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Abstract The standard axiomatization of quantum mechanics (QM) is not fully ex-
plicit about the role of the time-parameter. Especially, the time reference within the
probability algorithm (the Born Rule, BR) is unclear. From a probability principle P1
and a second principle P2 affording a most natural way to make BR precise, a logi-
cal conflict with the standard expression for the completeness of QM can be derived.
Rejecting P1 is implausible. Rejecting P2 leads to unphysical results and to a conflict
with a generalization of P2, a principle P3. All three principles are shown to be with-
out alternative. It is thus shown that the standard expression of QM completeness
must be revised. An absolutely explicit form of the axioms is provided, including
a precise form of the projection postulate. An appropriate expression for QM com-
pleteness, reflecting the restrictions of the Gleason and Kochen-Specker theorems is
proposed.

Keywords Axioms of quantum mechanics - Completeness - Gleason’s theorem -
Kochen-Specker theorem - Born rule - Projection postulate - Probabilities as
dispositions

1 Introduction

Quantum mechanics (QM), the most elementary of quantum theories, can be shown
to be complete in a quite precise sense. It is impossible to consistently assign val-
ues to the observables of a suitable QM system, given two plausible constraints.
Take a physical system S such that its QM representation requires a Hilbert space
‘H with dim(H) > 2. (A one-particle spin-1 system is an example.) It is impossi-
ble, in this case, to assign values to all QM observables under the constraints that
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(i) there is a one-one correspondence between observables and QM operators repre-
senting them (non-contextuality), and (ii) the algebraic relations among such value
assignments mirror the algebraic relations among the operators (functional compo-
sition) [1]. An indirect proof of this fact is immediately obtained from Gleason’s
Theorem [2]. The theorem entails that, when { P} is the set of all projection operators
on H, every mapping i : {P} — [0, 1] being interpretable as a probability function
must be continuous, while a value assignment obeying (i) and (ii) must induce a map-
ping i’ : {P} — {0, 1} that is discontinuous [3]. A direct, i.e. constructive proof is
the Kochen-Specker theorem [4—6],' presenting a finite set of operators (called a KS
set) for which an assignment obeying (i) and (ii) fails.

But why does the impossibility of assigning values under these constraints tell us
anything about QM completeness? After all, the theory’s empirical output consists
just in probabilities for measurement results and their generalizations: expectation
values. In an axiomatic formulation, QM is formally incapable of directly making
value assignments, so it cannot generate anything conflicting with any value assign-
ment to S. The natural idea filling this logical gap is the insight that some probability
assignments entail value assignments, namely those that predict values with certainty.
E.g., a QM prediction to the effect that S, with probability 1, will be found to have
a property a; at time ¢t makes it plausible to conclude that S, at that time, has ay.
Working, from now on, in the Schrodinger picture, writing states as density opera-
tors, and taking A as a discrete observable on S with values a; (withi =1,2,...) we
can express this idea as:

If P, (1), then a(¢).

(Here and henceforth boldface ‘aj’ abbreviates ‘S has a;’ and, accordingly, ‘ay ()’
abbreviates ‘S has ay att’ (where k is some value of 7). Likewise, ‘P, (#)’ abbreviates
‘S is in state P, (¢)’, where Py, (¢) = |a(t))({a(?)|.) Adding such a plausible rule to
the QM formalism, we can extract value assignments, but nothing near a set of values
big enough to conflict with either the discontinuous assignment used in the corollary
of Gleason’s Theorem or the assignment to some KS set of operators. This will be
the case only if we limit ourselves to the value assignments following from the QM
state as follows:

(EE) ay(¢) if and only if P, (¢).

This condition establishes a logical link between QM and the two theorems and thus
makes precise in which sense they prove QM completeness. Indeed, the condition
(often called the eigenstate-eigenvalue link, hence the label ‘EE’) embodies the clas-
sic definition of QM completeness [7, 8]. EE substantiates the generally accepted and
most familiar idea that a QM system in a superposition of A eigenstates does not
have a value of A. This idea plays a special role when interpreters specify how S,
being in a superposition of A-eigenstates, interacts with an A-measurement device.
Following a suggestion by von Neumann, it is standardly claimed that S, during the
measurement interaction, fakes on one of the A values, e.g. ay [9]. If S is found to

IWhile the original argument [4] requires 117 projection operators, the simplest argument now can be
given with only 18 projectors [5]. For a proof that this is the smallest possible set, see [6].
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have a value of A, e.g. ag, at a certain time, then EE dictates that S’s state is the per-
taining eigenstate, e.g. P, , at this time. A slightly less exact form of this consequence
would be: If S is found to have value ay, of A, then S’s state immediately afterwards
becomes the pertaining eigenstate e.g. Py, . This latter requirement is generally called
the projection postulate [10, 11]. Projection, i.e. S’s adopting an A-eigenstate during
A-measurement, is generally thought to be an empirically confirmed fact and with
good reason. We can measure copies of S for A, filter out the non-a; results, and
then experimentally confirm the remaining state to be P, , e.g. via quantum-state to-
mography.” Thus, it will be assumed here that projection is an ineliminable feature
of QM, but the discussion will also address interpretations rejecting it.

For future reference, let us explicitly extract a completeness condition (COMP)
from EE

(COMP) If S is not in state P, (£), then not ay ().

Trivially COMP expresses the backward or ‘only if’-direction of EE. Now, the aim
of the present paper is to show that COMP is not in harmony with QM, in a stan-
dard axiomatization, and to provide a more appropriate expression for completeness.
More exactly, I will show COMP to be in conflict with QM as follows. I briefly re-
view a standard axiomatization for QM and point out that two axioms are not fully
unambiguous concerning the role of the time parameter. I introduce three reasonable
principles, P1-P3, where P3 is a generalized version of P2. These principles explicate
basic tenets of interpreting probabilities in a physical theory, in general, and in QM,
in particular. For the reader’s orientation each of them is given a name besides the
numbering. Principle P1 (which may be called the probability principle) explicates
the idea that probability (in a physical theory) is quantified possibility. The other
two principles address the time parameter’s role in QM probabilities and remove the
ambiguity in the axioms. Principle P2 (called the simple principle) provides the most
natural disambiguation of the well-known trace formula for QM probabilities. Princi-
ple P3 (called the general principle) rules that there must be some disambiguation and
embraces P2 and the only clear alternative. (All axioms and principles are introduced
in Sect. 2.) Now, we can disambiguate the trace formula via the simple principle P2
and then add our proposal for completeness, COMP, to the (now unambiguous) QM
axioms. The result may be called simple complete QM. But simple complete QM con-
tradicts the probability principle P1—this is the main result (exposed in Sect. 3). The
prospects of sacrificing P2 are discussed in Sects. 4 and 5 with a negative result. The
resulting truncated version of QM is an unphysical theory as it can neither contain an
informative projection postulate nor can respect the general principle, P3. Since the
argument is a fundamental attack on COMP it is natural to question the principles
despite their plausibility. Accordingly, principles P1-P3 are extensively discussed (in
Sect. 6). They are shown to be without reasonable alternative. The remaining culprit
thus is COMP, our standard way of expressing QM completeness. This result will
initially lead to formally improving the axioms themselves, especially to formulating
an acceptable form for the projection postulate (Sect. 7). Finally, a version of com-
pleteness will be proposed that both represents the limitations due to the Gleason and
Kochen-Specker theorems and does not conflict with QM + P1-P3 (Sect. 8).

2See Refs. (11, 12) in [12].
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Some preparations for the discussion in Sects. 4 and 5 must be made. Certain
interpretations of QM reject the projection postulate and EE; they are now collected
under the title of modal interpretations [13—16]. This group of interpretations has a
weaker expression of completeness at hand:

(weak COMP) If S is in a pure state W () # P, (¢), then not a,(z).

The rationale of weak COMP is that completeness and projection are really inde-
pendent requirements: While a measurement may leave S in a mixture (obtained by
partial tracing of the state of the S-cum-apparatus-supersystem) such that we can say
that S has adopted one of A’s values without state projection, we still can express
the idea that S, having been in a pure state W (¢) at interaction onset, did not then
have any value of A. We may address QM without projection as weak QM and weak
QM in conjunction with weak COMP as weak complete QM. This version (or rather
interpretation) of QM is an interesting one, in general, but is not a viable option in
the context of rejecting our simple principle P2. The argument for this claim proceeds
as follows. Sacrificing P2 must go along with rejecting the projection postulate, thus
we are naturally lead to considering weak QM as the remaining form of QM, in view
of the completeness results, and weak COMP as the appropriate completeness ex-
pression (Sect. 4). However, in conjunction with the negation of P2 there will be no
plausible way for this approach to respect the general principle P3 (Sect. 5).

It should be clear that, by nature of the foundational and conceptual questions
raised, the reasoning must consist of concept interpretation and logical, not mathe-
matical, argument throughout.

