Rationalizing Two-Tiered Choice Functions through Conditional Choice

Jeff Helzner

Columbia Univeristy

FFW 2010

Introduction

Choice Functions and Violations of Ordering

Conditional Choice Functions and Synchronic Rationality

Jeff Helzner

0.00 - 1.0

Conditional Choice

Jeff Helzner

Optimize the given index

Select an available alternative that is at least as good as every other available alternative with respect to the given index. Example indices:

- Expected value
- Maximum value
- Minimum value
- · Combinations, e.g. linear combinations, of these.

Optimization

Select an available alternative that is at least as good as every other available alternative with respect to the given binary relation.

Conditional Choice

- Only the ordinal properties of the indices in the previous slide were relevant for optimization.
- Optimization against relation R, often interpreted as weak preference, requires that R is complete in the sense that xRy or yRx for all x, y.

Question: Is there any reason to doubt the appropriateness of optimization for rational agents?

101101 E 121121 E 1000

- Sen (1997) has argued in favor maximization as an alternative to optimization.
- Maximization makes sense even in the presence of incompleteness.
- Maximization coincides with optimization when in the classical situation

Maximization is very general, but also very coarse. We now consider alternatives to optimization in more highly structured situations

Conditional Choice

Indeterminate Probabilities

Subjective expected utility theory assumes that the rational agent's credal state should be representable by a probability measure. Not everyone agrees ...

- Epistemic arguments against the requirement of numerically precise probabilities, e.g. Kyburg (1968), Levi (1974).
- Decision theoretic arguments against numerically precise probabilities, e.g. Ellsberg (1961).

Decision Making under Uncertainty the standard account

Consider the framework of subjective expected utility theory:

- Ω is a finite set of states.
- K is a finite set of consequences.
- The agent's beliefs are represented by a probability measure p on Ω .
- The agent's values are represented by a cardinal utility function u on K

Given a set of acts, i.e. functions from Ω to K, the rational agent is supposed to select an available act f that is optimal with respect to the following index:

$$E_p(f) = \sum_{i \in \Omega} p(i)u(f(i))$$

Decision Making with Indeterminate Probabilities Gardenfors and Sahlin

- O is a finite set of states
- K is a finite set of consequences.
- The agent's beliefs are represented by a nonempty set P of probability measures on Ω .
- The agent's values are represented by a cardinal utility function u on K

Given a set of acts, i.e. functions from Ω to K, the rational agent is supposed to select an available act f that is optimal with respect to the following index:

$$S(f) = \inf\{\sum_{i \in \Omega} p(i)u(f(i)) \mid p \in P\}$$

Conditional Choice

Decision Making with Indeterminate Probabilities Ellsberg

- Q is a finite set of states.
- K is a finite set of consequences.
- The agent's beliefs are represented by a nonempty set P of probability measures on Ω , a distinguished $p_0 \in P$, and parameter value $\lambda \in [0, 1]$.
- The agent's values are represented by a cardinal utility function u on K

Given a set of acts, i.e. functions from Ω to K, the rational agent is supposed to select an available act f that is optimal with respect to the following index:

$$H(f) = \lambda E_{D_0}(f) + (1 - \lambda)S(f)$$

Conditional Choice

Choice Functions and Violations of Ordering

Choice Functions

- X is a set of alternatives
- X is the set of all finite, nonempty subsets of X.
- C: X → X is a choice function on X just in case $C(Y) \subseteq Y$ for all $Y \in \mathcal{X}$.

Example

If R is a complete binary relation on X, then R determines a choice function C on \mathcal{X} via optimization.

$$C_R(Y) = \{ y \in Y \mid yRz \text{ for all } z \in Y \}$$

Decision Making with Indeterminate Probabilities

- Although they allow for indeterminate probabilities, the previous two proposals are compatible with optimization.
- In contrast, the following proposal by Levi is not:
- O K P u as hefore
 - f ∈ Y is E-admissible in Y iff there is some p ∈ P such that
 - $E_n(f) > E_n(a)$ for all $a \in Y$. f ∈ Y is S-admissible in Y iff it is E-admissible in Y and
- S(f) > S(a) for all a that are E-admissible in Y.

Note: E-admissibility may be regarded as a special case of S-admissibility, one in which the second-tier consideration is vacuous

Conditional Choice

Choice Functions and Violations of Ordering Optimization Characterized

It is well known that optimization can be viewed as a fixed point of revealed preference.

- Given $C: \mathcal{X} \to \mathcal{X}$
- Define R_C by xR_Cv iff x ∈ C({x, v}).
- C is given by optimization just in case C = C_{Rc}.

Typically, for rational agents, the generating R is also required to be transitive. It is well known that the class of such C may be characterized in terms of the following properties.

