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Abstract. Theories of rational choice are often based on the assumption that

the agent’s choices are reducible to a preference ordering on the set of alter-

natives. This assumption is reflected in work from a variety of disciplines
including economics [19], psychology [15], and statistics [32], as well as in phi-

losophy where the “logic of preference” is an established topic of study [12].

However, a persistent minority of theorists have abandoned this fundamental
assumption for a variety of reasons. The accounts that have emerged from

this minority can be understood in terms of admissibility, a concept that does

not in general reduce to preference. The purpose of this paper is to present a
logic-based approach to admissibility.

1. Introduction

Many, perhaps most, accounts of rationality are based on the concept of prefer-
ence. The various analyses of expectation, from the expected value theory that was
the target of Bernoulli’s St. Petersburg example to the subjective expected utility
theory of Savage [32], assume a preference relation in the form of an ordering on
the set of alternatives. In many ways this basic assumption has been the most
resilient in the expected utility tradition, surviving in descriptive accounts such
as Kahneman and Tversky’s prospect theory [15] and normative theories such as
those offered by Ellsberg [7, 8] and by Gardenfors and Sahlin [10]. These accounts
retain an ordering on the set of alternatives while abandoning other aspects of the
expected utility tradition in order to accommodate well-known challenges, e.g., the
examples of Allais [3] and of Ellsberg [7, 8]. In contrast, some theorists have relaxed
the requirement that choice is reducible to an ordering on the set of alternatives.
The reasons for relaxing the indicated ordering requirement range from proposals
for accommodating the aforementioned challenges of Allais and Ellsberg [24], com-
promises in group decision making [35], models of bounded rationality [31], and
general arguments within the standard framework of choice functions [38]. We will
return to Sen’s arguments from [38] in a later section. For now, we recall some
motivating work on indeterminacy, a topic that provides what is perhaps the most
familiar motivation for abandoning the standard reduction to preference.

Credal indeterminacy, or uncertainty, is the most well-known form of uncertainty
that is relevant to the ordering assumption of rational choice theory. While prob-
ability functions are the most familiar models of uncertainty, there is significant
literature that documents objections to this use of probability functions. Early
objections of this sort were expressed by Knight [18] in his discussions of unmea-
surable uncertainty and Keynes [17] in his discussions concerning weight of evidence.

1
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More recent, but influential, critiques relating to the use of probability functions as
models of uncertainty include those by Kyburg in [20] and by Levi in [21]. 1 2

The limitations that have been identified in connection with the use of probability
functions as models of uncertainty simpliciter are even more apparent in the context
of decision making under uncertainty, i.e., cases of decision making in which the
decision maker does not have access to an objective probability distribution over the
relevant state space. According to subjective expected utility theory, which is still the
received view concerning decision making under uncertainty, the rational agent who
is confronted with such a situation has a credal state that can be represented by a
probability function over the relevant state space and values that can be represented
by a cardinal utility function over the relevant outcome space and, moreover, that
such an agent is obligated to select an alternative that maximizes expectation with
respect to the indicated probability distribution and cardinal utility function [32,
25].

Classic examples, such as those offered by Ellsberg in [7, 8], have motivated
some people to reject subjective expected utility theory as the proper account of
rational decision making under uncertainty and, in light of this rejection, to search
for other normative accounts. Prominent among such accounts is the decision rule
defended by Ellsberg in [7], the decision rule defended by Gardefors and Sahlin in
[10], and the decision rule defended by Levi in [21]. All three of these rules use sets
of probabilities to represent uncertainty. However, there are significant differences
between these rules, and some reasons for preferring the rule defended by Levi to
the other two are given in [24, 34, 33]. Such reasons aside, the decision rule defended
by Levi might be viewed as coming with its own conceptual price in that it is not
reducible to preference.

Given that other sources of indeterminacy – e.g., value conflict [23] and indeter-
minacy in the weighting of attributes [13] – lead to analogous challenges, and given
the rather different motivations that are presented in [39], it seems reasonable to
investigate departures from ordering in a more general setting. There have been
several studies of this sort [2, 1, 26, 27, 28]. Set-valued choice functions provide a
common foundation for these studies. If X is a set, then we write P(X) for the
powerset of X and Pω(X) for the set of all finite subsets of X. C : Pω(X)→ Pω(X)
is a choice function on X just in case C is a function that satisfies C(Y ) ⊆ Y for
all Y ∈ Pω(X). In addition, it is usually assumed that C(Y ) is nonempty whenever
Y is nonempty. Empty domains have not attracted much attention in the stan-
dard literature on choice functions. However, the issue does have some significance
within the context of the current investigation. We return to this point in Section
5.

1There are, of course, numerous psychological studies that are said to show that probability

functions are not descriptively adequate with respect to judgments of uncertainty, but this work,
some of which is extremely interesting, is not as immediately relevant in the present context as

our concerns are restricted mainly to the judgments of rational agents.
2In the critiques cited above, both Kyburg and Levi identify the inability of probability func-

tions to accommodate indeterminacy as being central to their shortcomings as models of uncer-
tainty. There is more than one way to generalize the concept of a probability function in order to
provide for indeterminacy. Kyburg is among those who favor “interval-valued” probabilities, i.e.,
certain functions that assign an interval of values in from [0, 1], as opposed to a mere point in [0, 1],

to each event (or proposition). Levi is among those who favor using sets of probability functions
to represent the rational agent’s credal state. It should be noted that sets of probability functions
provide a framework that is more general than the interval-valued probabilities approach [11].
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Set-valued choice functions support a general notion of admissibility : C(Y ) is
interpreted as the set of alternatives that the agent would judge as admissible if it
were presented with menu Y . Note that we are taking admissibility as a primitive
notion, much as preference is taken in many traditional studies of rational choice.
It might be suggested that preference benefits from having an operational analy-
sis, that the concept can be unpacked in terms of behavior. However, it should
be cautioned that (1) any such account must rely on some non-trivial assumptions
that relate preferences to observed behavior and (2) any such account will need to
distinguish ‘picking’ from ‘choosing’, to borrow the terminology of [40]. Roughly,
rationality determines a set of admissible alternatives among the available alter-
natives. Since the remaining set of admissible alternatives may contain more than
one element, 3 it is not clear how to make an appropriate, behavioral distinction
between choosing a from {a, b, c} when a is uniquely admissible and choosing a from
{a, b, c} when a is admissible but not uniquely so. Although it is not central to our
main concerns, as we are content to take admissibility as a primitive concept, it is
worth noting that ideas concerning an operational analysis of admissibility, or at
least approaches to eliciting admissibility judgments, have been considered [31, 36].
Perhaps the most immediate advantage to taking admissibility rather than prefer-
ence as the fundamental notion is that it provides a framework in which accounts
that relax ordering can be investigated in a neutral setting. Cases in which ad-
missibility is reducible to preference can be characterized in terms of appropriate
conditions on choice functions, e.g the following conditions from Sen [37, 19]:

α: For all Y,Z ∈ Pω(X), if x ∈ Y ⊆ Z and x ∈ C(Z), then x ∈ C(Y ).

β: For all Y, Z ∈ Pω(X), if x, y ∈ C(Y ), Y ⊆ Z, and y ∈ C(Z), then x ∈
C(Z).

These conditions are well-known to be jointly necessary and sufficient for reducing
admissibility to an ordering.