2 Axioms and Principles

Consider the following simple axiomatization of QM,’ using again the Schrodinger
picture and projection operators:

Axiom 1 Any QM system S is associated with a unique Hilbert space H and its state
is represented by a unique density operator W (t) on 'H, a function of time.

Axiom 2 Any physical quantity A (called an observable) is represented by a self-
adjoint operator A on 'H and the possible values of A (possible properties of S) by
the numbers in the spectrum of A.

Axiom 3 S evolves in time according to W(t) = U@OW()U ()~ where U(t) =
exp[—i Ht], a unitary operator, is a function of time and H is an operator represent-
ing the total energy of S.

Axiom 4 [f S is in state W(t) and A is an observable on S, then the expectation
value (A) is: (A) =Tr(W(1)A).

3This axiomatization is standard; see, e.g., [17], Sect. 3.2.
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Axiom 5 If S is found to have value ay as result of an A measurement, then S’s state
is Py, immediately afterwards.

Henceforth QM is the theory based on Axioms 1-5 and weak QM the theory based
on Axioms 1-4 only. Axiom 2 motivates an identification of physical observables and
their mathematical representatives and I will not need to distinguish them. I will also,
for simplicity, restrict myself to one discrete observable A throughout. Finally, I will
mostly restrict Axiom 4 to probabilities, i.e. expectation values of yes-no observables
of type P,;. Let a; always be some fixed value of variable a;. Let ‘p(ax)’ mean the
probability that S has ai. Then, since (P, ) = p(ax), Axiom 4 takes on a simpler,
very familiar form, often called the Born Rule (BR):

(BR) If Sisin state W(r) and A is an observable on S with eigenvalue ay,
then the probability that S has ay is: p(ax) = Tr(W ()P, ).

Two points should be noted here. First, it should be emphasized that these axioms,
though fairly standard, do not constitute a fully satisfactory axiomatization of QM
since Axioms 4 and 5, in their present form, leave the role of the time parameter un-
specified or vague. The defect in Axiom 4 carries over to BR, in whose equation only
the right side, but not the left, carries a time-index. Two of the three principles, to be
introduced presently, will have the sole purpose of forcing an unambiguous explica-
tion of the time-parameter on the left side of ‘p(ay) = Tr(W(¢)P,, )’ and it should be
stressed that the interpretations produced from these principles and considered below
exhaust all the reasonable options.

The second point is related. Some interpreters recommend a formulation of BR
that mentions measurement and interprets ‘p(ay)’ as the probability of finding out-
come aj upon measurement. On reflection, this proposal is more involved and, by
invoking our understanding of ‘measuring’ and ‘finding as an outcome’, insinuates
the mentioned von Neumann picture according to which, in some cases, result ay is
something realized in S some time after measurement onset. This picture deserves
explicit discussion, but not insinuation. For that purpose, the present formulation is
chosen, which is entirely neutral. Inside ‘p(ay)’ it just mentions ay, the property S
eventually has, regardless of whether S has this property as an outcome of something
or is found having it. Moreover no presupposition is made on when S has p(ay). To
the contrary, it will be a matter of argument (in Sects. 5 and 6.4) whether we need to
answer this question and eventually which answer is compatible with QM. Finally,
in this neutral form (with the mentioned ambiguity awaiting clarification) BR follows
from Axiom 4 and (P,,) = p(ai) (see Appendix A)—while the more involved form
does not.

Here are three principles. Because of their far-reaching implications for QM, they
will be discussed extensively later on (in Sect. 6). The first principle can be motivated
from the idea that probability is quantified possibility. More precisely: If a physical
theory assigns an event a non-zero probability, then, given the theory’s truth, this
event is possible. The weakest form of possibility is logical possibility. Thus, yet
more precisely:
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(P1) (Probability principle)
If, for a proposition F (describing an event) a theory T yields another
proposition p(F) > 0, then it is not the case that 7, F L.

(Here ‘T, F L1’ means that the set of sentences including F and all sentences of T’
allows deriving a contradiction in first-order logic.) P1 is beyond reasonable doubt,
but it also follows from natural assumptions about probability shared by the main
interpretations of that notion (see Appendix B).

The second principle provides the simplest disambiguation of BR, i.e. the simplest
way to explicate the time-reference on the left side of ‘p(ay) = Tr(W (¢)P,, ) . It runs:

(P2) (Simple principle)
Any expression ‘aj’ such that it names a QM event can be qualified as
a;(t)', where t is a time-parameter.

P2 is motivated by the idea that a fundamental physical theory must explicitly
concern space-time events. A theory that builds probability spaces over sets of events
must be able to explicitly treat these events as space-time events to qualify as a funda-
mental physical theory. Hence, all events that are assigned probabilities in QM must
explicitly be space-time events. In the present case, these events are just properties
(values ay of A) possessed at certain sharp times. We may call events of this special
type sharp space-time events. We will see later (in Sect. 6) that most theoretical ap-
proaches to QM respect P2 and for good reason. P2 mentions all occurrences of ‘ay’
in QM, hence also the ones in Axiom 5. Thus, rejecting P2 will have consequences
for Axiom 5 (Sect. 6).

Note, however, that P2 just says that those events denoted by statements of type
‘ay’ within the QM probabilities are sharp space-time events such that the expressions
can be explicated as ‘ai(r)’. The ‘a;’ may not be appropriate expressions of QM
events within BR and our simple principle P2 may have no application. The third
principle, P3, generalizes P2. It says that whatever the QM events are (and whatever
expressions denote them) these events, within BR, can be qualified as sharp space-
time events explicitly. Thus:

(P3) (General principle)
For any expression ‘F’ such that QM yields an expression
‘p(F)=Tr(W(t)P,,) there is a parameter ¢ in the formalism qualifying
‘F’as ‘F(t).

P3 gets its name because it just prescribes a general, not a specific, disambigua-
tion for the Born Rule, BR. The principle is formulated so wide as to appear vague.
But it has only two specifications. The first is to place the time-index ‘inside the
probability’ (as commanded by the simple principle, P2), the second ‘outside the
probability’. Consider the BR expression ‘p(ay) = Tr(W(¢)P,, )’ made precise as
‘plai(t)) = Tr(W(t)P,,)’. This makes QM fulfill P2. But there is an alternative:
Read the expression on the left of ‘p(ax) = Tr(W ()P, )" as ‘p(¢)(ax)’ and inter-
pret the latter in the following way: The probability is a disposition of § at time ¢ to
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display value a; (make ‘ay’ true). This idea is discussed widely in the foundational
literature and is generally explicated as saying that ¢ is the onset time of a measure-
ment interaction on S and p(¢)(ay)’ quantifies S’s strength of disposition at t toward
displaying ay at some later time. However, while this notion essentially refers to the
idea of probabilities as dispositions it does not need to refer to measurement. We
should avoid the impression that anything in our principles or axioms makes essen-
tial reference to measurement—as this is in fact unnecessary. (But see Sect. 6 for a
discussion of measurement.) We can speak more generally of a region of space con-
taining S and a time ¢ such that ‘E(¢)’ denotes an event we may call the triggering
event. Then, E(¢) and state W(¢) in conjunction determine S’s disposition at ¢ to
display ay at some later time. Accordingly, an alternative to the preceding is to dis-
ambiguate ‘p(ax)’ as ‘p(t)(ay)’, which more explicitly reads ‘ p(ay given E(¢))’. We
thus have an alternative disambiguation of BR that obeys our principle P3. (Note that
the argument for only two possibilities is not strict. It would require heavy metalin-
guistic machinery to show that ‘p(ax(¢))’ and ‘p(t)(ay)’ are the only ways to specify
the time-reference in ‘p(ay)’.)

3 Simple Complete QM Contradicts the Probability Principle (P1)

P1 and P2 now generate the main argument against COMP. Using P2, we can make
BR precise in a most natural way. It can now be rendered more exactly:

(BR’) If Sisin state W(¢) and A is an observable on S with eigenvalue ay,
then the probability that S has ay at ¢ is: p(ax(t)) = Tr(W (#)Py,).

