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Structuring Decisions Under Deep Uncertainty∗

Casey Helgeson†

ABSTRACT. Innovative research on decision making under ‘deep uncertainty’ is
underway in applied fields such as engineering and operational research, largely outside
the view of normative theorists grounded in decision theory. Applied methods and tools
for decision support under deep uncertainty go beyond standard decision theory in the
attention that they give to the structuring (also called framing) of decisions. Decision
structuring is an important part of a broader philosophy of managing uncertainty in
decision making, and normative decision theorists can both learn from, and contribute to,
the growing deep uncertainty decision support literature.

1 Introduction

The past decade has seen a rapid expansion of research in the decision sciences aimed at
decision-making contexts characterised by ‘deep uncertainty’. Also called ‘severe’, ‘extreme’,
or ‘great’ uncertainty, deep uncertainty refers loosely to contexts in which decision makers
lack complete information about (or cannot agree on) the probabilities for key contingencies,
the availability of present and future actions, the outcomes to which available actions lead, or
the value of these outcomes (see, e.g., Lempert et al. 2006; Walker et al. 2013). Other
formulations emphasise the complexity of the system on which a policy choice will intervene,
or the richness of the universe of policy options to choose from (Popper 2016). In any case,
the motivating idea is that there are contexts for which orthodox decision theory based on
maximising expected utility—and more broadly, methods that aim for optimal solutions—are
poorly suited because the uncertainties (broadly construed) are, in some sense, too severe.
Here, new approaches to rational decision making are required. Climate change mitigation
and adaptation decisions are common examples, but there are many others including contexts
in finance, defence, resource management, infrastructure planning, and regulation of new
technologies.

A portion of this new research appears in economics or philosophy journals such as Theory
and Decision, Games and Economic Behavior, Econometrica, Journal of Mathematical
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Economics, Economics and Philosophy, Philosophy of Science, and Synthese, and plants itself
firmly in the tradition that philosophers and social scientists know as decision theory.1 A
second and largely separate slice of deep uncertainty decision research comes from more
applied fields like operational research, policy analysis, management science, and engineering.
This work is more likely to be labeled ‘decision analysis’, or ‘decision support’, and appears in
journals such as Risk Analysis, Water Resources Research, Sustainability, Global
Environmental Change, Ecological Applications, EURO Journal on Decision Processes, and
Environmental Modelling and Software.

This more applied branch of research (hereafter ‘deep uncertainty decision support’) is often
tied to the development of best practices in particular areas of application such as climate
change adaptation (Wilby and Dessai 2010; Brown et al. 2012; Ranger et al. 2013; Weaver
et al. 2013) and water resources management (Haasnoot et al. 2011, 2012; Kasprzyk et al.
2012; Kwakkel et al. 2015; Herman et al. 2016). Frequently discussed methods include
Robust Decision Making, Decision Scaling, Info-gap Decision Theory, Adaptive Policymaking,
Adaptive Pathways, Robust Optimisation, and Direct Policy Search. Core contributions to
this literature have come from non-academic (or not purely academic) research centers such
as the RAND Corporation in the United States and Deltares in the Netherlands.

Philosophy has so far paid scant attention to deep uncertainty decision support,2 but there
are several reasons why this ought to change. Deep uncertainty decision support is of great
practical importance to society. Practical methods and tools for supporting decision making
under deep uncertainty are developing quickly and will be used ever more broadly
given—among many other applications—a looming host of climate change adaptation
decisions (Hewitt et al. 2012; American Meteorological Society 2015). These tools are often
technically complex and computationally intensive, making it particularly important that
outside observers equipped to do so ‘look under the hood’ and critique what they see.
Philosophers working in a variety of subfields are well placed to both critique such decision
support tools, and contribute to their further development.

Philosophy may also have much to gain from engaging with deep uncertainty decision
support. Despite residing at the more applied end of the spectrum, research on decision
support is continuous with the (often more theoretical) concerns of philosophers working in
rational choice and adjacent areas of formal epistemology and philosophy of science. Indeed,
some of this applied research appears to be addressing philosophically important questions
about managing uncertainty in decision making that are at present neglected by the
philosophical literature (more on this below). Moreover, in many areas of application, deep
uncertainty decision support is changing the landscape of science-policy interaction over
which philosophical debates such as the role of values in science advising (Douglas 2009,
2016; Steele 2012; Betz 2013) will play out in the future.

The purpose of this paper is to draw attention to this applied literature and encourage

1While economists develop decision models mainly for descriptive purposes, philosophers, policy analysts,
and others evaluate the merits of those models as normative guides or apply them as such. It is only this
normative reading that I address here.

2Mitchell (2009, 85–104) and Sprenger (2012) are two exceptions.
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philosophical engagement with it by lowering some of the disciplinary hurdles that stand in
the way. (And though this paper should not be read as a survey of deep uncertainty decision
support research, I have endeavoured to include enough references for it to serve as a useful
gateway into that literature.)

Anecdotally, factors contributing to deep uncertainty decision support remaining largely off
normative decision theorists’ radar include a number of significant disciplinary barriers
between the two branches of research outlined above, including differences in language,
assumptions, notation, methods, and style. Axiomatisations and representation theorems, for
example, are entirely absent from the applied literature. Even more disorienting, applied
frameworks often lack a discernible decision rule—the method of comparing acts and
determining which is best. There is little talk of rationality, or of what constitutes rational
behaviour. Consequently, researchers versed in decision theory can find themselves puzzled
about what the applied research really contributes to the study of making good decisions.
Here I argue for what I think is (at least part of) the answer.

Real-world decision making is a process comprising several stages. A key division widely
recognised in the decision sciences separates the framing or structuring of the decision from
the subsequent choice task. (The distinction needn’t be sharp, and a process may be iterative,
returning to the framing task after a provisional choice.) The resulting two-stage picture of
decision processes provides a useful schema for locating the applied field of deep uncertainty
decision support with respect to the parallel exploration of deep uncertainty that is based
strictly within the tradition of decision theory. A key difference between the two branches of
research lies in the attention they give to the structuring of decisions. The principal focus of
many deep uncertainty decision support practices is to bring about better decisions through
sound decision structuring. While the importance of structuring is recognised within the
theoretical literature, normative guidance offered on the topic is limited.

In what follows, I briefly review approaches to deep uncertainty decision making in the
decision theory literature, using the formation of the state-consequence matrix as a
convenient marker of the transition between structuring and choosing, and highlighting that
the innovations often thought to adapt decision theory models to contexts of deeper
uncertainty primarily target the choosing phase. I then introduce a selection of five techniques
from the deep uncertainty decision support literature, and explain how the advice contained in
those methods contributes to the structuring of decisions. Bottom-up approaches to decision
making (§3.1), and a specific bottom-up approach called scenario discovery (§3.2), offer
advice on partitioning state spaces. Iterative restructuring (§3.3) of a decision problem is a
common feature of deep uncertainty decision support through which state space partitions
and menus of acts coevolve. Adaptive policymaking (§3.4) and multi-objective robust
optimisation (§3.5) contribute to forming the menu of acts for further consideration.

