) · · ·
∨
m∈N

ϕ(〈x0, . . . , xm〉).

Then there exists a wellfounded tree T such that ϕ holds at all its leafs and
each inner node s is ∀n-branching, i.e. ∀nx(s_〈x〉 ∈ T ). But all elements
of each such T enter consecutively each fixed point of the operator given by
ϕ(x, ~y, ~Y ) ∨ (∀nz)x_〈z〉 ∈ X), therefore 〈〉 enters, too. This implies (2.3).
Conversely, (2.3) implies that each fixed point contains such a tree T , hence
(∀nx0)(∀nx1)(∀nx2) · · ·

∨
m∈N ϕ(〈x0, . . . , xm〉).

To prove some basic facts about these quantifiers in aame, we need the
following technical lemma.
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Lemma 2.3.4. Let ϕ(x,X) be an X-positive L2-formula and f a primitive
recursive function. Let

ψ(x,X) :≡ ϕ(f(x), f(X)) with f(X) := {f(x) | x ∈ X}.

Then ACA0 proves: For all sets Iϕ and Iψ such that LFP(Iϕ, ϕ), LFP(Iψ, ψ)
and

ϕ(f(x), X ∪ (im(f))c) → ϕ(f(x), X)

it holds

f(Iψ) = Iϕ ∩ im(f).

Proof. Since

∀x[ϕ(x, Iϕ) → x ∈ Iϕ]

we obtain for f−1(X) := {x | f(x) ∈ X} since ϕ is X-positive

∀x[ϕ(f(x), f(f−1(Iϕ))) → f(x) ∈ Iϕ],

which implies

∀x[ψ(x, f−1(Iϕ)) → x ∈ f−1(Iϕ)].

Hence Iψ ⊂ f−1(Iϕ) and f(Iψ) ⊂ Iϕ. For the other direction,

ϕ(x, f(Iψ) ∪ (im(f))c)

implies by the additional assumption

x ∈ (im(f))c ∨
(
∃yf(y) = x ∧ ψ(y, Iψ)

)
,

hence

x ∈ (im(f))c ∪ f(Iψ)

by the first fixed point axiom. This shows Iϕ ⊂ (im(f))c ∪ f(Iψ) which
finishes the proof.

Lemma 2.3.5. aamen+1 proves

• (∃n+1x)ϕ(x) ↔ (∀nk)(∃n+1x)ϕ(〈k〉_x) ∨ ϕ(〈〉)

• (∀n+1x)ϕ(x) ↔ (∃nk)(∀n+1x)ϕ(〈k〉_x) ∧ ϕ(〈〉).
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Proof. Let

Iϕ(x)∨(∀ny)x_〈y〉∈X := {s | EFP(s, ϕ(x) ∨ (∀ny)x_〈y〉 ∈ X)};

aamen+1 proves the existence of this set since

EFP(s, ϕ(x) ∨ (∀ny)x_〈y〉 ∈ X)

↔EFP(〈〉, ϕ(s_x) ∨ (∀ny)x_〈y〉 ∈ X) ↔ (∃n+1x)ϕ(s_x).

By lemma 2.1.3 we obtain

LFP(Iϕ(x)∨(∀ny)x_〈y〉∈X , ϕ(x) ∨ (∀ny)x_〈y〉 ∈ X). (2.4)

We now compute

(∃n+1x)ϕ(x)

↔〈〉 ∈ Iϕ(x)∨(∀ny)x_〈y〉∈X

↔ϕ(〈〉) ∨ (∀nk)〈k〉 ∈ Iϕ(x)∨(∀ny)x_〈y〉∈X (by 2.4)

↔ϕ(〈〉) ∨ (∀nk)〈〉 ∈ Iϕ(〈k〉_x)∨(∀ny)x_〈y〉∈X (by lemma 2.3.4 for

f(x) = 〈k〉_x)
↔(∀nk)(∃n+1x)ϕ(〈k〉_x) ∨ ϕ(〈〉).

The second equivalence follows directly from the first.

Lemma 2.3.6. For each first order La-formula ϕ(x) we have uniformly in
ϕ a first order La-formula ϕ̃(x) such that the aame proves

• (∀n+1x)ϕ(x) → (∀n+1x)ϕ̃(x)

• ∀x[ϕ̃(x) → ϕ(x)]

• ∀x[ϕ̃(x) → ∃nyϕ̃(x_〈y〉)].

Proof. Choose ϕ̃(x) := (∀n+1y)ϕ(x_y). By the definition of the generalized
quantifiers we have

(∀n+1x)ϕ(x) ↔ ∃X[〈〉 ∈ X ∧ ∀x ∈ X(ϕ(x) ∧ (∃nz)x_〈z〉 ∈ X)]. (2.5)

Assume (∀n+1x)ϕ(x) and let X be a witness for this according to (2.5). If
x ∈ X then (∀n+1y)ϕ(x_y) with witness {z | x_z ∈ X}, hence (∀n+1x)ϕ̃(x)
with witness X.

For the third claim assume (∀n+1y)ϕ(x_y). By the second assertion
of lemma 2.3.5 this implies (∃nz)(∀n+1y)ϕ(x_〈z〉_y), hence (∃nz)ϕ̃(x_〈z〉).
The proof of the second claim is analogous using also lemma 2.3.5.
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Lemma 2.3.7. aame proves for each first order La-formula ϕ(x)(
ϕ(〈〉) ∧ ∀s[ϕ(s) → ∃nxϕ(s_〈x〉)]

)
→ ∀n+1xϕ(x).

Proof. This follows from

(∀n+1x)ϕ(x) ↔ ∃X[〈〉 ∈ X ∧ ∀x ∈ X(ϕ(x) ∧ (∃nz)x_〈z〉 ∈ X)]

for X := {x | ϕ(x)}.

In the rest of this section, we will prove the following

Theorem 2.3.8 ([Möl02], 2.11). The µ-calculus and aame prove the same
L2-sentences.

The proof of this theorem given in [Möl02] is for a slightly different defi-
nition of the ∃n+1-quantifier which is

∃n+1xϕ(x, ~y, ~Y ) ↔
EFP(〈〉, ϕ(x, ~y, ~Y ) ∨ (∃nz1)(∀nz2)(∀z3)(∃z4)x

_〈z1, z2, z3, z4〉 ∈ X).

Since the ∃n+1-quantifier of definition 2.3.3 is (at first glance) weaker then
this ∃n+1-quantifier, the proof becomes a bit longer. The key is the following
lemma which is essentially proposition 2.9 of [Möl02].

Lemma 2.3.9. Let ϕ(x,X, ~y, ~Y ) be a first order Lan-formula. Then there

exists a first order Lan+1-formula ϕ̃(z, ~y, ~Y ) such that aamen+1 proves:

∀z, ~y, ~Y [ϕ̃(z, ~y, ~Y ) ↔ EFP(z, ϕ)],

i.e. LFP (ϕ(x,X, ~y, ~Y ), {z | ϕ̃(z, ~y, ~Y )}).

Proof of theorem 2.3.8. We only have to show that each L2-sentences prov-
able in the µ-calculus is already provable in aame. For this it is sufficient to
give an embedding ∗ : Lµ → La which is the identity on L2 and show the
translations of the axioms of the µ-calculus in aame. We define

(µxXϕ(x,X, ~y, ~Y ))∗ := {z | ϕ̃∗(z, ~y, ~Y )}

with the notion ˜ from lemma 2.3.9. We define ∗ to commute with quantifiers,
boolean connectives and negation and to be the identity on L2. Then the
translation of the defining axioms of the µ-terms are provable in aame by
lemma 2.3.9. All other axioms are directly translated into axioms of aame.
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It remains to prove lemma 2.3.9. We first define for fixed n, ~x, ~Y and
~Z a semi-formal calculus for formulas which may contain the quantifier ∀n,
number parameters ~x and set parameters ~Y (~Z resp.) which occur positively
(negatively resp.).

Definition 2.3.10 (the language of
∣∣~x, ~Y , ~Z
∀n

). The terms are built up from

number parameters ~x and symbols for primitive recursive functions. The
atomic formulas are s < t, s 6< t, s = t, s 6= t, s ∈ Yi, s 6∈ Zi, s ∈ P and
s 6∈ P for terms s and t and a new set variable P . Formulas are built up
from atomic formulas by ∧, ∨ and ∀n. Since we have no negation symbol,
the quantifier ∀n only occurs positively, and we have no ∃n-quantifiers.

Definition 2.3.11 (the semi-formal calculus
∣∣~x, ~Y , ~Z
∀n

). Let Γ be a finite set

of formulas in the language defined above. This finite set should be read as

disjunction. Then
∣∣~x, ~Y , ~Z
∀n

Γ holds if and only if one of the following holds:

• Γ contains a true atomic sentence

• s ∈ P and s 6∈ P are both formulas of Γ

• A0 ∧ A1 ∈ Γ and
∣∣~x, ~Y , ~Z
∀n

Γ, Ai for i = 0 and i = 1

• A0 ∨ A1 ∈ Γ and
∣∣~x, ~Y , ~Z
∀n

Γ, Ai for i = 0 or i = 1

• ∀nxϕ(x) ∈ Γ and ∀nm
∣∣~x, ~Y , ~Z
∀n

Γ, ϕ(m)

Our next aim is to formalize the calculus in aamen+1 by expressing∣∣~x, ~Y , ~Z
∀n

Γ as a ∃n+1-formula. Let p be the number of ∀n-quantifiers which

occur in Γ. For each p, we fix a partial truth predicate U(m,~x, ~Y , ~Z, P ) with

the intended meaning “m codes a formula in the language of
∣∣~x, ~Y , ~Z
∀n

which

contains at most p different ∀n-quantifiers and the formula coded by m is
true”. For each p, we can express U inside Lan . We further have a function
S such that ∀x[ϕ(x) ↔ U(S(pϕq , x))]. We will use U not only for formulas
but also for finite sets of formulas, and the code of a finite set of formulas is
the code of the disjunction of its elements. We will define a search tree ST
for each Γ such that each subtree T with the properties
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• the leaves of T are also leaves of ST

• T is ∀n-branching at each node which is not a leaf

will witness a derivation of
∣∣~x, ~Y , ~Z
∀n

Γ. This search tree is defined by the

arithmetical predicate ST (〈s, f〉, g, ~x, ~Y , ~Z) with the intended meaning “s is
an element of the search tree for the set Γ coded by g in the calculus with
parameters ~x, ~Y , ~Z, and the set of formulas which belongs to the node s is
coded by f .” ST is defined by the following clauses:

• ST (〈〈〉, f〉, g, ~x, ~Y , ~Z) ↔ f = g

• If ST (〈s, pt(~x) ∈ Yi,∆q〉, g, ~x, ~Y , ~Z)

then t(~x) ∈ Yi → ∀m,x¬ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z)

and t(~x) 6∈ Yi → ∀m,x[ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z) ↔ x = p∆q]

• If ST (〈s, pt(~x) 6∈ Zi,∆q〉, g, ~x, ~Y , ~Z)

then t(~x) 6∈ Zi → ∀m,x¬ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z)

and t(~x) ∈ Zi → ∀m,x[ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z) ↔ x = p∆q]

• If ST (〈s, pt(~x) ∈ P,∆q〉, g, ~x, ~Y , ~Z)

then [t(~x) 6∈ P ] ∈ ∆ → ∀m,x¬ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z)

and [t(~x) 6∈ P ] 6∈ ∆ → ∀m,x[ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z)
↔ x = p∆, t(~x) ∈ Pq]

• If ST (〈s, pt(~x) 6∈ P,∆q〉, g, ~x, ~Y , ~Z)

then [t(~x) ∈ P ] ∈ ∆ → ∀m,x¬ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z)

and [t(~x) ∈ P ] 6∈ ∆ → ∀m,x[ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z)
↔ x = p∆, t(~x) 6∈ Pq]

• If ST (〈s, pϕ ∨ ψ,∆q〉, g, ~x, ~Y , ~Z)

then ∀m,x[ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z) ↔ x = p∆, ϕ, ψq]

• If ST (〈s, pϕ ∧ ψ,∆q〉, g, ~x, ~Y , ~Z)

then ∀m,x[ST (〈s_〈m〉, x〉, g, ~x, ~Y , ~Z) ↔ [(m = 〈〉 ∧ x = p∆, ϕq) ∨
(m 6= 〈〉 ∧ x = p∆, ψq)]]
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• If ST (〈s, p∀nxϕ(x),∆q〉, g, ~x, ~Y , ~Z)

then ∀m, y[ST (〈s_〈m〉, y〉, g, ~x, ~Y , ~Z) ↔ y = p∆q_S(pϕq ,m)]

It follows directly from this definition that each node is either a leaf or
is ∀-branching, i.e. all its successors are in the tree. The search tree has the
following crucial property: For each node s, the set of formulas belonging to s
is derivable in the calculus iff s is a leaf or if there are ∀n-many successors of s
such that all sets of formulas which belong to these successors are derivable.
In the case of the conjunction, for example, this is true since (∀nx)ϕ(x)
implies ϕ(〈〉)∧ (∃n 6= 〈〉)ϕ(n), therefore a ∀n-branching of a ∧-node contains
the ϕ-successor and a ψ-successor. Therefore if ∀n-many successors of a
∧-node are derivable, a ϕ- and a ψ-successor are derivable.

If Γ is a sequence of formulas belonging to a node s let k(m, pΓq) be the
code of the sequence of formulas belonging to s_〈m〉. Then k is arithmeti-
cally definable. One shows by induction on the length of t that

ST (〈s1, f〉, g1, ~x, ~Y , ~Z) ∧ ST (〈s2, f〉, g2, ~x, ~Y , ~Z)

implies

ST (〈s1
_t, h〉, g1, ~x, ~Y , ~Z) ↔ ST (〈s2

_t, h〉, g2, ~x, ~Y , ~Z)

for all h. Therefore we obtain

ST (〈〈m〉_s, f〉, g, ~x, ~Y , ~Z) ↔ ST (〈s, f〉, k(m, g), ~x, ~Y , ~Z). (2.6)

We are now ready to talk about
∣∣~x, ~Y , ~Z
∀n

Γ inside aamen+1. By the

property of the tree mentioned above a set of formulas Γ is derivable iff there
exists a subtree of the search tree such that all nodes of the subtree are
either leafs or ∀n-branching, hence if the tree is “∀n-wellfounded”. But this
is exactly the property checked by an ∃n+1-quantifier.

Definition 2.3.12. Let
∣∣~x, ~Y , ~Z
∀n

Γ be an abbreviation for the Lan+1-formula

(∃n+1s)ρ(s, pΓq , ~x, ~Y , ~Z), where ρ(s, pΓq , ~x, ~Y , ~Z) means that s is a leaf of
the search tree which belongs to Γ, i.e.

ρ(s, pΓq, ~x, ~Y , ~Z) :⇔
∃t[ST (〈s, t〉, pΓq , ~x, ~Y , ~Z) ∧ ∀n∀t′¬ST (〈s_〈n〉, t′〉, pΓq , ~x, ~Y , ~Z)].

Lemma 2.3.13. aamen+1 proves all rules for
∣∣~x, ~Y , ~Z
∀n

Γ from definition

2.3.11.
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Proof. We only consider the case Γ = ∀nxϕ(x),∆. By lemma 2.3.5, we obtain

(∃n+1s)ρ(s, pΓq , ~x, ~Y , ~Z) ↔
ρ(〈〉, pΓq , ~x, ~Y , ~Z) ∨ (∀nm)(∃n+1s)ρ(〈m〉_s, pΓq , ~x, ~Y , ~Z).

Since ρ(〈〉, p∀nxϕ(x),∆q , ~x, ~Y , ~Z) is always false, we obtain with (2.6)∣∣~x, ~Y , ~Z
∀n

∀nxϕ(x),∆ ↔ (∀nm)(∃n+1s)ρ(s, k(m, p∀nxϕ(x),∆q), ~x, ~Y , ~Z).

which implies∣∣~x, ~Y , ~Z
∀n

∀nxϕ(x),∆ ↔ (∀nm)
∣∣~x, ~Y , ~Z
∀n

∆, ϕ(m)

by the definition of k.