Now suppose that QM is supplemented by the simple principle P2. Assuming that
a theory contains all its consequences, QM -+ P2 will contain BR’. Now supplement
QM + P2 with COMP. Also, suppose that S is in a state W (t1) # P, (¢1), for some
value 1 of 7, such that from BR’ it follows that 1 > p(a (1)) > 0. Call this assump-
tion N. Finally, let QM + P2, COMP, and N be integrated into one artificial theory,
simple complete (scQM). Then, by simple sentential logic:

N (1) S is in state W (#1) (N)

N, BR’ 2 plak(t1)) >0 (1), (BR')
N (3) _'Pak (tl) (N)
N,COMP (4) —ay (1) (3), (COMP)

(As usual, the rightmost column indicates the assumptions on which the line in ques-
tion directly depends and the leftmost column the ones on which the line ultimately
depends.) By assumption, BR’, COMP, N, are members of scQM which thus en-
tails both line (2), i.e. that a certain proposition is assigned a positive probability,
and line (4), i.e. that the negation of that proposition is true. Hence, scQM entails
p(ai(t;) > 0, but also: scQM, a(#1) L, in contradiction with P1. Thus given P1,
scQM cannot be true.*

4Alternatively, given P1(a—c) from Appendix B, scQM cannot have a positive probability of being true.
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The argument presupposes that scQM, the artificial integration of QM, P2, COMP
and assumption N is a theory. Is the integration of N an innocuous step? We can, of
course, add suitable propositions to QM to create a theory that contradicts virtually
any other proposition. But N is a trivially admissible state assignment that QM must
be consistent with. So, its integration into scQM is innocuous indeed, but the one of
P2 is not. BR’, COMP, N are in conflict with P1, where BR’ is BR, interpreted via the
simple principle P2. Given that the probability principle P1 is immune to rejection,
QM is in conflict with either P2 or COMP.

4 Rejecting the Simple Principle (P2) Implies Weak QM

Let us anticipate that rejecting the probability principle P1 is not a plausible reaction
to the argument (but see below Sect. 6 for a discussion) and that the most plausible
defense of COMP consists in rejecting the simple principle P2. To do so implies to
give up on the most natural disambiguation of BR. The defender of COMP will just
say that within the BR equation ‘p(ay)’ cannot be read as ‘p(ax(¢))’, the impression
of naturalness notwithstanding. But to reject P2 has consequences for Axiom 5. Re-
call that this axiom, like Axiom 4 and BR, is vague. We can apply P2 to Axiom 5,
yielding:

Axiom 5" If S is found to have value ay(t) as a result of an A measurement, then,
S’s state is Py, immediately afterwards.

Note that Axiom 5’ still contains the imprecise ‘immediately afterwards’ from
Axiom 5. But it is an advance over the latter because it contains an exact time to
which ‘immediately afterwards’ can refer. Rejecting P2 would mean that Axiom 5
does not contain such a time reference. It would mean, in effect, that expressions like
‘ay’ are not explicated as ‘ay (¢)’ throughout QM. In this case, Axiom 5 automatically
becomes vacuous. In the Schrodinger picture, state evolution cannot start without a
precise input state. It is the intention of Axiom 5 to generate such an input—for
starting post-measurement state evolution, e.g. when a measurement is a preparation.
Axiom 5’ can be seen as a first attempt to make this idea precise. As a necessary
condition of precision, Axiom 5’ contains an exact time-index for ‘ay’, but it fails
to be sufficiently precise unless the phrase ‘immediately after’ is made precise. If
Axiom 5 is understood as containing an expression ‘ay’ that must not carry a time-
index, it is interpreted as not meeting this condition. It is a vacuous statement, not
only without any empirical content, but also a formally ineffective addition to the rest
of QM. So, everyone seeking to escape the argument of Sect. 3 by rejecting P2 will
have to reject the projection postulate in any substantial form.

One might object that applying principle P2 to BR is one thing and applying it to
Axiom 5 another. But if we reject P2 for the expression ‘p(ay)’ (refuse to read it as
‘plar(t))’) we say that these probabilities do not refer to events of type ‘ai(¢)’, nor
are they tested by observations of events of type ‘a(¢)’. It is inconsistent under these
strictures to allow such an event nevertheless and put it in the antecedent of Axiom 5.

Hence, rejecting P2 implies rejecting Axiom 5 and what I have called weak
QM, a theory based on Axioms 1-4 only. The interpretations taking this route are
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the modal interpretations. Here we must not consider this group of interpretations,
in general, but a queer and artificial variant built on negating P2. Note that —P2
immediately transforms QM into an unphysical theory. Checking the Axioms, we
note that QM (reasonably enough) contains a unique time parameter. (The same
goes for weak QM.) If the theory supplies a time-index for ‘a;’ in ‘p(ay)’, to
obey P2, it must be this one. If, vice versa, ‘p(a;)’ does not inherit the time-
index directly from the state, i.e. from the right side of ‘p(ay) = Tr(W()P,,)’,
then it does not get any time-reference, at all. QM + —P2 does no longer fur-
nish the measurement results, for which it provides probabilities, with exact time-
indices.

5 Weak Complete QM Makes the General Principle (P3) Implausible

We have seen that negating the simple principle P2 implies QM without projection,
i.e. weak QM. As pointed out in Sect. 2, weak QM has its own version of a com-
pleteness expression: weak COMP. Is this weaker version of QM a possible way to
maintain the weaker version of COMP? We may call weak QM + weak COMP by
the name of weak complete QM. The problem of this approach is that weak COMP
allows an argument exactly along the lines of the one against COMP in Sect. 3. (In
the sentential logic argument, line (4) also follows from (3) and weak COMP.) So,
weak complete QM must reject either the probability principle P1 or the simple prin-
ciple P2. I anticipated that negating P1 is unreasonable, but negating P2 might be
plausible. After all, there seems to be an alternative disambiguation for the Born Rule!
The QM events to consider might not be S’s possessing values of A, but ‘takings-on’,
S’s displaying values upon some triggering event. However, it will turn out that this
alternative offers no plausible way to respect the general principle P3.

The defender of weak complete QM will have to reject P2 and BR'. Given the
assumption, made plausible above, that there is but one alternative way to specify
BR, we will now rewrite it as:

(BR”) If Sisin state W(¢) and A is an observable on S with ay,
then the probability that S has a given E(¢) is:
pl(ag given E(1)) =Tr(W(1)Pg,).

Assuming the triggering event E(¢) to be the onset of an A-measurement inter-
action, we recover the idea, found in von Neumann [7] and other classical textbooks
[18, 19], that QM probabilities essentially are conditional upon measurement, and the
idea that these probabilities are dispositions, possessed by S (or the whole of S and
the apparatus) at time ¢, for S possessing a; at some later time. However, as has just
been pointed out, this later time cannot be referred to in QM because the theory, as
axiomatized here, does not have the formal resources to refer to two times. (Similarly,
again, for weak QM.)

So, in the expression ‘ay given E(¢)’ the ‘ay’, referring to S and the time at which
eventually it has ay, cannot bear a time-index. We thus have consciously violated P2,
but not necessarily P3, since ‘aj given E(¢)’ does contain a time reference, after
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all. Now, although this possibility exists we are now considering a theory that does
not allow time-indices for the measurement results for which it makes predictions.
Inevitably there will be difficulties with empirically testing such a theory. So the
discussion at this point takes on an unphysical and academic character. But worse is
still to come. A theory along these lines cannot plausibly meet the general principle
P3, anymore.

Probability expressions of the form ‘p(B given A) = z’ (where z € [0, 1]) have
been thoroughly investigated in the context of QM [20-22] and three possible analy-
ses have been found: ‘p(B| A) =2z, ‘A — p(B)=2",and ‘p(A — B) =z’, where
‘—’ is a conditional connective awaiting further semantic analysis. It should be added
that philosophers and logicians have mounted substantial evidence that, in general,
p(B | A) # p(A — B), for standard explications of ‘—’ [23]. So, these two forms of
explicating ‘p(B given A) = 7z’ are indeed logically different and we have (at least)
three interpretations for the expression. In the present context, we have the special
condition that ‘B’ in ‘p(B given A) = z’ must not bear a time-index, i.e. in the rel-
evant BR” expression ‘p(ay given E (1)) =z’ ‘a;’ must not be time-indexed—to
escape the contradiction of Sect. 3.

Let’s take the three analyses of ‘p(ay given E(t)) = z’, in turn. It is easy to see
that ‘p(ay | E(¢)) =z’ is not a live option. The standard (Kolmogorov) definition
of conditional probability is inapplicable, since this would require ‘p(ax A E(t))’
and ‘p(E(t))’ to be well-defined, which they are not. Defining them appropriately
would mean to import them into QM from elsewhere—something which is clearly
inadmissible in a theory dubbed fundamental and, technically, would break the ax-
iomatic closure of the theory. Alternatively, conditional probabilities can be defined
as primitive two-place functions from pairs of events into the unit interval [24, 25],
but the axioms ruling the interpretation of these functions as probabilities require ex-
pressions like ‘p(E(¢) | ax)’ to be well-defined. Again, no version of BR can supply
such probabilities and importing them from elsewhere is out of the question.

Consider second ‘E(f) — p(ax) = z’. This variant contracts two problems.
‘7’ is a placeholder for “Tr(W(r)P,,)’, in BR”. Hence, we have the conditional
‘E(t) = p(ar) =Tr(W ()P, ) containing, as its consequent, an equation ‘p(ax) =
Tr(W ()P, )’ . By assumption, this equation is no longer vague, but defined to lack a
time-index on the left and carry one on the right. For a mathematical function depend-
ing on some parameter, this is an inconsistent requirement. Moreover, exporting the
time-reference from the set of events that get assigned probabilities via QM violates
our principle P3.

