
The Expressive Power of Modal Dependence
Logic

Lauri Hella 1 Kerkko Luosto 1 Katsuhiko Sano 2

Jonni Virtema 1

1School of Information Sciences
University of Tampere

2School of Information Science
Japan Advanced Institute of Science and Technology

Abstract

We study the expressive power of various modal logics with team semantics. We show
that exactly the properties of teams that are downward closed and closed under team
k-bisimulation, for some finite k, are definable in modal logic extended with intu-
itionistic disjunction. Furthermore, we show that the expressive power of modal logic
with intuitionistic disjunction and extended modal dependence logic coincide. Finally
we establish that any translation from extended modal dependence logic into modal
logic with intuitionistic disjunction increases the size of some formulas exponentially.
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1 Introduction
Dependence is a central notion in many scientific disciplines. For example in
physics there are dependences in experimental data. Decision theory is con-
cerned with identifying the variables on which the result depends. Furthermore,
dependences between attributes is a key notion in database theory. In order
to express such dependences in a formal framework, Väänänen [16] introduced
first-order dependence logic. Dependence logic is based on team semantics,
in which the truth of formulas is evaluated in sets of assignments instead of
single assignments. Team semantics was originally defined by Hodges [10] as
a means to obtain compositional semantics for the independence-friendly logic
of Hintikka and Sandu [9].

1 The research of Lauri Hella was partially funded by a Professor Pool grant awarded by the
Finnish Cultural Foundation. The research of Jonni Virtema was supported by grant 266260
of the Academy of Finland, and grants by the Finnish Academy of Science and Letters and
the University of Tampere.
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for Young Scientists (B) 24700146.
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With the aim to import dependences and team semantics to modal logic
Väänänen [17] introduced modal dependence logic MDL. In the context of
modal logic a team is just a set of states in a Kripke model. Modal dependence
logic extends standard modal logic with team semantics by modal dependence
atoms, =(p1, . . . , pn, q). The intuitive meaning of the formula =(p1, . . . , pn, q)
is that within a team the truth value of the proposition q is functionally deter-
mined by the truth values of the propositions p1, . . . , pn.

Modal dependence logic is a first step toward combining functional depen-
dences and modal logic. The logic however lacks the ability to express temporal
dependences, only propositional dependences can be expressed. This is due to
the restriction that only proposition symbols are allowed in the dependence
atoms of MDL. To overcome this defect Ebbing et al. [3] introduced the
extended modal dependence logic, EMDL, which is obtained from MDL by
extending the scope of dependence atoms to arbitrary modal formulas, i.e., de-
pendence atoms in EMDL are of the form =(ϕ1, . . . ϕn, ψ), where ϕ1, . . . , ϕn, ψ
are ML formulas.

In recent years the research around modal dependence logic and other modal
logics with team semantics has been active, see e.g. [3,4,5,6,12,13,15,18]. An
important logic, closely related to modal dependence logic, is modal logic with
intuitionistic disjunction, ML(>). It was already observed by Väänänen [17]
that dependence atoms can be defined by using the intuitionistic disjunction >.
Using this observation Ebbing et al. [3] showed that in terms of expressiveness,
EMDL is contained in ML(>). However, it was left open, whether the con-
tainment is strict, or whether EMDL andML(>) are actually equivalent with
respect to expressive power.

Team semantics is also meaningful in the context of purely propositional
logics. Propositional dependence logic was extensively studied in the recent
Ph.D. thesis of Fan Yang [18]. As pointed out in [18], propositional depen-
dence logic is closely related to the inquisitive logic of Groenendijk [8] (see
also [2,14]). Like in the team semantics of propositional dependence logic, in
inquisitive logic the meaning of formulas is defined on sets of assignments for
proposition symbols. Ciardelli [1] proved that inquisitive logic is expressively
complete in the sense that every downward closed property of teams (over a
finite set of proposition symbols) is definable by a formula of inquisitive logic.
Thus, we can say that the set of connectives used in inquisitive logic is complete
in the same spirit as, e.g., {¬,∧} is a complete set of connectives for proposi-
tional logic. Fan Yang [18] proved that the same expressive completeness result
holds for propositional dependence logic, and consequently, inquisitive logic and
propositional dependence logic are equivalent with respect to expressive power.