Theorem 2.3.14 (correctness theorem). Let ϕ(X,~x, ~Y +, ~Z−) be a ∀n- for-
mula. Then aamen+1 proves

∀~x∀~Y ∀~Z
(∣∣~x, ~Y , ~Z
∀n

ϕ(P, ~x, ~Y , ~Z) → ∀Xϕ(X,~x, ~Y , ~Z)
)
.

Proof. Let

ψ(s,X, pΓq , ~x, ~Y , ~Z) :≡ ρ(s, pΓq , ~x, ~Y , ~Z) ∨ (∀nx)[s_〈x〉 ∈ X].

Let M be the set of nodes with true sets of formulas, i.e.

M := {s | ∃t[U(t, ~x, ~Y , ~Z, P ) ∧ ST (〈s, t〉, pΓq , ~x, ~Y , ~Z)]}.

We first show

(∀P )Iψ ⊂M. (2.7)

Assume ψ(s,M). We have to show s ∈ M . Let us consider the crucial case
that ψ(s,M) holds because of (∀nx)s_〈x〉 ∈M and that the leftmost formula
of the sequence belonging to s is of the form ∀nxϕ(x), i.e.

ST (〈s, p∀nxϕ(x),∆q〉, pΓq , ~x, ~Y , ~Z).

By the definition of the search tree this implies

(∀m)ST (〈s_〈m〉, p∆q_S(pϕq ,m)〉, pΓq , ~x, ~Y , ~Z)

and together with (∀nx)s_〈x〉 ∈M we obtain

(∀nm)U(p∆q_S(pϕq ,m)).

But this implies U(p∆,∀nxϕ(x)q) by the properties of the truth predicate
U , and hence s ∈ M . This finishes the proof of (2.7). Applying (2.7) for

ψ(s,X, pϕq , ~x, ~Y , ~Z) delivers the claim.
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To show a partial completeness theorem we need the following lemma.

Lemma 2.3.15. For all ∀n-formulas ψ(X+, ~x, ~Y , ~Z) and ϕ(z,X+, ~x, ~Y +, ~Z−)
the theory aamen+1 proves

∀~x∀~Y ∀~Z
(
ψ(M,~x, ~Y , ~Z) →

∣∣~x, ~Y , ~Z
∀n

¬Cl(ϕ, P ), ψ(P, ~x, ~Y , ~Z)
)

with

M := {z |
∣∣~x, ~Y , ~Z
∀n

¬Cl(ϕ, P ), z ∈ P}.

Proof. We induct on ψ. If ψ is of the form t(~x) ∈ X then t(~x) ∈M and the
claim follows from the definition of M .

Assume ψ(X+, ~x, ~Y , ~Z) is ∀nzψ0(X
+, z, ~x, ~Y , ~Z). From ψ(M,~x, ~Y , ~Z) we

obtain

(∀nz)ψ0(M, z, ~x, ~Y , ~Z),

and the induction hypothesis implies

∀nz
∣∣~x, ~Y , ~Z
∀n

¬Cl(ϕ, P ), ψ0(P, z, ~x, ~Y , ~Z).

Then lemma 2.3.13 yields∣∣~x, ~Y , ~Z
∀n

¬Cl(ϕ, P ), (∀nz)ψ0(P, z, ~x, ~Y , ~Z).

The remaining cases are similar.

Theorem 2.3.16 (partial completeness). Let ϕ(z,X+, ~x, ~Y +, ~Z−) be a ∀n-
formula. Then aamen+1 proves

∀~Y ∀~Z∀~x∀z[EFP(z, ϕ) ↔
∣∣~x, ~Y , ~Z
∀n

¬Cl(ϕ, P ), z ∈ P ].

Proof. The direction from right to left follows from the correctness theorem
2.3.14. For the other direction, put

M(~x, ~Y , ~Z) := {z |
∣∣~x, ~Y , ~Z
∀n

¬Cl(ϕ, P ), z ∈ P}.

We have to show

∀z(EFP(z, ϕ) → z ∈M)
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which follows directly from Cl(ϕ,M). So assume ϕ(z,M), which by lemma
2.3.15 implies

∣∣~x, ~Y , ~Z
∀n

¬Cl(ϕ, P ), ϕ(z, P )

Since z ∈ P follows from ϕ(z, P ) by Cl(ϕ, P ) we obtain z ∈M which finishes
the proof.

Using this theorem we can describe least fixed points of ∀n-formulas with
first order Lan+1-formulas. To apply this in the proof of lemma 2.3.9 we have
to justify why we can assume that the formula ϕ of lemma 2.3.9 contains
no quantifiers but ∀n (after pulling the negations inwards to the atomic for-
mulas). We will at first remove the quantifiers ∃n by coding the inductive
process which produces the ∃n-quantifier and the inductive process which
produces the fixed point of ϕ together into one inductive process. For this
we have to prove a formalized version of the transitivity theorem, which says
that if a monotone inductive definition occurs positively in another mono-
tone inductive definition, then they can be coded together into one inductive
definition (lemma 2.3.18). To prove this theorem without using ordinals we
need the following lemma which allows us to choose an element of minimal
stage (with a certain property) in a fixed point.

Lemma 2.3.17. For all formulas ϕ(x,X+) ACA0 proves: For all sets Iϕ, Y
such that LFP(Iϕ, ϕ) and Y ∩Iϕ 6= ∅ there exists z ∈ Y such that ϕ(z, Y c∩Iϕ).

Proof. Assume (∀z ∈ Y )¬ϕ(z, Y c ∩ Iϕ). We first show that Y c ∩ Iϕ is a fixed
point of ϕ. Therefore assume ϕ(x, Y c ∩ Iϕ). By our first assumption this
implies x 6∈ Y . ϕ(x, Y c ∩ Iϕ) also implies x ∈ Iϕ by monotonicity and the
first fixed point axiom for ϕ, therefore we have x ∈ Y c ∩ Iϕ, and we have
proved that Y c ∩ Iϕ is a fixed point of ϕ. Since Iϕ is the least fixed point we
have Iϕ ⊂ Y c which is a contradiction to Y ∩ Iϕ 6= ∅.

Lemma 2.3.18. For all first order formulas ϕ(x,X+, Y +) and ψ(y,X+, Y +)
and each set term T (X) there exists uniformly in ϕ and ψ a formula χ(z, Z+)
such that ACA0 proves: If ∀X LFP(T (X), ψ(y,X, Y )) then

∀Z[LFP(Z, χ) → LFP((Z)0, ϕ(x,X, T (X)))].

Proof. Let

χ(z, Z) :≡ ∃x[(z = 〈0, x〉 ∧ ϕ(x, (Z)0, (Z)1))

∨(z = 〈1, x〉 ∧ ψ(x, (Z)0, (Z)1))].
(2.8)
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To show the first fixed point axiom assume ϕ(x, (Z)0, T ((Z)0)) for a Z with
LFP(Z, χ). We first claim T ((Z)0) ⊂ (Z)1. It suffices to show

∀y[ψ(y, (Z)0, (Z)1) → y ∈ (Z)1]

because of LFP(T ((Z)0), ψ(y, (Z)0, Y )). Therefore assume ψ(y, (Z)0, (Z)1)
which implies χ(〈1, y〉, Z), hence 〈1, y〉 ∈ Z by LFP(Z, χ). This finishes the
proof of the claim.

As T ((Z)0) occurs positively in ϕ(x, (Z)0, T ((Z)0)) the claim implies
ϕ(x, (Z)0, (Z)1), hence χ(〈0, x〉, Z) and 〈0, x〉 ∈ Z by the first fixed point
axiom for χ. Therefore we have x ∈ (Z)0 and the first fixed point axiom is
proved.

It remains to show

∀X
[
∀x

(
ϕ(x,X, T (X)) → x ∈ X

)
→ (Z)0 ⊂ X

]
.

Assume x ∈ (Z)0\X. Let

M := 〈0, X〉 ∪ 〈1, T (X)〉 with 〈n,X〉 := {〈n, x〉 | x ∈ X}.

Then 〈0, x〉 ∈ M c ∩ Z 6= ∅. With lemma 2.3.17 we find a z ∈ M c such that
χ(z,M ∩ Z). Now z is either of the form 〈0, y〉 or 〈1, y〉 for some y. In the
first case we obtain

ϕ(y, (M ∩ Z)0, (M ∩ Z)1)

which implies

ϕ(y,X ∩ (Z)0, T (X) ∩ (Z)1).

By positivity we obtain ϕ(y,X, T (X)), therefore y ∈ X by hypothesis, which
implies z ∈M , contradiction. If z is of the form 〈1, y〉 we analogously obtain
ψ(y,X, T (X)) which implies y ∈ T (X) by LFP(T (X), ψ(y,X, Y )), hence
again z ∈M , contradiction.

The next lemma allows us to assume without loss of generality that the
formula ϕ of lemma 2.3.9 contains no ∃n−1-quantifiers.

Lemma 2.3.19. If ϕ(x,X+, ~y, ~Y ) is an Lan-formula without negation sym-
bols (but predicate symbols ∈ and 6∈) and if ϕ contains at most k quantifiers

∃n, then there exists an Lan-formula χ(x,X, ~y, ~Y ) which contains no ∃n-
quantifiers such that aamen proves

∀~y, ~Y , Z
(
LFP(Z, χ(x,X, ~y, ~Y )) → LFP((Z)〈〉, ϕ(x,X, ~y, ~Y ))

)
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if n = 0 and

∀~y, ~Y , Z
(
LFP(Z, χ(x,X, ~y, ~Y )) → LFP(((Z)0 . . .)0︸ ︷︷ ︸

k−times

, ϕ(x,X, ~y, ~Y ))
)
.

if n > 0.

Proof. If n = 0 then

EFP
(
z, ϕ(x,X, ~y, ~Y )

)
(2.9)

is a Π1
1-formula, which by Kleenes normal form theorem (see [Sim99], lemma

V.1.4) is equivalent to the assertion that certain tree which is describable
without unbounded quantifiers is wellfounded. We therefore can find a for-
mula ϕ̃ without unbounded quantifiers such that (2.9) is equivalent to

EFP
(
〈〈〉, z〉, ϕ̃(x, ~y, ~Y ) ∨ ∀y〈(x)0

_〈y〉, (x)1〉 ∈ X
)
.

Then the claim follows for

χ(x,X, ~y, ~Y ) :≡ ϕ̃(x, ~y, ~Y ) ∨ ∀y〈(x)0
_〈y〉, (x)1〉 ∈ X.

If n > 0 we induct on k. Assume ϕ contains a subformula (∃nz)ρ(z,X). Let

T (X) := {s | (∃nz)ρ(s_z,X)}

and

ψ(z,X+, Z+) :≡ ρ(z,X) ∨ (∀n−1y)z_〈y〉 ∈ Z.

As in the proof of lemma 2.3.5 we obtain LFP(T (X), ψ(z,X, Z)). We obtain
a Lan-formula ϕ̃(x,X+,W+) such that

ϕ(x,X) ↔ ϕ̃(x,X, T (X))

by replacing (∃nz)ρ(z,X) by 〈〉 ∈ T (X). ϕ̃ and ρ contain together at most
k−1 quantifiers ∃n and W occurs positively in ϕ̃ since ϕ contains no negation
symbols. By lemma 2.3.18 there exists a formula χ such that

∀Z
(
LFP(Z, χ) → LFP((Z)0, ϕ(x,X, T (X)))

)
.

Since ϕ̃ and ψ contain at most k − 1 quantifiers ∃n we see from (2.8) in the
proof of 2.3.18 that χ contains at most k − 1 quantifiers ∃n. Hence we can
apply the induction hypothesis to χ and obtain the claim.
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The next lemma allows us to code each quantifier ∀m and ∃m for m < n
into a ∀n-quantifier.

Lemma 2.3.20. For each m ≤ n the theory aamen proves

• ∃mxϕ((x)0) ↔ ∀m−1xϕ(x)

• ∃mxϕ(fm(x)) ↔ ∃m−1xϕ(x)

with f1(x) := lh(x) and fi+1(〈x0, . . . , xj〉) := 〈fi(x0), . . . , fi(xj)〉.

Proof. The first equivalence follows directly from lemma 2.3.5, the second is
proved by induction on m. For m = 1 the claim follows from

(∃1x)ϕ(lh(x)) ↔ (∀f)(∃n)ϕ(lh(〈f(1), . . . , f(n)〉)) ↔ (∃n)ϕ(n).

For m > 1 we obtain

(∃mx)ϕ(fm(x))

↔∀X
[
∀x

((
ϕ(fm(x)) ∨ (∀m−1y)x_〈y〉 ∈ X

)
→ x ∈ X

)
→ 〈〉 ∈ X

]
↔∀X

[
∀x

((
ϕ(fm(x)) ∨ (∀m−1y)fm(x_〈y〉) ∈ fm(X)

)
→ x ∈ X

)
→ 〈〉 ∈ fm(X)

]
↔∀X

[
∀x

((
ϕ(fm(x)) ∨ (∀m−1y)fm(x)_〈fm−1(y)〉 ∈ fm(X)

)
→ x ∈ X

)
→ 〈〉 ∈ fm(X)

]
↔∀X

[
∀x

((
ϕ(x) ∨ (∀m−1y)x_〈fm−1(y)〉 ∈ X

)
→ x ∈ X

)
→ 〈〉 ∈ X

]
(by lemma 2.3.4)

↔∀X
[
∀x

((
ϕ(x) ∨ (∀m−2y)x_〈y〉 ∈ X

)
→ x ∈ X

)
→ 〈〉 ∈ X

]
(by induction hypothesis)

↔(∃m−1x)ϕ(x).

Proof of lemma 2.3.9. We may assume that ϕ contains no negation symbols
(but predicate symbols ∈ and 6∈). We further may assume that ϕ contains
no ∃n-quantifiers by lemma 2.3.19. By lemma 2.3.20, we remove all other
quantifiers ∀m,∃m with m < n by replacing them by ∀n. Therefore we may
assume that ϕ contains no quantifiers but ∀n. Now the first claim follows
from the partial completeness theorem 2.3.16 (the bounded quantifiers which
came in in the first case of the proof of 2.3.19 are no problem because in the
search tree proof of 2.3.16, they can be treated as ∧ and ∨). The second
claim follows with lemma 2.1.3.

We will need this lemma in chapter 4.
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2.4 The σ+-calculus

Definition 2.4.1 (σ+-calculus). Let

TI(X,ϕ) :≡ LO(X) ∧
((
∀x(∀y(y <X x→ ϕ(x)) → ϕ(x))

)
→ ∀xϕ(x)

)
be the formula of transfinite induction along X with respect to ϕ; LO(X)
means that X codes a linear ordering denoted by <X .

Π1
1(Lσ)-TI is the scheme

∀X(WO(X) → TI(X,ϕ)) for all Π1
1-formulas ϕ of Lσ

of Π1
1(Lσ)-transfinite induction, where WO(X) means that X codes a well-

ordering. The scheme of transfinite induction is also known as bar induction.
The σ+-calculus is the σ-calculus extended by Π1

1(Lσ)-TI.

Lemma 2.4.2. Each L2-sentence provable in the σ+-calculus is provable in
Π1

2-CA0.

For the proof we need the following lemma.

Lemma 2.4.3. aame shows that each first order La-formula ϕ is equivalent
to both a Π1

2- and a Σ1
2-formula of L2. An analogous assertion holds for the

µ- and the σ-calculus.

Proof. We show by induction on n that for each ∆1
2-formula ϕ(x) of L2,

∃nxϕ(x) is also ∆1
2. It holds

∃nxϕ(x) ↔ ∃T
[
T wellfounded tree∧
∀s ∈ T [(s is a leaf ∧ ϕ(s)) ∨ (∀n−1y)s_〈y〉 ∈ T ]

]
.