Consider third p(E () — ay) = z. This possibility respects P3. But the unphysical
assumption that its consequent ‘a;’ must not bear a time-index makes it impossible
to distinguish a case where ‘ay’ is true at some unspecified time directly after E(¢)
from a case where ‘a;’ is true at a much later time. This allows constructions of obvi-
ously false cases. Suppose that S is a one-particle spin-% system in W(t1) =Py, (t1),
where a,, # aj is another eigenvalue of A. Suppose that E(¢1) is the onset of a
measurement interaction consisting in a series of measurements A — B — A (where
[A, B] # 0). Suppose that, for some copies of S, despite the initial state P, (¢1), the
second A-measurement yields result ‘ay’. For these copies ‘E(t1) — ay’ is true and
yet p(E(t)) — ay) =TrP,, (11)P,, =0, in violation of P1. Of course, we will un-
derstand the physics of the experiment and say that the probability of ‘a;’ being true
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directly after E(¢1) is zero and rises during the course of the whole experiment, but
without a time reference we lack the possibility to distinguish different instances of
‘ar’. The point is not that we cannot come up with an intelligible distinction of in-
stances of ‘ay’, but rather that we cannot do so within the present (mutilated) version
of QM, where BR is interpreted as BR”, which subsequently is read as delivering
expressions of type ‘p(E(t) — ar) =Tr(W ()P, ) .

So there is no clear possibility at all how, given —P2, the general principle P3 can
be met, i.e. how the time reference in the Born Rule can be made explicit. Note that
this argument for a violation of P3 is non-rigorous because it is built on two unproven
meta-assumptions: (i) that the two disambiguations sketched in Sect. 2 and used at
the beginning of this section are the only possible ones; (ii) that the three proposed
analyses of ‘p(ay given E(t)) = z’ exhaust the possibilities.

6 Are the Principles Reasonable?

Gleason’s theorem and Kochen-Specker-type theorems prove that QM, in some sense,
is complete. COMP is generally perceived as an appropriate expression of this com-
pleteness. COMP implies the von Neumann picture of measurement: a QM system §
in a typical case (pure non-eigenstate of A and onset of an A-measurement) does
not have a certain kind of property (a value of A), but ‘takes on’ a property (an A
value) during the measurement interaction. In other words: in QM measurement does
not, in general, reveal existing values of observables. The main point of this paper
is to attack COMP and the ensuing von Neumann picture. COMP is not in concep-
tual harmony with the very theory the completeness of which it is meant to express.
The disharmony can be transformed into a contradiction by using simple and rea-
sonable principles for physical theories. Obviously, the attack is fundamental and a
large amount of our present conceptions of QM is at stake. Hence, it is natural to
question the principles on which it is based. Despite their plausibility one or more
of them might just be remnants of pre-quantum physics that we are forced to let
go. To investigate this intuition, I will consider for every one of the three principles
whether it makes sense to abandon it—with a negative result. Moreover, I will briefly
discuss whether looking into the process of QM measurement can help to solve the
problem—again with a negative result.

6.1 The Probability Principle (P1)

The probability principle, P1, says that no reasonable physical theory should make
derivable two statements of the form —F and prob(F) > 0. In symbols: If T
p(F) >0, thennot T, F 1. Ihave emphasized that it is eminently reasonable and
follows from natural assumptions shared by the main conceptions of probability.’ So
this principle seems entirely immune to rejection. But is it? Consider the following
counterargument. Assume a proposition K to be the conjunction of all value assign-
ments to observables in a KS set (a set such that no consistent value assignment is

SSee again Appendix B.
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possible).® Clearly, there are QM states such that every conjunct of K gets a strictly
positive probability. So, apparently QM entails p(K) > 0, but also QM, K L. And
so P1 must be false despite appearance to the contrary.

Let’s initially suppose, for the sake of argument, that this reasoning were sound.
Then we would be caught in a veritable dilemma between QM and scientific reason.
Imagine a fantasy theory that, in violation of P1, yields for a certain event F' (e.g.,
heads in a coin toss, z* for a spin % particle in a suitable state) that p(F) = % and
also entails that F (heads, z 1) is not the case. (QM is not such a theory; we are
just fantasizing here!) Imagine how we test this theory. Either the first F' (heads or
z 1) result will falsify it or the rising number of —F (tails or z) results (the only
possible results, by the theory’s lights) in repeated trials with identical copies will
inductively prove that p(F) = 0, again falsifying the theory. So, the theory is false.
Indeed, since F was arbitrary, every theory that entails the negation of P1 is false.
Now, QM, by all we know, is not false, but if it entails the negation of P1 it must be
false (and this is a dilemma).

So, negating P1 is simply not an option and interpreters have followed von Neu-
mann’s much more reasonable intuition that no logical conflict arises because for
QM events F, F’ the propositions p(F) > 0 and —F’ will only be in conflict given
F’ = F, but this will be the case only given another principle, i.e. our simple principle
P2 that nails F and F’ to the same time and thus identifies them. Von Neumann’s idea
of § ‘taking on’ a value during the measurement process is in effect a negation of P2.
F and F' are simply events at different times, so F’ # F and p(F) > 0 and —F" are
not in any conflict. The argument in Sects. 4 and 5 blocks this strategy of negating
P2. But that does not bring us back to the dilemma. There is no dilemma because the
above reasoning is unsound. It is, of course, true that QM, K F_L because K in itself
is contradictory. (To repeat: K cannot be derived from QM but from the assumption
that all observables in a KS set have values that are (i) non-contextual and (ii) respect
functional composition!) But it is, of course, false that QM - prob(X) > 0. The fact
that, for a suitable state, QM for every conjunct of K entails a positive probability
does not mean that QM for the conjunction yields a positive probability. As we all
know, the formalism itself forbids this because K ’s members refer to non-commuting
observables. And, of course, QM - p(K) > 0 would be catastrophic, because K is a
contradiction. (The achievement of Kochen and Specker was not to show, for a KS
set, value assignments to be contradictory, but just to present a concrete KS set. The
contradiction is evident.)

6.2 The Simple Principle (P2)

The trick of blocking (in Sect. 4) the von Neumann response is to ask whether value
ascriptions to § (mentioned in BR and Axiom 5) need to be tagged with a value of the
time-parameter. If the question is answered in the affirmative it is obvious from the
axioms that only one is available: the one that generates the argument against COMP.
But it is the simple principle P2 that prescribes that every value ascription needs a
time-index. So what about P2’s plausibility? Let me first show, from examples, that

6In this case, K will be a conjunction of no less than 18 propositions. See [5, 6].
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this principle is widely accepted in theorizing about QM and then make plausible that
it must be so accepted.

First, the reader should recall, from undergraduate days, the Born Rule for the
wave function according to which “|W (r, r)|>d*r = the probability of finding the par-
ticle at time 7 in the volume element d3r” [26]. In rhis equation, the time-parameter
appears (most reasonably) on both sides. Moreover, since being in d*r is a property
that the particle is said to possess at ¢ (i.e. the parameter refers to the event within the
probability expression) we have a crystal-clear acceptance of P2. General forms of
Axiom 3 or BR are not similarly explicit, but of course representations of QM states
in projection operator or ket-vector form are easily translated into coordinate repre-
sentation [27]. The interpretation of the wave-function just quoted will be recovered
only if BR, in a more general form, respects P2.

Second, consider representations of QM that recast BR in terms of transition prob-
abilities between S’s states [28]. (This approach can be integrated into a full axioma-
tization of the theory [29]. The purpose here is to highlight the parallelism of Hamil-
tonian classical mechanics and QM. From the foundational viewpoint such a treat-
ment has the advantage of combining the essential content of Axioms 4 and 5 into
one axiom, but the disadvantage of leaving implicit the acceptance of EE.) Adapt-
ing the crucial axiom for projection operators, we can specify a QM probability as
follows. Let S’s state be W (t) =P;, for some P}, and let P,, be a yes-no observ-
able corresponding to the question ‘Does S have value a; of A?’, then we write:
p(Pp, Py,) =Tr(Py, Py, ). Now, obviously p(Py, Py,) = p(Py,, Pp), so if Pj, can be
time-dependent, so can be P,,. We have, in effect written out the probability for a
transition from P, to P, (or vice versa) at some time ¢. If this transition does take
place, then, for a time ¢’ immediately after t (concerning ‘immediately after’, we here
once more encounter the unresolved vagueness from Axiom 5), S will be in Py, (¢').
This state-assignment will be an answer to our yes-no question if and only if EE is
adopted, which in turn means that S has a value a; of A at t'. Again, P2 is respected.