2 Deep uncertainty in decision theory

Formal decision models of the kind widely used and discussed in the social sciences and in
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philosophy can be applied to a decision only once the problem has been formulated as a
state-consequence matrix (Figure 1), which lists the actions under consideration (acts 1–n)
and exhaustively divides up the different ways that relevant contingencies could play out
(states 1–m). For example, the acts could be bets placed prior to a roll of the roulette wheel,
and the states the slots into which the ball can come to rest. The state-consequence matrix
also associates each act-state pair with a consequence of interest to the decision maker: if
you bet on thirteen and the ball lands there, you win!

state 1 state 2 . . . state m
act 1 c1,1 c1,2 . . . c1,m
act 2 c2,1 c2,2 . . . c2,m

...
act n cn,1 cn,2 . . . cn,m

Table 1: A state-consequence matrix. States 1–m are alternative resolutions to uncertain
contingencies. Consequence ci,j results from choosing act i in state j.

Presupposing such a matrix means starting from the assumption that the decision maker has
already structured the decision in the sense that they have conceived of and articulated all of
the actions worthy of consideration, that they have identified every contingency that matters
to how their action will turn out, and that they have carved up this space of possibilities in a
way that allows them to perceive the possible outcomes of each action.

Building on the foundation of the state-consequence matrix, orthodox decision theory further
supposes beliefs and preferences that are sufficiently rich as to determine a unique probability
distribution over the states and a cardinal utility function over the consequences. In this case,
the rational choice is whichever action produces the most utility on average, weighted by the
probabilities of the states. Agents should, in other words, maximise expected utility.

Other decision rules aim to order the acts rationality-wise for agents with beliefs and
preferences that are sparser, fuzzier, or less tractable than precise probabilities and cardinal
utilities. These approaches to evaluating one’s options can thus be seen as addressing
contexts of deep uncertainty—or at least deeper uncertainty. Appeals to dominance, for
example, can (sometimes) rank options in the absence of any probability-like information.
The same goes for judging acts by their worst-case consequence (minimax). A variety of
approaches represent the agent’s beliefs as a set of probability functions rather than a single
one (Gilboa and Schmeidler 1989; Ghirardato et al. 2004; Binmore 2009; Gilboa and
Marinacci 2013), or a set of probability functions with second-order weights (Gärdenfors and
Sahlin 1982; Klibanoff et al. 2005; Maccheroni et al. 2006; Chateauneuf and Faro 2009) or
other super-structure (Hill 2013, 2016). Analogous moves have also been explored for the
utilities (e.g., Fishburn 1964; Galaabaatar and Karni 2012, 2013; Bradley 2017).

But while these approaches relax traditionally demanding requirements on the richness and
specificity of the decision maker’s attitudes, they continue to rely on the foundation of a
pre-formed state-consequence matrix that defines the objects of those attitudes. That is, they
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assume a decision maker who has already structured the decision before them.3

This is not to say that decision theory has no advice to give about structuring. Formal
decision models make a variety of assumptions about the contents of the state-consequence
matrix—for example, about dependencies between acts, states, and consequences (see, e.g.,
Binmore, 2009, §1.4; Bradley, 2017, §1.2–1.3). When the models are read normatively, these
assumptions can be construed as advice about how one ought to structure one’s decisions.
(For example, structure your decision in such a way that states and acts are probabilistically
and causally independent.) Such advice offers constraints on how one should encode the
decision problem into the form of a matrix so that the mathematics of the subsequently
applied decision rule or value function will work as designed.

Beyond these minimal constraints hard-wired into particular decision-theoretic frameworks,
decision structuring is often considered more art than science. Still, some theoreticians have
offered supplemental qualitative structuring advice that goes beyond the minimal constraints
(some of which will be discussed below). For the purpose of aligning the theoretical and
applied literatures to orient theoreticians within the applied work, structuring advice from
deep uncertainty decision support can be set next to the combined collection of both the
model-based constraints and the supplemental soft structuring advice from the decision
theory side. In order to facilitate deeper comparisons across the literatures, I will gesture at
specific points of contact throughout the following section.

3 Deep uncertainty decision support

Moving on to the applied research in deep uncertainty decision support, I now pick out five
approaches from this literature, in each case highlighting how the approach contributes to the
task of structuring decisions.

3.1 Bottom-up approaches

What has been called the top-down (also scenario-based) approach to climate change
adaptation planning begins by predicting—as best we can—the future climate of a given
region, at the greatest feasible level of detail. This may, for example, take the form of
probabilistic forecasts for a large array of climate variables that might matter to regional or
municipal adaptation planning (like managing a city’s water supply). In light of the forecast,
decision makers devise a menu of planning options and then choose among them. The general
idea is to first understand how the future is likely to unfold, then formulate options around
that understanding.

3Though the literature does also include proposals about how to redistribute probability after minor restruc-
turing of the state space partition (Walker and Dietz 2011; Binmore 2015) and incorporate awareness that a
state space is incomplete (Karni and Vierø 2013, 2014).
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In more explicit decision theoretic terms, the top-down approach begins by delimiting and
partitioning the state space (states 1–m, Table 1), and modelling uncertainty over those
states (for example, by assigning a probability distribution). This much is done on the basis of
scientific understanding and general-purpose modelling of regional climate change, with no
special attention to the particulars of the decision context. The list of acts to be evaluated
(acts 1–n, Table 1) is developed in response to this context-independent structuring of the
state space, with the potential consequences of each act (the ci,j of Table 1) spelled out at a
level of detail determined by the context-independent state space partition.

One difficulty with this approach is that generating the required climate change projections
can be costly and time consuming. Moreover, methodological decisions within the modelling
exercises to generate projections and characterise uncertainty inevitably prioritise accuracy in
some variables over others (Parker 2014; Parker and Winsberg 2018), and within a variable,
some value ranges over others (Garner and Keller 2018). A priori modelling choices may not
line up well with what turns out to matter most to the particular decision at hand.

Another issue is that the uncertainties associated with fine-grained, regional climate change
projections are generally large and difficult to quantify. If decision makers focus on devising
acts to perform well in the most likely futures, and if uncertainties about those futures are
underrepresented (the projections turn out to be overconfident), then decision makers will end
up evaluating an inappropriately narrow set of acts.

Within the climate change adaptation literature, a shift towards bottom-up approaches
(Lempert et al. 2004, 2006; Lempert and Collins 2007; Dessai and Sluijs 2007; Dessai et al.
2009; Wilby and Dessai 2010; Brown and Wilby 2012) has begun to complement the default
top-down approach. A bottom-up approach (also called vulnerability-first, policy-first, or
assess-risk-of-policy) structures the problem starting from an understanding of the specific
decision context rather than the broader climatic conditions under which the chosen action
will ultimately play out.