For the direction from right to left one shows (∀s ∈ T )∃nxϕ(s_x) by induc-
tion on the Kleene-Brouwer-ordering of T . For the other direction, we define
the set

T := {t | (∀s ⊂ t)(∃nx)ϕ(s_x)∧ (∀s ( t)¬ϕ(s)∧ (∀s1 ( s2 ⊂ t)s2 ≺ s1},

where ≺ is the stage comparison relation according to lemma 2.1.7 on the
least fixed point of ϕ(x) ∨ (∀n−1y)x_〈y〉 ∈ X which is {s | (∃nx)ϕ(s_x)}.
T is wellfounded by the wellfoundedness of ≺ and not empty by ∃nxϕ(x),
hence the right side holds for this T . Since

∃nxϕ(x) ↔ EFP(〈〉, ϕ(x) ∨ (∀n−1y)x_〈y〉 ∈ X)

∃nxϕ(x) is also equivalent to a Π1
2-formula. Using the embedding from the µ-

calculus to aame which exists by the proof of theorem 2.3.8 and an embedding
from the σ-calculus to the µ-calculus which exists by theorem 3.20 of [Möl02]
the result transfers to the µ- and the σ-calculus.
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Proof of lemma 2.4.2. By the previous lemma, the σ-calculus plus Π1
2-CA

proves comprehension for all Π1
1-formulas of the language Lσ, hence

σ-calculus + Π1
2-CA ` σ+-calculus.

Since the σ-calculus plus Π1
2-CA proves the same L2-sentences as Π1

2-CA0

(see [Möl02], chapter 10a) the claim follows.

Definition 2.4.4 (countable coded ω-models). A countable coded ω-model
is a set W which is intended to code the structure

M = (ω,SM ,+, ·, 0, 1, <)

with

SM = {(W )n | n ∈ ω}.

Definition 2.4.5 (evaluation of Lσn-formulas). Let M be a countable coded
ω-model. An n-evaluation for M is a pair of functions (f, g), where f is a
function from the (codes of) Lσn-sentences with parameters in ω ∪ SM to
{0, 1} and g is a function from the set-terms of Lσn without free variables
and with parameters from ω∪SM to ω which obey the canonical clauses, for
example:

f(∀Xϕ(X)) =

{
1 if ∀nf((ϕ(X)n)) = 1

0 otherwise
(2.10)

f(t ∈ σxXϕ(x,X)) =

{
1 if t ∈ g(σxXϕ(x,X))

0 otherwise
(2.11)

f(IGF (ϕ, (W )g(σxXϕ(x,X)))) = 1 (2.12)

Definition 2.4.6. A countable coded ω-model of the σn-calculus is a count-
able coded ω-model together with an n-evaluation function which maps each
axiom of the σn-calculus to 1. We say that ϕ holds in this model if f(ϕ) = 1.

Definition 2.4.7 (β-models). A β-model M is an ω-model such that for
each Π1

1-sentences with parameters from M , ϕ is true if and only if ϕ holds
in M .

Lemma 2.4.8 ([Möl02], theorem 9.10.). For each n the σn+1-calculus proves:
There is a countable coded β-model of the σn-calculus.
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Proof. Let SM = H(T n+1) with the notation from section 2.2. Then g can
be defined directly from the function rn+1 (see lemma 2.2.15) such that we

have for each σn-formula ϕ(x,X, ~y, ~Y )

(∀~Y ∈ SM)(∀~y)(SM)g(σxXϕ(x,X,~y,~Y )) = σxXϕ(x,X, ~y, ~Y ). (2.13)

To define f , remember that T n+1 = I(σxXχ(x,X)) for a σn+1-formula χ
(see proof of lemma 2.2.14). We define a formula ϕ(x,X) whose fixed point
is intended to code the graph of f . Choose ϕ(x,X) such that

• ϕ(〈0, x〉, X) ↔ χ(x, (X)0)

• ϕ(〈1, 〈py ∈ (SM)xq , 0〉〉, X) ↔ 〈x, y〉 ∈ ((X)0)eĤ

• ϕ(〈1, 〈py ∈ (SM)xq , 1〉〉, X) ↔ 〈x, y〉 ∈ ((X)0)eH

• ϕ(〈1, 〈py 6∈ (SM)xq , 0〉〉, X) ↔ 〈x, y〉 ∈ ((X)0)eH

• ϕ(〈1, 〈py 6∈ (SM)xq , 1〉〉, X) ↔ 〈x, y〉 ∈ ((X)0)eĤ

• ϕ(〈1, 〈py ∈ σxXϕ(x,X)q , 0〉〉, X) ↔ y ∈ (((X)0)eĤ)g(pσxXϕ(x,X)q)

• ϕ(〈1, 〈p∃yψ(y)q , 0〉〉, X) ↔ ∀y〈pψ(y)q , 0〉 ∈ X1

• ϕ(〈1, 〈p∀Y ψ(Y )q , 1〉〉, X) ↔ ∀y〈pψ((SM)y)q , 1〉 ∈ X1

and so on. Choose f such that (σxXϕ(x,X))1 is the graph of f . Then for

each first order Lσn-formula ϕ(~y, ~Y ) we can show

(∀~Y ∈ SM)(∀~y)f(pϕ(~y, ~Y )q) = 1 ↔ ϕ(~y, ~Y ). (2.14)

If ϕ is a Π1
1-formula of Lσn the implication from right to left is still true. The

proof is by induction on ϕ using (2.13) for the σn-set terms. Since all fixed
point axioms are Π1

1 in Lσn , (2.12) follows.
We show next that f maps each instance of the comprehension scheme to

1. By 2.13, each first order Lσn-formula ϕ(x) is equivalent to an L2-formula
with parameters from SM , hence by lemma 2.2.13 about comprehension in
∆, {x | ϕ(x)} is in SM . Now the claim follows from (2.14).

It remains to show that this model is a β-model. By Kleenes basis theorem
(see [Sim99], lemma VII.1.7) it is sufficient to show that comprehension for
all Π1

1-formulas of L2 holds in SM . Fix a Π1
1-formula of L2. By Kleenes

normal form theorem (see [Sim99], lemma V.1.4) we can assume that it is of

the form ∀X∃mϕ(X[m], ~y, ~Y ) with a quantifier free formula ϕ and X[m] :=
〈ξ0, . . . , ξm−1〉 where ξi = 1 if i ∈ X and 0 otherwise. Let

ψ(x,X, ~y, ~Y ) :≡ ϕ(x, ~y, ~Y ) ∨ (∀y)x_〈y〉 ∈ X.
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Then

∀X∃mϕ(X[m], ~y, ~Y ) ↔ 〈〉 ∈ I(σxXψ(x,X, ~y, ~Y )),

hence it is equivalent to a first order formula for which we have comprehen-
sion.

Lemma 2.4.9. ATR0 proves that all countable coded β-models satisfy Π1
∞−

TI.

Proof. see [Sim99], lemma VII.2.15.

Theorem 2.4.10. The σ-calculus and the σ+-calculus prove the same Π1
1-

sentences of L2.

Proof. Let ϕ be a Π1
1-sentence provable in the σ+-calculus. Then there is an

n such that ϕ is provable in the σ+
n -calculus. By lemma 2.4.8 the σ-calculus

proves that there is a countable coded β-model of the σn-calculus, which is by
lemma 2.4.9 a model of the σ+

n -calculus. Therefore ϕ holds in this β-model,
which implies that ϕ is a theorem of the σ-calculus.
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3. EMBEDDING THE R-CALCULUS

3.1 Sets of reals in the σ-calculus

The goal of this section is to give codes for sets of reals which are definable
in the σ-calculus.

Definition 3.1.1 (code of a real). A real is an infinite strictly monotone
sequence of natural numbers which is coded by the set of the members of the
sequence.

This definition is slightly different from the usual one by claiming that
the sequences should be monotone. This has the advantage that each set of
natural numbers codes a real which is not the case in the usual definition,
and this is appropriate for our goals because the property of Ramsey talks
about sets of natural numbers and not about sequences. This alteration of
the definition makes no real difference because we equip this space with a
topology which is isomorphic to the Baire space with the usual topology.

Definition 3.1.2 (topology on ωωmon). Let ωωmon be the set of all infinite
strictly monotone sequences. Let

Nn =

{
{X |m ∈ X} if n = 2m

{X |m 6∈ X} if n = 2m+ 1
.

The sets Nn form a basis of a topology.

This topology is canonically isomorphic to the Baire space with the usual
topology (by f : ωωmon → ωω, (xn)n∈ω 7→ (yn)n∈ω with y0 := x0 and yn+1 :=
xn+1 − xn − 1).

Definition 3.1.3 (∀n and ∃n on sets of reals). Let Am be a set of reals for
each m ∈ ω. Then

∀nmAm := {x | ∀nm(x ∈ Am)} and ∃nmAm := {x | ∃nm(x ∈ Am)}.

We want to code the sets of reals which can be obtained from the basis
sets by applications of ∀m and ∃m with m ≤ n for a fixed natural number n.
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Definition 3.1.4 (n-codes, simple n-codes). An n-code C is a wellfounded
tree TC together with a function fC : T → ω such that

• for all interior nodes s it is fC(s) ≤ 2n+ 1

• ∀s ∈ TC [∃m(s_〈m〉 ∈ TC) → ∀m(s_〈m〉 ∈ TC)].

With each n-code, we associate a set of reals as follows. If TC = {〈〉}, then
(TC , fC) codes the basis set NfC(〈〉). Otherwise, 〈m〉 is in the tree for each m.
Let TmC := {s | 〈m〉_s}, fmC (s) = fC(〈m〉_s) and Am be the set of reals coded
by (TmC , f

m
C ). If fC(〈〉) = 2k + 1 then (TC , fC) codes ∃kxAx, if fC(〈〉) = 2k

then (TC , fC) codes ∀kxAx .
If Ci is an n-code of Ai for each i ∈ ω let ∃miCi (∀miCi resp.) be the

canonically code of ∃miAi (∀miAi resp.) for m ≤ n. ∃miCi (∀miCi resp.) is
computable by arithmetical comprehension from a set coding all Ci.

A simple n-code is an n-code where only f(〈〉) may equal 2n or 2n + 1
and all other inner nodes are labeled with numbers less than 2n.

Definition 3.1.5. For an n-code (T, f) and s ∈ T let

(T, f) � s := ({t | s_t ∈ T}, g)

with g(t) = f(s_t). Then (T, f) � s is again an n-code.

Lemma 3.1.6. For each n ∈ ω there is an Lσ-formula ϕ∈n(X,C) (we will
write X ∈n C instead) such that the σ-calculus proves for all X and for all
n-codes C

• X ∈n C ↔ m ∈ X if fC(〈〉) = 2m and TC = {〈〉}

• X ∈n C ↔ m 6∈ X if fC(〈〉) = 2m+ 1 and TC = {〈〉}

• X ∈n C ↔ ∀mi(X ∈n C � 〈i〉) if fC(〈〉) = 2m and TC 6= {〈〉}

• X ∈n C ↔ ∃mi(X ∈n C � 〈i〉) if fC(〈〉) = 2m+ 1 and TC 6= {〈〉}.

Proof. Let X ∈n C :≡ 〈〉 ∈ I(σyY ϕ(y, Y,X,C)) with

ϕ(y, Y ,X,C) :≡
[y is a leaf of TC ∧ ∃m[(fC(y) = 2m ∧m ∈ X)∨

(fC(y) = 2m+ 1 ∧m 6∈ X)]]

∨[y is not a leaf of TC ∧
∨
m≤n

[(fC(y) = 2m ∧ (∀mx)y_〈x〉 ∈ Y )∨

(fC(y) = 2m+ 1 ∧ (∃mx)y_〈x〉 ∈ Y )]].
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Since ϕ is Y -positive we have LFP(I(σyY ϕ(y, Y,X,C)), ϕ) by lemma 2.2.2.
We first show

X ∈n C � s↔ s ∈ I(σyY ϕ(y, Y,X,C)) (3.1)

for each s ∈ TC . Let fs(x) = s_x. Then

ϕ(fs(y), fs(Y ), X, C) ↔ ϕ(y, Y,X,C � s),

and lemma 2.3.4 implies

fs(Iϕ(y,Y,X,C�s)) = Iϕ(y,Y,X,C) ∩ im(fs),

where Iϕ is a set with LFP(Iϕ, ϕ). Therefore we have shown (3.1). Now we
prove the third equivalence of the lemma as follows.

X ∈n C ↔〈〉 ∈ I(σyY ϕ(y, Y,X,C))

↔ϕ(〈〉, I(σyY ϕ(y, Y,X,C)), X, C)

↔(∀mi)〈i〉 ∈ I(σyY ϕ(y, Y,X,C))

↔(∀mi)X ∈n C � 〈i〉 by (3.1)

The other cases are similar.

Definition 3.1.7. Let

X =n
U Y :≡ X, Y are n-codes and ∀Z ⊂ U(Z ∈n X ↔ Z ∈n Y ).

3.2 Proving Ramseyness in ZFC + CH

We want to prove in ZFC + CH that every set of reals that has an n-code
has the property of Ramsey. We first fix some notations.

Definition 3.2.1. Let Seqmon denote the set of all finite, strictly monotone
sequences. We will not distinguish between a sequence and the natural num-
ber coding the sequence. Let max s be the maximal element of the sequence
s with max〈〉 := −1. Further let X\s := {x ∈ X | x > max s}. s ⊂b U is an
abbreviation for ”s = 〈s1, . . . , sn〉 is a monotone sequence, U is an infinite
set of natural numbers and U begins with s, i.e. the n least elements of U
are s1, . . . , sn”.

Definition 3.2.2. X diagonalizes {Xs | s ∈ Seqmon} if X ⊂ X〈〉 and if
max s ∈ X implies X\s ⊂ Xs.

Definition 3.2.3. F is a Ramsey ultrafilter iff
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• F ⊂ P(ω) is an ultrafilter

• F contains no finite set

• F is closed under diagonalization, i.e. if Xs ∈ F for each s ∈ Seqmon

then there is an X ∈ F which diagonalizes {Xs | s ∈ Seqmon}.

Mathias proves in [Mat77]:

Theorem 3.2.4. ZFC + CH proves that there is a Ramsey ultrafilter F .

Definition 3.2.5. Let s ∈ Seqmon, U an infinite subset of ω and X ⊂ P(ω).
We define a notion of locally homogeneousness as follows.

• hom+(s, U,X) :≡ ∀∞Y (s ⊂b Y ⊂ U → Y ∈ X)

• hom−(s, U,X) :≡ ∀∞Y (s ⊂b Y ⊂ U → Y 6∈ X)

• hom(s, U,X) :≡ hom+(s, U,X) ∨ hom−(s, U,X).

Let

CF := {B ⊂ P(ω) | (∀s ∈ Seqmon)(∀S ∈ F )(∃S ′ ⊂ S)

[S ′ ∈ F ∧ hom(s, S ′, B)]}

and

IF := {B ⊂ P(ω) | (∀s ∈ Seqmon)(∀S ∈ F )(∃S ′ ⊂ S)

[S ′ ∈ F ∧ hom−(s, S ′, B)]}.

Definition 3.2.6. C is a σ-algebra if it contains the empty set, is closed
under complements and countable unions. I ⊂ C is a σ-ideal if it is closed
under subsets and countable unions. I is ccc if there are no uncountable
antichains, i.e. there is no uncountable set {Bi | i ∈ J} such that Bi ∈ C\I
for all i ∈ J and Bi ∩Bj ∈ IF for all i 6= j.

In [Mat77] it is shown that if F is a Ramsey ultrafilter, CF is a σ-algebra
containing all open sets and IF is a ccc σ-ideal in CF .

We now show that each σ-algebra containing a ccc σ-ideal is closed under
the operations ∀m and ∃m. This is a generalization of theorem 5.14 in [And01]
which states the closedness under the Souslin operator A which is the ∀1-
quantifier in our terminology.