Third, consider fully relativistic versions of QM. These versions explicitly treat
space-time events with a time-extension At that can be finite. In this more general
case, we would require a generalized P2 with a definite At for any QM event. In
the present, non-relativistic, formulation we have At = é¢. Here, QM events are just
sharp space-time events in the sense introduced. However, the relativistic general-
izations always contain the limiting case §¢ [30]. For that to be possible, they must
respect an eventual generalization of P2 and, for this limiting case, P2 itself.

The simple principle P2 is also generally obeyed in the QM description of concrete
experiments. A particularly challenging example is a recent correlation experiment
[31-36]. The experiment disproves a certain assumption about the objective time-
order of events we might be inclined to identify as QM events. If this identification
were correct the plausibility of P2 would be cast into doubt. However, a detailed dis-
cussion of the experiment (see Appendix C) shows that no identification of the events
in question as QM events is necessary. Indeed, it can be shown for the QM events
that are addressed in the description (i.e. correlations) that P2 is strictly obeyed. This
discussion also further clarifies the status of this principle. P2 is not a claim added
gratuitously to QM in order to do interpretational work, but the simplest possibility to
meet a consistency requirement. The Born Rule, BR, is vague and P2 just explicates

@ Springer



720 Found Phys (2008) 38: 707-732

a straightforward way to make it precise. It has turned out that P2 has two properties:
first, in conjunction with P1 and trivial assumption N it leads to serious trouble with
COMP; second, it is widely accepted in the literature. We have seen its acceptance
in theory (interpretation of the wave-function, QM formalism with transition prob-
abilities, relativistic generalization of QM). We can also evidence its acceptance in
practice, i.e. in the description of concrete QM experiments. The example chosen is
indeed typical for our practice of confronting QM predictions and their experimental
tests. Of course, factual ubiquity of an assumption does not replace an argument for
its acceptance. It thus remains to argue for P2 systematically.

The simple principle, P2, cannot be proved. However, brief reflection shows that
dismissing it would render QM disastrously vague and empirically useless. The cor-
relation experiment just mentioned illustrates how —P2 would make QM predictions
untestable. This difficulty generalizes. Initially, the main point to keep in mind is this:
QM contains a unique time-parameter. QM with BR’ (i.e. BR disambiguated via P2)
plus COMP, i.e. simple complete QM (scQM), immediately came to grief because
we took a non-eigenstate of some observable A and fixed one value of parameter ¢.
In standard QM we have no second parameter available to tag a statement like ‘a;’
for time, a statement expressing S’s possession of values of an arbitrary A. So, if such
a statement cannot have this value it can have none at all. But this consequence of
—P2 creates nonsense. Consider once more a concrete state W (¢;) for a fixed value #;
and a probability generated from it via ‘p(ax) = Tr(W (¢t1)P,,)’. Assume that in this
equation, because we now reject P2, ‘ay’ is not tagged for time. We explicate a time
reference via a triggering event (‘ p(ay)’ must be read as ‘p(ay given E(t1))’), along
the lines of Sect. 5. We thus have a probability, deriving from W (#1), for S displaying
value a; at some unspecified time. To make any sense of this at all we must add to
our axioms that ‘a;’, though it now must remain unspecified, must nevertheless be
specified at least as referring to some unknown ¢ > ¢. This in itself is an intellectual
challenge. But how do we test the resulting probability? Assume first (reasonably,
again) that our measurement results carry time-indices. E.g. assume that, for some
times 1, t3 with #| < tp < t3, from reading the value of a pointer observable at 73 we
conclude ‘a(t2)’. Does this observation contribute to a test of the probability p(ay),
generated from W (¢1)? Is the unspecified time within ‘p(ay)’, after all a time ¢, with
11 <ty < 1?7 QM simply has no resources to tell us since states are defined for one
time-parameter, not two, and using #; from W(¢#1) is now excluded. Our single mea-
surement result referred to 7, but a single result is only a test instance, a member of
a large set of results for identical copies of S in states W (¢1). Do all results measured
in copies of S have to refer to #, in order to test a prediction generated from W (1) for
the unknown 7, ? Moreover, in the general case QM probabilities are crucially time-
sensitive. Consider a probability generated from a state W (#; + A¢)? Does it also
refer to a value ay that S will ‘take on’ or ‘display’ at unknown #,? Or at t,, + Az?
Does a result measured at 7, also count as a test case for probabilities from this latter
case? Or does a result measured at o + At?

These questions are so obviously asking for the nonsensical that we should not be
misguided to look into QM measurement theory for help. This theory presupposes
that QM probabilities make sense, so cannot help us generating such sense. In par-
ticular, in QM measurement theory quite often we consider the apparatus M and a
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pointer observable B. The axioms hold for this case, too. But then, given —P2, what
does it mean that M is in some state W’(z3) at the end of the measurement interaction?
Does it mean that the probabilities produced from W'(#3) concern pointer values at
some unspecified ¢ > #3? If we read the pointer at a specific time, how does this count
as testing the probabilities? The misguided questions remain just the same. And the
reason for this is that rejecting P2 generates conceptual, not technical problems. If the
OM event for which a prediction is made (the event referred to ‘inside’ the probabil-
ity) and a measurement result, which contributes to a test for the prediction, are not
of the same form, i.e. carry both a time-reference, we do not have a testable theory
before us.

Assume finally (very, very unreasonably) that our measurement results, like the
‘ay’ in our QM probability given —P2, did not carry time-indices. It would, of course,
still be unclear whether or not such results test QM predictions. Moreover, without
a time-index we could not use any observation result to ascribe a state to S via Ax-
ioms 5 or 5'. As emphasized earlier, our measurements could never be state prepara-
tions.

6.3 The General Principle (P3)

I have mentioned two options for making precise the time-reference of ‘p(ay)’ in BR:
‘p(ai(t))’ in concordance with P2 and ‘p(ay given E(¢))’, the alternative discussed
in Sect. 5. I have no argument against further possibilities, but simply see no others.
So whether these two cases exhaust the ways to meet the general principle, P3, is
an open question. That said P3 is simply a consistency requirement. It can be made
plausible with an argument already given. In a mathematical or physical theory using
an equation for some parameter (e.g., time), we must be able to specify that parameter
on both sides for that theory to make mathematical or physical sense. In concreto: an
equation F () = G, where ‘G’ cannot be made explicit to specify in which sense F
is a function of ¢, is not an equation specifying a function of ¢, at all.

6.4 QM Measurement Theory to the Rescue?

A final objection must be discussed. I have just indicated how negating P2 makes
the Born Rule unacceptably vague and empirically useless and how this problem can
affect the measurement apparatus. However, the axioms and principles in my formu-
lation consciously ignore the notion of measurement. One may form the impression
that, because of that ignorance, the problem is either artificially set-up and unrealistic
from the start or is just a quirky way to formulate the well-known measurement prob-
lem. And if the measurement process were taken into account, could the contradiction
perhaps be dissolved?

Initially, it should be emphasized that our problem is not a version of the mea-
surement problem, but a more fundamental conceptual difficulty. Traditionally, the
measurement problem is this. Consider that QM is complete in the sense of COMP.
Consider that the apparatus also is a QM system possessing a QM state. Due to Ax-
iom 3 ( linear state evolution), the system-cum-apparatus supersystem will, in typical
cases, evolve into states that cannot, under COMP, be interpreted as the apparatus
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showing a value of the pointer observable—in contrast with what we really observe.
The present argument shows that COMP and QM are in conceptual disharmony, i.e.
are mutually inconsistent, given very general and reasonable principles. From this
perspective, it is small wonder that ignoring the disharmony and combining COMP
and QM anyway we contract the measurement problem as a further, derived difficulty.

Accordingly, QM measurement theory will certainly not resolve our problem.
Consider, for an illustration, how a standard approach to QM measurement must ei-
ther tamper with the axioms or violate principles P2 and P3. Let us again assume an
A measurement setting and an S in a state W (¢1), a non-eigenstate of A, such that all
A eigenvalues receive non-zero probability. Assume further that f; < f; < f3, where
measurement interaction starts at ¢;, where our approach to QM measurement tries
to establish that S has an A value at #,, and where the pointer is read at 3 (and it
is again immaterial whether t, < 3 or #, = #3). Reading the pointer at 73 will give
us S’s value at #7, thus enabling us to check predictions of QM for #; and blocking
the above considerations concerning P2. Namely, this theory is perfectly testable be-
cause an individual prediction and its test instance refer to the same f,. Interpreted
this way however, the approach illegitimately modifies BR, i.e. the QM axioms. Sup-
pose first that predictions have been generated from W (#;), S’s state at measurement
onset. This state does not have the resources to generate predictions for a specific time
apart from t1, so if t; < t» no predictions for the latter can result. If we nonetheless
assume that predictions for #, can be calculated, via the trace formula, from W (t;) we
must assume reference to two times in this formula. Instead of accepting that stan-
dard QM does not offer two time-parameters we have implicitly furnished BR with a
second one of them—i.e. tampered with it. If, in order to avoid this inconsistency, we
allow that predictions calculated from a QM state do not have to refer to a specific
time, we violate P2 and produce chaos. Our theory is no longer testable and it is no
longer clear how P3 can be met.