Optimization of Rational Preferences Characterized

C can be represented as optimization of a weak order iff the following conditions hold:

$$\alpha$$
: If $x \in Y \subseteq Z$ and $x \in C(Z)$, then $x \in C(Y)$.

$$\beta$$
: If $Y \subseteq Z, x, y \in C(Y)$ and $x \in C(Z)$, then $y \in C(Z)$.

Conditional Choice

Violations of Ordering S-admissibility

Example (Levi, 1974)

Let P be the set of distributions p on {Red, Yellow, Blue} such that $p(Red) = \frac{1}{3}$, $p(Yellow) = \frac{n}{90}$, and $p(Blue) = \frac{60-n}{90}$ for some natural number $n \le 60$. Consider the following alternatives:

		Red	Yellow	Blue
	е	3	0	3
	f	3	3	0
	g	3 2	3 2	3 2

e is S-admissible in {e, f, a} while a is not. However, a is S-admissible in $\{e, a\}$ while e is not, α is violated.

Violations of Ordering E-admissibility

Example (Levi. 1974)

Let P be the set of distributions p on {Red, Yellow, Blue} such that $p(Red) = \frac{1}{2}$, $p(Yellow) = \frac{n}{90}$, and $p(Blue) = \frac{60-n}{90}$ for some natural number n < 60. Consider the following alternatives:

	Red	Yellow	Blue
е	3	0	3
f	3	3	0
g	3 2	3 2	3 2

f and g are E-admissible in $\{f,g\}$. However, f is E-admissible in $\{e, f, a\}$ but a is not. β is violated.

Choice Functions and Violations of Ordering

Conditional Choice

Other Sources of Indeterminacy

Thus far we have been considering indeterminacy with respect to credal judgments. There are other sources of indeterminacy.

- Levi (1986) presents analogous choice functions in relation to value conflicts
- Helzner (2009) considers analogous choice functions in the context of an indeterminate weighting of attributes in multiattribute decision making.

Two-Tiered Choice Functions The General Case

In light of the previous considerations, Helzner (2008) considers the following qualitative formulation of two-tiered choice:

- Let R be a set of weak orders on X representing first-tier considerations
- Let S be a weak order on X representing second-tier considerations • $v \in C_{\mathcal{P}}(Y)$ iff $v \in Y$ and there is some $R \in \mathcal{R}$ such that
- vRz for all $v \in Y$.
- $y \in C_{\mathcal{D}}^{\mathcal{S}}(Y)$ iff $y \in C_{\mathcal{R}}(Y)$ and ySz for all $z \in C_{\mathcal{R}}(Y)$.

Conditional Choice

Conditional Choice Functions and Synchronic Rationality

Reconsidering the Foundations

- Do choice functions represent enough of the agent to support classification with respect to a given standard of rationality?
- Choice functions simply represent judgments of admissibility across various decision problems.
- Suppose that the agent in credal state P is committed to E-admissibility as a standard of rationality. Shouldn't this commitment extend to its conditional judgment of what it would count as admissible if its credal state were P'?

Attempts at Characterization

It is natural to ask if there is a nice way to characterize those C that are equal to $C_{\mathcal{D}}^{\mathcal{S}}$ for some choice of \mathcal{R} and \mathcal{S} .

- Helzner (2008) shows that there is no such characterization in terms of the extensive list of conditions given in Sen (1977). There are partial results in more highly structured settings.
- Seidenfeld, Schervish, and Kadane (2007) characterize E-admissibility in the act-state framework.

However, since indeterminacy may arise with respect to various antecedent judgments, a general analysis should be possible.

Conditional Choice

Conditional Choice Functions and Synchronic Rationality

Conditional Choice Functions

- X (as before)
- $\mathcal{E} = \langle E, \Box \rangle$ is a nonempty poset. Intuitively, an element of E is a potential result of the antecedent judgment(s) on which admissibility depends, and things higher up in the poset are more determinate.
- $\mathcal{C}: \mathcal{E} \times \mathcal{X} \to \mathcal{X}$ is a conditional choice function on X just in case the following conditions are satisfied for all $x \in X$. $Y \in \mathcal{X}$ and $e \in E$:
 - C(e, Y) ⊂ Y
 - If x ∈ C(e, Y), then there is an f ∈ E such that e □ f and $x \in C(a, Y)$ whenever $f \sqsubseteq a$.