Specifically, it begins with a well defined objective and a concrete policy option already on the
table. The objective is defined in terms of a measure of policy performance and a critical
threshold that draws a line between adequate and inadequate performance on that measure.
Starting from this objective, one works backwards to work out the climatic (or other external)
conditions under which the stated performance threshold would be reached, were the policy in
question implemented.

Brown et al. (2012) illustrate the approach with a stylised example based on the reservoir
system supplying water to the metropolitan Boston area. The decision concerns whether and
how to expand this reservoir system in light of the changing climate, and the initial policy
option is simply retaining the existing water supply infrastructure as is (i.e., no action). In
this illustration, the performance metric is the system’s reliability, understood as the chance
of fully satisfying water demand in any given year, and the critical threshold is fixed at 95%
reliability (see Brown et al. (2012) for details).

Brown et al. (2012) develop a model of system reliability as a function of annual mean
precipitation and temperature (higher temperatures mean greater loss of water into the
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atmosphere through evaporation and plant transpiration). Working backwards from the
desired performance threshold, they then uncover the climatic conditions that lead to
inadequate policy results. The shaded area in Figure 1 shows the conditions under which
system reliability falls below 95%. (In the non-shaded region, increased precipitation more
than compensates for water loss resulting from higher temperatures.)
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Figure 1: A continuous 2D state space for a municipal water supply management decision. The
diagonal line partitions the space, with the shaded region indicating climatic conditions under
which the existing water supply system would fail to meet a performance goal of 95% reliability.
(Based on Brown et al. 2012, 9)

In decision-theoretic terms, Figure 1 illustrates a partition of the state space. It is a very
simple, coarse-grained partition (only two states), but it is useful for the decision problem at
hand, and tailor-made based on decision makers’ objectives (the performance threshold).
Labeling the two states (shaded and non-shaded) ‘Too Dry’ and ‘Wet Enough’, Table 2
illustrates the role of the partition in structuring the decision problem, as seen through the
decision matrix.
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Table 2: An illustrative decision matrix featuring the state space partition resulting from a
bottom-up vulnerability analysis in Brown et al. (2012).

On this bottom-up approach, it is only this coarse-grained partition over which climate
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services providers, or other science advisors, must venture to assign probabilities (or some
fuzzier assessment of chances). The approach thus reduces the decision process’ demands for
sharp and specific probability information—which may be of suspect quality or trustworthiness
in contexts such as local climate change adaptation. As Brown et al. (2012, 52) explain, ‘The
strategy rests on using the insights from a vulnerability analysis to inform the selection and
processing of the climate model information—to tailor the choice and use of model outputs to
maximize their credibility and utility in the assessment.’

Read as decision-structuring advice, we might see bottom-up vulnerability analyses as offering
a strategy for managing and balancing various uncertainties through smart partitioning. The
credibility of probabilistic climate information overlaid on the state space will generally be
improved by tailoring the scientific assessment to best distinguish between specific
decision-relevant states—and the simpler the partition, the better. But simple partitions also
have a downside: they lead to heterogeneity within consequences (the ci,j of Table 1). No
single reliability number can be assigned to the status-quo policy under the state of the world
‘Too Dry’ because that state encompasses a wide variety of conditions, which lead to different
reliabilities (though all are below 95%). More credible climate inputs thus come at the cost of
greater uncertainty in how to evaluate (e.g., in utility or monetary terms) the miscellaneous
baskets of outcomes now associated with each act under each state of the world.

Bottom-up approaches ride this trade-off all the way down, buying all the climate credibility
they can get, and paying the price in lost capacity to discriminate between outcomes.4 But
they minimise the pain by asking decision makers to prioritise where, along the scale of the
policy performance metric, they wish to retain the capacity to discriminate. When decision
makers declare the performance threshold around which the partitioning exercise is based,
they are saying ‘What matters most to me is whether the policy will do at least this well.’
The procedure then delivers the simplest partition under which consequences can still be
categorised as meeting or failing to meet that goal (but note that this applies only for the
particular policy option from which the analysis began—the partition may be less appropriate
for assessing alternative policies).

While the main purpose of this and subsequent subsections is simply to illustrate the
attention given to the structuring task within the decision support literature, the larger aim of
facilitating engagement with that literature will be furthered by a few (selective, and far too
brief) comments noting elementary points of contact between each method and ideas about
decision structuring familiar within the philosophical literature.

By deliberately inviting decision-relevant heterogeneity into the decision consequences,
bottom-up partitioning as described above disregards Savage’s notion of ‘small world’ decision
making (Savage, 1954, 82–91; Joyce, 1999, §2.6), in which the consequence of an act under a
state should be fully resolved, leaving nothing that is relevant to the valuation of that
outcome unspecified. Coarsening states to the point of introducing such heterogeneity can be

4Bottom-up approaches to partitioning, and the robustness-based decision support frameworks in which they
are typically embedded, also have wider consequences for modelling strategies and distribution of resources within
climate change modelling intended to inform decision-making (see Dessai and Hulme 2004; Dessai and Sluijs
2007; Weaver et al. 2013).
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thought of as relocating uncertainty from the states to the consequences; Bradley and
Drechsler (2014) discuss this and other such accounting manoeuvres, with associated
trade-offs, in more careful decision-theoretic terms.

Setting aside the extreme simplicity of the partition seen above (just two states), the process
for drawing the line between them also defies decision theory orthodoxy. Bottom-up framing
offers a quantitative partitioning tool driven directly by the decision maker’s aims (the
performance threshold). The mechanism that translates the performance threshold into a
state space partition is the initial policy option, and the resulting partition is, in this way,
policy-relative. In normative discourse in and around decision theory, it generally goes without
saying that no rational decision process would prejudge a matter by framing the decision in a
way that privileges one act (e.g., the status quo) over others. Bottom-up framing displays a
willingness to compromise on this desideratum. (A bit more on this in §3.3.)

While the Brown et al. (2012) example concerns partitioning a space of fixed dimensions
rather than adding and subtracting new dimensions to that space, the rationale for
bottom-up, threshold-based partitioning explored above shares some similarities with
Bradley’s (2017, §1.2) discussion of choosing which and how many factors (dimensions) to
include through balancing the ‘quality’ gained by including more factors against the
‘efficiency’ lost through the time and effort taken to make associated additional—and perhaps
more difficult—judgements.

The method discussed next simultaneously addresses both the inclusion or exclusion of factors
in a state space and the number and placement of the partitioning lines drawn within that
space.