Suppose alternatively that predictions do refer to a time #, as before, but have
been generated from a state W(zp), S’s state after some portion of the interaction,
a state where what your favored approach to measurement says about S (S’s state
has decohered, has collapsed, the world described by it has branched into a plural
of worlds, etc.) has happened. Again, the result would be a considerable conceptual
mess. First of all, W(#,) in many approaches differs so crucially from W(¢#;) that
it does not clearly deliver the probabilities that earlier were naively extracted from
W (t1). In particular, W(zp) is either an A eigenstate or a mixture of A eigenstates.
(Modelling how S moves into such a state is the very point of all approaches to
measurement that accept COMP.) An A eigenstate state cannot generate the same
non-zero probabilities we calculated from the non-eigenstate W (¢1), so W (f;) must
be a mixture. This mixture can generate the required probabilities, but only given a
fixed A, not for an arbitrary A. Where before the Born Rule had arbitrary W (¢;) and
arbitrary A as input, now W (1) and A must be chosen, then for the fixed A the A-
eigenstate mixture W (t2) must be calculated—not using Axiom 3 (unitary evolution),
but using your favored measurement theory. Finally, it is that mixture W (t,), rather
than pure W (1), that goes into the trace formula within BR. (For measurement of an
S in pure state W (#1)!) As a result, the Born Rule would no longer be neutral vis-a-vis
interpretations, but relative to a favored measurement theory. More seriously, it would
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again have to be substantially revised as now necessarily mentioning two states of S
with different values of t. We would in effect require that for pure non-eigenstates
it is only certain mixtures constructed from them, but not the pure states themselves
from which to calculate BR probabilities. In particular, we would be saying that if
a system is in pure state W (#;) and is subjected to a measurement starting at f1,
then not from W(#;) itself, but only from the evolved A-eigenstate mixture W (z,),
probabilities may legitimately be calculated. The Born Rule would be deprived of its
general applicability to arbitrary states and, in order to be applicable at all, would have
to mention two states explicitly referring to different times. This again constitutes an
act of tampering with the axioms. And if again we want to avoid this muddle and relax
the condition that measurement outcomes need time-indices, the previous arguments
concerning P2 and P3 apply once more.

Of course, modifying the QM axioms is not in itself objectionable. A problematic
axiom system for a well-working physical theory is never sacrosanct. But changing
the axioms underhand is not a legitimate move. There is an unseen conflict of QM,
as axiomatized here, and COMP, the standard expression of its completeness. To
change the axioms would simply mean to evade the problem by switching to some
other theory—one perhaps, where a physical system is assigned a state with two
independent time-parameters or is assigned two states referring to different times.
Such a theory might be in harmony with COMP, but it would just not be standard
QM.

Knowledgeable readers may wonder about the so-called two-state formalism of
QM here [37-39]. This approach is certainly a non-standard variant of QM and
would, if it prescribed that S’s state is in general a two-state, substantially change
an axiomatization of the theory. So, if the approach did solve the problem raised here
for standard QM, it would do so by replacing standard QM with another formalism.
However, the approach does neither aim to replace the standard formalism, nor does
it solve the present problem. The two-state formalism constructs from an initial state
|\W(;)) (representing S’s history) and a final state |W (¢7)) (representing S’s destiny)
a ‘two-state’ p(¢) that completely describes S at ¢, for #; <t < t7. S thus has a well-
defined two-state given fixed initial and final states. For an unspecified |W(¢y)), the
original Born Rule is recovered. So neither does the approach assume an S state with
two time-parameters that can take different values, nor does it use two S states having
a variable time-parameter and both referring to the past of the predicted measurement
result.

7 Axioms for QM Consistent with the Principles

Since the three principles are without reasonable alternatives and yield contradictions
with our two completeness expressions, the net result is this: It is impossible to ex-
press the completeness of QM by COMP or weak COMP. But amendments to the
axioms, guaranteeing harmony with our principles, are easily made. A set of axioms
for QM respecting P1-P3 will consist of Axioms 1 and 2 above plus Axioms 3*, 4*,
and 5%, specified as follows:
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Axiom 3* S evolves in time according to W(t) = U ()W (tp)U ()" where U(t) =
exp[—iHt], a unitary operator, is a function of time and H is an operator represent-
ing the total energy of S, where tp, some value of t, is called the preparation time,
and W (tp) the prepared state.

Axiom 4* If S is in state W(t) # W(tp) and A is an observable on S, then the
expectation value (A)(t) = f(aa), Hplaw, t))dw is given by: (A)(t) = Tr(W(t)A).

Axiom 5* If S has value ay(t) of A, then t| =tp and S’s state is the state P, (tp).

Some remarks should put these revised axioms in perspective. Axiom 4* specifies
‘(A)(?)’ in accordance with P2. But it does something more. The integral equation in
Axiom 4* serves to clearly specify that QM expectations are just ordinary statistical
expectations, with the qualification that the basis events are sharp space-time events.’
Thus, Axiom 4* explicates that the events, the weights of which enter into the QM ex-
pectation value, are sharp space-time events. For discrete A the expectation becomes
(A)(t) =), ai(t)p(a;(r)) and we directly see that p(ax(r)) = (P4, )(t). Hence, we
arrive at a final, fully explicit and fully satisfactory, version of the Born Rule:

(BR*) If Sisin state W(z) £ W(tp) and A is an observable on S with
eigenvalue ay, then the probability that S has ay at t is:
p(ai(t)) =Tr(W()Pqg).

BR* is the earlier BR’, with the restriction that W (¢p) is not an admissible input.
More explicitly, BR* and Axiom 5* in conjunction rule that if, for some 71, ‘a(t1)’ is
true, for some 71, then no calculation of a number p(ax(t1)) is allowed.? This is not an
implausible restriction. It is reasonable indeed to assume that the factual observation
of an event at a certain time makes it meaningless to calculate any prediction for that
event at that time. Note also that the only axiom making direct reference to the result
of a factual observation, i.e. to an actual sharp spacetime event on S, is Axiom 5*.
Note finally the three crucial virtues of this axiom system: (1) It is absolutely explicit
concerning the time parameter; (2) it does not need to use the notion of measurement
in any sense; (3) it allows us to consistently describe measurements as preparations
because our findings upon measurement can be used, via Axiom 5%, as a new input
for Axiom 3*.

8 An Expression of Completeness

The completeness of QM is embodied in the theorems mentioned: the corollary from
Gleason’s theorem and versions of the Kochen-Specker theorem. We have seen that

7For the relation of QM expectations and statistical expectations, see the discussion in Appendix A.

8Cohen—Tannoudji et al. (see [17] Sect. 3.2) have already made a similar proposal when trying, in their
version of Axiom 5, to explain the meaning of ‘immediately after’. Their version, however, does not
clearly exclude an assignment of two different states to the same time, which would be inconsistent with
Axiom 1.
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COMP is not an admissible way to express the impossibility results incorporated in
these theorems. Our principle P1 embodies the most reasonable idea that probability
is quantified possibility and P2-P3 represent plausible ways to render precise the
imprecise Axioms 1-5. Given these principles, COMP cannot be an expression of the
impossibility results, hence of the sense in which QM can be proved to be complete.
But what is an appropriate expression?

To repeat the first observation of this paper: It is impossible to consistently assign
values to the observables of a suitable QM system, given two plausible constraints.
We will now see that QM, made precise in the sense of Axioms 1-5%, does yield
probabilities for existing values. Hence, it cannot be the idea of assigning existing
values as such, but the one of doing so under conditions (i) and (ii) which we should
interpret as disproved by the completeness theorems. One or both of conditions (i)
and (ii) for the assignment of values must be rejected or modified.

It is easy to see that we have produced a general argument for existing values.
Consider, once more, S being in a state W (#1) # P, (#1) such that p(ay) gets a value
other than 1 or 0, where #; is the onset time of an A-measurement interaction. By
BR*, ‘p(ay)’ is explicated as ‘p(ag(#1))’, the probability that S has ay at ¢, the on-
set time. So W (#1), by our new axioms, collects probabilities for values possessed at
the time of measurement onset, ¢1. This is nothing but the assumption that S has one
of the A-values at #1. The rationale for BR* can be followed back into our principles.
If ‘p(ay)’ does not inherit the index #; it cannot bear any time-index, at all—in con-
tradiction with P2 and in obvious contrast with reasonable requirements for a funda-
mental probabilistic theory of space-time events. If we sacrifice P2 nevertheless and
take the remaining option for explicating a time-reference in ‘p(ax)’,i.e. ‘p(aj given
E (1))’ then no established construal of the conditional can both be coherent and re-
spect P3. Respecting both P2 and P3, we end with BR*. Finally, if ‘ay(¢;)’ receives
a positive probability, as it does in our case, it must be logically possible to assume
it to be true. This is an instance of P1 and says that it must be logically possible to
assume S having a value a; of A at ;.