Despite the number of formal studies examining choice in the absence of a com-
plete preference ranking, we are not aware of any attempts to provide a logical
analysis of admissibility (i.e., attempts to provide truth conditions for statements
of the form ‘x is admissible from the menu consisting of y1,...,yn’). The main pur-
pose of the present work is to offer such an analysis. The basic idea of this account
is as follows: Assume a propositional language L that has been augmented by the
introduction of a unary operator � and a variable-arity operator A. The intended
reading of � is that �φ asserts that φ is necessary. The intended reading of A is that
A(φ | ψ1, ..., ψn) asserts that φ is admissible in the menu consisting of ψ1, ..., ψn.
We assume that alternatives can be represented as L-formulas. Our objective is to
present a semantics for L. In particular, we seek to provide truth conditions for
formulas such as A(φ | ψ1, ..., ψn). Roughly, the idea is that A(φ | ψ1, ..., ψn) is true
at state w just in case the alternative of moving to an otherwise unspecified state
at which φ holds is admissible among the menu that, for 1 ≤ i ≤ n, includes the
alternative of moving to an otherwise unspecified state at which ψi holds; here the
reference to admissibility is unpacked in terms of an appropriate set-valued choice
function at w.

The rest of this paper is organized as follows: Section 2 and Section 3 present
the relevant syntax and semantics, respectively. Formal systems are developed in

3This is certainly possible under standard theories like expected utility maximization.
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Section 4, Section 5, and Section 6. Completeness results are presented in Section 7
and Section 8, respectively. Proofs of all results are in the appendices. In Section 9
we consider some directions for future work, including the possibility of addressing
challenges of the sort raised by Sen in [38].

2. Syntax

Let Ω be a countable set of atoms. The language L (over Ω) is defined by the
following inductive clauses:

Atoms: Ω ⊆ L
Negation: If φ ∈ L, then ¬φ ∈ L
Conjunction: If φ, ψ ∈ L, then (φ ∧ ψ) ∈ L
Admissibility: If φ, ψ1, ..., ψn ∈ L, then A(φ | ψ1, ..., ψn) ∈ L
Necessity: If φ ∈ L, then �φ ∈ L

Only the fourth clause is nonstandard. The intended reading of A(φ | ψ1, ..., ψn)
is that φ is admissible in the menu consisting of ψ1, ..., ψn. We return to these
matters in more detail in the next section. As far as additional syntactic issues,
the usual conventions regarding the omitting of parentheses will be observed and
the other standard connectives will be taken as abbreviations in the usual manner,
e.g., φ ∨ ψ =df ¬(φ ∧ ψ), and we will take ‘♦’, the dual of ‘�’, as an abbreviation
for ‘¬�¬’. Also, we will adopt the familiar prefix notation for iterated conjunctions
and disjunctions, i.e.,

n∧
i=1

φi =df φ1 ∧ ... ∧ φn

and
n∨
i=1

φi =df φ1 ∨ ... ∨ φn

where n is a positive integer greater than 1. We extend this notation to the case
where n = 1 by

∧n
i=1 φi =df φ1 =df

∨n
i=1 φi.

3. Semantics

The main objective in this section is to present a semantics for languages of
the sort that are described in Section 2. In particular, we present a semantics for
formulas such as A(φ | ψ1, ..., ψn). The basic idea noted above can be refined so
that A(φ | ψ1, ..., ψn) is true just in case the alternative of moving to an otherwise
unspecified and possible state at which φ holds is admissible among the menu that,
for 1 ≤ i ≤ n, includes the alternative of moving to an otherwise unspecified and
possible state at which ψi holds. That fact that the relevant notion of possibility
may vary from state to state provides a way for us to distinguish the description of
an alternative from its local denotation. 4

4This is crucial to addressing the “epistemic value of the menu” problem in the manner that
is discussed in Section 9.
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3.1. Frames. A frame is a tuple 〈W,R,X , {Cw}w∈W 〉 that satisfies the following
requirement:

F1: W is a nonempty set
F2: R is a binary relation on W .
F3: X is a nonempty subset of P(W )
F4: Cw is a choice function on Pω(Xw) for all w ∈W , where

Xw = {Y | Y 6= ∅ and Y = Sw ∩ Z for some Z ∈ X}

and where, for all w ∈W , Sw = {x | (w, x) ∈ R}.
F5: X is closed under the following operations:

• U 7→W − U
• (U, V ) 7→ U ∩ V
• U 7→ {w | Sw ⊆ U}
• (U, V1, ..., Vn) 7→ {w | (Sw ∩ U) ∈ Cw({Sw ∩ V1, ..., Sw ∩ Vn})} 5

W is a set of (logically) possible states. R encodes an agent-relative notion of
possibility at w. In keeping with the informal sketch of the semantics that was given
earlier, the notion of possibility encoded by R is not the usual notion of epistemic
possibility. Whereas the traditional notion of epistemic possibility concerns the
agent’s beliefs about the current state while at w, the present notion concerns the
agent’s beliefs about possible successor states while at w. The two notions are not
mutually exclusive. However, for simplicity of exposition, and since the traditional
epistemic notion is well-known, we will restrict our use of agent-relative notions
of possibility to the aforementioned one involving successor states. Continuing on
with the components of a frame, X is a set of propositions and each element of X
determines an alternative at w by intersecting with the set of possibilities at w. Xw
is the resulting set of alternatives at w, and Cw is a choice function on that set of
alternatives. The closure conditions in F5 ensure that every formula is interpreted
as a proposition in X (cf. Section 3.2).

3.2. Interpretations. An interpretation of L is a frame 〈W,R,X , {Cw}w∈W 〉 along
with a function π from Ω to X . Given such an interpretation, π is extended to a
function π∗ on L according to the following inductive clauses:

Atoms: π∗(φ) = π(φ)
Negation: π∗(¬φ) = W − π∗(φ)
Conjunction: π∗(φ ∧ ψ) = π∗(φ) ∩ π∗(ψ)
Necessity: π∗(�φ) = {w | Sw ⊆ π∗(φ)}
Admissibility: π∗(A(φ | ψ1, ..., ψn)) =

{w | (Sw ∩ π∗(φ)) ∈ Cw({Sw ∩ π∗(ψ1), ..., Sw ∩ π∗(ψn)})}

Given an interpretation I = 〈W,R,X , {Cw}w∈W , π〉, we write (I, w) |= φ just in
case w ∈ π∗(φ) and write I |= φ just in case (I, w) |= φ for all w ∈W .

5Note that (U, V1, ..., Vn) ⊆ {w | Sw ∩ U 6= ∅} ∩ {w | Sw ∩ Vi 6= ∅ for all i ∈ {1, ..., n}}, since
Xw is the domain of Cw
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4. Basic axiom schemes

K : (�φ ∧�(φ→ ψ))→ �ψ

C1 : A(ψ1 | ψ2, ..., ψn)→
n∧
i=1

♦ψi

C2 :

n∧
i=1

♦ψi →
n∨
i=1

A(ψi | ψ1, ..., ψn)

C3 : A(φ | ψ1, ..., ψn)→
n∨
i=1

�(φ↔ ψi)

C4 : (�(φ↔ φ′) ∧
n∧
i=1

�(ψi ↔ ψ′i) ∧A(φ | ψ1, ..., ψn))→ A(φ′ | ψ′1, ..., ψ′n)

K is the familiar “distribution” axiom of relational semantics. C1 requires that
admissibility judgments are made with respect to alternatives that are possible. C2
requires that a menu of possible alternatives has at least one admissible alterna-
tive. C3 requires that every admissible alternative is an available alternative. C4
requires that admissibility judgments are extensional.