Theorem 3.2.7. ZFC proves: Assume that (X, T ) is a topological space and
S ⊂ P(X) is a σ-algebra which contains all open sets. Let I be a ccc σ-ideal
in S. Then S contains all sets which have an n-code.
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Proof. We induct on n. It is enough to show that S is closed under ∀n
because of ∃nsBs = (∀nsBc

s)
c and S is closed under complements.

Assume A = ∀n+1sAs with As ∈ S for all s ∈ Seq. For α < ω1 and
s ∈ Seq let

A0
s = As

Aα+1
s =

{
Aαs ∩ ∃nmAαs_〈m〉 if Aαs \∃nmAαs_〈m〉 6∈ I
Aαs otherwise

Aλs =
⋂
a<λ

Aαs if λ ∈ Lim.

By induction hypothesis S is closed under ∃n, hence

(∀α < ω1)(∀s ∈ Seq)Aαs ∈ S

by induction on α. Furthermore

Cs := {α < ω1 | Aαs \Aα+1
s 6∈ I}

is countable, because otherwise {Aαs \Aα+1
s | α ∈ Cs} would witness that I is

not ccc. By regularity of ω1 we have

(∀s ∈ Seq)(∃γs < ω1)(∀β ≥ γs)A
γs
s = Aβs

and again with regularity of ω1

(∃γ < ω1)(∀s ∈ Seq)(∀β ≥ γ)Aγs = Aβs .

Together with the definition of Aαs we obtain from Aγs = Aγ+1
s

(∀s ∈ Seq)Aγs\∃nmA
γ
s_〈m〉 ∈ I,

and since I is closed under countable unions we get

M :=
⋃
s∈Seq

Aγs\∃nmA
γ
s_〈m〉 ∈ I.

By the definition of M we have

(∀s ∈ Seq)M c ∩ Aγs ⊂ ∃nmAγs_〈m〉,

and together with the definition of the ∀n+1-quantifier we get

M c ∩ Aγ〈〉 ⊂ ∀n+1mAγm,
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hence

Aγ〈〉\∀
n+1mAγm ⊂M ∈ I. (3.2)

By induction on α we show for all u

Aαu ⊃ ∀n+1mAu_m. (3.3)

Assume Aα+1
u = Aαu ∩ ∃nkAαu_〈k〉 in the successor step. By induction

hypothesis and lemma 2.3.5 we obtain

∃nkAαu_〈k〉 ⊃ ∃nk∀n+1mAu_〈k〉_m = ∀n+1mAu_m

which proves the claim.
From (3.3) we obtain

Aγ〈〉 ⊃ ∀n+1mAm ⊃ ∀n+1mAγm,

and together with (3.2) and Aγ〈〉 ∈ S this implies ∀n+1mAm ∈ S.

By applying the theorem to CF and IF we get the

Corollary 3.2.8. ZFC + CH proves that every set of reals which has an
n-code is Ramsey.

If we want to carry out this proof in subsystems of second order arith-
metic like the σ-calculus we encounter two problems: How can we get a
wellordering which is long enough to iterate the Aαs ’s and how can we replace
the ultrafilter? The next section is a preparation to meet the first problem.

3.3 Iterations along wellorderings

The aim of this section is to prepare the construction of a wellordering which
is long enough for the transfinite recursion of the Aαs in the proof of 3.2.7.
We have seen there that I being ccc is the reason why this iteration comes
to a halt before ω1, and therefore it is not amazing that the key to the
construction of our wellordering is in the proof that IF is ccc.

Lemma 3.3.1 ([Mat77],proposition 1.11). IF is ccc.
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Proof. Let B ∈ CF\IF . B 6∈ IF implies

(∃s ∈ Seqmon)(∃S ∈ F )(∀S ′ ⊂ S)[S ′ ∈ F → ¬hom−(s, S ′, B)],

which together with B ∈ CF entails

(∃s ∈ Seqmon)(∃S ∈ F )(∃S ′ ⊂ S)[S ′ ∈ F∧hom(s, S ′, B)∧¬hom−(s, S ′, B)],

i.e.

(∃s ∈ Seqmon)(∃S ∈ F )hom+(s, S,B).

For each B ∈ CF\IF , we define its index

i(B) := min{s | (∃S ∈ F )hom+(s, S,B)}.

If B1 ∩B2 ∈ IF then i(B1) 6= i(B2) because i(B1) = i(B2) =: i implies

hom+(i, Sj, Bj) for j ∈ {1, 2},

therefore hom+(i, S1 ∩ S2, Bj) since hom+(i, S, B) stays true if S becomes
smaller. But this implies hom+(i, S1 ∩ S2, B1 ∩ B2) which is a contradiction
to B1 ∩B2 ∈ IF .

Therefore in each antichain there are no two elements with the same index.
Because we only have countable many indices, there are no uncountable
antichains.

We will construct the wellordering for the transfinite recursion of the Aαs
simultaneously with the sets Aαs themselves. Assume that we have already
done the recursion along a suitable wellordering of order type α. If

(∀s)Aαs \∃nmAαs_〈m〉 ∈ IF ,

the Aβs are constant for β ≥ α and the recursion is already finished. If
Aαs \∃nmAs_〈m〉 is not in IF for some s, we have to extend our wellordering
by one further element; for this element we choose 〈s, i〉 where i is the index
of the set Aαs \∃nmAαs_〈m〉 (see the proof of 3.3.1). If at some later point

of the iteration a set Aβs\∃nmA
β
s_〈m〉 claims that the wellordering has to be

extended by one further element, then the index of Aβs\∃nmA
β
s_〈m〉 has to be

different from all indices which already occured in the wellordering. But this
is the case since

Aβs\∃nmAs_〈m〉 ⊂ Aβs ⊂ Aα+1
s = Aαs ∩ ∃nmAαs_〈m〉
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implies

(Aαs \∃nmAαs_〈m〉) ∩ (Aβs\∃nmA
β
s_〈m〉) = ∅ ∈ IF ,

hence the indices of Aαs \∃nmAαs_〈m〉 and Aβs\∃nmA
β
s_〈m〉 are different by the

argument in the proof of 3.3.1. Therefore it is not possible that a index
occurs twice, and we really obtain a wellordering. In this section, we will
make this argument more explicit.

Let us consider a non-monotone inductive process given by a formula ϕ
in the following way.

Definition 3.3.2. Let ϕ(x,X, Y ) be a first order Lσ-formula and W a
wellordering. I is an iteration of ϕ along W if

• ∀x ∈ I[x ∈ Seq ∧ (lh(x) = 1 ∨ lh(x) = 2)]

• (I)0 = field(W )

• ∀i ∈ field(W )[(I)i = {x | ϕ(x, I<i,W<i)}]
where I<i := {〈x, y〉 ∈ I | 〈x, i〉 ∈W}

with (X)n := {x | ∃y ∈ Seq ∩ X[lh(y) ≥ n + 1 ∧ x = (y)n]}. We allow
sequences of length one in I because the empty set may occur during the
iteration.

Given an inductive process by a formula ϕ we want to iterate it along
a wellordering which is constructed simultaneously with the iteration of ϕ.
The wellordering will be given by a formula ψ(i, I,W ) with the intended
meaning: if I is an iteration of ϕ along W then we extend W by the new
maximal element i,which adds one iteration step of ϕ.

Definition 3.3.3. Let ϕ(x,X, Y ) and ψ(i,X, Y ) be first order Lσ-formulas.
(I,W ) is a ψ-iteration of ϕ if

• I is an iteration of ϕ along W

• ∀i ∈ field(W )ψ(i, I<i,W<i).

Definition 3.3.4. Let ϕ(x,X, Y ) and ψ(i,X, Y ) be first order Lσ-formulas.
(I,W ) is a maximal ψ-iteration of ϕ if

• (I,W ) is a ψ-iteration of ϕ

• ¬∃iψ(i, I,W ).
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To guarantee the existence of such an iteration we have to ensure that
the new element of the wellordering W suggested by ψ is not yet an element
of W .

Definition 3.3.5. Let ϕ(x,X, Y ) and ψ(i,X, Y ) be first order Lσ-formulas.
ψ is called suitable for ϕ if

• ∀X, Y ∀x, y[(ψ(x,X, Y ) ∧ ψ(y,X, Y )) → x = y]

• ∀I,W∀i[((I,W ) is ψ-iteration of ϕ ∧ ψ(i, I,W )) → i 6∈ field(W )].

Theorem 3.3.6. For first order Lσ-formulas ϕ(x,X, Y ) and ψ(i,X, Y ) there
exist set terms I and W uniformly in ϕ and ψ such that the σ-calculus proves:
If ψ is suitable for ϕ then (I,W ) is a maximal ψ-iteration of ϕ.

Proof. Let

τ(〈a, z〉, X) :≡[a = 0 ∧ ψ(z, (X)1, (X)2)]

∨[a = 1 ∧ z = 〈i, x〉 ∧ ψ(i, (X)1, (X)2) ∧ ϕ(x, (X)1, (X)2)]

∨[a = 2 ∧ z = 〈x, y〉 ∧ ψ(y, (X)1, (X)2) ∧ x ∈ (X)0 ∧ y 6∈ (X)0]

Here we used the abbreviation z = 〈x, i〉 ∧ ϕ(x, i) for z ∈ Seq ∧ lh(z) =
2 ∧ ϕ((z)0, (z)1). We will show that (I(σxXτ(x,X)))2 is the strict part of
a prewellordering with field (I(σxXτ(x,X)))0 and that (I(σxXτ(x,X)))1

is a maximal ψ-iteration of ϕ along this prewellordering. Let �,≺ be the
prewellordering on I(σxXτ(x,X)). We first show

〈x, y〉 ∈ (I(σxXτ(x,X)))2 → 〈0, x〉 ≺ 〈0, y〉. (3.4)

〈x, y〉 ∈ (I(σxXτ(x,X)))2 implies 〈2, 〈x, y〉〉 � 〈2, 〈x, y〉〉, hence

τ(〈2, 〈x, y〉〉, {z | z ≺ 〈2, 〈x, y〉〉})

by the fixed point axioms. This implies

〈0, x〉 ≺ 〈2, 〈x, y〉〉 and 〈0, y〉 6≺ 〈2, 〈x, y〉〉

by the definition of τ , therefore

〈2, 〈x, y〉〉 � 〈0, y〉

since 〈2, 〈x, y〉〉 ∈ I(σxXτ(x,X)). This finishes the proof of (3.4).
From the wellfoundedness of ≺ together with (3.4) we obtain that the

relation coded by (I(σxXτ(x,X)))2 is wellfounded. Now we can show by
induction along ≺ that for each z, ({x | x ≺ z})1 is a ψ-iteration of ϕ along
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the prewellordering with strict part ({x | x ≺ z})2 and field ({x | x ≺ z})0.
Notice that we can express this without second order quantifiers since we
have already proved the wellfoundedness.

It remains to show that the iteration is maximal. Assume

∃iψ
(
i, (I(σxXτ(x,X)))1, (I(σxXτ(x,X)))2

)
.

Then we obtain τ(〈0, i〉, I(σxXτ(x,X))), therefore 〈0, i〉 ∈ I(σxXτ(x,X))
by the fixed point axioms. But then i is in the field of the wellordering which
is a contradiction since ψ is suitable for ϕ.

3.4 The embedding

We now formalize the proof in section 3.2 in the σ+-calculus. We have
already described the idea at the beginning of section 3.3, but there is still
the question left how to replace the ultrafilter F which is needed for the
definition of the σ-algebra CF and the σ-ideal IF . We construct a filter
which is fine enough simultaneously with the sets Aαs . At step α of the
recursion, we construct an infinite set of natural numbers Fα which codes
the filter {X ⊂ ω | Fα\X is finite}. We make sure that Fβ\Fα is finite for
β > α, therefore the filter comprises more sets with increasing α. Thus CFα

and IFα also become bigger with increasing α.1

Let us assume that we have done the iteration up to α. Using the induc-
tion hypothesis we choose Fα such that for each s and i we can remove an
initial segment from the code Fα and obtain Fα

>k for some k ∈ ω such that

hom(i, Fα
>k, Aαs \∃nmAαs_〈m〉).

This guarantees Aαs \∃nmAαs_〈m〉 ∈ CFα for all s. Let us assume that the

iteration is not yet maximal, therefore we have 〈s, i〉 which is minimal such
that Aαs \∃nmAαs_〈m〉 6∈ IFα and i is the index of Aαs \∃nmAαs_〈m〉, i.e.

i := min{s | (∃S ∈ Fα)hom+(s, S, Aαs \∃nmAαs_〈m〉)};

i exists since Aαs \∃nmAαs_〈m〉 6∈ IFα implies

(∃i)(∃k)¬hom−(i, Fα
>k, Aαs \∃nmAαs_〈m〉),

1 Let α < β and B ∈ CFα , therefore for each s there exists Ss ∈ Fα such that
hom(s, Ss, B). But then

∀s∀S ∈ Fβ [S ∩ Ss ∈ Fβ ∧ hom(s, S ∩ Ss, B)],

i.e. B ∈ CFβ
.
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hence

(∃i)(∃k)hom+(i, Fα
>k, Aαs \∃nmAαs_〈m〉).

We choose 〈s, i〉 as new element of our wellordering. Notice that for all future
enlargements F of Fα, A

α
s \∃nmAαs_〈m〉 will always stay out of IF . If 〈s, i〉

would be chosen a second time at stage β > α, we would have

(∃l)hom+(i, Fβ
>l, Aβs\∃nmA

β
s_〈m〉).

But this is a contradiction since Aαs \∃nmAαs_〈m〉 and Aβs\∃nmA
β
s_〈m〉 are dis-

joint because of Aβs ⊂ Aαs ∩ ∃nmAαs_〈m〉. Hence the index 〈s, i〉 can not be
chosen a second time. At limit points λ of our iteration, we define Fλ as the
diagonal intersection of the (Fα)α<λ. This works because we defined that all
X such that F\X is finite are in the filter coded by F and not all X such
that F ⊂ X. Let us now spell out the details.

Definition 3.4.1 (code of a filter). For sets X and Y let

X>n := {x ∈ X | x > n}

and

X ⊂∞ Y :≡ ∃n(X>n ⊂ Y ).

A code of a filter is an infinite set of natural numbers F . The filter coded by
F is {X | F ⊂∞ X}.

Such filters are not closed under diagonalization, but for a given family
{Xs | s ∈ Seqmon} where all Xs are elements of a filter we can find a finer
filter which contains a diagonalizing set. As the next lemma shows, this is
already provable in ACA0.

Lemma 3.4.2. ACA0 proves: If F is a code of a filter and X is a set such
that F ⊂∞ Xs for all s ∈ Seqmon then there is a set G (uniform in F and
X) such that G ⊂∞ F (i.e. the filter coded by F is a subfilter of the filter
coded by G) and G diagonalizes the Xs.

Proof. Let Si :=
⋂
{Xs |max(s) = i}, then F ⊂∞ Si for each i since it is a

cut of finitely many sets since s is a strictly monotone sequence. Let g0 := 0
and

gi+1 = the least element of
⋂
j≤i

S>gi
gj
,
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then {gi | j < i} ⊂ Sgj
for each j. Let G := {gi | i ∈ ω}. Then we have for

each s with max(s) = gj

G\s = {gi | gj < gi} = {gi | j < i} ⊂ Sgj
⊂ Xs,

hence G diagonalizes the Xs.

If Fα is the filter at stage α of our iteration we will ensure that Fα becomes
finer with increasing α, i.e. Fα ⊂∞ Fβ for α > β. We prepare the limit steps
of the iteration by the following lemma:

Lemma 3.4.3. There exists an arithmetical formula ϕDiag(x,X) (we will
write x ∈ Diag(X) instead) such that ACA0 proves:

∀n
(
∞(X)n∧(X)n+1 ⊂∞ (X)n

)
→

(
∞(Diag(X))∧(∀n)Diag(X) ⊂∞ (X)n

)
with ∞(X) :≡ ∀x(∃y > x)(y ∈ X).