3.2 Scenario discovery

A technique called scenario discovery (Lempert et al. 2006; Groves and Lempert 2007; Bryant
and Lempert 2010; Hall et al. 2012; Lempert 2013) builds on the bottom-up approach, giving
additional advice on partitioning the state space in contexts where a large number of external
factors interact, sometimes in complex ways, to influence how a policy choice will play out.
Such contexts present two complications for bottom-up analyses. First, complex interactions
make it unlikely that any simple border (like the straight line in Figure 1) will separate the
combinations of external factors that lead to adequate policy outcomes from those that don’t.
Instead, pockets of good and bad policy performance may be scattered across the many
dimensions of the state space. Second, applicable computational models are often simulations
that cannot be solved analytically, meaning the partition line(s) can be found only by running
the model at a finite number of points, observing the results, and interpolating where the line
might be.

Scenario discovery addresses the computational issue by sampling points evenly across the
space of external factors (as densely as computational constraints will allow), then calculating
(simulated) policy outcomes at these points—providing an imperfect but useful view of policy
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performance across that space.5 To address complexity, a data-mining algorithm is applied
that seeks to find a small number of relatively simple borders that separate, for the most part,
the combinations of external factors leading to inadequate performance from those leading to
adequate performance. The resulting regions are the ‘scenarios’, and each scenario becomes a
state in the partition.6

One software instantiation of scenario discovery (Bryant and Lempert 2010) seeks box-shaped
regions that can be described using only a small number of the original dimensions, but which
contain a large proportion of the bad policy outcomes and few of the good ones. To achieve
this, the algorithm jointly maximises what its authors call interpretability, density, and
coverage. Simply-defined boxes (and few of them) are easier for human decision makers to
get their heads around (interpretability). And the more homogeneous the boxes (density), the
better the simple partition will reflect the more complex underlying picture of policy
performance across the space of external factors. Added together, the boxes should cover a
large proportion of the total number of bad outcomes (coverage) so that few of these are left
floating in the space between boxes. The three desiderata typically compete, so a choice must
be made by the user regarding how much of one at the expense of the others.

Groves and Lempert (2007) illustrate scenario discovery with an application to water supply
management in the South Coast hydrological region of California. For simplicity, the authors
focus on uncertainties in urban sector water demand, holding fixed other considerations
(including climate). They use a model of urban sector water demand that includes 16
uncertain inputs, including demographic, behavioural, and economic variables affecting water
usage. These inputs form a 16-dimensional state space to be partitioned through scenario
discovery.

The authors consider a fixed menu of 24 management strategies (acts) consisting of different
combinations of new supply projects and improvements to efficiency. One of these acts—the
best option based on California Department of Water Resources demand projections—is
privileged as the base case strategy. Policies were evaluated using an aggregate cost measure
on simulations run from the year 2000 to 2030. In contrast to the previous example, the
performance threshold used in this application was comparative rather than absolute:
performance of the base case strategy at each sampled point in the state space was judged a
success if no other strategy outperformed it (on the cost measure) by more than a chosen
amount. (In other words, a regret threshold was used.)

The data-mining algorithm then searches for boxes encompassing clusters of such policy
failure. From among the options presented by the algorithm (which differ in the weight given
to interpretability, density, and coverage) the authors chose the two boxes/scenarios shown in

5Bryant and Lempert (2010) use Latin Hypercube sampling within limits given by expert judgement of upper
and lower bounds for each dimension in the space.

6Here, a scenario is a precisely defined region within the space of external conditions. Other uses of
‘scenario’ in the decision support literature understand scenarios as points within that space (e.g., Schwartz,
1996; Rounsevell and Metzger, 2010; Carlsen et al., 2013, 2016a, 2016b). Point-scenarios do not partition a
space, though they can be understood to structure the decision in a looser sense that is not captured by the
notion of structuring used in this paper (establishing the state-consequence matrix).
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Figure 2 as the best overall representation of the conditions under which the base case policy
fails to perform adequately. (In the scenario labeled ‘Soft Landing’, the policy over-invests,
resulting in excess supply; the opposite happens under ‘Rapid Growth’.) The two boxes
constrain only 3 of the original 16 dimensions (interpretability) and together encompass 75%
of the simulations resulting in policy failure (coverage); their densities are 63% and 61%
respectively.
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Figure 2: Scenarios generated through application of the scenario discovery method to a stylised
water supply management problem (based on Groves and Lempert 2007, 80). Boxes indicate
combinations of external factors that lead to policy failure.

These two boxes then become states in a partition, along with a third state for the leftover
catch-all region in which the base case policy is largely successful (Table 3). Like the simpler
case of bottom-up partitioning describe above (§3.1), it is only through this partition that
probabilistic information is then applied to the decision problem (see Figure 5 in Groves and
Lempert, 2007; also Figure 8 in Hall et al., 2012).
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Table 3: A decision matrix with state space partition produced through scenario discovery
(based on Groves and Lempert 2007, 82). Symbols ‘−’ and ‘+’ indicate states in which the
base case strategy largely fails/meets the stated performance threshold.
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As a variation on the general strategy of bottom-up decision structuring, much of the closing
discussion from §3.1 applies here to scenario discover as well. But the complications presented
by complex interactions and computational constraints also bring new considerations to the
discussion of rationale.

We saw in §3.1 how simple partitions create broad-brush consequences that obscure
decision-relevant heterogeneity (such as the difference between 90% and 30% reliability).
Consequences under a scenario-discovered partition are even harder to get a grip on, as they
encompass variation not only within one of the two value categories supplied by decision
makers (either above or below the threshold), but even across that threshold. For example,
while the ‘Rapid Growth’ state in Figure 2 is to be interpreted as a state of the world under
which the base case policy fails to meet decision makers’ performance goal, its density is only
61%, meaning that 39% of the simulations run at points within that state satisfied that
policy goal. And the combined coverage of the two scenarios is only 75%, meaning that 25%
of the simulated policy failures happened within the leftover catch-all state that is understood
to characterise conditions under which the base case policy succeeds.

Why accept such a representation of the problem? These compromises result from projecting
the state space into just 3 of its original 16 dimensions, and drawing only a few simple
borders within that reduced space; together these choices make for a more interpretable
partition. The rationale for valuing interpretability appeals to a number of cognitive benefits
for decision makers (Bryant and Lempert 2010, 35, 44).

The density and coverage numbers are, moreover, only estimates of the true (according to the
model) coverage and densities, based on what may be a relatively sparse sampling of the state
space (in the CA water demand example, 500 points are spread over 16 dimensions). This
makes for additional uncertainty about exactly what outcomes are lumped under a given
consequence within the decision matrix. And while this particular uncertainty can be reduced
by applying more computing power, the computational demands can be significant and
limiting (Bhave et al. 2016). Just how great those demands are (or on a fixed computing
budget, how densely the state space can be sampled) of course depends on the choice of
system model to be used in the analysis. So from a bigger-picture perspective, the
compromises struck within an application of scenario discovery are also linked—through the
mediating currency of computational cost—to an array of pros and cons associated with
simpler versus more complex models, and their influence on interactions between scientists,
analysts, decision makers, and stake-holders (Vezér et al. 2018).