It is well known that the expressive power of modal logic can be charac-
terized via bisimulation: by the famous result of Gabbay and van Benthem,
a class K of pointed Kripke models (K,w) is definable by a formula of modal
logic if and only if K is closed under k-bisimulation, for some k ∈ N. In this pa-
per we prove a joint extension to this characterization and the characterization
of the expressive power of inquisitive logic and propositional dependence logic
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mentioned above. We first define a canonical extension of bisimulation suitable
for team semantics, called team bisimulation. Then we show that a class K of
of pairs (K,T ), where K is a Kripke model and T is a team, is definable by a
sentence ofML(6) if and only if K is downward closed and closed under team
k-bisimulation, for some k ∈ N.

Furthermore, we show that the expressive power of EMDL coincides with
that of ML(>), thus answering the open problem from [3] mentioned above.
In particular, we obtain as a corollary that the expressive power of EMDL is
also characterized by downward closure and closure under team k-bisimulation.
Since team k-bisimulation is a natural adaptation of k-bisimulation to the con-
text of team semantics, this result shows that EMDL can be regarded as a
canonical extension of modal logic for expressing dependences between formu-
las.

In addition, we introduce two semantical invariants for formulas ofML(>)
and EMDL, which we call lower dimension and upper dimension, respectively.
We show that the truth of a formula in a team of a Kripke model can be
determined by checking its truth on subteams of a fixed size n. The lower
dimension of the formula in question is the least n ∈ N such that this holds.
Thus, lower dimension gives rise to a natural classification of formulas with
respect to their semantical complexity, and we believe that it can also be used
for analyzing the computational complexity of the model checking problem of
modal formulas.

The upper dimension of a formula is defined as the largest number of max-
imal teams satisfying the formula in any fixed Kripke model. We prove that
the lower dimension of any formula is less than or equal to its upper dimension.
Moreover, we show that the upper dimension admits well-behaved composition-
ally defined estimates. These estimates are very useful in establishing upper
bounds for lower dimension as well, since finding good estimates for the lower
dimension directly seems to be difficult.

Finally, we use the upper dimension for proving that any translation from
EMDL intoML(>) increases the size of some formulas exponentially. To prove
this, we show that the upper dimension of a dependence atom =(p1, . . . , pn, q)
is 22n , while the upper dimension of anyML(>)-formula ϕ is at most 2d, where
d is the number of occurrences of > in ϕ.

2 Background
In this section we first give the syntax and team semantics for the modal logics
studied in the paper. We then formulate the notions of definability and expres-
sive power in team semantics. Finally we recall the basic results concerning
bisimulation and definability in the context of standard Kripke semantics.

2.1 Modal logics with team semantics
The syntax of modal logicML could be defined in any standard way. However,
when we consider the extension of ML by dependence atoms, it is useful to
assume that all formulas are in negation normal form, i.e., negations occur only
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in front of atomic propositions. Thus, we define the syntax ofML as follows:
Definition 2.1 Let Φ be a set of proposition symbols. The set of formulas of
ML(Φ) is generated by the following grammar

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 3ϕ | 2ϕ,

where p ∈ Φ.
In this article we consider three extensions of ML: modal logic with in-

tuitionistic disjunction ML(>), modal dependence logic MDL, and extended
modal dependence logic EMDL.
Definition 2.2 (i) The syntax of modal logic with intuitionistic disjunction

ML(6)(Φ) is obtained by extending the syntax of ML by the grammar
rule

ϕ ::= (ϕ6 ϕ).
(ii) The syntax for modal dependence logicMDL(Φ) is obtained by extending

the syntax of ML by dependence atoms

ϕ ::= =(p1, . . . , pn, q),

where p1, . . . , pn, q ∈ Φ.
(iii) The syntax for extended modal dependence logic EMDL(Φ) is obtained

by extending the syntax of ML by dependence atoms

ϕ ::= =(ψ1, . . . , ψn, θ),

where ψ1, . . . , ψn, θ are ML-formulas.
The notion of Kripke model is defined as usual. Thus, if Φ is a set of

proposition symbols, a Kripke model K over Φ is a triple K = (W,R, V ),
where W is a set of states or (possible) worlds, R ⊆ W ×W is an accessibility
relation, and V is a valuation V : Φ→ P(W ).

The semantics ofML is usually defined on pointed Kripke models. We write
K,w |= ϕ if ϕ ∈ ML(Φ) is true in w ∈ W according to the standard Kripke
semantics. However, to give a meaningful semantics for dependence atoms and
intuitionistic disjunction, we need to consider arbitrary sets of states instead
of single states as points of evaluation.
Definition 2.3 Let K = (W,R, V ) be a Kripke model.
(i) Any subset T of W is called a team of K.