- $X = \{(x_1, x_2, x_3) \mid x_1, x_2, x_3 \in N\}$
- E is the set of all nonempty subsets of $\{(30, n, 60 - n) \mid 0 < n < 60\}.$
- $f \sqsubseteq a \text{ iff } a \subseteq f$.
- $(x_1, x_2, x_3) \in \mathcal{C}(e, Y)$ just in case there is a $(n_1, n_2, n_3) \in e$ such that $\sum_{i=1}^{3} n_i x_i$ is at least as great as $\sum_{i=1}^{3} n_i y_i$ for all $(v_1, v_2, v_3) \in Y$.

Conditional Choice

Jeff Helzner

Conditional Choice Functions and Synchronic Rationality

Basic Relations

- If C: E × X → X is a conditional choice function and $e \in E$, then let C_e be the choice function defined by $C_{\theta}(Y) = C(e, Y)$ for all $Y \in \mathcal{X}$.
- If C is a choice function on X, then let C* be the conditional choice function defined by $C^*(e, Y) = C(Y)$ for all $e \in E$ and $Y \in \mathcal{X}$.

Example 2

- X. E. C (as in Example 1).
- \bullet $(x_1, x_2, x_3) \in \mathcal{D}(e, Y)$ iff • $(x_1, x_2, x_3) \in C(e, Y)$,

 - $\min\{\sum_{i=1}^{3} n_i x_i \mid (n_1, n_2, n_3) \in e\} \ge$
 - $\min\{\sum_{i=1}^{3} n_i y_i \mid (n_1, n_2, n_3) \in e\} \text{ for all } (y_1, y_2, y_3) \in C(e, Y).$

Conditional Choice

Conditional Choice Functions and Synchronic Rationality

Extension of Properties

Every property P of choice functions may be extended to a property P* of conditional choice functions as follows: P^* : For every $e \in E$ there is an $f \in E$ such that $e \sqsubseteq f$ and C_a

satisfies P for all $g \in E$ such that $f \sqsubseteq g$.

Moreover, P^* generalizes P in the following sense:

Proposition: Let C be a choice function on X. Let P be a property of choice functions. C satisfies P iff C* satisfies P*.

Conditional Choice Functions and Synchronic Ratio

Preliminaries

Let $\mathcal{C}: \mathcal{E} \times \mathcal{X} \to \mathcal{X}$ be a conditional choice function.

- For each e ∈ E, let O_e = {R_C, | e ⊑ f}.
- For each e ∈ E, define a binary relation > on X as follows: $x \succ_{e} v$ iff there is a $Y \in \mathcal{X}$ and an $f \in E$ such that e ⊏ f.
 - x ∈ C(e, Y).
 - v ∉ C(e, Y), and
 - $v \in C(f, Y)$.
- Let >^t_a be the transitive closure of >_a.
- Define \succeq_0^t by $x \succeq_0^t v$ iff not $v \succeq_0^t x$.

0.00 - 1.0 Conditional Choice Jeff Helzner

Conditional Choice Functions and Synchronic Rationality

R2

y: If $x \succ_{e}^{t} y$, then there is no Y such that $x, y \in \mathcal{C}(e, Y)$.

Proposition: Let C be a conditional choice function that satisfies α^* , β^* , γ , and such that \succeq_a^t is irreflexive for all $e \in E$. $x \in \mathcal{C}(e, Y)$ iff

- $x \in Y$.
- there is a weak order $R \in O_R$ such that xRy for all $y \in Y$, and
- if $y \in Y$ and, for some weak order $R \in O_{\theta}$, yRz for all $z \in Y$, then it is not the case that $y \succ_{n}^{t} x$.

Moreover, \succeq_a^t asymmetric and transitive.

 α^* : For every $e \in E$ there is an $f \in E$ such that $e \sqsubseteq f$ and C_q satisfies α for all $g \in E$ such that $f \sqsubseteq g$. β^* : For every $e \in E$ there is an $f \in E$ such that $e \sqsubseteq f$ and C_a

satisfies β for all $g \in E$ such that $f \sqsubseteq g$. **Proposition**: Let \mathcal{C} be a conditional choice function that

satisfies α^* and β^* . If $x \in \mathcal{C}(e, Y)$, then there is a weak order $R \in O_{\theta}$ such that xRy for all $y \in Y$.

Jeff Helzner

Conditional Choice

101101 E 121121 E 1000

Conditional Choice Functions and Synchronic Rationality

R3

R₁

Proposition: Let C be a conditional choice function that satisfies α^* , β^* , χ , and such that \succ_{θ}^t is both irreflexive and negatively transitive for all $e \in E$, $x \in C(e, Y)$ iff

- \bullet $x \in Y$.
- there is a weak order $R \in O_0$ such that xRv for all $v \in Y$. and
- if v ∈ Y and, for some weak order R ∈ O_e, vRz for all $z \in Y$, then $x \succeq_{a}^{t} v$.

Moreover, \succeq_a^t is a weak order.