Turning back to flagging points of contact with the philosophical literature, scenario
discovery—and bottom-up approaches in general—can be contrasted with the idea, expressed,
e.g., by Joyce (1999, 70–73), of the deliberation involved in structuring decisions as a process
of refinement wherein each step of deliberation further subdivides the state space (and thus
the consequences). Scenario discovery proceeds in the opposite direction, moving from a
continuous, high-dimensional proto-state space to a simple and discrete, low-dimensional
partition, deliberately disregarding detail that has been explicitly considered.

Discrete partitions can differ in level of detail either through finer/coarser division of a fixed
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number of dimensions, or by including/excluding whole factors (dimensions). The §3.1
example of bottom-up partitioning included only the former, while scenario discovery also
addresses the latter. The advice that scenario discovery gives can be contrasted with the
suggestion of Bradley and Steele (2015) and Bradley (2017, §1.2) that severity of uncertainty
should be a consideration in choosing which factors to explicitly represent within the state
space (they say the more uncertainty about the true value of a factor, the lower its priority
for representation in the state space). Narrowly construed, scenario discovery prioritises
dimensions from its proto-state space with no regard for severity of uncertainty; all that
matters is whether a given dimension is used within the best overall representation of
conditions separating failure from success for the base case policy.

But taking into account the broader context within which scenario discovery operates, the
bigger-picture procedure does pay heed to something like severity of uncertainty. Bounds on
each dimension are set by expert judgement, where more uncertainty about the true value
may translate to wider bounds in that dimension. And wider bounds will tend to make the
variation explored along that dimension by the sampling procedure more important to
explaining variance in policy success. Factors that are more uncertain are, therefore,
somewhat more likely to end up represented explicitly in the recommended state space
partition—the opposite of Bradley and Steele’s (2015) advice.

Whether divergent structuring recommendations lead to contradictory advice about the
ultimate decision depends on what goes on in the other parts in the decision process,
including, for example, how heterogeneity within a decision consequence is treated in the
valuation of that consequence. And if structuring can in some sense be optimised for a
particular decision rule (or vice versa), then norms for deciding and structuring are not
independent, and one reason for clashing advice on the structuring phase might be
contrasting ideas about the decision rule to be applied once the problem has been
structured.7 Another reason for divergent advice on setting up the state space may be that
facilitating the immediate evaluation and comparison of acts is not the only purpose of a
state-space partition—which brings us to the next topic.

3.3 Iterative restructuring

In the §3.2 illustration of scenario discovery, the menu of acts was fixed from the start. But
this needn’t be the case. Indeed, helping to develop new policy options to be included on the
menu is an important secondary aim of bottom-up structuring approaches. This is particularly
explicit within the broader framework of Robust Decision Making (Lempert et al. 2006;
Lempert and Collins 2007; Dessai and Sluijs 2007), where scenario discovery reveals the
combinations of conditions under which a given policy fails to meet the decision makers’
performance goal, and consideration of these conditions can then help decision makers to
devise improvements or variants on that policy, or lead them to previously unconceived

7Bradley and Steele (2015) have in mind a decision model from Walker and Dietz (2011), while §4.1.2 of
Hall et al. (2012) gives the flavour of the deciding norms promoted within Robust Decision Making—the broader
framework within which scenario discovery has been developed and deployed.
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alternative actions. So deep uncertainty decision support also includes advice about
constructing policy options (acts 1–n, Table 1) to be considered and evaluated, marking
another contribution to the decision-structuring task.

Editing the menu of acts may in turn motivate re-partitioning of the state space, either
because a new policy is highlighted as the base case policy, or because decision makers
employ a regret-based performance threshold (as in the §3.2 example), in which case changes
to the lineup of alternative policies may redefine the conditions under which the existing base
case policy is sufficiently outperformed by some alternative in order to count as a policy
failure. Such iterative reformulating and restructuring of decision problems is typical of
applied decision analysis in general (Phillips 1984; Clemen and Reilly 2013), though may be
even more central to decision support aimed specifically at contexts of deeper uncertainty
(compare, e.g., the process flowchart of Weaver et al. (2013, 46) with that of Clemen and
Reilly (2013, 9)).

Steps within such iterative restructuring routines fall under what (Peterson 2009, 33–35) calls
‘transformative decision rules’, rules for transforming one’s representation of the decision
problem rather than for solving the problem by picking an action.

As noted above, the partitions illustrated in both §3.1 and §3.2 privilege one act (the ‘base
case’, or default policy) above the others, carving up the state space to reveal what matters
most to the success of this privileged act, and potentially hampering the ability of a decision
rule—or a less formal human judgement process—to even-handedly assess the value of the
alternatives vis-à-vis the base case. One reply to the charge of bias is that through iterative
restructuring of the problem, decision makers are exposed to a number of different
representations of the decision problem (with different acts granted this privileged status, and
correspondingly different state space partitions), each showing a different and potentially
valuable perspective. This multiple-framings reply sits uncomfortably with the strong
presumption within decision-theory commentary (e.g., Joyce 1999, 70) that any deliberation
over problem structure will eventually settle on a single, definitive representation of the
problem before proceeding to assessment.

3.4 Adaptive policymaking

An approach called Adaptive Policymaking (Walker et al. 2001; Kwakkel et al. 2010) goes
even further to facilitate the policy-generation side of decision structuring. Adaptive
Policymaking is a qualitative, step-by-step framework for developing and implementing a
particular type of policy option, namely adaptive policies, or policies that can evolve and
respond to changing conditions as uncertainties begin to resolve over time. Adaptive
Policymaking is a form of iterative risk management (Morgan et al. 2009) and builds on the
idea that some decisions are better served by a strategy of monitor-then-react rather than
predict-then-act (Walker et al. 2013).

The policy-generation phase of Adaptive Policymaking prescribes a series of concrete steps for
further developing, and building alternatives to, a promising basic policy option (Walker et al.
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2001). Analysts first identify the conditions under which the basic policy will succeed, as well
as its potential adverse consequences—the latter called vulnerabilities (a somewhat different
usage from §3.1). For vulnerabilities that are certain to occur, mitigating actions can be
added to the basic policy to be put in place immediately upon implementation. For those that
may or may not materialise, hedging actions can be added to reduce exposure or cushion
potential impacts.

Kwakkel et al. (2010) illustrate these ideas with an application to strategic planning for
Amsterdam’s Schiphol Airport, a major aviation hub in the European Union. In the face of
uncertain developments in the aviation sector and deteriorating wind conditions due to climate
change, airport managers aim to maintain or expand their share of European air traffic while
minimizing negative local impacts such as noise and air pollution. Here, a basic policy option
might be to tweak operations of the existing runway system to increase capacity and reduce
noise impacts, while also starting work on an additional runway and terminal.