Proposition 4.1. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If θ
is an instance of K, C1, C2, C3 or C4, then I |= θ.

5. Additional axiom schemes

5.1. Let p be an atom of L, i.e., p ∈ Ω. We introduce the following 0-ary connective
as an abbreviation: > =df p ∨ ¬p. The following axiom is mentioned in [5].

P : ♦>

Recall from Section 1 that we do not rule out having an empty set of alternatives.
If we were to do so, then this would amount to requiring that Sw is nonempty,
which would amount to requiring that there is something that is possible at w in
the relevant sense of possibility considered above; we see no reason to rule out
situations that, at least from the agent’s perspective, appear to be the “end of the
line”. P guarantees that Sw is nonempty, and, moreover, it is satisfied at w if Sw
is nonempty.

Proposition 5.1. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If
w ∈W , then w |= ♦> iff Sw 6= ∅.

5.2. The following two axiom schemes are intended as counterparts to Sen’s α and
β conditions as presented in Section 1:
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Cα : (A(φ | ψ1, ..., ψm, θ1, ..., θn) ∧
m∨
i=1

�(φ↔ ψi))→ A(φ | ψ1, ..., ψm)

Cβ : (A(φ1 | ψ1, ..., ψm) ∧A(φ2 | ψ1, ..., ψm) ∧A(φ1 | ψ1, ..., ψm, θ1, ..., θn))→
A(φ2 | ψ1, ..., ψm, θ1, ..., θn))

The following two propositions state that these axioms schemes are satisfied when
the Cw satisfies the corresponding condition on choice functions:

Proposition 5.2. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If
w ∈W and φ is an instance of Cα and Cw satisfies α, then w |= φ.

Proposition 5.3. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If
w ∈W and φ is an instance of Cβ and Cw satisfies β, then w |= φ.

6. Systems

A system consists of a collection of axioms and a set of inference rules. S is
a system over L just in case (1) every axiom of S is in L and (2) L is closed
under every inference rule of S. In what follows, every system that is considered
is assumed to be a system over L. If S is a system, then a derivation in S is a
sequence of formulas φ1, ..., φn such that each element of the sequence is either an
axiom of S or follows from earlier elements of the sequence by an application of one
of the inference rules for S. φ is derivable in S iff there is a derivation in S that
ends with φ. We will write S ` φ just in case φ is derivable in S, and we will write
S 0 φ if φ is not derivable in S. Finally, if S and S ′ are systems, then S extends
S ′ just in case every axiom of S ′ is an axiom of S and every inference rule of S ′ is
an inference rule of S.

Let L be the system that has all tautologies in PL (see Appendix B) as axioms
and has the following inference rule:

φ φ→ ψ
MP

ψ

Let C be the system that extends L by adding all instances of K, C1, C2, C3, and
C4 as axioms and adds the following inference rule:

φ
Gen

�φ

Let Cα be the system that extends C by adding all instances Cα. Let Cβ be the
system that extends C by adding all instances Cβ . Let Cα,β be the system that
extends C by adding all instances Cα and all instances of Cβ . Finally, if S is a
system, then let S+ be the system that extends S by adding P.

Proposition 6.1 (Soundness). Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpreta-
tion of L. The following soundness results hold: (1) System C is sound with respect
to I. (2) System C+ is sound with respect to I if Sw 6= ∅ for all w ∈W . (3) System
Cα is sound with respect to I if Cw satisfies α for all w ∈ W . (4) System C+

α is
sound with respect to I if Cw satisfies α and Sw 6= ∅ for all w ∈W . (5) System Cβ
is sound with respect to I if Cw satisfies β for all w ∈W . (6) System C+

β is sound

with respect to I if Cw satisfies β and Sw 6= ∅ for all w ∈ W . (7) System Cα,β is
sound with respect to I if Cw satisfies α and β for all w ∈ W . (8) System C+

α,β is
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sound with respect to I if Cw satisfies α and β for all w ∈ W and Sw 6= ∅ for all
w ∈W .

7. The canonical frame

If S extends C and φ ∈ L, then let [φ]S denote the set of Γ ⊆ L such that Γ
is maximally consistent with respect to S and φ ∈ Γ. Where there is no risk of
confusion we will suppress the subscript and write [φ] rather than [φ]S . Let S be
a system that extends C. The canonical frame for S, which we denote as IS , is
defined as follows:

• W is the set of all Γ ⊆ L such that Γ is maximally consistent with respect
to S
• (Γ,Γ′) ∈ R just in case {φ | �φ ∈ Γ} ⊆ Γ′

• Y ∈ X iff there is a φ such that Y = [φ]

• U ∈ CΓ({V1, ..., Vn}) iff the following conditions are satisfied:
(1) U, V1, ..., Vn ∈ XΓ,
(2) U = Vi for some i ∈ {1, ..., n},
(3) if φ, ψ1, ..., ψn are L formulas such that U = SΓ∩ [φ] and Vi = SΓ∩ [ψi]

for all i ∈ {1, ..., n}, then A(φ | ψ1, ..., ψn) ∈ Γ.

8. Completeness

Let S be a system that extends C. Let 〈W,R,X , {Cw}w∈W 〉 be the canonical
frame for system S. Define π : Ω → X by π(p) = {Γ ∈ W | p ∈ Γ}. We will refer
to 〈W,R,X , {Cw}w∈W , π〉 as the canonical interpretation for S.

Proposition 8.1. Let IS be the canonical interpretation for S. If IS |= φ, then
S ` φ.

Corollary 8.2 (Basic completeness). If M is a class of interpretations that includes
IS and I |= φ for all I ∈M, then S ` φ.

Proposition 5.1 (in conjunction with Proposition H.1) states that if S includes P,
then Sw 6= ∅ for all w in IS . Similarly, the following propositions state that if S
extends Cα (resp. Cβ), then Cw satisfies α (resp. β) for all w in IS .

Proposition 8.3. Let S be a system that extends Cα. Let 〈W,R,X , {Cw}w∈W 〉 be
the canonical frame for S. Cw satisfies α for all w ∈W .

Proposition 8.4. Let S be a system that extends Cβ. Let 〈W,R,X , {Cw}w∈W 〉 be
the canonical frame for S. Cw satisfies β for all w ∈W .

In light of these observations we have the following completeness results.

Proposition 8.5 (Completeness). (1) System C is complete with respect to the
class of all interpretations. (2) System C+ is complete with respect to the class of
all interpretations such that Sw 6= ∅ for all w ∈W . (3) System Cα is complete with
respect to the class of all interpretations such that Cw satisfies α for all w ∈W . (4)
System C+

α is complete with respect to the class of all interpretations such that Cw
satisfies α and Sw 6= ∅ for all w ∈W . (5) System Cβ is complete with respect to the
class of all interpretations such that Cw satisfies β for all w ∈ W . (6) System C+

β

is complete with respect to the class of all interpretations such that Cw satisfies β
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and Sw 6= ∅ for all w ∈W . (7) System Cα,β is complete with respect to the class of
all interpretations such that Cw satisfies α and β for all w ∈ W . (8) System C+

α,β

is complete with respect to the class of all interpretations such that Cw satisfies α
and β for all w ∈W and Sw 6= ∅ for all w ∈W .

