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Mappings between filters

Definition
A filter is a non-principal proper filter on ω.

Definition

Let f : ω → ω be finite-to-one. We set f (F ) = {X : f −1X ∈ F}.

f (F ) contains less information than F :

- F
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- f (F )
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Near coherence of filters

Definition
Two filters F and G on ω are nearly coherent if there is a
finite-to-one function f : ω → ω such that f (F ) ∪ f (G ) generates
a proper filter.

If U is an ultrafilter, then also f (U ) is an ultrafilter.

Two ultrafilters U and V are nearly coherent if there is a
finite-to-one function f : ω → ω such that f (U ) = f (V ).
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Near coherence of ultrafilters

If f (U ) = f (V ) and g(V ) = g(W ), then there is a slower growing
finite-to-one function h such that h(U ) = h(W ).

Fact
The near-coherence relation is an equivalence relation on the
ultrafilters on ω.

Its classes are called near-coherence classes of ultrafilters.

Two filters F and G are nearly coherent iff there are nearly
coherent ultrafilters U and V such that U ⊇ F and V ⊇ G . So
“NCU” implies NCF.
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Possible numbers of near-coherence classes

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are 22ω
near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987
It is consistent relative to ZFC that there is just one near-coherence
class of ultrafilters.

The fact, that there is just one near-coherence class is called the
principle of near coherence of (ultra)filters, NCF.
Conjecture: There is a model with exactly two near-coherence
classes. Big open question: Other finite numbers.
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Excluded numbers

Theorem. Banakh, Blass, 2005
If there are infinitely many near-coherence classes of ultrafilters
then there are 22ω

classes.

Theorem. Blass, 1987
d ≤ u implies that there are infinitely many near-coherence classes
of ultrafilters.

Question. Banakh, Blass, 2005
Does u < d imply that there are only finitely many near-coherence
classes of ultrafilters?
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Bases and characters, u

Definition
A set B ⊆ F is called a base for F if
(∀F ∈ F )(∃B ∈ B)(B ⊆ F ).
A set B ⊆ [ω]ω is called a pseudobase for F if
(∀F ∈ F )(∃B ∈ B)(B ⊆ F ).

The smallest size of a base of F is called χ(F ), the character of
F .
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Taking the minimum over all ultrafilters

Definition
The ultrafilter characteristic u is the minimal χ(U ) for a
non-principal ultrafilter U .
The reaping number r is the minimal cardinality of a pseudobase for
a non-principal ultrafilter U .

Theorem, Goldstern, Shelah, 1990
r < u is consistent relative to ZFC.

But then d ≤ u by a theorem of Aubrey.
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Dominating numbers, d

Definition
We consider the order of eventual domination: f ≤∗ g iff for all but
finitely many n, f (n) ≤ g(n).
For a filter F , we define the reduced order f ≤F g iff
{n : f (n) ≤ g(n)} ∈ F .

Definition
A family D is dominating [F -dominating] iff for every f ∈ ωω there
is some g ∈ D such that f ≤∗ g [f ≤F g ].
The dominating number d [the dominating number of F , d(F ),] is
the smallest cardinal of a dominating [F -dominating] family
D ⊆ ωω.
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The role of u and d

u comes in as the minimal number of steps in constructing one
representative of one class.

Proposition. Blass, 1987
There is a set D, a so-called test set, of size d such that any two
ultrafilters U and V are nearly coherent, if there is some f ∈ D
with f (U ) = f (V ).

The construction of two non-nearly-coherent ultrafilters can be seen
as a diagonalization with u steps and d tasks.
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Candidates

models of u < d: The known models with countable support
iterations fulfil the stronger inequality u < g, which implies NCF.
There is one type of model (from [BsSh:257], 1989) of u < d

gotten with a finite support iteration of c.c.c. partial orders.

Theorem. M.
It is consistent relative to ZFC that there are infinitely many
near-coherence classes of ultrafilters and u < d.
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Figure 1: A sketch of V [(rα : α < δ)][(sξ : ξ < ν)])
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The forcing construction

Let V be a ground model of CH. Let ν and δ be regular cardinals
such that ℵ1 ≤ ν < δ.
First δ Cohen reals are added (or something else) in a finite support
iteration, call them rα, α < δ. Thereafter ν Mathias reals are
added by Mathias forcings Q(Uξ), ξ < ν, in a finite support
support iteration. We call the whole forcing P.