(ii) For any team T ⊆ W we write R[T ] = {v ∈ W | ∃w ∈ T : wRv} and
R−1[T ] = {w ∈W | ∃v ∈ T : wRv}.

(iii) For teams T, S ⊆W we write T [R]S if S ⊆ R[T ] and T ⊆ R−1[S].
Thus, T [R]S holds if and only if for every v ∈ S there is w ∈ T such that

wRv, and for every w ∈ T there is v ∈ S such that wRv. We are now ready to
define team semantics for the modal logics studied in this paper.
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Definition 2.4 The semantics forML,ML(6),MDL, and EMDL is defined
as follows.

K,T |= p ⇔ T ⊆ V (p).
K, T |= ¬p ⇔ T ∩ V (p) = ∅.

K, T |= ϕ ∧ ψ ⇔ K,T |= ϕ and K,T |= ψ.

K, T |= ϕ ∨ ψ ⇔ K,T1 |= ϕ and K,T2 |= ψ

for some T1, T2 such that T1 ∪ T2 = T .

K, T |= 3ϕ ⇔ K,T ′ |= ϕ for some T ′ such that T [R]T ′.
K, T |= 2ϕ ⇔ K,T ′ |= ϕ, where T ′ = R[T ].

For ML(6) we have the following additional clause:

K,T |= ϕ6 ψ ⇔ K,T |= ϕ or K,T |= ψ.

For MDL and EMDL we have the following additional clause:

K,T |= =(ψ1, . . . , ψn, θ) ⇔ ∀w, v ∈ T :
n∧
i=1

(K, {w} |= ψi ⇔ K, {v} |= ψi)

implies (K, {w} |= θ ⇔ K, {v} |= θ).

Note in particular that =(θ) is a formula saying that the truth value of θ is
constant in the given team: K,T |= =(θ) if and only if either K, {w} |= θ for
all w ∈ T , or K, {w} 6|= θ for all w ∈ T .

The team semantics for basic modal logicML can be reduced to the usual
Kripke semantics in the sense that a team T satisfies a formula ϕ if and only
if every state in T satisfies ϕ:
Proposition 2.5 ([15, Theorem 1]) Let K be a Kripke model, T a team of
K, and ϕ an ML(Φ)-formula. Then

K,T |= ϕ ⇔ K,w |= ϕ for every w ∈ T.

In particular, K, {w} |= ϕ ⇔ K,w |= ϕ.

2.2 Definability and expressive power
A Φ-model with a team is a pair (K,T ), where K is a Kripke model over Φ and
T is a team of K. We denote by KT (Φ) the class of Φ-models with teams. If L
is one of the logics ML,ML(>),MDL, EMDL, then each formula ϕ ∈ L(Φ)
defines a class of Φ-models with teams:

‖ϕ‖ := {(K,T ) ∈ KT (Φ) | K,T |= ϕ}.

A class K ⊆ KT (Φ) is definable in L, if there is a formula ϕ ∈ L(Φ) such that
K = ‖ϕ‖.

If L s a logic whose semantics is defined on Kripke models with teams, then
the expressive power of L is just the collection of classes ‖ϕ‖, ϕ ∈ L, that are
definable in L. Accordingly, the expressive power of two such logics L and L′
can be compared as follows:
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• L′ is at least as expressive as L, L ≤ L′, if for every ϕ ∈ L(Φ) there is
ψ ∈ L′(Φ) such that ‖ϕ‖ = ‖ψ‖.

• L is less expressive than L′, L < L′, if L ≤ L′, but L′ 6≤ L.
• L and L′ are equally expressive, L ≡ L′, if L ≤ L′ and L′ ≤ L.

Clearly ML ≤ MDL ≤ EMDL. Väänänen [17] gave a translation from
MDL toML(>), and extending this translation to EMDL, it was proved in [3]
that EMDL ≤ML(>). Furthermore, it is easy to see that dependence atoms
are not definable in ML, and in [3] it was proved that the non-propositional
dependence atom =(3p) is not definable inMDL. Summing up, the following
relationships between the logics ML, MDL, EMDL and ML(>) are known:
Proposition 2.6 ([3]) ML <MDL < EMDL ≤ML(>).