9. Discussion

Conditions such as α and β are instances of what Amartya Sen calls axioms of
internal consistency of choice [38]. As Sen explains, such conditions are “‘internal’
to the choice function in the sense that they require correspondence between dif-
ferent parts of a choice function, without invoking anything outside choice (such
as motivations, objectives, and substantive principles).”(495) While acknowledging
the widespread use of internal consistency conditions in a variety of fields, Sen, in
his well-known Presidential Address of the Econometric Society in 1984, argues that
internal consistency is “essentially confused”. 6 7 At the heart of Sen’s critique of
internal consistency are three types of examples, the second of which, according to
Sen, concerns the “epistemic value of the menu”. This sort of example has received
attention in theoretical economics [4, 16] as well as in formal epistemology [30, 6].
The following is an instance of such an example from [38]:

What is offered for choice can give us information about the un-
derlying situation, and can thus influence our preference over the
alternatives, as we see them. For example, the chooser may learn
something about the person offering the choice on the basis of what
he or she is offering. To illustrate, given the choice between having
tea at a distant acquaintance’s home (x), and not going there (y), a
person who chooses to have tea (x), may nevertheless choose to go
away (y), if offered – by that acquaintance – a choice over having
tea (x), going away (y), and having some cocaine (z). The menu
offered may provide information about the situation-in this case
say something about the distant acquaintance, and this can quite
reasonably affect the ranking of the alternatives x and y, and yield
the pair of choices [that violate α].(502)

The alleged violation of α in the given example is clear: the agent judges x to be
uniquely admissible from the menu {x, y} but judges y to be uniquely admissible
from the menu {x, y, z}. If we want to count these judgments as rational, then
it seems we have to abandon α as a basic principle of rationality – here we are
putting aside other arguments for abandoning α, in particular the arguments from
indeterminacy that were discussed earlier. One response, which Sen anticipates,
suggests that the x from {x, y} is not the one that is offered in {x, y, z}:

It is, of course, true that the chooser has different information
even about x (i.e., having tea with the acquaintance) when the
acquaintance gives him the choice of having cocaine with him, and
it can certainly be argued that in the “intentional” (as opposed
to “extensional”) sense the alternative x is no longer the same.
But an “intentional” definition of alternatives would be, in general,

6Sen mentions that “Internal consistency of choice has been a central concept in demand theory,

social choice theory, decision theory, behavioral economics, and related fields.”(495)
7Sen’s Presidential Address was published as [38].
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quite hopeless in invoking inter-menu consistency, especially when
(as in this case) the intentional characterization changes precisely
with the alternatives available for choice (i.e. with the menus of-
fered).(502)

Sen’s point is easy enough to appreciate. However, if inter-menu consistency con-
ditions are translated into the object language that was presented in Section 2,
then the framework that has been presented seems to provide a way to preserve the
rationality of the choices in Sen’s example without trivializing inter-menu consis-
tency. Let us consider Sen’s example more closely. It is suggested that the example
demonstrates a rational violation of α. Recall that the judgments of admissibility
which are to be constrained by α are purely synchronic. Of course such judgments
may change over time as a result of changes to antecedent states such as the agent’s
relevant beliefs or desires – e.g., consider how a subjective expected utility max-
imizer’s judgments of admissibility change as a result of changes in that agent’s
subjective probability or cardinal utility functions – but the judgments encoded by
a set-valued choice functions are taken to be suppositional.

In Sen’s example it is implicit that the agent regards the alternative of having
tea at the distant acquaintance’s home as uniquely admissible from the menu that
consists of (x) the alternative of having tea at the distant acquaintance’s house and
(y) the alternative of being away from the acquaintance. Let φ assert that the agent
has tea at the distant acquaintance’s home. Let ψ assert that the agent is away
from the acquaintance. Letting w denote the current state, and working within
the proposed framework, the example suggests that w |= ¬A(ψ | φ, ψ). Similarly,
Sen’s remarks concerning the three-way choice suggest that w |= A(ψ | φ, ψ, θ),
where θ asserts that the agent has cocaine with the the acquaintance. According
to the relevant semantic clause in Section 3 there must be a w′ ∈ W such that
wRw′ and w′ |= θ. That is, since θ is a genuine alternative for the agent at w, it
is required that at w the agent regards some θ state as a possible successor. The
agent’s recognition of such possibilities when considering the two-way choice would
seem to undermine the plausibility of the rational agent judging φ as admissible in
the pair and, as a result, renders doubtful claim that w |= ¬A(ψ | φ, ψ). In general,
allowing for the “epistemic value of the menu” requires a framework that allows for
changes of epistemic state, something that exceeds the standard interpretation of
set-valued choice functions. The proposed framework, which uses an indexed set of
choice functions in the semantic account, does allow for such changes. Let w0 be
a state in which the agent does not regard any θ states as possible successors. Let
w1 be a state in which the agent does regard some θ states as possible successors.
According to the semantics, w0 will not satisfy A(ψ | φ, ψ, θ), since θ will not even
pick out an alternative at w0. Moreover, interpreting the example to imply that
w0 |= ¬A(ψ | ψ, φ) and w1 |= A(ψ | φ, ψ, θ) is obviously compatible with Cw0

and Cw1
both satisfying α. Such a story is compatible with a frame that satisfies

Cα, which, in light of the completeness results presented presented above, is a
non-trivial condition on frames.

Finally, another direction for future work, apart from further investigation into
the examples raised by Sen, concerns the interaction between the admissibility
and traditional epistemic modalities. As noted in Section 3.1, the accessibility
relation R used in the semantic frames above is not given the standard epistemic
interpretation. While we have avoided the introduction of a second accessibility



ADMISSIBILITY IN A LOGICAL FRAMEWORK 11

relation in the present work in order to focus on the semantics of admissibility, we do
plan to introduce a belief operator in future work. Combining the present semantics
of admissibility with a belief operator would seem to offer a novel way of pursuing
the program of taking belief change to be a species of rational choice [22, 29].
With the present framework augmented by the addition of a belief operator B, the
admissibility of Bφi in menu {Bφ1, ..., Bφn} would be represented by the truth of
A(Bφi | Bφ1, ..., Bφn). This approach to a rational-choice gloss on belief change
seems natural enough in the present framework and worthy of further investigation.
Rott has remarked that Sen’s examples concerning the epistemic value of the menu
are even more problematic within the context of belief change [30]. It is reasonable
to suspect that something like the above analysis of Sen’s example might extend
to the context of belief revision through the suggested representation of theoretical
choice problems.

Technical Appendices

Appendix A. Results from Section 3.2

Proposition A.1. π∗(φ) ∈ X for all φ ∈ L.

Proof. Straightforward induction on L. �

Appendix B. Inclusion of propositional logic

Let ΩL be the set consisting of Ω and all formulas in L of the form A(φ |
ψ1, ..., ψn) and all formulas in L of the form �φ. Let PL be the propositional
language over ΩL. That is, PL is defined inductively by the following clauses:

Atoms: ΩL ⊆ PL
Negation: If φ ∈ PL, then ¬φ ∈ PL
Conjunction: If φ, ψ ∈ L, then (φ ∧ ψ) ∈ PL

Proposition B.1. PL ⊆ L

Proof. Trivial proof by induction on the structure of PL. �

Proposition B.2. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. De-
fine the function vw : ΩL → {T, F} by vw(φ) = T iff (I, w) |= φ. Let v∗w : PL →
{T, F} be the canonical extension of vw to all of PL. For all φ ∈ PL, v∗w(φ) = T iff
(I, w) |= φ.