As a consequence, it cannot be true that QM is complete in the sense that the
QM state W (#;) provides all properties S has at #;. Looking only at the axioms
(here BR*), W(¢;) does nothing but collect probabilities for S’s values at 7. It is
plausible to supplement the axioms with the rule that predictions with certainty en-
tail value ascriptions (i.e. adopting the forward direction of EE: If P, (#;), then
ai(t1)), but it is implausible to bar all other ascriptions. Let A and B discrete,
with values ap, ay, ..., b1, by, ..., and non-degenerate with [A, B] # 0. Let S be
in W(t;) = Py, (11). Then, by the rule just adopted, ‘b (1)’ is true and exactly one of
‘ai(t1)’, ‘ap(ty)’, ... is true. Consider now a set of observables {P} 4 p, that contains
the projectors Py, Pp,, ..., Py, Py,, ... and forms a KS set. What cannot be true,
according to the Kochen-Specker theorem, is that value assignments to all members
of {P}4p do both of these two: (i) mirror the algebraic relations of the members
of {P}4p; (ii) are non-contextual, i.e. are unique for every member of {P}4p. There
are, then, observables A and B such that all of the above assumptions are true, es-
pecially ‘b;(#1)’ is true and exactly one of ‘ai(#1)’, ‘ax(f1)’,... is true, and yet it
cannot be the case that of the P, Py, , ... exactly one receives value 1, the others 0,
and simultaneously, i.e. noncontextually, one of the P, , Py, , ... receives value 1, the
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others 0. In general, we arrive at the following completeness expression for QM: It
is impossible to assign values to the observables of QM systems such that values
of submaximal (degenerate) observables mirror the algebraic relations among these
observables noncontextually.’

It is an open question what contextual value assignments would look like. As
indicated, the context-dependence of pre-assigned values must be one of existing
values rather than one depending on measurement influences on S. The prospects for
this type of contextuality (sometimes called ‘ontological contextuality’) have been
researched in the past [41-45],'° but without much resonance. The present argument
clearly shows that this possibility merits renewed attention.
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Appendix A: Derivation of the Born Rule (BR) from Axiom 4

Trivially, from (A) =Tr(W(¢t)A) and (P, ) = p(ai), we get p(ay =Tr(W(#)Py,).
But does the expectation P,, really equal p(ay), where the latter is interpreted as
the probability that S has ay? Yes, it does—given that a QM expectation can be de-
fined as (A) = f (a(w)p(aw))dw or, for discrete A, as (A) =, a; p(a;) where
these expressions are defined as ordinary statistical expectations. Following such a
definition, the expression of a summand ‘a; p(a;)’ is understood as a real number
representing an event (here S having a;) weighted by the probability of this very
event’s occurrence, i.e. within ‘a; p(a;)’ the two occurrences of ‘a;’ denote the same
event a; (analogously for the ‘a’ in the integrand ‘a p(a)’). Trivially, a QM ex-
pectation can be written like an ordinary statistical expectation. Now, if it is also
interpreted in the same way, then in ‘a; p(a;)’ the first ‘a;’ denotes the event ‘S has
a;’ and within ‘p(a;)’ the ‘a;’ denote that same event. In this case, the formulation
of the Born Rule as BR follows verbatim from Axiom 4. One can of course object
that QM expectations are not ordinary statistical expectations. While we can write
(A) =Y, a; p(a;) (in the discrete case), the summands are not interpretable in the
statistical way just explained. The alternative, suggested by the von Neumann pic-
ture, is this. The expression ‘p(a;)’ means the probability for an event that should

9The necessity to use sets containing submaximal (degenerate) observables to derive a Kochen-Specker
contradiction is well-known since the work reported in [40].

10For a discussion of the approaches in note [41-45] see [1], pp. 135-138.
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be characterized as S ‘taking on’ value a;. This probability, within the summand
‘a; p(a;)’ must weight not that taking-on event itself, but the value taken on, hence
in ‘a; p(a;)’ the two occurrences of ‘a;’ do not refer to the same event—in con-
trast with the statistical definition. But this approach is obviously problematic. What
happens when A is measured for § in an eigenstate of A? There are but two possi-
bilities. Either we interpret ‘p(a;)’ as the probability of S taking on ‘a;’ through-
out, but then we have the unwelcome result that even in a state |a;){a;| S does
not have, but only with certainty take on value a;; or we interpret ‘p(a;)’ differ-
ently for eigenstates (probability of having @;) and non-eigenstates (probability of
taking on a;) of a chosen A. This would mean writing two versions of the Born
Rule, for observables and their eigenstates and their non-eigenstates, respectively.
(I have heard the proposal that von Neumann’s ‘takes on’ should be replaced by the
word ‘displays’, the suggestion being that ‘displays’ is neutral between ‘has’ and
‘takes on’, but this is implausible. By all reasonable readings, an S can only dis-
play (at a specific time) what it has (at the time), so we are back with the simple
proposal given in the main text above that, in BR, ‘p(a;)’ is the probability that S
has a;.)

Appendix B: Derivation of the Probability Principle (P1) from Four
Assumptions

Assume (P1(a)) that contradictions have probability zero; (P1(b)) the conditional
probability formula: p(A A B) = p(A | B)p(B); (P1(c)) that the probability space
for the probabilities delivered by T can be expanded so that p(T) is well-defined;
and (P1(d)) that p(T) > 0. The non-trivial assumption is P1(c). However, it can be
made plausible for all major conceptions of probability. Consider probability being
defined as a subjective degree of belief. (For a meaningful integration of this con-
ception of probability into QM see [12].) Then it is rational to define p(T | A) for
a theory in order to be able to express that 7’s prediction A, if it comes out true,
raises your degree of belief in it: p(T | A) > p(T). However, if p(T | A) is well-
defined, then p(A) and p(T) are well-defined on the same space. Consider, alter-
natively, probability being defined via conditional probabilities understood as ratios
of proportions of logically possible worlds. p(7T') then can be defined as p(T | L)
where L is a logical triviality and p(A | T) is defined, on the same space as p(7T'), as
the ratio of logically possible T-worlds where A is true to all logically possible T -
worlds. Consider, finally, probability being defined as the limiting relative frequency
of possible outcomes in a hypothetical infinite sequence of trials of an experiment.
Let a trial of an ‘experiment concerning 7 be an explicit statement of 7" with pos-
sible ‘outcomes’ True (7 = 1) and Not-true (7 = 0). Then ‘T = 1’ is an outcome
just like the event reported by A. Thus, p(T) can be defined as p(T = 1) on a su-
perspace of the probability space where p(A) lives. Given P1(a—d), the argument for
P1 is very simple. Assume, by P1(c) and P1(d), that p(T) > 0. Assume also that
p(A | T) > 0. Then, by P1(b), also p(A A T) > 0, whence, by P1(a), AA T is not a
contradiction.
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Appendix C: Validity of the Simple Principle (P2) in the Description of a QM
Experiment (Quantum Correlations vs. Multisimultaneity)

The simple principle P2 is generally obeyed in the QM description of concrete ex-
periments. A recent correlation experiment initially seems to cast doubt on P2, but
this impression is spurious. Many experiments evidence correlations of photons from
entangled pairs as predicted by QM. The one in question here is a Franson-type exper-
iment where entangled photons are sent into two identical unbalanced Mach-Zehnder
interferometers [31]. Those pairs of photons for which path detection within the in-
terferometers is impossible will exhibit a characteristic correlation. Now, one can
entertain the classical theory that the photons travel classical paths but one photon’s
‘choice’ of a path behind the photon analyzer (e.g. beam-splitter or polarizer) could
be communicated to the second photon influencing its path. In that theory, correla-
tions can find a classical explanation, i.e. they are explained by a causal influence
of the photon passing the analyzer in one arm of the apparatus earlier to the one
passing the analyzer in the other arm later. In suitable settings such influence would
have to travel superluminally, but an objective temporal ordering of the individual
photon-analyzer interactions allowing a causal explanation of the correlation would
remain possible. The envisaged causal dependence would define a preferred refer-
ence frame since the time-ordering between two space-like separated events is not
relativistically covariant. The preferred frame could be naturally identified with the
inertial frame of the measurement apparatus. This idea has been developed in a theory
called Multisimultaneity [32—-34]. Here, the preferred frame is identified with the one
of the photon analyzer. Accordingly, in a Franson setting with two analyzers there
are two preferred frames (hence the name ‘Multisimultaneity’). However, a device
with analyzers in relative motion can be arranged such that each of the individual
photons in an entangled pair meets its analyzer earlier than the other relative to its
own reference frame. For this experiment, Multisimultaneity predicts that the corre-
lation vanishes—in contrast with QM. The experiment has been carried out and has
confirmed QM [35, 36]. In particular, the possibility of an objective time-ordering of
the individual photons passing the analyzers (as a possible source of a causal expla-
nation of the correlations) is thereby disproved. This result seems to cast doubt on
our simple principle P2 as follows. It might seem unreasonable to require that every
QM event is time-indexed, if such indexing cannot be objective. So, it might not seem
entirely implausible to sacrifice P2.