Regarding vulnerabilities, the new runway will certainly increase noise, so managers should
build into the plan mitigating actions such as investing in noise insulation or offering financial
compensation to affected residents. Uncertain vulnerabilities include the possibility of the
national carrier (KLM) shifting its main hub from Schiphol to Paris Charles de Gaulle;
managers should hedge against this by diversifying carriers.

Policy generation under the Adaptive Policymaking framework continues with the
development of a monitoring scheme and designation of critical levels—called triggers—at
which pre-specified contingency plans will be activated. For example, emissions from the fleet
serving Schiphol might be monitored, with an emissions increase of more than 10% triggering
a rise in landing fees for environmentally unfriendly planes.

By building in the monitoring scheme and contingency plans, as well as the hedging and
mitigating actions, a basic policy option is remodeled into a new (adaptive) policy option not
previously considered by decision makers, thereby contributing to the decision-structuring task
by generating new (and better) policy options (acts 1–n, Table 1) to be considered and
evaluated.8

The question of where acts come from is largely neglected both in decision theory itself and in
commentary around the theory. Consequently, there is little within the more theoretical
literature against which to compare or contrast the act-development advice offered by
Adaptive Policymaking. The mere fact of treating acts as concrete courses of action that a
person might plan and enact marks a departure from the decision-theoretic approach to acts
as featureless abstractions mapping states of the world to consequences.9 Indeed, positing the

8See Walker et al. (2001) and Kwakkel et al. (2010) for more details and additional steps in the Adaptive
Policymaking framework. Further developments of the basic ideas of Adaptive Policymaking include a computer-
assisted approach to adaptive policy design (Kwakkel et al. 2012, 2015) and an expanded, hybrid approach called
Dynamic Adaptive Policy Pathways (Haasnoot et al. 2013; Kwakkel et al. 2015) that is the result of incorporating
elements of Adaptive Policymaking into the Adaptation Pathways (Haasnoot et al. 2011, 2012; Ranger et al.
2013) decision support framework.

9Case-based decision theory (Gilboa and Schmeidler 2001) is an exception to this and many other generali-
sations about decision theory.
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availability of all logically possible mappings (Savage 1954) makes the formulation of a list of
acts an automatic side-effect of other structuring choices. For some theoreticians, this may
tend to obscure the reality that devising a menu of acts can be an important part of
structuring real decisions. In practice, after all, ‘I cannot choose it if I do not think of it’
(Baron 2008, 62).

One tenuous point of contact in the philosophical literature is Hansson’s (1996; 2005)
discussion of what he calls demarcation uncertainty, one aspect of which is the unfinished list
of acts. But Hansson’s suggestions address a higher-level decision about how to proceed in
the face of a stubbornly unfinished list of options rather than how to go about improving the
list; they include going with the options you have, and postponing the decision while looking
for more—perhaps implementing a temporary fix in the meantime.

3.5 Multi-objective robust optimisation

While Adaptive Policymaking begins from a single policy and builds out constructively,
another approach is to cast a wide net over a broad class of policy options and then narrow
down from there. A common approach to this second sort of problem—widely practised in
engineering and operational research—is optimisation. To narrow down through optimisation,
a solution space is described precisely in mathematical terms, and an objective function is
defined that evaluates performance at each point in the solution space. Optimisation then
consists in finding the point(s) in solution space that maximise the objective function. To
map this language onto a decision problem, let the solution space be a space of possible acts
and the objective function a formula by which those acts will be evaluated. For example, the
solution space might be all possible allocations of a fixed sum of money across a number of
investments and the objective function might be the expected return on investment.

While the term ‘optimisation’ suggests a unique solution, this need not be the case, in
particular where there are multiple objectives. Within decision theory, a standard approach to
multiple objectives (multi-criteria decision theory) expresses each objective in a common
currency (such as utility)—or otherwise weights the objectives relative to one
another—thereby combining them into a single all-inclusive score. But if multiple objectives
are instead kept separate and incommensurable (an approach sometimes called a posteriori
decision support, or generate-first-choose-later ; see Herman et al. 2015, and references
therein), then solutions can be only partially ranked. In this case, the goal of optimisation is
to identify the Pareto optimal set of solutions: those that are not dominated (worse on every
objective) by any other solution (Figure 3). Finding the Pareto optimal set within a solution
space produces a set of acts for further consideration and evaluation—one of the tasks
required to structure a decision.

Where individual objectives quantify concrete consequences of a decision, identifying the
Pareto set requires knowing the true state of the world. Where objectives are expectations,
probabilities must be assigned to states. Robust optimisation instead defines the objectives as
performance measures across a specified range of possible futures (Gabrel et al. 2014), often



17

Obj. 1 Obj. 2 Obj. 3

act 1
act 2
act 3
act 4

Figure 3: An illustrative Pareto optimal set of acts in a multi-objective decision problem. No
act is beaten by another on every objective.

with no appeal to probabilities.

For example, Quinn et al. (2017) seek to optimise the operating procedures for a group of
four interconnected reservoirs on the Red River basin in Vietnam. Here, an operating
procedure is a mathematical formula describing how much water is released by each reservoir
on any given day, based on the current water levels in each reservoir, the level of water
flowing into the system, and the day of the year. The combinatorics of four reservoirs, six
inputs, and a dozen candidate functional forms means that specifying a single operating
procedure requires fixing each of 176 decision variables.

Within this vast space of possible procedures (the acts between which managers must
choose), Quinn et al. (2017) identify the Pareto set with respect to three competing
objectives: hydropower production, agricultural water supply, and flood protection for the city
of Hanoi—which is downstream from the reservoirs. Each of these three objectives is
quantified as a performance measure across a large ensemble of simulated water inflows
designed to represent a range of conditions that might be experienced. On one formulation,
each metric was evaluated as the first percentile performance across 1000 simulations; in
other words, each operating procedure was judged only as good as its tenth-worst
performance (on hydropower production, agricultural water supply, and flood protection) in
1000 simulated trials, none of which is assumed more probable than any other.

The Pareto set to emerge of course depends on methodological choices made in the process
of completing such an exercise, including delineation and structuring of the space of potential
acts, and the choice of objectives to be maximised. Indeed, a central point of the Quinn et al.
(2017) study is to demonstrate that even subtly different formulations of the optimisation
problem can yield significantly different Pareto sets.

In one form or another, multi-objective robust optimisation is used to identify Pareto optimal
sets of policy options—and thus to structure subsequent stages of decision making—within
Robust Decision Making (Lempert et al. 2006), Dynamic Adaptive Policy Pathways (Kwakkel
et al. 2015), Many-Objective Robust Decision Making (MORDM, Kasprzyk et al. 2013;
Hadka et al. 2015), Direct Policy Search (Quinn et al. 2017), and other decision support
frameworks (Herman et al. 2015).