Proof. Let x0 := 0 and xi+1 be the least element of
⋂
j≤i+1(X)j which is

greater than xi. Choose Diag(X) := {xi | i ∈ ω}.

Lemma 3.4.4. There is an arithmetical formula ϕcof (x,X) (we will write
x ∈ cof(X) instead) such that ACA0 proves: If X codes an ordering with no
maximal element then cof(X) codes a cofinal sequence.

Proof. Choose x0 ∈ field(X) and xn+1 such that xn <X xn+1 and i <X xn+1

for all i < n with i ∈ field(X). Let cof(X) := {xi | i ∈ ω}.

Definition 3.4.5. In analogy to 3.2.5 we define

homn
+(s, U,X) :≡ ∀∞Y (s ⊂b Y ⊂ s ∪ U → Y ∈n X),

homn
−(s, U,X) :≡ ∀∞Y (s ⊂b Y ⊂ s ∪ U → Y 6∈n X),

homn(s, U,X) :≡ homn
+(s, U,X) ∨ homn

−(s, U,X).

Here we identify the sequence s with the set of its elements.

The following lemma follows directly from this definition.

Lemma 3.4.6. For all n, ACA0 proves

• (homn
+(s, U,X) ∧ Ũ ⊂ U ∧X ⊂n X̃) → homn

+(s, Ũ , X̃)

• (homn
−(s, U,X) ∧ Ũ ⊂ U ∧ X̃ ⊂n X) → homn

−(s, Ũ , X̃)

• (homn(s, U,X) ∧ Ũ ⊂ U) → homn(s, Ũ ,X).
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Theorem 3.4.7. For all n ∈ ω there exists an Lσ-term Hn(s, U,X) such
that the σ+-calculus proves: for all s ∈ Seqmon, all infinite U and for each
X which is a n-code of reals it holds

• s ⊂b H
n(s, U,X) ⊂ s ∪ U

• homn(s,Hn(s, U,X), X).

Proof. The proof is by metainduction on n. In each step of the induction,
we first prove the theorem for simple n-codes and then for arbitrary n-codes.
For simple 0-codes, the claim follows from theorem 1.2.1 which states the
property of Ramsey for open sets. The step from simple 0-codes to arbitrary
0-codes is as in the induction step.

From now on assume that the theorem is proved for n. All lemmata until
lemma 3.4.21 are part of the induction step. We first prove the theorem for
simple n+ 1-codes C whose root codes a ∀n+1-branching by formalizing the
proof of theorem 3.2.4 in the σ+-calculus.

We would like to generalize our induction hypothesis in the following way.
Given ω-many sets of reals (Ai)i∈ω with an n-code, we would like to have one
set of natural numbers which is homogeneous for all Ai´s simultaneously.
But as the example at the beginning of section 1.3 shows, this is impossible.
However, we can find an infinite subsetH of ω such that for each i ∈ ω we can
remove an initial segment of H such that the remaining set is homogeneous
for Ai. This is done in the following lemma.

Lemma 3.4.8. There exists an Lσ-term Hn
ω(U,X) such that the σ+-calculus

proves: If (X)i is an n-code for each i ∈ ω then

(∀U)(∀s ∈ Seqmon)(∀i)[homn(s,Hn
ω(U,X).〈s,i〉, (X)i)∧Hn

ω(U,X) ⊂∞ U ],

where X.n is X without the n least elements of X.

Proof. By recursion on p we define a sequence of infinite sets (Sp)p∈ω such
that Sp ⊂ Sq ⊂ U for p > q and homn(s, S〈s,i〉, (X)i) for each s, i. We start
with S0 := U . If p = 〈s, i〉 let

Sp := Hn(s, Sp−1, (X)i)\{i | i is an element of s},

otherwise Sp := Sp−1. Then the properties of the Sp follow from the main
induction hypothesis.

Let k0 be the least element of S0 and

ki+1 := the least element of
⋂
j≤i+1

Sj which is bigger than ki.

Then Hn
ω(U,X) := {ki | i ∈ ω} satisfies the claim since Hn

ω(U,X).〈s,i〉 ⊂
S〈s,i〉.
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Definition 3.4.9. Let

bign(s, U,X) :≡ Hn(s, U,X) ∈n X,

i.e. X is “big” in s, U .

The following lemma we obtain immediately from the induction hypothe-
sis of the induction on n.

Lemma 3.4.10. The σ+-calculus proves for all n-codes X

(∀U)(∀s ∈ Seqmon)[bign(s, U,X) → homn
+(s,Hn(s, U,X), X)]

and

(∀U)(∀s ∈ Seqmon)[¬bign(s, U,X) → homn
−(s,Hn(s, U,X), X)].

For the construction of Hn+1(s, V, C) fix a simple ∀n+1-code C and an
infinite set V .

Definition 3.4.11. Let max(i,X) denote that i is the maximal element of
the ordering X and lim(X) that X has no maximal element. We define sets
T (X, Y ) and F (X, Y ) by arithmetical comprehension.

〈s, x〉 ∈ T (X, Y ) :≡(Y = ∅ ∧ x ∈ C � 〈s〉)
∨∃i[max(i, Y ) ∧ 〈i, 〈0, 〈s, x〉〉〉 ∈ X]

∨[lim(Y ) ∧ x ∈ ∀0n{〈n, z〉 | ∃y[〈n, y〉 ∈ cof(Y )∧
〈y, 〈0, 〈s, z〉〉〉 ∈ X]}]

x ∈ F̃ (X, Y ) :≡(Y = ∅ ∧ x ∈ V )

∨∃i(max(i, Y ) ∧ 〈i, 〈1, x〉〉 ∈ X)

∨[lim(Y ) ∧ x ∈ Diag(Cof(X, Y ))]

x ∈ F (X,Y ) :≡ Hn
ω(F̃ (X, Y ), Z) with (Z)s = T (X, Y )s\∃nkT (X, Y )s_〈k〉

To understand this definition suppose that X codes an iteration along the
wellordering Y such that (((X)i)0)s codes Aαs if i is an element of field(Y )
with ordertype α and ((X)i)1 is a code of the stage α of the filter. Then
T (X, Y )s is the n-code of the the “actual” set As which is Aαs if α is the
ordertype of the maximal element of Y , and in case that the ordertype of Y
is a limit ordinal it is

⋂
n∈ω A

αn
s , where (αn)n∈ω is a cofinal sequence in α. To
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express
⋂
n∈ω A

αn
s we use the notation of definition 3.1.4. F (X, Y ) codes the

“actual” filter which is the diagonal intersection in the limit case.2 Let

ψ(j,X, Y ) :≡ j is the least 〈s, i〉 such that

bign(i, F (X,Y ), T (X, Y )s\∃nkT (X, Y )s_〈k〉)

and

ϕ(x,X, Y ) : ≡
∃〈s, i〉

(
ψ(〈s, i〉, X, Y )∧
∃t, y[x = 〈0, 〈t, y〉〉 ∧ [(s 6= t ∧ y ∈ T (X, Y )s)∨

(s = t ∧ y ∈ T (X, Y )t ∩ ∃niT (X, Y )t_〈i〉)]]

∨∃y[x = 〈1, y〉
∧ y ∈ Hn(i, F (X, Y ), T (X,Y )s\∃nkT (X, Y )s_〈k〉)]

)
.

Lemma 3.4.12. The σ+-calculus proves: If (I,W ) is a ψ-iteration of ϕ then

(∀s ∈ Seqmon)(∀i)homn(i, F (I,W ).〈s,i〉, T (I,W )s\∃nkT (I,W )s_〈k〉).

Proof. This follows directly from the definition of F (I,W ) and lemma 3.4.8.

Lemma 3.4.13. The σ+-calculus proves: If (I,W ) is a ψ-iteration of ϕ and
w = 〈s, i〉 ∈ field(W ) then

(∃m)homn
−(i, F (I;W ).m, T (I,W )s).

Proof. Since w ∈ field(W ) we have ψ(w, I<w,W<w) by the definition of a
ψ-iteration 3.3.3, hence by the definition of ψ

bign(i, F (I<w,W<w), T (I<w,W<w)s\∃nkT (I<w,W<w)s_〈k〉). (3.5)

By the definition 3.3.2 of an iteration together with the definition of ϕ we
obtain

((I)w)1 = Hn(i, F (I<w,W<w), T (I<w,W<w)s\∃nkT (I<w,W<w)s_〈k〉). (3.6)

With lemma 3.4.10 we get from (3.5) and (3.6)

homn
+(i, ((I)w)1, T (I<w,W<w)s\∃nkT (I<w,W<w)s_〈k〉)

2 Since we code an ordering ≺ by {〈x, y〉 | x ≺ y} the code makes no difference between
orderings with zero and one element because both are coded by the empty set. Hence
max(i, Y ) does also depend on X from which we can decode the field of the ordering, but
we suppress that.
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which entails

homn
−(i, ((I)w)1, T (I<w,W<w)s ∩ ∃nkT (I<w,W<w)s_〈k〉).

Since

T (I,W )s ⊂n (((I)w)0)s = T (I<w,W<w)s ∩ ∃nkT (I<w,W<w)s_〈k〉

and F (I;W ) ⊂∞ ((I)w)1 we get by monotonicity lemma 3.4.6

(∃m)homn
−(i, F (I;W ).m, T (I,W )s).

Lemma 3.4.14. The σ+-calculus proves: ψ is suitable for ϕ.

Proof. Assume that (I,W ) is a ψ-iteration of ϕ and w = 〈s, i〉 ∈ field(W )
with ψ(w, I,W ). Then we get

(∃m)homn
−(i, F (I;W ).m, T (I,W )s)

by lemma 3.4.13, which yields

(∃m)homn
−(i, F (I;W )>m, T (I,W )s\∃nkT (I,W )s_〈k〉)

by monotonicity of homn
− (lemma 3.4.6). But this is a contradiction to

ψ(w, I,W ).

Lemma 3.4.15. There exists a Lσ-term K(F,X) such that the σ+-calculus
proves: If (X)i is an n-code for each i and if F is infinite then

(∀s ∈ Seqmon)K(F,X)s is infinite,

(∀s ∈ Seqmon)K(F,X)s ⊂ F

and

(∀s ∈ Seqmon)(∀i)homn
−(s, F .〈s,i〉, (X)i) → (∀s)homn

−(s,K(F,X)s,
⋃
i∈ω

(X)i).

(3.7)

Proof. Since 〈s_t, t〉 ≥ 〈s_t, i〉 for all i ≤ t we obtain for all t such that s_t
is strictly monotone

(∀i ≤ t)homn
−(s_t, F .〈s_t,t〉, Xi)
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by the premise of (3.7). Define

St :=

{
F .〈s_t,t〉 if s_t is strictly monotone

St := F otherwise.

Let Ks be a diagonalization of the St according to lemma 3.4.2. Towards
a contradiction assume s ⊂b Z ⊂ s ∪ Ks and Z ∈n Xj. If t is the se-
quence of the first j elements of Z which are greater than the elements of
s we have 〈s_t, t〉 ≥ 〈s_t, j〉, hence homn

−(s_t, F .〈s_t,t〉, Xj). This implies
homn

−(s_t,Ks, Xj), hence Z 6∈n Xj, contradiction.

Lemma 3.4.16. The σ+-calculus proves: There is a maximal ψ-iteration
(I,W ) of ϕ uniformly in ϕ and ψ. Furthermore there is a set K uniformly
in ϕ and ψ such that Ks ⊂ V and

(∀s ∈ Seqmon)homn
−(s,Ks,

⋃
t

T (I,W )t\∃nkT (I,W )t_〈k〉).

Proof. The first claim follows directly from theorem 3.3.6 since ψ is suitable
for ϕ by lemma 3.4.14. Since the iteration is maximal we have ∀i¬ψ(i, I,W ),
i.e.

(∀s ∈ Seqmon)(∀t)¬bign(s, F (I,W ), T (I,W )t\∃nkT (I,W )t_〈k〉). (3.8)

We also have

(∀s ∈ Seqmon)(∀t)homn(s, F (I,W ).〈s,t〉, T (I,W )t\∃nkT (I,W )t_〈k〉)

by lemma 3.4.12, and since (3.8) excludes homn
+ we obtain

(∀s ∈ Seqmon)(∀t)homn
−(s, F (I,W ).〈s,t〉, T (I,W )t\∃nkT (I,W )t_〈k〉),

which yields the claim by lemma 3.4.15.

Lemma 3.4.17. The σ+-calculus proves: If (I,W ) is a ψ-iteration of ϕ and
0W is the least element of the wellordering W , then it holds for all s and X

(∀n+1x)X ∈n (((I)0W
)0)s_x ↔ (∀n+1x)X ∈n T (I,W )s_x.

Proof. The direction from right to left holds because of

X ∈n T (I,W )s_x → X ∈n (((I)0W
)0)s_x
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which is provable for each X by transfinite induction along W . For the other
direction we apply lemma 2.3.6 for ϕ(s, x,X) :≡ X ∈n (((I)0W

)0)s_x and
prove

∀w ∈ field(W )∀s, x,X[ϕ̃(s, x,X) → X ∈n (((I)w)0)s_x] (3.9)

by induction on w. For w = 0W this follows from the second claim of lemma
2.3.6. For the successor case, we first notice that

(((I)w)0)s = T (I≤w,W≤w)s (3.10)

by the definition of T . If w′ is the W -successor of w then

(((I)w′)0)s_x = (({y | ϕ(y, I≤w,W≤w)})0)s_x

by the definition of an iteration (3.3.2). Therefore (((I)w′)0)s_x is either
(((I)w)0)s_x or (((I)w)0)s_x ∩ ∃ny(((I)w)0)s_x_〈y〉 by the definition of ϕ and
(3.10). In the first case the claim follows directly from the induction hy-
pothesis, in the second case from the third claim of 2.3.6 together with the
induction hypothesis. If w is a limit then

(∀s, x)ϕ̃(s, x,X) → X ∈n T (I<w,W<w)s_x

by induction hypothesis together with the definition of T , therefore we obtain

(∀s, x)ϕ̃(s, x,X) → (∃ny)X ∈n T (I<w,W<w)s_x_〈y〉

with the third claim of 2.3.6. Hence

X ∈n (({x | ϕ(x, I<w,W<w)})0)s_x = (((I)w)0)s_x

which finishes the proof of (3.9).
To prove the direction from left to right assume ∀n+1xϕ(x). Lemma 2.3.6

implies ∀n+1xϕ̃(x), and from (3.9) we obtain

(∀n+1x)(∀w ∈ field(W ))X ∈n (((I)w)0)s_x

which yields the claim.

Lemma 3.4.18. The σ+-calculus proves: If (I,W ) is a maximal ϕ-iteration
of ψ and K is as in lemma 3.4.16 then

(∀s ∈ Seqmon)(∀X)
(
s ⊂b X ⊂ Ks

→ [X ∈n T (I,W )〈〉 ↔ X ∈n+1 (∀n+1x)T (I,W )x]
)
.
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Proof. The direction from right to left follows directly from the definition of
∀n+1. For the other direction it suffices to show

(∀s ∈ Seqmon)homn+1
− (s,Ks, T (I,W )〈〉\(∀n+1x)T (I,W )x). (3.11)

Lemma 2.3.7 implies

(ϕ(〈〉) ∧ ¬∀n+1xϕ(x)) → ∃t(ϕ(t) ∧ ¬∃nxϕ(t_〈x〉)),

for each first order ϕ, and if we set ϕ(s,X) :≡ X ∈n T (I,W )s we obtain

T (I,W )〈〉\(∀n+1x)T (I,W )x ⊂n
⋃
t

T (I,W )t\∃nkT (I,W )t_〈k〉.

Together with 3.4.16 this proves 3.11.

We are now able to prove theorem 3.4.7 for simple n+1-codes whose root
codes a ∀n+1-branching. Let

Hn+1(s, V, C) := Hn(s,Ks, T (I,W )〈〉).

Then we have

s ⊂b H
n+1(s, V, C) ⊂ s ∪Ks ⊂ s ∪ F (I,W ) ⊂ s ∪ V

and

homn(s,Hn+1(s, V, C), T (I,W )〈〉).