However, a few remarks will help to put this experiment in perspective and show
that, within its description, P2 is firmly in place. First, recall that the simple princi-
ple P2 makes an assumption only about QM events, i.e. those events for which QM
generates probabilities. Second, consider that in a correlation experiment the only rel-
evant observable is a correlation. A correlation is a two-valued observable, its values
being correlation yes or no, or if correlation is translated into presence at detectors
behind the interferometers, detection yes or no. The two individual QM events are
‘both photons are/are not correlated’ or, when translated into position, ‘both photons
are/are not detected’. These are indeed the only events in the experiment to which
P2 applies. This reflects the fact that the experiment is best interpreted as showing
that a two-particle correlation is one inseparable QM event. Of course, we are free
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to interpret an instance of correlated detector clicks as evidence for the photons both
possessing a certain polarization earlier, i.e. when passing the analyzers. But these
are not the QM events for the experiment in question. In particular, it is Multisimul-
taneity that hypothesizes a particular type of event here, i.e. that both photons pass
the analyzers taking particular paths. For these events, QM by assumption does not
yield predictions because which-path information is complementary to the correla-
tion measured in this experiment. It is the assumption of Multisimultaneity that these
non-QM events, rather than being parts of an indivisible QM event, exist as individual
events with an objective time-ordering. But these events are not QM events and QM,
in the correlation setting, does not yield probabilities for them. So P2, a principle for
disambiguating these probabilities, does not apply to them.

Consider now the QM event proper: the correlation. QM yields predictions for it
given by R(t) = (O|W T r,, )W (xp, )W (rp, 1) W (ry, 1)|0) (Where 1, 1), are the de-
tector locations, W (r,, t), ¥ (rp, t) the fields at detectors A and B, and |0) is the
vacuum state). R(¢) is a probability for correlation (double photon detection) and
it can be tested by measuring the coincidence rate (per time-unit) of double photon
detections. Let’s simplify the real experimental situation and assume that one can
directly count double detections for a finite time interval, some multiple of the time
unit, and calculate the rate for any time within the interval. Now, fix again a value #;
of # such that also W (r,, #1), ¥ (rp, t1) are fixed. Interpret R(#;) as the probability that
at t; two photons are detected at r, rp. This prediction is empirically testable: count
coincidences in a time interval At including #; and compute the coincidence rate for
all times during A¢, including #1. The resulting rate then is an instance of a test of the
prediction R(#1). (A full test would of course require a large set of measured rates for
identical copies of the entangled photons in the same states W (r,, t1), ¥ (xp, #1).) But
from our above considerations of wave-functions we also know that this is an accep-
tance of the simple principle P2. Suppose for contrast that R(¢;) is the probability, a
dispositional property possessed by the whole system at 1, such that two photons are
detected at r,, rp at some unspecified later time. This is a rejection of P2, since the
predicted outcome itself is no longer time-dependent. For testing this prediction we
would need additional theory, e.g. a prescription that the unspecified later time can
be specified at least insofar as the predicted coincidence happens within an interval
very much shorter than A¢. Without such a prescription the prediction would not be
testable. But there is no such prescription in the QM description, yet R(t) is con-
sidered testable because it has actually been tested. Hence, the description of these
experiments implies an acceptance of the simple principle P2.

An additional remark is in order here. If R(#1) is interpreted as the probability that
at t; two photons are detected at r,, r, this may be interpreted as a probability of
simultaneous detection of the two photons. Given the background of an experimen-
tum crucis for QM vs. Multisimultaneity we may then ask: In which reference frame
are these two events simultaneous? While this question is generally legitimate it is
not one that can be answered by QM. (This is pointed out by Suarez and Scarani (see
[30]). They write that a correlation measurement “produces events which are simulta-
neously strictly correlated in space-like separated regions. But in which inertial frame
are these correlated events simultaneous? Quantum mechanics does not answer this
question.”) It would not even be adequate to say that QM treats both photon detections
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as simultaneous, but without explicating the reference frame. If QM yields R(#1) this
is just the probability for the single event of double photon detection at #1, not the
probability for two correlated events of single photon detection both at #;. This was
captured above by distinguishing the correlation as one indivisible QM event from
the single photon detections which are non-QM events because a QM event is one for
which there is a BR probability and R(#1) is a probability just for the correlation. Of
course, from the state W (r, )W (r,, t) of the whole (entangled) two-photon system
we can also produce probabilities p(r,(t)), p(rp(t)) for the detection of a single pho-
ton at r, or rp. Given these probabilities, we can refer to individual detection events
as QM events, namely by choosing values of ¢ for r,(t) and r(¢). It is, of course, a
matter of choice which values to choose and, if we choose the same for both, to fix
a reference frame against which it makes sense to call them simultaneous. But this is
nothing that QM itself can do. Moreover, if R(#1) could be interpreted as a probabil-
ity for two QM events r,(#1) and r,(¢1) (instead of one complex event as done here)
the situation would not be changed substantially. The state would then endow both
events with the same value 71, thus treat them as simultaneous, but the question of the
appropriate frame would still be open. Consider finally two events r,(¢1) and rj(t2)
which are time-like separated, i.e. #; # f» in all inertial frames. We can regard them
as QM events individually because there is a state W (rp, t1) WV (74, t1) such that r,(¢1)
gets a probability p(r,(t1)), and similarly there is a state for p(ry(#2)). It is, how-
ever, impossible to calculate a correlation for these two events for the simple reason
that a correlation is calculated from one state with one time-reference and no single
complex QM event can be named that could be identified with the two QM events
rq(t1) and rp(t2). And if, again R(¢;) could be interpreted as a probability for two
QM events (instead of one), it could not treat the two events r, (¢1) and 5 (¢2) because
we have one parameter ¢ available taking value f1, so unable to have any implications
for an event at #, (and vice versa for R(1)).

These remarks, it should be emphasized, are not intended as steps toward an in-
terpretation of the experiment in question. P2 is not a ‘metaphysical’ claim added to
QM in order to do any interpretational work, hence its addition is not on a par with
attempts to explain correlations of any kind. P2 is not an interpretational addition
to QM, but one of two possible ways to make a time-index explicit for the left side
of ‘p(ay) = Tr(W(t)P,,)’. The second possibility is excluded in Sect. 5, and hav-
ing no time-index on the left is not a consistent option (see Sect. 6.3). So, ultimately
P2 is itself a consistency requirement, not an interpretive feature. Now, P2 implies
(as shown in Sect. 8) that QM measurements must reveal existing values. There are
proposals in the literature for explaining nonlocal correlations using (a) an objective
time-order of certain events and (b) measurements that reveal existing values in QM
systems. (Multisimultaneity is but one such proposal.) How is P2 related to this group
of proposals? Concerning feature (a) P2 has absolutely nothing to say. If the events in
question are non-QM events (e.g. both photons passing the analyzers taking particu-
lar paths in the correlation case) QM will not give them probabilities and P2 does not
apply. If the events are detection events r,(¢) and r,(¢) such that, by BR, they indi-
vidually get probabilities p(r,(¢)) and p(ry(t)), P2 applies to them (rules that any of
these events is individually time-indexed). Choosing the same value #; for both types
of QM events is possible (given a state referring to #1), thus fixing reference to the
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individual events r,(#1) and rp(#1). Likewise it is possible to fix reference to events
rq(t1) and rp(t2) given two different states (referring to #; and o, respectively). It is
possible to fix reference frames such that it makes sense to speak of simultaneity and
it is possible to choose #; and #, such that #, > ¢ in all inertial frames. All this is a
matter of choice and the result a matter of interpretation P2 is entirely tacit about.
By contrast, P2 is not tacit concerning feature (b). As emphasized, the text presents
an argument for the necessity to understand BR via P2 and, in addition, P2 implies
that measurements reveal existing values. The main text thus is an argument for (b),
not just as a feature of explanations of nonlocal correlations, but any interpretation of
QM. But P2, all the other principles and the whole argument are, again, tacit about
what such an interpretation should look like. To repeat: neither giving an interpreta-
tion of QM nor explaining QM effects is the subject of this paper. P2 has the sole
purpose of disambiguating the Born Rule (with respect to the time-index) and it is
the simplest conceivable disambiguation (hence its name ‘simple principle’).
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