Dominance is, of course, a familiar idea within decision theory, as is the advice to narrow
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down one’s options by removing dominated acts. Note, however, that the implementation of
dominance reasoning in the Quinn et al. (2017) example differs from state dominance (equal
or better utility in every state of the world), stochastic dominance (equal or better probability
for every utility minimum), and multi-objective dominance under certainty (equal or better on
each of several ways to value a sure outcome). Each of Quinn et al.’s objectives is akin to a
separate decision rule that integrates and weighs up both belief-like information, in the form
of the ensemble of simulations, and value-relevant information, e.g., hydropower performance,
in a way that dominance reasoning generally avoids.

From a decision-theoretic perspective, decision structuring is merely a precursor to the main
event of imposing rationality constraints on the choice problem. But while multi-objective
robust optimisation performs a task central to decision structuring (identification of the acts),
this is not to say that the resulting menu of acts is typically fed to a decision-theoretic model
for further evaluation. Subsequent evaluation of acts may consist of informal deliberation on
what constitutes the best trade-off between the objectives used to define the Pareto set.

On the other hand, multi-objective robust optimisation can be viewed from another
perspective by labelling different parts of the procedure as the structuring and the choosing.
The initial parameterization of the full space of potential acts, as well as the generation of the
ensemble of simulated external conditions, might already be viewed as structuring, while the
subsequent dominance reasoning with respect to the three objective functions constitutes
choosing. Yet a decision maker who gets only this far on the problem may still be very far
from having made a choice.

More broadly, structuring that is not intended to prepare the ground for a formal decision
model raises questions about the compatibility of methods for structuring and for choosing
that are drawn from different literatures or research traditions. Different methods may draw
the line between the two tasks in different places, or disagree about which bits of the overall
decision process should be targeted with tools and theories, and which are best left to less
structured deliberation. Deeper incompatibilities might result from fundamentally different
underlying visions of the decision making process (see, e.g., Zeleny, 1989; Hansson, 2005, §3)
or of the proper role of analysts and models within that process (see, e.g., Tsoukiàs
2008).

4 Conclusion

There is broad recognition, across many areas of science and policy, of a need for better
normative guidance for decision making in situations of severe uncertainty. As the formalisms,
suppositions, and disciplinary practices of decision theory are stretched to acknowledge and
address this need, there is, I suggest, an important point deserving of more attention: The
deeper the uncertainty, the more of what is most difficult about the decision problem is in the
structuring. At any rate, this is a conclusion that might be drawn from observing where the
greatest efforts are being made within the more applied branch of deep uncertainty decision
research referred to here as ‘deep uncertainty decision support’.
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Decision structuring can be done well or done poorly, and it is possible to give sound advice
about how to do it better. Greater appreciation that this is what (among other things) the
applied methods offer may help clarify the contributions that these methods make to the
broader study of managing uncertainty and making good decisions. Normative theorising
about decision making that aims for relevance in contexts of deep uncertainty might look to
the decision support literature for ideas and salutary challenges on the topic of decision
structuring, and as a counterbalancing influence to decision theory’s comparative focus on the
choice task.

The rationales given or implied in the design and evaluation of deep uncertainty decision
support tools draw on a fluid and sometimes un-differentiated mix of considerations, including
intuitive standards of rationality or reasonableness, but also tractability and computational
cost of the required modelling and analysis, domain-specific considerations of the relevant
scientific modelling and prediction, the cost-effectiveness of a decision analyst’s time, and the
comfort, affect, and cognitive limitations of decision makers. There is room for more rigorous
interrogation of these rationales and of the normative foundation behind them, including the
navigation of trade-offs made among competing considerations, in both the structuring and
the choosing tasks, and in the integration of the two.
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exploration of scenario spaces. Foresight 18(1), 59–75.

Carlsen, H., R. Lempert, P. Wikman-Svahn, and V. Schweizer (2016). Choosing small sets of
policy-relevant scenarios by combining vulnerability and diversity approaches. Environmental
Modelling & Software 84, 155–164.

Chateauneuf, A. and J. H. Faro (2009). Ambiguity through confidence functions. Journal of
Mathematical Economics 45(9), 535–558.

Clemen, R. T. and T. Reilly (2013). Making hard decisions with DecisionTools. Cengage Learning.

Dessai, S. and M. Hulme (2004). Does climate adaptation policy need probabilities? Climate
policy 4(2), 107–128.

Dessai, S., M. Hulme, R. Lempert, and R. Pielke (2009). Do we need better predictions to adapt to a
changing climate? EOS, Transactions American Geophysical Union 90(13), 111–112.

Dessai, S. and J. P. Sluijs (2007). Uncertainty and climate change adaptation: A scoping study.
Copernicus Institute for Sustainable Development and Innovation, Department of Science
Technology and Society.

Douglas, H. (2009). Science, policy, and the value-free ideal. University of Pittsburgh Press.

Douglas, H. (2016). Values in science. In P. Humphreys (Ed.), The Oxford Handbook of Philosophy of
Science, pp. 609–630. Oxford University Press.

Fishburn, P. C. (1964). Decision and value theory. Wiley.

Gabrel, V., C. Murat, and A. Thiele (2014). Recent advances in robust optimization: An overview.
European journal of operational research 235(3), 471–483.

Galaabaatar, T. and E. Karni (2012). Expected multi-utility representations. Mathematical Social
Sciences 64(3), 242–246.

Galaabaatar, T. and E. Karni (2013). Subjective expected utility with incomplete preferences.
Econometrica 81(1), 255–284.

Gärdenfors, P. and N.-E. Sahlin (1982). Unreliable probabilities, risk taking, and decision making.
Synthese 53(3), 361–386.

Garner, G. and K. Keller (2018). When tails wag the decision: The role of distributional tails on
climate impacts on decision-relevant time-scales. manuscript.

Ghirardato, P., F. Maccheroni, and M. Marinacci (2004). Differentiating ambiguity and ambiguity
attitude. Journal of Economic Theory 118(2), 133–173.

Gilboa, I. and M. Marinacci (2013). Ambiguity and the Bayesian paradigm. In Advances in Economics
and Econometrics, Tenth World Congress, Volume 1.



21

Gilboa, I. and D. Schmeidler (1989). Maxmin expected utility with non-unique prior. Journal of
mathematical economics 18(2), 141–153.

Gilboa, I. and D. Schmeidler (2001). A theory of case-based decisions. Cambridge University Press.

Groves, D. G. and R. J. Lempert (2007). A new analytic method for finding policy-relevant scenarios.
Global Environmental Change 17(1), 73–85.

Haasnoot, M., J. H. Kwakkel, W. E. Walker, and J. ter Maat (2013). Dynamic adaptive policy
pathways: A method for crafting robust decisions for a deeply uncertain world. Global
environmental change 23(2), 485–498.