Proof. Trivial proof by induction on the structure of PL. �

Corollary B.3. If θ is a tautology in PL and I = 〈W,X , C, π〉 is an interpretation
of L, then I |= θ.

Proof. Suppose that θ is a tautology in PL. Hence, v∗w(θ) = T for all w ∈W . Thus,
by Proposition B.2, it follows that (I, w) |= θ for all w ∈W . Hence, I |= θ. �
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Appendix C. Results from Section 4

Proof of Proposition 4.1. The result follows from the lemmas in this section. �

Lemma C.1. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If θ is an
instance of K, then I |= θ.

Proof. Standard. Suppose that w |= �φ ∧ �(φ → ψ). Hence, w |= �φ and
w |= �(φ→ ψ). Suppose that v ∈ Sw. It follows that v |= φ→ ψ. Thus, if v |= φ,
then v |= ψ. Since v ∈ Sw, it follows that v |= φ. Hence, v |= ψ. Thus, v |= ψ for
all v ∈ Sw, and we have shown that w |= �ψ. �

Lemma C.2. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If w ∈W
and φ ∈ L, then Sw ∩ π∗(φ) 6= ∅ iff w ∈ π∗(♦φ).

Proof. The result follows easily from the fact that ♦φ =df ¬�¬φ. �

Lemma C.3. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If θ is an
instance of C1, then I |= θ.

Proof. Suppose that w |= A(ψ1 | ψ2, ..., ψn). From the F4 condition on frames and
the admissibility clause for interpretations it follows that Sw ∩ π∗(ψi) 6= ∅ for all
i ∈ {1, ..., n}. Thus, by Lemma C.2, w |= ♦ψi for all i ∈ {1, ..., n}, and it follows
that w |=

∧n
i=1 ♦ψi. �

Lemma C.4. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If θ is an
instance of C2, then I |= θ.

Proof. Suppose that w |=
∧n
i=1 ♦ψi. Hence, w |= ♦ψi for all i ∈ {1, ..., n}. From

Lemma C.2, it follows that Sw ∩ π∗(ψi) 6= ∅ for all i ∈ {1, ..., n}. Hence, by
Proposition A.1, Sw ∩ π∗(ψi) ∈ Xw for all i ∈ {1, ..., n}. Since Cw is a choice
function, there is a j ∈ {1, ..., n} such that Sw ∩ π∗(ψj) is an element of Cw({Sw ∩
π∗(ψ1), ..., Sw ∩ π∗(ψn)}). Hence, there is a j ∈ {1, ..., n} such that w |= A(ψj |
ψ1, ..., ψn). It follows that w |=

∨n
i=1A(ψi | ψ1, ..., ψn). �

Lemma C.5. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If w ∈W
and φ, ψ ∈ L, then w ∈ π∗(�(φ↔ ψ)) iff Sw ∩ π∗(φ) = Sw ∩ π∗(ψ).

Proof. The result follows easily from the fact that φ↔ ψ =df (φ∧ψ)∨(¬φ∧¬ψ). �

Lemma C.6. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If θ is an
instance of C3, then I |= θ.

Proof. Suppose that w |= A(φ | ψ1, ..., ψn). It follows that Sw ∩ π∗(φ) ∈ Cw(Sw ∩
ψ1, ..., Sw ∩ ψn). Thus, Sw ∩ π∗(φ) = Sw ∩ π∗(ψj) for some j ∈ {1, ..., n}. Hence,
from Lemma C.5, w |= �(φ ↔ ψj) for some j ∈ {1, ..., n}. It follows that w |=∨n
i=1 �(φ↔ ψi). �

Lemma C.7. Let I = 〈W,R,X , {Cw}w∈W , π〉 be an interpretation of L. If θ is an
instance of C4, then I |= θ.

Proof. Suppose that w |= �(φ↔ φ′)∧
∧n
i=1 �(ψi ↔ ψ′i)∧A(φ | ψ1, ..., ψn). Hence,

w |= �(φ ↔ φ′), w |=
∧n
i=1 �(ψi ↔ ψ′i), and w |= A(φ | ψ1, ..., ψn). From the last

of these it follows that Sw ∩ π∗(φ) 6= ∅, Sw ∩ π∗(ψi) 6= ∅ for all i ∈ {1, ..., n}, and
Sw ∩π∗(φ) is in Cw(Sw ∩π∗(ψ1), ..., Sw ∩π∗(ψn)). Since w |= �(φ↔ φ′), it follows
from Lemma C.5 that Sw ∩ π∗(φ) = Sw ∩ π∗(φ′). Likewise, since w |= �(ψi ↔ ψ′i),
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it follows from Lemma C.5 that Sw ∩ π∗(ψi) = Sw ∩ π∗(ψ′i) for all i ∈ {1, ..., n}.
Thus, Sw ∩ π∗(φ′) 6= ∅, Sw ∩ π∗(ψ′i) 6= ∅ for all i ∈ {1, ..., n}, and Sw ∩ π∗(φ′) is in
Cw(Sw ∩ π∗(ψ′1), ..., Sw ∩ π∗(ψ′n)). It follows that w |= A(φ′ | ψ′1, ..., ψ′n). �

Appendix D. Results from Section 5

Proof of Proposition 5.1. Trivial �

Proof of Proposition 5.2. Assume that w ∈ W and φ is an instance of Cα and Cw
satisfies α. Suppose that w |= A(φ | ψ1, ..., ψm, θ1, ..., θn) ∧

∨m
i=1 �(φ↔ ψi). Thus,

(1) w |= A(φ | ψ1, ..., ψm, θ1, ..., θn) and (2) w |=
∨m
i=1 �(φ ↔ ψi). From (1) it

follows that Sw∩π∗(φ) is in Cw({Sw∩π∗(ψ1), ..., Sw∩π∗(ψm), Sw∩π∗(θ1), ..., Sw∩
π∗(θn)}). From (2) it follows that w |= �(φ ↔ ψi) for some i ∈ {1, ...,m}. Thus,
from Lemma C.5, it follows that Sw ∩ π∗(φ) = Sw ∩ π∗(ψi) for some i ∈ {1, ...,m}.
Thus, since Cw satisfies α, it follows that Sw∩π∗(φ) is in Cw({Sw∩π∗(ψ1), ..., Sw∩
π∗(ψm)}). Finally, from (1), Sw ∩ π∗(φ) 6= ∅ and Sw ∩ π∗(ψi) 6= ∅ for all i ∈
{1, ...,m}. Hence, w |= A(φ | ψ1, ..., ψm). �

Proof of 5.3. Assume that w ∈ W and φ is an instance of Cβ and Cw satisfies β.
Suppose that w |= A(φ1 | ψ1, ..., ψm)∧A(φ2 | ψ1, ..., ψm)∧A(φ1 | ψ1, ..., ψm, θ1, ..., θn).
Thus, (1) w |= A(φ1 | ψ1, ..., ψm), (2) w |= A(φ2 | ψ1, ..., ψm), and (3) w |=
A(φ1 | ψ1, ..., ψm, θ1, ..., θn). From (1) it follows that Sw ∩ π∗(φ1) is in Cw({Sw ∩
π∗(ψ1), ..., Sw ∩ π∗(ψn)}). From (2) it follows that Sw ∩ π∗(φ2) is in Cw({Sw ∩
π∗(ψ1), ..., Sw ∩ π∗(ψn)}). From (3) it follows that Sw ∩ π∗(φ1) is in Cw({Sw ∩
π∗(ψ1), ..., Sw ∩ π∗(ψm), Sw ∩ π∗(θ1), ..., Sw ∩ π∗(θn)}). Hence, since Cw satis-
fies β, it follows that Sw ∩ π∗(φ2) is in Cw({Sw ∩ π∗(ψ1), ..., Sw ∩ π∗(ψm), Sw ∩
π∗(θ1), ..., Sw ∩ π∗(θn)}). Finally, from (2), Sw ∩ π∗(φ2) 6= ∅ and π∗(ψi) 6= ∅ for
all i ∈ {1, ...,m}, and, from (3), Sw ∩ π∗(θi) 6= ∅ for all i ∈ {1, ..., n}. Hence,
w |= A(φ2 | ψ1, ..., ψm, θ1, ..., θn). �

Appendix E. Results from Section 6

Proof of Proposition 6.1. Straightforward inductive proof using the soundness of
the two inference rules and the soundness of the various axioms, as established in
Propositions 4.1, 5.1, 5.2, and 5.3. �

Appendix F. Maximally consistent sets

If S is a system and φ ∈ L, then φ is consistent (with respect to S) just in case
S 0 ¬φ. A finite set {φ1, ..., φn} ⊆ L is consistent iff

∧n
i=1 φi is consistent. An

infinite set Γ ⊆ L is consistent just in case every finite subset of Γ is consistent. We
will say that a formula (or set of formulas) is inconsistent iff it is not consistent. A
set Γ ⊆ L is maximally consistent just in case (1) it is consistent and (2) Γ∪{φ} is
inconsistent for all φ ∈ L− Γ. The following two lemmas are standard results that
apply to all systems in which classical, propositional reasoning can be conducted.
Proofs are readily available, e.g. Lemma 1.4.3 in [14] or Lemma 3.1.2 in [9].

Lemma F.1. If S is a system that extends L and Γ is consistent with respect to
S, then there is a set Γ′ such that Γ ⊆ Γ′ and Γ′ is maximally consistent.

Lemma F.2. If S is a system that extends L and Γ is maximally consistent with
respect to S, then the following hold for all φ, ψ ∈ L:

• φ ∈ Γ or ¬φ ∈ Γ;



14 JEFFREY HELZNER

• φ ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ;
• if φ ∈ Γ and φ→ ψ ∈ Γ, then ψ ∈ Γ;
• if S ` φ, then φ ∈ Γ.

Corollary F.3. If S is a system that extends L and Γ is maximally consistent with
respect to S, then

∨n
i=1 θi ∈ Γ just in case θi ∈ Γ for some i ∈ {1, ..., n}.

Appendix G. Results from Section 7

Note that it is not immediate that IS satisfies the frame conditions. In particular,
it is not clear that F4 and F5 are satisfied. We now turn our attention to this issue
and show that IS does indeed satisfy the frame conditions.

Lemma G.1. Let S be a system that extends C. Let 〈W,R,X , {Cw}w∈W 〉 be the
canonical frame for S. If SΓ ⊆ [φ], then �φ ∈ Γ.

Proof. P.21 in van der Hoek [14]. Note that this uses Gen and the K schema. �

Lemma G.2. Let S be a system that extends C. Let 〈W,R,X , {Cw}w∈W 〉 be the
canonical frame for S. For all Γ ∈W , SΓ ∩ [φ] 6= ∅ iff ♦φ ∈ Γ.

Proof. Suppose that SΓ ∩ [φ] 6= ∅. Hence, there is a Γ′ ∈ SΓ such that φ ∈ Γ′.
If ♦φ /∈ Γ, then it follows from Lemma F.2 that �¬φ ∈ Γ. Hence, ¬φ ∈ Γ′,
contradicting the assumption that Γ′ is consistent. Suppose that ♦φ ∈ Γ but that
there is no Γ′ ∈ SΓ such that φ ∈ Γ′. It follows that ¬φ ∈ Γ′ for all Γ′ ∈ SΓ. Hence,
by Lemma G.1, �¬φ ∈ Γ, contradicting the assumption Γ is consistent. �

Lemma G.3. Let S be a system that extends C. Let 〈W,R,X , {Cw}w∈W 〉 be the
canonical frame for S. Assume that Γ ∈ W . It follows that �(φ ↔ ψ) ∈ Γ iff
SΓ ∩ [φ] = SΓ ∩ [ψ].

Proof. Assume that Γ ∈ W and �(φ ↔ ψ) ∈ Γ. It follows that φ ↔ ψ ∈ Γ′ for all
Γ′ ∈ SΓ. Hence, (φ∧ψ)∨ (¬φ∧¬ψ) ∈ Γ′ for all Γ′ ∈ SΓ. Thus, by Corollary F.3, if
Γ′ ∈ SΓ, then φ ∧ ψ ∈ Γ′ or ¬φ ∧ ¬ψ ∈ Γ′. From Lemma F.2, it follows that for all
Γ′ ∈ SΓ, either φ, ψ ∈ Γ of φ, ψ /∈ Γ. The desired conclusion follows immediately.
Assume that Γ ∈W and SΓ ∩ [φ] = SΓ ∩ [ψ]. It follows that, for all Γ′ ∈ SΓ, either
φ, ψ ∈ Γ′ or ¬φ,¬ψ ∈ Γ′. Hence, by classical, propositional reasoning, if Γ′ ∈ SΓ,
then (φ∧ψ)∨ (¬φ∧¬ψ) ∈ Γ′. Thus, φ↔ ψ ∈ Γ′ for all Γ′ ∈ SΓ. From Lemma G.1,
it follows that �(φ↔ ψ) ∈ Γ. �

Proposition G.4. Let S be a system that extends C. Let 〈W,R,X , {Cw}w∈W 〉 be
the canonical frame for S. CΓ is a choice function on Pω(XΓ) for each Γ ∈W .

Proof. We must show that if V1, ..., Vn ∈ XΓ, where n ≥ 1, then there is a U
such that U ∈ CΓ({V1, ..., Vn}). Suppose that V1, ..., Vn ∈ XΓ. It follows that,
for all i ∈ {1, ..., n}, Vi 6= ∅, and it follows that there are L-formulas φ1, ..., φn
such that Vi = SΓ ∩ [φi] for all i ∈ {1, ..., n}. By Lemma G.2, ♦φi ∈ Γ for all
i ∈ {1, ..., n}. Hence, by Lemma F.2,

∧n
i=1 ♦φi ∈ Γ. Since, by Lemma F.2, Γ contain

all instances of C2, it follows that Γ contains
∧n
i=1 ♦φi →

∨n
i=1A(φi | φ1, ..., φn).

From Lemma F.2, Γ is closed under MP. Hence, Γ contains
∨n
i=1A(φi | φ1, ..., φn).