By lemma 3.4.18 this implies

homn+1(s,Hn+1(s, V, C), (∀n+1x)T (I,W )x),

and lemma 3.4.17 yields

homn+1(s,Hn+1(s, V, C), C).

This finishes the proof of theorem 3.4.7 for simple n + 1-codes with ∀n+1-
branching root. Since a set which is homogeneous for X is also homogeneous
for Xc this extends to simple n+1-codes with ∃n+1-branching root. We now
generalize the result for arbitrary n+ 1-codes.

The idea is as follows: Assume that we have a code C for a set of reals
and a set-term H such that (∀s)(∀∞W )hom(s,H(s,W,C), C). Then for
each infinite set W and each s ⊂b W we can find an infinite set U (:=
s∪H(s,W,C)) such that s ⊂b U ⊂ W and the set coded by C is open in U ,
i.e. C =U P for a code of an open set P with =U as in definition 3.1.7. For
a given n + 1-code we will define sets Us by transfinite recursion along the
Kleene-Brouwer ordering on the code C such that the set coded by the part
of the tree above s is open in Us. Then we obtain a homogeneous set for C
using the property of Ramsey for open sets.
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Lemma 3.4.19. There are Lσ-terms U(m, i,W,O) and P (m, i,W,O) such
that the σ+-calculus proves: If m ≤ n+1 and Oj is a code of an open set for
each j and W is an infinite set then P (m, i,W,O) is a code of an open set,
U(m, i,W,O) is infinite and

WEi ⊂b U(m, i,W,O) ⊂ W

and

∀mjOj =U(m,i,W,O) P (m, i,W,O).

(Remember that XEn is the set of the n least elements of X.) A similar
assertion holds for ∃m.

Proof. We first construct an infinite set V ⊂ W such that

(∀s ⊂ WEi)homn+1(s, V,∀mjOj).

Since WEi is finite, we can do this by a recursion of finite length using
theorem 3.4.7 for simple m-codes in each recursion step. Now we choose
U := V ∪WEi and P coding

⋃
{Ns | s ⊂ WEi ∧ bign+1(s, V,∀mjOj)} which

satisfy the claim.

We will now iterate lemma 3.4.19 along the Kleene-Brouwer ordering <C
KB

of the tree TC which belongs to the code C. We have to make sure that at
limit stages λ we find an infinite set Uλ which is contained in all Uα for α < λ.
For this we have to define the Uα’s such that they agree on long enough initial
segments. To make this more precise we need the following notation.

Definition 3.4.20. For a sequence s = 〈s0, . . . , sn〉 let Σs := Σi≤nsi.

If s has order type α and t has order type β in <C
KB with α < β, then Uα

and Uβ will agree on the first min{Σs | t1 ≤X
KB s ≤X

KB t2} elements. In the
proof of the next lemma we will see that this is sufficient to handle the limit
steps.

Lemma 3.4.21. There are Lσ-terms U(C,W ) and O(C,W ) such that the
σ+-calculus proves for each n+ 1-code C and for each infinite set W

1. (U(C))s is an infinite subset of W for all s

2. ∀s ∈ C(C � s =U(C)s O(C)s)

3. ∀t2 <C
KB t1(U(C)t1 ⊂ U(C)t2)

4. ∀t1 <C
KB t2(U(C)

Emin{Σs | t1≤C
KBs≤

C
KBt2}

t1 = U(C)
Emin{Σs | t1≤C

KBs≤
C
KBt2}

t2 ).
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Proof. We define U(C) and O(C) by simultaneous recursion along <C
KB. Let

s ∈ C and assume U(C)t and O(C)t are already defined for t <C
KB s. Let

V :=


W if s is <C

KB-minimal

U(C)
es if s is the successor of s̃⋃

m∈ω U(C)
EΣs_〈m〉
s_〈m〉 if s is limit element

(3.12)

We claim that in the limit case

V ⊂ U(C)s_〈i〉 for all i ∈ ω. (3.13)

Assume x ∈ U(C)
EΣs_〈m〉
s_〈m〉 . Then x ∈ U(C)s_〈i〉 for all i ≤ m by 3. of the

induction hypothesis. For i > m this follows from 4. since

min{Σt | s_〈m〉 ≤C
KB t ≤C

KB s
_〈i〉} = Σs_〈m〉

which implies

U(C)
EΣs_〈m〉
s_〈m〉 = U(C)

EΣs_〈m〉
s_〈i〉 .

This proves (3.13).
By 2. of the induction hypothesis we get

C � s_〈m〉 =U(C)s_〈m〉 O(C)s_〈m〉,

therefore by lemma 3.4.19 we obtain an infinite set U(C)s and O(C)s such
that

V EΣs ⊂b U(C)s ⊂ V and C � s =U(C)s O(C)s.

This shows 1. and 2., and 3. follows directly from (3.12) and U(C)s ⊂ V in
the successor case and from (3.13) and U(C)s ⊂ V in the limit case.

It remains to show 4. If s is the successor of s̃ we have by induction
hypothesis for each t ≤C

KB s̃

U(C)
Emin{Σu | t≤C

KBu≤
C
KBes}

t = V Emin{Σu | t≤C
KBu≤

C
KBes}.

Because s̃ <C
KB s implies

min{Σu | t ≤C
KB u ≤C

KB s} ≤ min{Σu | t ≤C
KB u ≤C

KB s̃}

we obtain with V EΣs ⊂b U(C)s

U(C)
Emin{Σu | t≤C

KBu≤
C
KBs}

t = V Emin{Σu | t≤C
KBu≤

C
KBs}

= U(C)
Emin{Σu | t≤C

KBu≤
C
KBs}

s .
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In the limit case we first observe that U(C)EΣs
s_〈m〉 does not depend on m by

induction hypothesis 4., hence we get by definition of V

V EΣs = U(C)EΣs
s_〈m〉 for all m. (3.14)

Now assume t <C
KB s. Since s is limit there is an m such that t <C

KB s
_〈m〉.

The induction hypothesis yields

U(C)
Emin{Σu | t≤C

KBu≤
C
KBs

_〈m〉}
t = U(C)

Emin{Σu | t≤C
KBu≤

C
KBs

_〈m〉}
s_〈m〉 , (3.15)

hence

U(C)
Emin{Σu | t≤C

KBu≤
C
KBs}

t

=U(C)
Emin{Σu | t≤C

KBu≤
C
KBs}

s_〈m〉 (by (3.15) and min{· · · s} ≤ min{· · · s_〈m〉})

=V Emin{Σu | t≤C
KBu≤

C
KBs} (by (3.14) and min{· · ·} ≤ Σs)

=U(C)
Emin{Σu | t≤C

KBu≤
C
KBs}

s (by V EΣs ⊂b U(C)s).

This together with induction hypothesis for 4. implies 4.
Because

(∀s ∈ C)C � s =U(C)s O(C)s

is a Π1
1(Lσ)-formula we need for its proof by transfinite induction on <C

KB

the transfinite induction scheme of the σ+-calculus.

Lemma 3.4.21 together with the proof of Ramseyness of open sets (theo-
rem 1.2.1) yield directly theorem 3.4.7.

Lemma 3.4.22. For each first order Lσ-formula ϕ(X, ~y, ~Y ) there is a first

order L2-formula ϕ∗(x, ~y, ~Y ) and an nϕ ∈ ω such that the σ-calculus proves

• ∀~y∀~Y {x | ϕ∗(x, ~y, ~Y )} is an nϕ-code

• ∀~y∀~Y ∀X(ϕ(X, ~y, ~Y ) ↔ X ∈nϕ {x | ϕ∗(x, ~y, ~Y )}).

Proof. By proposition 3.7 in [Möl02] there is an nϕ such that ϕ is equivalent
to an Lanϕ

-formula ϕ̃. By induction on ϕ̃ we can find an L2-formula ϕ∗ which
describes the nϕ-code belonging to ϕ̃.

Definition 3.4.23. Let (·)σ : LRI → Lσ such that

(RXϕ(X)(Uϕ))
σ := Hnϕ(〈〉, Uϕ, {x | (ϕσ)∗(x)})

and (·)σ commutes with all logical connectives and quantifiers. The set terms
IxyXψ(x, y,X) (which code an ω-iteration of ψ-comprehension) are trans-
lated into some appropriate fixed point.
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Lemma 3.4.24. (·)σ is an embedding from the RI-calculus into the σ+-
calculus, i.e. (ϕ)σ is provable in the σ+-calculus for each axiom ϕ of the
RI-calculus.

Proof. In the case of a crucial axiom we have to show

∀∞Uϕ[Hnϕ(〈〉, Uϕ, {x | (ϕσ)∗(x)}) ⊂ Uϕ] (3.16)

and

∀∞Uϕ[∀∞Y (Y ⊂ Hnϕ(〈〉, Uϕ, {x | (ϕσ)∗(x)}) → ϕσ(Y ))

∨∀∞Y (Y ⊂ Hnϕ(〈〉, Uϕ, {x | (ϕσ)∗(x)}) → ¬ϕσ(Y ))]
(3.17)

for each Lσ-formula ϕ. Theorem 3.4.7 yields (3.16) and

∀∞Y (Y ⊂ Hnϕ(〈〉, Uϕ, {x | (ϕσ)∗(x)}) → Y ∈n {x | (ϕσ)∗(x)})
∨∀∞Y (Y ⊂ Hnϕ(〈〉, Uϕ, {x | (ϕσ)∗(x)}) → Y 6∈n {x | (ϕσ)∗(x)}),

and together with 3.4.22 we obtain (3.17).

Theorem 3.4.25.

R-calculus ≤L2 RI-calculus ≤L2 σ
+-calculus =Π1

1
σ-calculus

and

R-calculus ≤L2 Π1
2-CA0

Proof. The first claim holds by lemma 1.3.7, the second by lemma 3.4.24 and
the third by theorem 2.4.10. The last claim follows with lemma 2.4.2.
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4. THE REVERSAL

Definition 4.1. For a set B of natural numbers let B(n) be the n-th element
of B if B is ordered increasingly. For a first order formula ϕ let

(∀1x ≤ B)ϕ(x) :≡ ∃k∃f∀n[f(n) ≤ BDk(n) ∧ ϕ(〈f(0), . . . , f(n− 1)〉)].

In the presence of König´s lemma (which is provable in ACA0, see [Sim99],
theorem III.7.2) (∀1x ≤ B)ϕ(x) is equivalent to the first order formula

(∃k)(∃∞s ∈ Seq)(∀n < lh(s))[(s)n ≤ BDk(n) ∧ ϕ(〈〉) ∧ ϕ(〈s0, . . . , sn〉)].

Let (∃1x ≤ B)ϕ(x) :≡ ¬(∀1x ≤ B)¬ϕ(x). We iterate the bounded
quantifiers in the same way as the unbounded quantifiers.

Definition 4.2 (bounded generalized quantifiers). For n ≥ 2 let

(∃nx ≤ B)ϕ(x) :≡
∀X[∀x[(ϕ(x) ∨ (∀n−1y ≤ B)x_〈y〉 ∈ X) → x ∈ X] → 〈〉 ∈ X]

and

(∀nx ≤ B)ϕ(x) :≡
∃X[〈〉 ∈ X ∧ ∀x(x ∈ X → (ϕ(x) ∧ (∃n−1y ≤ B)x_〈y〉 ∈ X))].

By applying ∀Xψ(X) ↔ ∀Xψ(Xc) to the definition of (∃nx ≤ B)ϕ(x)
we immediately obtain by induction on n

(∀nx ≤ B)ϕ(x) ↔ ¬(∃nx ≤ B)¬ϕ(x).

The quantifiers ∃nx ≤ B and ∀nx ≤ B are can be expressed without
second order quantifiers in Lan−1 . This follows by induction on n using
lemma 2.3.9 in the induction step.

Theorem 4.3. There exists an embedding ∗ : La → LR which is the identity
on L2 such that we have for all La-formulas ϕ: If ϕ is provable in aame then
ϕ∗ is provable in the R-calculus.
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Proof. The idea of the proof is as follows. We show by metainduction on n
that the R-calculus proves the translations of all defining axioms of ∀n and
∃n. Because ∀n has different monotonicity properties for odd and even n (see
lemma 4.5 and lemma 4.7) we have to distinguish two cases. If n is odd, we
first show

∃H
(
∀~y[∀nxϕ(x, ~y) ↔ (∀nx ≤ H)ϕ(x, ~y)]

)
. (4.1)

The direction from right to left is true for each H by some monotonicity prop-
erty, see lemma 4.7. For the other direction, notice that (∀nx ≤ H)ϕ(x, ~y)
becomes “more true” if H is replaced by a “thinner” set (see again lemma
4.7). This implies that if there exists a set H such that (∀nx ≤ H)ϕ(x, ~y)
is true, then there is no rejecting homogeneous set for (∀nx ≤ X)ϕ(x, ~y),
because it would have a subset which is thinner than H. Therefore if there
exists an H with (∀nx ≤ H)ϕ(x, ~y) then each set which is homogeneous for
(∀nx ≤ X)ϕ(x, ~y) has to be an accepting homogeneous set. Since

∀~y
(
∀nxϕ(x, ~y) → ∃H(∀nx ≤ H)ϕ(x, ~y)

)
(4.2)

(see lemma 4.4) we can show that for each set H which is homogeneous for
(∀nx ≤ X)ϕ(x, ~y) for all ~y it holds

∀nxϕ(x, ~y) → (∀nx ≤ H)ϕ(x, ~y).

Because a change of some initial segment of H does not alter the truth
of (∀nx ≤ H)ϕ(x, ~y) it even suffices to find a set H such that for each
~y, we can remove an initial segment of H such that the remaining set is
homogeneous for (∀nx ≤ X)ϕ(x, ~y), and this set exists in the R-calculus.
Hence we have shown 4.1. Since (∀nx ≤ H)ϕ(x, ~y) is a formula of less
complexity than ∀nxϕ(x, ~y) and because at this stage of our induction we
have already proved comprehension for (∀nx ≤ H)ϕ(x, ~y), we have shown
comprehension for ∀nxϕ(x, ~y).

If n is even, we have the inverse monotonicity properties as in the odd
case, i.e. (∃nx ≤ H)ϕ(x) becomes “more true” if H is replaced by a subset
of H. It suffices to give a set term H such that

∃nxϕ(x) ↔ (∃nx ≤ H)ϕ(x);

as in the previous case H has to be independent of the free number variables
in ϕ which we suppress here. The direction from right to left holds indepen-
dently from the choice of H by a monotonicity property, see lemma 4.7. For
the other direction, it is sufficient to choose H such that

{m | (∃ny ≤ H)ϕ(m_y)}
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is closed under the operator

ϕ(z) ∨ (∀n−1x)z_〈x〉 ∈ Z

which generates the fixed point belonging to ∃nyϕ(y). This is sufficient be-
cause then (∃ny)ϕ(y) implies that 〈〉 is in this fixed point which is contained
in {m | (∃ny ≤ H)ϕ(m_y)}, hence (∃ny ≤ H)ϕ(y). Define

H := RmX[(∃nx ≤ X)ϕ(m_x)].

We assume

ϕ(m) ∨ (∀n−1x)(∃ny ≤ H)ϕ(m_〈x〉_y)

and have to show

(∃ny ≤ H)ϕ(m_y).

In the case that ϕ(m) holds this follows from the definition of ∃nx ≤ B. In
the case of

(∀n−1x)(∃ny ≤ H)ϕ(m_〈x〉_y)

by (4.2) we find a bound Z (which depends on m) such that

(∀n−1x ≤ Z)(∃ny ≤ H)ϕ(m_〈x〉_y).

For a Z̃ with Z ≤ Z̃ and H ≤ Z̃ we obtain by monotonicity

(∀n−1x ≤ Z̃)(∃ny ≤ Z̃)ϕ(m_〈x〉_y),

hence

(∃ny ≤ Z̃)ϕ(m_y).