Haasnoot, M., H. Middelkoop, A. Offermans, E. Van Beek, and W. P. Van Deursen (2012). Exploring
pathways for sustainable water management in river deltas in a changing environment. Climatic
Change 115(3-4), 795–819.

Haasnoot, M., H. Middelkoop, E. Van Beek, and W. Van Deursen (2011). A method to develop
sustainable water management strategies for an uncertain future. Sustainable Development 19(6),
369–381.

Hadka, D., J. Herman, P. Reed, and K. Keller (2015). An open source framework for many-objective
robust decision making. Environmental Modelling & Software 74, 114–129.

Hall, J. W., R. J. Lempert, K. Keller, A. Hackbarth, C. Mijere, and D. J. McInerney (2012). Robust
climate policies under uncertainty: A comparison of robust decision making and info-gap methods.
Risk Analysis 32(10), 1657–1672.

Hansson, S. (2005). Decision theory: A brief introduction.

Hansson, S. O. (1996). Decision making under great uncertainty. Philosophy of the social
sciences 26(3), 369–386.

Herman, J. D., P. M. Reed, H. B. Zeff, and G. W. Characklis (2015). How should robustness be
defined for water systems planning under change? Journal of Water Resources Planning and
Management 141(10).

Herman, J. D., H. B. Zeff, J. R. Lamontagne, P. M. Reed, and G. W. Characklis (2016). Synthetic
drought scenario generation to support bottom-up water supply vulnerability assessments. Journal
of Water Resources Planning and Management 142(11).

Hewitt, C., S. Mason, and D. Walland (2012). The global framework for climate services. Nature
Climate Change 2(12), 831.

Hill, B. (2013). Confidence and decision. Games and Economic Behavior 82, 675–692.

Hill, B. (2016). Incomplete preferences and confidence. Journal of Mathematical Economics 65,
83–103.

Joyce, J. M. (1999). The foundations of causal decision theory. Cambridge University Press.

Karni, E. and M.-L. Vierø (2013). “Reverse Bayesianism”: A choice-based theory of growing
awareness. The American Economic Review 103(7), 2790–2810.

Karni, E. and M.-L. Vierø (2014). Awareness of unawareness: A theory of decision making in the face
of ignorance. Technical report, Queen’s Economics Department Working Paper.



22

Kasprzyk, J. R., S. Nataraj, P. M. Reed, and R. J. Lempert (2013). Many objective robust decision
making for complex environmental systems undergoing change. Environmental Modelling &
Software 42, 55–71.

Kasprzyk, J. R., P. M. Reed, G. W. Characklis, and B. R. Kirsch (2012). Many-objective de novo water
supply portfolio planning under deep uncertainty. Environmental Modelling & Software 34, 87–104.

Klibanoff, P., M. Marinacci, and S. Mukerji (2005). A smooth model of decision making under
ambiguity. Econometrica 73(6), 1849–1892.

Kwakkel, J., M. Haasnoot, and W. Walker (2012). Computer assisted dynamic adaptive policy design
for sustainable water management in river deltas in a changing environment. International
Environmental Modelling and Software Society.

Kwakkel, J. H., M. Haasnoot, and W. E. Walker (2015). Developing dynamic adaptive policy
pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain
world. Climatic Change 132(3), 373–386.

Kwakkel, J. H., W. E. Walker, and V. Marchau (2010). Adaptive airport strategic planning. European
Journal of Transport and Infrastructure Research (EJTIR), 10 (3), 2010 .

Lempert, R. (2013). Scenarios that illuminate vulnerabilities and robust responses. Climatic
Change 117(4), 627–646.

Lempert, R., N. Nakicenovic, D. Sarewitz, and M. Schlesinger (2004). Characterizing climate-change
uncertainties for decision-makers. Climatic Change 65(1), 1–9.

Lempert, R. J. and M. T. Collins (2007). Managing the risk of uncertain threshold responses:
comparison of robust, optimum, and precautionary approaches. Risk analysis 27(4), 1009–1026.

Lempert, R. J., D. G. Groves, S. W. Popper, and S. C. Bankes (2006). A general, analytic method for
generating robust strategies and narrative scenarios. Management science 52(4), 514–528.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006). Ambiguity aversion, robustness, and the
variational representation of preferences. Econometrica 74(6), 1447–1498.

Mitchell, S. D. (2009). Unsimple truths: Science, complexity, and policy. University of Chicago Press.

Morgan, M. G., H. Dowlatabadi, M. Henrion, D. Keith, R. Lempert, S. McBride, M. Small, and
T. Wilbanks (contributing authors) (2009). Best practice approaches for characterizing,
communicating and incorporating scientific uncertainty in climate decision making. A report by the
climate change science program and the subcommittee on global change research, National Oceanic
and Atmospheric Administration.

Parker, W. (2014). Values and uncertainties in climate prediction, revisited. Studies in History and
Philosophy of Science Part A 46, 24–30.

Parker, W. S. and E. Winsberg (2018). Values and evidence: How models make a difference.
European Journal for Philosophy of Science (8), 135–142.

Peterson, M. (2009). An introduction to decision theory. Cambridge University Press.

Phillips, L. D. (1984). A theory of requisite decision models. Acta psychologica 56(1), 29–48.

Popper, S. W. (2016). What is decision making under deep uncertainty and how does it work?
Conference presentation, Annual Meeting of the Society for Decision Making under Deep
Uncertainty.



23

Quinn, J., P. Reed, M. Giuliani, and A. Castelletti (2017). Rival framings: A framework for discovering
how problem formulation uncertainties shape risk management trade-offs in water resources
systems. Water Resources Research 53(8), 7208–7233.

Quinn, J. D., P. M. Reed, and K. Keller (2017). Direct policy search for robust multi-objective
management of deeply uncertain socio-ecological tipping points. Environmental Modelling &
Software 92(Supplement C), 125–141.

Ranger, N., T. Reeder, and J. Lowe (2013). Addressing ‘deep’ uncertainty over long-term climate in
major infrastructure projects: Four innovations of the Thames Estuary 2100 project. EURO Journal
on Decision Processes 1(3-4), 233–262.

Rounsevell, M. D. and M. J. Metzger (2010). Developing qualitative scenario storylines for
environmental change assessment. Wiley Interdisciplinary Reviews: Climate Change 1(4), 606–619.

Savage, L. J. (1954). The Foundations of Statistics. New York: John Wiley & Sons.

Schwartz, P. (1996). The Art of the Long View: Planning in an uncertain world. Currency-Doubleday,
New York.

Sprenger, J. (2012). Environmental risk analysis: Robustness is essential for precaution. Philosophy of
Science 79(5), 881–892.

Steele, K. (2012). The scientist qua policy advisor makes value judgments. Philosophy of
Science 79(5), 893–904.
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