Thus, by Corollary F.3, A(φj | φ1, ..., φn) ∈ Γ for some j ∈ {1, ..., n}. We claim that
Vj ∈ CΓ({V1, ..., Vn}). By assumption, Conditions (1) and (2) in the specification of
CΓ are satisfied. Now, suppose that φ′1, ..., φ

′
n are L-formulas such that Vi = SΓ∩[φ′i]

for all i ∈ {1, ..., n}. From Lemma G.3, it follows that �(φi ↔ φ′i) ∈ Γ for all
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i ∈ {1, ..., n}. By Lemma F.2, Γ contains all instances of C4. In particular, Γ
contains the following formula:

(�(φj ↔ φ′j) ∧
n∧
i=1

�(φi ↔ φ′i) ∧A(φj | φ1, ..., φn))→ A(φ′j | φ′1, ..., φ′n).

Since A(φj | φ1, ..., φn) ∈ Γ and �(φi ↔ φ′i) ∈ Γ for i ∈ {1, ..., n}, it follows from
Lemma F.2 that �(φj ↔ φ′j) ∧

∧n
i=1 �(φi ↔ φ′i) ∧ A(φj | φ1, ..., φn) ∈ Γ. By

Lemma F.2, Γ is closed under MP. Thus, Γ contains A(φ′j | φ′1, ..., φ′n), and we
have shown that Condition (3) in the specification of CΓ is satisfied. �

Proposition G.5. If S is a system that extends C and 〈W,R,X , {Cw}w∈W 〉 is the
canonical frame for S, then the following hold for all φ, ψ1, ..., ψn ∈ L.

• [¬φ] = W − [φ]
• [φ ∧ ψ] = [φ] ∩ [ψ]
• [�φ] = {Γ | SΓ ⊆ [φ]}
• [A(φ | ψ1, ..., ψn)] = {Γ | SΓ ∩ [φ] ∈ CΓ({SΓ ∩ [ψ1], ..., SΓ ∩ [ψn]})}

Proof. Suppose that Γ ∈ [¬φ]. Since Γ is consistent, it follows that Γ /∈ [φ]. Hence,
Γ ∈W−[φ]. Conversely, suppose that Γ ∈W−[φ]. Hence, φ /∈ Γ. From Lemma F.2,
it follows that ¬φ ∈ Γ. Thus, Γ ∈ [¬φ]. Suppose that Γ ∈ [φ∧ψ]. Hence, φ∧ψ ∈ Γ.
From Lemma F.2, it follows that φ, ψ ∈ Γ. Thus, Γ ∈ [φ]∩ [ψ]. Conversely, suppose
that Γ ∈ [φ] ∩ [ψ]. It follows that φ, ψ ∈ Γ. Thus, by Lemma F.2, φ ∧ ψ ∈ Γ.
Hence, Γ ∈ [φ ∧ ψ]. Suppose that Γ ∈ [�φ]. Thus, �φ ∈ Γ, and it follows
immediately that SΓ ⊆ [φ]. Conversely, suppose that SΓ ⊆ [φ]. From Lemma G.1,
it follows that �φ ∈ Γ. Thus, Γ ∈ [�φ]. Suppose that Γ ∈ [A(φ | ψ1, ..., ψn)].
Hence, A(φ | ψ1, ..., ψn) ∈ Γ. By Lemma F.2, Γ contains all instances of C1. In
particular, Γ contains A(φ | ψ1, ..., ψn) → (♦φ ∧

∧n
i=1 ♦ψi). By Lemma F.2, Γ is

closed under MP. Thus, Γ contains ♦φ ∧
∧n
i=1 ♦ψi. By Lemma F.2, ♦φ ∈ Γ and

♦ψi ∈ Γ for all i ∈ {1, ..., n}. Thus, by Lemma G.2, SΓ ∩ [φ] 6= ∅ and SΓ ∩ [ψi] 6= ∅
for all i ∈ {1, ..., n}. We have verified the first condition in the specification of
CΓ. By Lemma F.2, Γ contains all instances of C3. In particular, Γ contains
A(φ | ψ1, ..., ψn) →

∨n
i=1 �(φ ↔ ψi). By Lemma F.2, Γ is closed under MP.

Thus, Γ contains
∨n
i=1 �(φ ↔ ψi). By Corollary F.3, there is a j ∈ {1, ..., n} such

that �(φ ↔ ψj) ∈ Γ. Thus, by Lemma G.3, there is a j ∈ {1, ..., n} such that
SΓ ∩ [φ] = SΓ ∩ [ψj ]. We have verified the second condition in the specification of
CΓ. Suppose that φ′, ψ′1, ..., ψ

′
n are L-formulas such that SΓ ∩ [φ] = SΓ ∩ [φ′] and

SΓ ∩ [ψi] = SΓ ∩ [ψ′i] for all i ∈ {1, ..., n}. It follows from Lemma G.3 that �(φ↔
φ′) ∈ Γ and �(ψi ↔ ψ′i) ∈ Γ for all i ∈ {1, ..., n}. Thus, by Lemma F.2, Γ contains
the formula �(φ ↔ φ′) ∧

∧n
i=1 �(ψi ↔ ψ′i) ∧ A(φ | ψ1, ..., ψn). By Lemma F.2, Γ

contains all instances of C4. In particular, Γ contains (�(φ↔ φ′) ∧
∧n
i=1 �(ψi ↔

ψ′i)∧A(φ | ψ1, ..., ψn))→ A(φ′ | ψ′1, ..., ψ′n). By Lemma F.2, Γ is closed under MP.
Thus, Γ contains A(φ′ | ψ′1, ..., ψ′n). We have verified the third condition in the
specification of CΓ. Hence, SΓ ∩ [φ] ∈ CΓ({SΓ ∩ [ψ1], ..., SΓ ∩ [ψn]}). Conversely,
suppose that SΓ ∩ [φ] ∈ CΓ({SΓ ∩ [ψ1], ..., SΓ ∩ [ψn]}). It follows immediately from
the third condition in the specification of CΓ that A(φ | ψ1, ..., ψn) ∈ Γ. �

Proposition G.6. Let S be a system that extends C. Let 〈W,R,X , {Cw}w∈W 〉 be
the canonical frame for S. X satisfies the closure requirements of F5.

Proof. Follows easily from Proposition G.5. �
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Appendix H. Results from Section 8

Proposition H.1. For all φ ∈ L, π∗(φ) = [φ].

Proof. The result follows from Proposition G.5 via a straightforward induction on
L. Atom: If φ is an atom, then the result follows immediately. Negation: As-
sume that the result holds for φ. From the negation clause for interpretations,
π∗(¬φ) = W − π∗(φ). Thus, from the inductive hypothesis, π∗(¬φ) = W − [φ].
Since, by Proposition G.5, [¬φ] = W − [φ], it follows that π∗(¬φ) = [¬φ]. Con-
junction: Assume that the result holds for φ and ψ. From the negation clause for
interpretations, π∗(φ ∧ ψ) = π∗(φ) ∩ π∗(ψ). Thus, from the inductive hypothesis,
π∗(φ ∧ ψ) = [φ] ∩ [ψ]. Since, by Proposition G.5, [φ ∧ ψ] = [φ] ∩ [ψ], it follows
that π∗(φ ∧ ψ) = [φ ∧ ψ]. Necessity : Assume that the result holds for φ. From
the necessity clause for interpretations, π∗(�φ) = {Γ ∈ W | SΓ ⊆ π∗(φ)}. Thus,
from the inductive hypothesis, π∗(�φ) = {Γ ∈ W | SΓ ⊆ [φ]}. Since, by Proposi-
tion G.5, [�φ] = {Γ ∈W | SΓ ⊆ [φ]}, it follows that π∗(�φ) = [�φ]. Admissibility :
Assume that the result holds for φ and ψ1, ..., ψn. From the admissibility clause for
interpretations, π∗(A(φ | ψ1, ..., ψn)) is equal to