This implies that for no m, H is rejecting because we could always find
a subset majorizing Z̃. Therefore H has to be accetping for all m, hence
(∃ny ≤ H)ϕ(m_y).

Now let us carry out the proof in detail. Let ∗ commute with all logical
connectives such that

(∀nxϕ(x, ~y, ~Y ))∗ :≡∀nx ≤ Rn
ϕ(~Y )ϕ∗(x, ~y, ~Y )

with Rn
ϕ(~Y ) := R~yX[(∀nx ≤ X)ϕ∗(x, ~y, ~Y )]
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if n is odd and

(∃nxϕ(x, ~y, ~Y ))∗ :≡∃nx ≤ Rn
ϕ(~Y )ϕ∗(x, ~y, ~Y )

with Rn
ϕ(~Y ) := R~yX[∃nx ≤ Xϕ∗(x, ~y, ~Y )]

if n is even.
We prove by metainduction on n that the translations of the defining

axioms for ∀n and ∃n are provable in the R-calculus. Let us assume that this
is proved for n−1 with n odd. To see that the definitions of (∀nxϕ(x, ~y, ~Y ))∗

and (∃nxϕ(x, ~y, ~Y ))∗ make sense we have to check that the formulas occuring
inside the R-terms are first order. Therefore we have to prove that LR-
formulas of the form (∃nx ≤ H)ϕ(x), which are formulas with second order
quantifiers by definition 4.2, are equivalent to formulas without second order
quantifiers. For n = 1 this is the case since (∀1x ≤ H)ϕ(x) is equivalent to

(∃∞s ∈ Seq)(∀n < lh(s))[(s)n ≤ H(n) ∧ ϕ(〈〉) ∧ ϕ(〈(s)0, . . . , (s)n〉)]

and (∃1x ≤ H)ϕ(x) is ¬(∀1x ≤ H)¬ϕ(x). Let

ψn−1(x,X, Y,H) :≡ x ∈ Y ∨ (∀n−1z ≤ H)x_〈z〉 ∈ X.

Since ψn−1 is an Lan−2-formula there exists by lemma 2.3.9 an Lan−1-formula

ψ̃n−1 such that aamen-1 proves

(∀Y,H) LFP({x | ψ̃n−1(x, Y,H)}, ψn−1). (4.3)

By induction hypothesis the ∗-translation

(∀Y,H) LFP({x | ψ̃n−1
∗
(x, Y,H)}, ψn−1∗) (4.4)

is provable in the R-calculus. (4.3) implies that

∀Y [(∃nx ≤ H)(x ∈ Y ) ↔ ψ̃n−1(〈〉, Y,H)] (4.5)

is provable in aamen-1 and (4.4) implies that

(∃nx ≤ H)ϕ(x) ↔ ψ̃n−1
∗
(〈〉, {x | ϕ(x)}, H) (4.6)

is provable in the R-calculus for each LR-formula ϕ. Therefore the R-calculus
can talk about the quantifiers ∀nx ≤ X and ∃nx ≤ X without using second
order quantifiers. (4.5) and (4.6) also imply that the R-calculus proves

(∃nx ≤ H)ϕ∗(x) ↔ (∃nx ≤ Hϕ(x))∗ (4.7)

for each La-formula ϕ.
Let ∀nϕ(x) be an abbreviation for the formula

∃X[〈〉 ∈ X ∧ ∀x(x ∈ X → (ϕ(x) ∧ (∃n−1y)x_〈y〉 ∈ X))]. (4.8)
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Lemma 4.4. Let n be an odd natural number. For each La-formula ϕ the
R-calculus proves

∀nxϕ∗(x, ~y, ~Y ) → ∃∞H(∀nx ≤ H)ϕ∗(x, ~y, ~Y ),

where ∃∞H means “there exists an infinite set H”.

Proof. For n = 1 take

H := {y | (∃x ∈ X ∩ Seq)(∃n)

y = (x)n ∧ (∀z ∈ Seq)((z <KB x ∧ lh(z) = n) → y 6∈ X)},

where X is the set which exists by (4.8) for ϕ∗ instead of ϕ. Then H is
the leftmost path through X, and f(n) := H(n) satisfies the definition of
∀1x ≤ H. For n > 1 we need the following induction hypothesis (which is
shown in the case “n even” in lemma 4.10): For each La-formula ψ(m,x,X)
we have

∀X∃∞H∀m[∃n−1xψ∗(m,x,X) ↔ ∃n−1x ≤ Hψ∗(m,x,X)]. (4.9)

Let ψ(m,x,X) := m_〈x〉 ∈ X. By definition of ∀nxϕ∗(x) there is an X such
that

〈〉 ∈ X ∧ ∀x(x ∈ X → (ϕ∗(x) ∧ (∃n−1y)x_〈y〉 ∈ X)).

For this X there exists an infinite H according to (4.9), and we obtain

〈〉 ∈ X ∧ ∀x(x ∈ X → (ϕ∗(x) ∧ (∃n−1y ≤ H)x_〈y〉 ∈ X)),

which is the definition of (∀nx ≤ H)ϕ∗(x).

Lemma 4.5 (monotonicity for odd n). For each LR-formula ϕ the R-calculus
proves

[(∀nx ≤ H)ϕ(x) ∧H ′ ≥ H] → (∀nx ≤ H ′)ϕ(x)

and

(∀nx ≤ H)ϕ(x) → ∀nxϕ(x).

Furthermore, we have

∀H∀H ′∀i∀j[HDi = H ′Dj → ((∀nx ≤ H)ϕ(x) ↔ (∀nx ≤ H ′)ϕ(x))].

Proof. This follows directly from the definitions in the case n = 1, and in the
case n > 1 from the monotonicity lemma in the case n− 1 (lemma 4.7).
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Lemma 4.6. Let n be odd. The R-calculus proves all ∗-translations of the
defining axioms for ∀n, i.e. for each La-formula ϕ the R-calculus proves

∀~Y ∀~y[∀nxϕ∗(x, ~y, ~Y ) ↔ (∀nxϕ(x, ~y, ~Y ))∗].

Proof. Because of the second claim of the monotonicity lemma we only have
to show the direction from left to right. Assume ∀nxϕ∗(x, ~y, ~Y ). By lemma
4.4 this implies

(∃∞H)(∀nx ≤ H)ϕ∗(x, ~y, ~Y ).

Since for each H and each k there is a X ⊂ Rn
ϕ(~Y )Dk such that H ≤ X we

obtain by the monotonicity lemma

(∀k)(∃∞X ⊂ Rn
ϕ(~Y )Dk)(∀nx ≤ X)ϕ∗(x, ~y, ~Y ).

By the definition of Rn
ϕ(~Y ) and the main axiom of the R-calculus we obtain

(∃k)(∀∞X ⊂ Rn
ϕ(~Y )Dk)(∀nx ≤ X)ϕ∗(x, ~y, ~Y ),

which implies (∃k)(∀nx ≤ Rn
ϕ(~Y )Dk)ϕ∗(x, ~y, ~Y ). Since the truth of any for-

mula (∀nx ≤ B)ψ(x) does not change if we change an initial segment of B

(see 4.5) we obtain (∀nx ≤ Rn
ϕ(~Y ))ϕ∗(x, ~y, ~Y ) which is (∀nxϕ(x, ~y, ~Y ))∗.

This finishes the induction step from n − 1 to n if n is odd. Let us now
consider the case that n is even.

Lemma 4.7 (monotonicity for even n). For each LR-formula ϕ the R-
calculus proves

[(∃nx ≤ H)ϕ(x) ∧H ′ ≥ H] → (∃nx ≤ H ′)ϕ(x)

and

(∃nx ≤ H)ϕ(x) → ∃nxϕ(x).

Furthermore, we have

∀H∀H ′∀i∀j[HDi = H ′Dj → ((∃nx ≤ H)ϕ(x) ↔ (∃nx ≤ H ′)ϕ(x))].

Proof. This follows from monotonicity lemma 4.5 in the case n− 1.

Lemma 4.8. For each LR-formula ϕ the R-calculus proves

ϕ(〈〉) ∨ (∀n−1z ≤ Z)(∃nx ≤ Z)ϕ(〈z〉_x) → (∃nx ≤ Z)ϕ(x).
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Proof. ϕ(〈〉) ∨ (∀n−1z ≤ Z)(∃nx ≤ Z)ϕ(〈z〉_x) implies

ϕ(〈〉) ∨ (∀n−1z ≤ Z)ψ̃n−1
∗
(〈〉, {x | ϕ(〈z〉_x)}, Z) (4.10)

by (4.6). We want to apply lemma 2.3.4 for

• f(x) := 〈z〉_x

• ϕ(x,X) := ψn−1∗(x,X, {y | ϕ(y)}, Z)

• ψ(x,X) := ψn−1∗(x,X, {y | ϕ(〈z〉_y)}, Z)

• Iϕ := {x | ψ̃n−1
∗
(x, {y | ϕ(y)}, Z)}

• Iψ := {x | ψ̃n−1
∗
(x, {y | ϕ(〈z〉_y)}, Z)}.

The premises LFP(Iϕ, ϕ) and LFP(Iψ, ψ) hold by (4.4), hence the lemma
delivers

〈〉 ∈ Iψ → f(〈〉) ∈ Iϕ.

Together with (4.10) we obtain

ϕ(〈〉) ∨ (∀n−1z ≤ Z)ψ̃n−1
∗
(〈z〉, {x | ϕ(x)}, Z).

This implies

ψn−1∗(〈〉, {s | ψ̃n−1
∗
(s, {x | ϕ(x)}, Z)}, {x | ϕ(x)}, Z

)
by the ∗-translation of the definition of ψn−1 together with (4.7). The first
fixed point axiom for ψn−1∗ (which we have by lemma (4.4)) implies

〈〉 ∈ {s | ψ̃n−1
∗
(s, {x | ϕ(x)}, Z)}

which is (∃nx ≤ Z)ϕ(x) by (4.6).

Lemma 4.9. Let n be even. The R-calculus proves

LFP({s | (∃nxϕ(s_x, ~y, ~Y ))∗}, χ∗)

for χ(x, ~y,X, ~Y ) :≡ ϕ(x, ~y, ~Y ) ∨ (∀n−1z)x_〈z〉 ∈ X.
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Proof. We start with the first fixed point axiom, so assume

χ∗(m, {s | (∃nxϕ(s_x, ~y, ~Y ))∗}),

i.e.

ϕ∗(m,~y, ~Y ) ∨
(
(∀n−1z)(∃nx)ϕ(m_〈z〉_x, ~y, ~Y )

)∗
,

hence by induction hypothesis (see lemma 4.6)

ϕ∗(m,~y, ~Y ) ∨ (∀n−1z)((∃nx)ϕ(m_〈z〉_x, ~y, ~Y ))∗.

By lemma 4.4 this implies

ϕ∗(m,~y, ~Y ) ∨ (∃∞X)(∀n−1z ≤ X)(∃nxϕ(m_〈z〉_x, ~y, ~Y ))∗.

With the definition of ∗ we get

ϕ∗(m,~y, ~Y ) ∨ (∃∞X)(∀n−1z ≤ X)(∃nx ≤ R(~Y ))ϕ∗(m_〈z〉_x, ~y, ~Y )

for an appropriate LR-term R and by monotonicity we obtain

ϕ∗(m,~y, ~Y ) ∨ (∃∞Z)(∀n−1z ≤ Z)(∃nx ≤ Z)ϕ∗(m_〈z〉_x, ~y, ~Y )

which implies

(∃∞Z)(∃nx ≤ Z)ϕ∗(m_x, ~y, ~Y ) (4.11)

by lemma 4.8. Rn
ϕ is homogeneous for (∃nx ≤ Z)ϕ∗(m_x, ~y, ~Y ) and can not

avoid it by (4.11), therefore we obtain

(∃i)(∃nx ≤ Rn
ϕ(~Y )Di)ϕ∗(m_x, ~y, ~Y )

which implies

(∃nx ≤ Rn
ϕ(~Y ))ϕ∗(m_x, ~y, ~Y )

because ∃nx ≤ B is independent from initial segments of B (see 4.7). Hence
we obtain

(∃nxϕ(m_x, ~y, ~Y ))∗.

For the second fixed point axiom assume that I is a fixed point of χ∗, i.e.

∀x[χ∗(x, I) → x ∈ I]. (4.12)
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For all x we have

ϕ∗(x, ~y, ~Y ) ∨ (∀n−1y ≤ Rn
ϕ(~Y ))x_〈y〉 ∈ I

→ϕ∗(x, ~y, ~Y ) ∨ ∀n−1y(x_〈y〉 ∈ I)∗ by monotonicity lemma 4.5

→ϕ∗(x, ~y, ~Y ) ∨ (∀n−1y(x_〈y〉 ∈ I))∗ by induction hypothesis (lemma 4.6)

→χ∗(x, I) by definition of χ

→x ∈ I by (4.12).

(4.13)

Therefore I is a fixed point of ψn−1∗(x,X, {x | ϕ∗(x, ~y, ~Y )}, Rn
ϕ(~Y )). This

implies

{m | ∃nx ≤ Rn
ϕ(~Y )ϕ∗(m_x, ~y, ~Y )}

={m | ψ̃n−1
∗
(〈〉, {x | ϕ∗(m_x, ~y, ~Y )}, Rn

ϕ(~Y ))} (by 4.6)

⊂{m | ψ̃n−1
∗
(m, {x | ϕ∗(x, ~y, ~Y )}, Rn

ϕ(~Y ))} (with lemma 2.3.4 like

in the proof of lemma 4.8)

⊂I (since I is a fixed point of ψn−1∗ and (4.4)).

Lemma 4.10. Let n be even. The R-calculus proves all ∗-translations of the
defining axioms for ∃n, i.e. for each La-formula ϕ the R-calculus proves

∀~Y ∀~y
(
∃nxϕ∗(x, ~y, ~Y ) ↔ (∃nxϕ(x, ~y, ~Y ))∗

)
.

Proof. This follows directly from the last lemma.

Lemma 4.10 and lemma 4.6 finish the induction step in the proof of
theorem 4.3.

Theorem 4.11.

• aame ≤L2 R-calculus

• σ-calculus ≤L2 R-calculus

Proof. The first claim follows directly from theorem 4.3, the second follows
with

σ-calculus =L2 aame

which is proved in [Möl02], theorem 10.6.
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Proof of theorem 1.3.4. Corollary 4.11 and corollary 3.4.25 imply

σ-calculus =Π1
1
R-calculus.

Together with Möllerfeld´s result Π1
2-CA0 =Π1

1
σ-calculus (see [Möl02], theo-

rem 10.6) the proof is finished.



5. CONSEQUENCES

5.1 A consequence for encodeability of sets definable in the
σ-calculus

Definition 5.1.1. A set M of natural numbers is called recursively (hyper-
arithmetically) encodable iff for every infinite set Z ⊂ ω there is an infinite
X ⊂ Z such that M is recursive (hyperarithmetical) in X.

Jockusch showed in [Joc68] that every hyperarithmetic set is recursively
encodable and Solovay in [Sol78] showed that each recursive encodable set
is hyperarithmetic. If σ is the least Σ1

1-reflecting ordinal then every set
in Lσ ∩ P(ω) is hyperarithmetically encodable and every hyperarithmetical
encodable set lies in Lσ. This is also due to Solovay in [Sol78].

Definition 5.1.2. A set M of natural numbers is an-encodable iff there is
a Lan-formula ϕ(x,X) such that for each infinite Z ⊂ ω there is an infinite
X ⊂ Z such that M = {x | ϕ(x,X)}.

Corollary 5.1.3. The σ+-calculus proves that each first order Lan-definable
set of natural numbers M is an−1-encodable; moreover, for each first order
Lan-formula ϕ(~y, ~Y ) there exists uniformly in ϕ an Lσ-term T (~Y ) and an

Lan−1-formula ψ(~y, Z, ~Y ) such that the σ+-calculus proves

∀~Y ∀~y(∀Z ≥ T (~Y ))[ϕ(~y, ~Y ) ↔ ψ(~y, Z, ~Y )];

here Z ≥ T (~Y ) means that if we order Z and T (~Y ) increasingly, then the

n-th element of Z is greater or equal the n-th element of T (~Y ) for all n.