The ultrafilters Uξ are carefully chosen (— at least P-points with
no rapid ultrafilters below them in the Rudin-Keisler ordering by a
result of Canjar, but not Ramsey ultrafilters as in the original
Mathias forcing —) such that the Cohen reals are not bounded by
fewer than δ reals in V P and such that the Mathias reals sξ, ξ < ν,
generate an ultrafilter in V P.
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A variant of Mathias forcing

A forcing condition in Q(Uξ) is a pair (a,A), such that a is a finite
set of natural numbers and A ∈ Uξ and max(a) < min(A).
A condition (b,B) extends (a,A) iff B ⊆ A and b ⊇ a and
b r a ⊆ A.

In order to understand our proof it almost suffices to know that the
forcing relation  of Q(Uξ) yields (a,A)  a ⊆ sξ

˜
⊆ a ∪ A. We use

sξ
˜

for a Q(Uξ)-name of sξ.
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A rectangle of submodels

For α ≤ δ and ξ ≤ ν we set
V (α, ξ) = V [(rβ : β < α)][(sη : η < ξ)].
Every real appears in some intermediate model.

The really sophisticated part is to show for α ≤ δ and ξ ≤ ν that
the part of the ultrafilter Uξ in V (α+ 1, ξ) can be chosen such
that no real with a Q(Uξ ∩ V (α, ξ))-name is dominating rα in the
Mathias extension built with Uξ ∩ V (α+ 1, ξ) over V (α+ 1, ξ)
(nor in later extensions with larger first coordinate).
The forcing is arranged such that sξ ⊆∗ sη for η < ξ and hence the
generated ultrafilter is a simple Pν-point, and by results of Blass
and me, ν = b = u.
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Splitting families and reaping

Definition
S ⊆ [ω]ω is a splitting family iff (∀X ∈ [ω]ω)(∃S ∈ S )(X ∩ S and
X r S are both infinite). The splitting number s is the smallest size
of a splitting family.

Theorem. Blass, M., 1999
If s > r then there are at most two near-coherence classes.

Theorem. Aubrey, 2004
If r < d then r = u.

Conclusion: In V P, we have ν = u = r.
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A small splitting family

Proposition

In V P, s ≤ ν.

Sketch of proof: Remember, sξ, ξ < ν, are the Mathias reals. We
set

Xξ = {n ∈ ω : |sξ ∩ n| is even}.

Then {Xξ : ξ < ν} is a splitting family witnessing s ≤ r. �

(We have s = ν in these models.)
Conclusion: In V P, we have s ≤ ν = u = r and hence the
r < s-Theorem does not apply.
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The answer

Claim

In the model V P there are infinitely near-coherence classes of
ultrafilters.

Sketch of proof: We have the ultrafilter UP that is generated by
the Mathias reals sξ, ξ < ν.

By [BM] all ultrafilters U with < d generators have
cf(ωω/U ) = d > r and hence are nearly coherent to UP .
We shall show that there is a filter H0 that is non-nearly-coherent
to UP such that H0 extended by fewer than d(H0) sets is not
almost ultra.
We shall get H0 from the Cohen reals.
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Filters not nearly coherent to UP

We think of the Cohen reals as subsets of ω and let the Cohen reals
rα, α < δ, be their strictly increasing enumerations. We set

Xα,ξ = {rα(n) : |sξ ∩ n| even},

Hξ = {Xα,ξ : α < δ},

H = {Xα,ξ : α < δ, ξ < ν, ξ is an even ordinal},

Hfull = {Xα,ξ : α < δ, ξ < ν}.

Lemma
Hfull has the finite intersection property.
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f (H0) 6⊆ f (UP)

Lemma
For every ξ < ν, for every Y ∈ V (δ, ξ) for every αi < δ, i < k, we
have: If Y ∩

⋂
i<k range(rαi ) is infinite, then the set

Y ∩
⋂

0≤i<k

Xαi ,ξ

is infinite.

Lemma
For every finite-to-one f , f (H0) 6⊆ f (UP).

So H0 and UP are not nearly coherent, and thus we have at least
two near coherence classes of ultrafilters.
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Small dominating families modulo filter orderings

Aim: Find a tree of pairwise non-nearly coherent ultrafilters among
the supersets of H0.

Proposition. Banakh, Blass, 2005
If a filter F and a ultrafilter U are not nearly coherent, then
d(F ) ≤ χ(U ).

So in V P, d(H0) ≤ ν.
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Small test sets

Let t(F ) be the smallest size of a test set for near coherence in
[F ] = {G : G filter,G ⊇ F}.
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A tree of near-coherence classes

Lemma. Slight generalization of Blass, 1987

If all extensions of H0 by fewer than t(H0) sets are not almost
ultra, then we can construct infinitely many pairwise non-nearly
coherent ultrafilters by an induction of length t(H0).

So our proof is finished with

Lemma

In V P, each extension of H0 by fewer than ν sets is not almost
ultra.

and we do not need to construct the desired tree explicitly.
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