{Γ | SΓ ∩ π∗(φ)) ∈ CΓ({SΓ ∩ π∗(ψ1), ..., SΓ ∩ π∗(ψn)})}
which, by the inductive hypothesis, is equal to

{Γ | SΓ ∩ [φ] ∈ CΓ({SΓ ∩ [ψ1], ..., SΓ ∩ [ψn]})}.
which, by Proposition G.5, is equal to [A(φ | ψ1, ..., ψn)]. �

Proof of 8.1. We prove the contrapositive. Suppose that S 0 φ. It follows that
S 0 ¬¬φ, since S extends L. Hence, ¬φ is consistent with respect to S. Let
IS = 〈W, {Rw}w∈W ,X , {Cw}w∈W , π〉 be the canonical interpretation for S. By
Lemma F.1 there is a Γ ∈ W such that ¬φ ∈ Γ. Hence, Γ ∈ [¬φ]. By Proposi-
tion H.1, π∗(¬φ) = [¬φ]. Thus, Γ ∈ π∗(¬φ), i.e. (IS ,Γ) |= ¬φ. Thus, it is not the
case that IS |= φ. �

Proof of Proposition 8.3. Suppose that Γ ∈W and that Y1, ..., Ym, Z1, ..., Zn ∈ XΓ.
Hence, there are L-formulas φ1, ..., φm such that SΓ ∩ [φi] = Yi 6= ∅ for all i ∈
{1, ...,m} and L-formulas ψ1, ..., ψn such that SΓ∩[ψi] = Zi 6= ∅ for all i ∈ {1, ..., n}.
Assume that Yj ∈ CΓ({Y1, ..., Ym, Z1, ..., Zn}), where j ∈ {1, ...,m}. It follows from
the specification of CΓ that A(φj | φ1, ..., φm, ψ1, ..., ψn) is in Γ. Since S extends
Cα it follows from Lemma F.2 that Γ contains all instances of Cα. In particular, Γ
contains the following formula:

(A(φj | φ1, ..., φm, ψ1, ..., ψn) ∧
m∨
i=1

�(φj ↔ φi))→ A(φj | φ1, ..., φm).

By Lemma G.3, it is clear that �(φj ↔ φj) ∈ Γ. Hence, by Lemma F.3,
∨m
i=1 �(φj ↔

φi) is in Γ. Thus, by Lemma F.2,

A(φj | φ1, ..., φm, ψ1, ..., ψn) ∧
m∨
i=1

�(φj ↔ φi)

is in Γ. Since, by Lemma F.2, Γ is closed under MP, it follows that A(φj |
φ1, ..., φm) is in Γ. Now we must show that Yj ∈ CΓ(Y1, ..., Ym). Of the three
conditions in the specification of CΓ, all but Condition (3) follow immediately from
what has already been assumed. Thus, suppose that φ′1, ..., φ

′
m are L-formulas
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such that SΓ ∩ [φ′i] = Yi for all i ∈ {1, ...,m}. It follows from Lemma G.3 that
�(φi ↔ φ′i) ∈ Γ for all i ∈ {1, ...,m}. Since S extends C it follows from Lemma F.2
that Γ contains all instances of C4. In particular, Γ contains the following formula:

(�(φj ↔ φ′j) ∧
m∧
i=1

�(φi ↔ φ′i) ∧A(φj | φ1, ..., φm))→ A(φ′j | φ′1, ..., φ′m).

We have shown that Γ contains each of the conjuncts from the antecedent of this
formula. Hence, by Lemma F.2, Γ contains �(φj ↔ φ′j) ∧

∧m
i=1 �(φi ↔ φ′i) ∧

A(φj | φ1, ..., φm). By Lemma F.2, Γ is closed under MP. Thus, Γ contains A(φ′j |
φ′1, ..., φ

′
m). This completes the verification of Condition (3) in the specification of

CΓ. Thus, Yj ∈ C{Γ(Y1, ..., Ym}). �

Proof of 8.4. Suppose that Γ ∈ W and that Y1, ..., Ym, Z1, ..., Zn ∈ XΓ. Hence,
there are L-formulas φ1, ..., φm such that SΓ ∩ [φi] = Yi 6= ∅ for all i ∈ {1, ...,m}
and L-formulas ψ1, ..., ψn such that SΓ∩ [ψi] = Zi 6= ∅ for all i ∈ {1, ..., n}. Assume
that Yj , Yk ∈ CΓ({Y1, ..., Ym}) and Yj ∈ CΓ({Y1, ..., Ym, Z1, ..., Zn}) , where j, k ∈
{1, ...,m}. It follows from the specification of CΓ that Γ contains A(φj | φ1, ..., φm),
A(φk | φ1, ..., φm), and A(φj | φ1, ..., φm, ψ1, ..., ψn). Hence, by Lemma F.2,

A(φj | φ1, ..., φm) ∧A(φk | φ1, ..., φm) ∧A(φj | φ1, ..., φm, ψ1, ..., ψn)

is contained in Γ. Since S extends Cβ it follows from Lemma F.2 that Γ contains
all instances of Cα. In particular, Γ contains the following formula:

(A(φj | φ1, ..., φm) ∧A(φk | φ1, ..., φm) ∧A(φj | φ1, ..., φm, ψ1, ..., ψn))→
A(φk | φ1, ..., φm, ψ1, ..., ψn)).

By Lemma F.2, Γ is closed under MP. Thus, Γ containsA(φk | φ1, ..., φm, ψ1, ..., ψn).
Now we must show that Yk ∈ CΓ({Y1, ..., Ym, Z1, ..., Zn}). Of the three conditions
in the specification of CΓ, all but Condition (3) follow immediately from what has
already been assumed. Thus, suppose that φ′1, ..., φ

′
m are L-formulas such that

SΓ ∩ [φ′i] = Yi for all i ∈ {1, ...,m}, and suppose that ψ′1, ..., ψ
′
n are L-formulas

such that SΓ ∩ [ψ′i] = Zi for all i ∈ {1, ..., n}. It follows from Lemma G.3 that
�(φi ↔ φ′i) ∈ Γ for all i ∈ {1, ...,m} and �(ψi ↔ ψ′i) ∈ Γ for all i ∈ {1, ..., n}.
Thus, by Lemma F.2, Γ contains

�(φk ↔ φ′k) ∧
m∧
i=1

�(φi ↔ φ′i) ∧
n∧
i=1

�(ψi ↔ ψ′i) ∧A(φk | φ1, ..., φm, ψ1, ..., ψn).

Since S extends C it follows from Lemma F.2 that Γ contains all instances of C4.
In particular, Γ contains the following formula:

(�(φk ↔ φ′k) ∧
m∧
i=1

�(φi ↔ φ′i) ∧
n∧
i=1

�(ψi ↔ ψ′i) ∧A(φk | φ1, ..., φm, ψ1, ..., ψn))→

A(φ′k | φ′1, ..., φ′m, ψ′1, ..., ψ′n).

By Lemma F.2, Γ is closed under MP. Hence, Γ containsA(φ′k | φ′1, ..., φ′m, ψ′1, ..., ψ′n).
This completes the verification of Condition (3). Yk ∈ CΓ({Y1, ..., Ym, Z1, ..., Zn}).

�
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