Proof. We fix an enumeration ψi of all subformulas of ϕ which are of the
form Qizχi(z, ~y, ~Y ) with Qi ∈ {∀n,∃n}. By metainduction on j we prove

that for each j there exists an Lσ-term Tj(~Y ) such that for each i < j the
σ+-claculus proves

∀~Y ∀~y(∀Z ≥ Tj(~Y ))[Qizχi(z, ~y, ~Y ) ↔ (Qiz ≤ Z)χi(z, ~y, ~Y )]; (5.1)

here Qiz ≤ Z is the bounded quantifier from definition 4.2. We start with
T0(~Y ) := ω. Assume that Tj(~Y ) is already constructed. By theorem 3.4.7
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there is an Lσ-term T̃ (~y, ~Y ) which is a subset of Tj(~Y ) and which is homo-
geneous for

ψ(~y, Z, ~Y ) :≡ (Qjz ≤ Z)χj(z, ~y, ~Y ).

With an argument as in the proof of lemma 3.4.8 we obtain a term Tj+1(~Y )
such that

∀~Y ∀~y∃mTj+1(~Y )>m ≥ T̃ (~y, ~Y ).

Now it follows

∀~Y ∀~y(∀Z ⊂ Tj+1(~Y ))[(Qjz)χj(z, ~y, ~Y ) ↔ (Qjz ≤ Z)χj(z, ~y, ~Y )]

similar to the proof of lemma 4.6 in the case that Qi = ∀n and n odd or
Qi = ∃n and n even and from the proof of lemma 4.10 in the other cases.
Now 5.1 follows with the monotonicity lemmata 4.5 and 4.7.

We now obtain ψ from ϕ by replacing all generalized quantifiers Qi by
Qi ≤ Z. Let T (~Y ) := Ti(~Y ) if i is the number of generalized quantifiers
occuring in ϕ. Now the claim follow directly from (5.1).

5.2 A consequence for the Baire property of sets definable in
the σ-calculus

Theorem 3.2.7 can also be applied to the property of Baire.

Corollary 5.2.1. ZFC proves that each set with an n-code has the property
of Baire.

Proof. The sets of reals which have the property of Baire form a σ-algebra C
which contains all open sets and the meager sets form an σ-ideal I. We have
to show that I is ccc. For each B ∈ C\I let i(B) let s be the least natural
number such that Ns is comeager in B. If B1 and B2 are different elements
of an antichain they can not have the same index i because otherwise B1∩B2

would be comeager in Ni and hence not in I. Since there are only countably
many indices there is no uncountable antichain. Now the claim follows from
3.2.4.

We will formalize this result in the σ+-calculus with the methods of chap-
ter 3.

Definition 5.2.2. Let X be an n-code of a set of real numbers. Y is called
a Baire witness for X if
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• (Y )0 is a code of an open set

• (Y )1 is code of a countable union of nowhere dense closed sets

• the symmetric difference of the sets coded by X and (Y )0 is contained
in the set coded by (Y )1.

Lemma 5.2.3. There exists an Lσ-term Bbor(X) such that the σ-calculus
proves

∀X[X Borel code → Bbor(X) is a Baire witness for X].

Proof. The usual prove that all Borel sets have the property of Baire is
formalizable in the σ-calculus without any problems.

Theorem 5.2.4. For each n there exists an Lσ-term Bn(X) such that the
σ+-calculus shows: If X is n-code then Bn(X) is a Baire witness for X.

Proof. The proof is similar to the proof of theorem 3.4.7 by metainduction
on n. We assume that the theorem is proved for n and first show the claim
for a simple n+ 1-code X. In analogy to definition 3.4.11 we define

〈s, x〉 ∈ T (X, Y ) :≡(Y = ∅ ∧ x ∈ C � 〈s〉)
∨∃i(max(i, Y ) ∧ 〈i, 〈s, x〉〉 ∈ X))

∨[lim(Y ) ∧ x ∈ ∀0n{〈n, z〉 | ∃y[〈n, y〉 ∈ cof(Y )

∧ 〈y, 〈s, z〉〉 ∈ X]}]

As we have seen in the proof that the σ-ideal of the meager sets is ccc we
can index a nonmeager set B by the least i such that B is comeager in Ni,
hence we define

ψ(j,X, Y ) :≡ j is the least 〈s, i〉 such that

〈0, i〉 ∈ Bn(T (X,Y )s\∃nkT (X, Y )s_〈k〉)

and

ϕ(x,X, Y ) :≡ ∃〈s, i〉[ψ(〈s, i〉, X, Y ) ∧ ∃t, y[x = 〈t, y〉∧
((s 6= t ∧ y ∈ T (X, Y )s) ∨ (s = t ∧ y ∈ T (X, Y )t ∩ ∃niT (X, Y )t_〈i〉))]].

Lemma 5.2.5. Let (I,W ) be a ψ-iteration of ϕ and w = 〈s, i〉 ∈ field(W ).
Then 〈0, i〉 6∈ Bn(T (I,W )s).
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Proof. Since 〈s, i〉 ∈ field(W ) we obtain from definition 3.3.3 of a ψ-iteration
ϕ

ψ(〈s, i〉, I<w,W<w).

By definition of ϕ this implies

〈0, i〉 ∈ Bn(T (I<w,W<w)s\∃nkT (I<w,W<w)s_〈k〉).

Because of

T (I≤w,W≤w)s = T (I<w,W<w)s ∩ ∃nkT (I<w,W<w)s_〈k〉)

the sets T (I<w,W<w)s\∃nkT (I<w,W<w)s_〈k〉 and T (I≤w,W≤w)s are disjoint
and we obtain

〈0, i〉 6∈ Bn(T (I≤w,W≤w)s)

which yields the claim since T (I≤w,W≤w)s ⊃ T (I,W )s.

Lemma 5.2.6. ψ is suitable for ϕ.

Proof. Assume that (I,W ) is a ψ-iteration of ϕ such that ψ(w, I,W ) for a
w = 〈s, i〉 ∈ field(W ). By lemma 5.2.5 we obtain 〈0, i〉 6∈ Bn(T (I,W )s)
which entails

〈0, i〉 6∈ Bn(T (I,W )s\∃nkT (I,W )s_〈k〉).

But this implies ¬ψ(〈s, i〉, I,W ), contradiction.

Let (I,W ) be the maximal ψ-iteration of ϕ which exists by theorem 3.3.6.

Lemma 5.2.7. There exists uniformly in I and W a code of a countable
union of closed nowhere dense sets M such that⋃

s

T (I,W )s\∃nkT (I,W )s_〈k〉 ⊂M.

Proof. Since (I,W ) is a maximal ϕ-iteration of ψ it holds

∀s, i〈0, i〉 6∈ Bn(T (I,W )s ∩ ∃nkT (I,W )s_〈k〉),

i.e. the open set that belongs to T (I,W )s\∃nkT (I,W )s_〈k〉 is the empty set
for each n and we obtain⋃

s

T (I,W )s\∃nkT (I,W )s_〈k〉 ⊂ Bn(T (I,W )s\∃nkT (I,W )s_〈k〉)1 =: M.
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Lemma 5.2.8. Let (I,W ) be a ϕ-iteration of ψ and 0W be the least element
of the wellordering W . Then it holds for all X

(∀n+1x)X ∈n ((I)0W
)x ↔ (∀n+1x)X ∈n T (I,W )x.

Proof. The proof is similar to that of lemma 3.4.17.

Lemma 5.2.9. It holds

∀X 6∈n M [X ∈n T (I,W )〈〉 ↔ X ∈n+1 (∀n+1x)T (I,W )x].

Proof. The proof is similar to that of lemma 3.4.18. The direction from
right to left follows again directly from the definition of ∀n+1. For the other
direction we obtain similarly to 3.4.18

T (I,W )〈〉\(∀n+1x)T (I,W )x ⊂
⋃
t

T (I,W )t\∃nkT (I,W )t_〈k〉.

Together with lemma 5.2.7 this yields the second direction.

For a simple n+ 1-code C we define Bn+1(C) by

• (Bn+1(C))0 := T (I(C),W (C))〈〉

• (Bn+1(C))1 := M ∪Bn(T (I(C),W (C))〈〉)1.

Then we have for all X with X 6∈n (Bn+1(C))1

X ∈n (Bn+1(C))0

↔X ∈n T (I,W )〈〉

↔X ∈n+1 (∀n+1x)T (I,W )x by lemma 5.2.9

↔(∀n+1x)X ∈n ((I)0W
)x by lemma 5.2.8

↔(∀n+1x)X ∈n C � 〈x〉
↔X ∈n+1 C.

This finishes the proof for simple n+1-codes. To prove the claim for arbitrary
n + 1-codes C we define by transfinite recursion along the Kleene-Brower-
ordering of C a set A uniform in C such that (A)s is a Baire witness for
C � s (see definition 3.1.5) for each s ∈ Seq. Here we use the Baire witness
for simple n + 1-codes at each ∀n+1 and ∃n+1-branch. Then we show by
transfinite induction that A has this desired property. Here we need the
transfinite induction which is available in the σ+-calculus. This finishes the
proof of 5.2.4.
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5.3 Lebesgue-measurability and sets definable in the
σ-calculus

One might ask whether our technique is also applicable to Lebesgue - mea-
surability, i.e. if the σ+-calculus shows that each set with an n-code is
Lebesgue-measurable. Unfortunately, we can not prove that, and the rea-
son is as follows: Let C be the σ-algebra of all Lebesgue-measurable sets and
I be the ccc σ-ideal of all sets of measure null. Let (I)k∈ω be an enumeration
of the open intervals with rational end points. Then the canonical candidate
for the index of a set B would be the least k such that µ(Ik) = µ(Ik ∩ B).
Then we need to prove that each B ∈ C\I has an index, but this is not true,
as the following counterexample shows. We build a set B by altering the
construction of the Cantor’s discontinuum as follows. Start with [0, 1] and
remove an interval of length 1/4 from the midth of it. From the to remaining
intervals, remove two intervals from their midth which together have length
1/8, and so on. Taking the intersection after ω many steps, it remains a set B
of measure 1/2 such that in each open interval, there is another open interval
which is disjoint from B. This B has no index. Lebesgue-measurability does
not have the property “each set which is not small is locally big”, and this
property is crucial for our argument.

5.4 Generalization for an inaccessible cardinal

In this section we work in ZFC. Let κ be a fixed cardinal. We want to
generalize the set constructors ∃n to sets which are indexed by ordinals less
than κ. Let κ<ω be the set of finite subsets of κ. We fix an injection from
κ<ω to κ, called 〈·〉.

Definition 5.4.1. Let ϕ(x, ~y) be an L∈-formula. Let

• (∃0
κx)ϕ(x, ~y) :≡ (∃x ∈ κ)ϕ(x, ~y)

• (∃n+1
κ x)ϕ(x, ~y) :≡ (∀X ⊂ κ<ω)

[
(∀x ∈ κ<ω)[(ϕ(x, ~y)∨ ∀nκz(x_〈z〉 ∈ X))
→ x ∈ X] → 〈〉 ∈ X

]
• (∀nκx)ϕ(x, ~y) :≡ ¬(∃nκx)¬ϕ(x, ~y).

If Ax ⊂ κκmon for each x ∈ κ let

∃nxAx := {y | ∃nx(y ∈ Ax)}.
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Definition 5.4.2 (topology on κκmon). Let κκmon be the set of all strictly
monotone sequences of length κ of ordinals less than κ and <κκmon be the
set of all such sequences of length less than κ. For s ∈ <κκmon let

Ns := {x ∈ κκmon | s is an initial segment of x}.

We consider the topology which is given by the open basis sets Ns.

Analogous to definition 3.1.4 we say that a subset of κκmon has an n-κ-
code if it can be generated from the open sets with the quantifiers ∃mκ and
∀mκ for m ≤ n.

Theorem 5.4.3. ZFC proves: Assume that (X, T ) is a topological space and
S ⊂ P(X) is a κ-algebra that contains all open sets. Let I be a κ-ideal in S.
Assume that I is κ-cc. Then S contains all sets which have an n-κ-code.

Proof. The proof is analogous to the proof of theorem 3.2.7. We induct on
n. Since the algebra is closed under κ-many intersections it is closed under
∃0
κ. In the successor case, the iteration of the sets Aα (see proof of theorem

3.2.7) is defined for α < κ+, and since I is κ-cc the iteration comes to a halt
before κ+, and we can go on as in 3.2.7.

To give an application of this theorem we define an analogon to the prop-
erty of Baire suitable for <κκmon.

Definition 5.4.4. A subset of a topological space is κ-meager if it is con-
tained in the union of κ-many closed nowhere dense sets. A set is κ-Baire if
the symmetric difference with an open set is κ-meager.

Corollary 5.4.5. Let κ be an inaccessible cardinal. Then all subsets of κκmon

which have an n-κ-code of some n are κ-Baire.

Proof. Obviously the κ-Baire subsets of κκmon form a κ-algebra C which
contains all open sets and the meager sets form a κ-ideal I. We claim that I
is κ-cc. Since κ is inaccessible we can fix an injection f from the subsets of
κ of cardinality less than κ to κ. For B ∈ C\I let i(B) be the least ordinal
such that Nf(i(B)) is comeager in B. Furthermore, for B1, B2 ∈ C\I with
i(B1) = i(B2) then B1 ∩B2 ∈ C\I because B1 ∩B2 is comeager in Nf(i(B1)).
Hence each two elements of an antichain have different indices, and since
we only have κ-many indices there are no antichains of size greater than κ.
Hence I is κ-cc, and theorem 5.4.3 delivers the claim.

One might ask if a similar result is true for the property of Ramsey.
Unfortunately, this is not the case as the following lemma shows.
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Lemma 5.4.6. For each κ > ω there is an open subset U of κκmon which has
no homogeneous set, i.e. there is no H ⊂ κ with |H| = κ such that either
each V ⊂ H with |V | = κ is in U or each such V is not in U .

Proof. The proof is similar to the proof that there is a set of reals which has
not the property of Ramsey from the beginning of chapter 1. For V ∈ κκmon

let Ṽ be the set of the first ω elements of V . Let V ∼ W iff Ṽ4W̃ is finite.
Then ∼ is an equivalence relation, and we can choose a representative from
each equivalence class. If V ∗ is the representative in the equivalence class of
V let

U := {V | |Ṽ4Ṽ ∗| is even }.

U has no homogeneous set and since V ∈ U depends only on the first ω
elements of V and since κ > ω U is open.
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[Möl02] Michael Möllerfeld. Generalized Inductive Definitions. The µ-
calculus and Π1

2-comprehension. Dissertation, Münster, 2002.

[Mos74] Yiannis N. Moschovakis. Elementary induction on abstract struc-
tures. North-Holland Publishing Co., Amsterdam, 1974. Studies in
Logic and the Foundations of Mathematics, Vol. 77.

[MS05] Carl Mummert and Stephen G. Simpson. Reverse mathematics and
Π1

2 comprehension. Bull. Symbolic Logic, 11(4):526–533, 2005.

[Sil70] Jack Silver. Every analytic set is Ramsey. J. Symbolic Logic, 35:60–
64, 1970.

[Sim99] Stephen G. Simpson. Subsystems of second order arithmetic. Per-
spectives in Mathematical Logic. Springer-Verlag, Berlin, 1999.

[Sol78] Robert M. Solovay. Hyperarithmetically encodable sets. Trans.
Amer. Math. Soc., 239:99–122, 1978.

[Tan89] Kazuyuki Tanaka. The Galvin-Prikry theorem and set existence
axioms. Ann. Pure Appl. Logic, 42(1):81–104, 1989.

[Tap99] Christian Tapp. Eine direkte Einbettung von KPω in ID1. Diplo-
marbeit, Münster, 1999.