Moreover, it was proved in [3] that EMDL ≡ ML(>ML), where
ML(>ML) is the fragment ofML(>) that does not allow nesting of the intu-
itionistic disjunction >. However, it was left as an open problem in [3] whether
the expressive power of EMDL is strictly weaker than that of ML(>).

For any formula ϕ ∈ L(Φ), the class ‖ϕ‖ can be seen as its global meaning.
But it is also useful to consider the meaning of formulas locally, i.e., with respect
to a fixed Kripke model. For any Kripke model K = (W,R, V ) over Φ, each
formula ϕ ∈ L(Φ) defines a set of teams of K:

‖ϕ‖K := {T ⊆W | K,T |= ϕ}.

Note that it follows from Proposition 2.5 that the set ‖ϕ‖K is downward
closed for all ϕ ∈ML:

(∗) if T ∈ ‖ϕ‖K and S ⊆ T , then S ∈ ‖ϕ‖K .

Although Proposition 2.5 fails for the extensions ML(>), MDL and EMDL
ofML, downward closure still holds for all of these logics. We say that a logic
L is downward closed if (∗) holds for every formula ϕ ∈ L.
Proposition 2.7 ([17],[5]) The logicsMDL, EMDL andML(>) are down-
ward closed.
Proof For MDL and ML(>), downward closure was proved in [17] and [5].
For EMDL, the claim follows from the fact that EMDL ≤ML(>). 2

2.3 Bisimulation and definability in Kripke semantics
It is well known that the expressive power of basic modal logicML with respect
to Kripke semantics can be completely characterized in terms of k-bisimulation.
Our aim is to give an analogous characterization for the expressive power of
ML(>) and EMDL. For this purpose we need some basic concepts and results
related to k-bisimulation.

The modal depth md(ϕ) of a formula of ML(Φ) is defined in the obvious
manner, i.e., md(p) = md(¬p) = 0 for p ∈ Φ, md(ϕ ∧ ψ) = md(ϕ ∨ ψ) =
max{md(ϕ),md(ψ)}, and md(3ϕ) = md(2ϕ) = md(ϕ) + 1.
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A pointed Φ-model is a pair (K,w) such that K is a Kripke model over Φ,
and w is a state in K. Let k be a natural number, and let (K,w) and (K ′, w′)
be pointed Φ-models. We say that (K,w) and (K ′, w′) are k-equivalent, in
symbols K,w ≡k K ′, w′, if for every ϕ ∈ML(Φ) with md(ϕ) ≤ k

K,w |= ϕ ⇔ K ′, w′ |= ϕ.

Definition 2.8 Let k ∈ N, and let (K,w) and (K ′, w′) be pointed Φ-models.
We write K,w � k K ′, w′ if (K,w) and (K ′, w′) are k-bisimilar. The k-
bisimilarity relation � k can be defined recursively as follows:
• K,w � 0 K

′, w′ if and only if the equivalence K,w |= p⇔ K ′, w′ |= p holds
for all p ∈ Φ.

• K,w � k+1 K
′, w′ if and only if K,w � 0 K

′, w′, and
- for every v ∈ R[w] there is v′ ∈ R′[w′] such that K, v � k K

′, v′, and
- for every v′ ∈ R′[w′] there is v ∈ R[w] such that K, v � k K

′, v′.
(Here R[w] is a shorthand notation for R[{w}]. Thus, v ∈ R[w] ⇔ wRv.)

A class K of pointed Φ-models is closed under k-bisimulation if it satisfies
the following condition:
• (K,w) ∈ K and K,w � k K

′, w′ implies that (K ′, w′) ∈ K.
We will also make use of the fact that for every pointed Φ-model (K,w) and

every k ∈ N there is a formula that characterizes (K,w) completely up to k-
equivalence. These Hintikka formulas (or characteristic formulas) are defined
as follows (see e.g. [7]):

Definition 2.9 Assume that Φ is a finite set of proposition symbols. Let
k ∈ N and let (K,w) be a pointed Φ-model. The k-th Hintikka formula χkK,w
of (K,w) is defined recursively as follows:
• χ0

K,w :=
∧
{p | p ∈ Φ, w ∈ V (p)} ∧

∧
{¬p | p ∈ Φ, w 6∈ V (p)}.

• χk+1
K,w := χkK,w ∧

∧
v∈R[w] 3χ

k
K,v ∧2

∨
v∈R[w] χ

k
K,v.

It is easy to see that md(χkK,w) = k, and K,w |= χkK,w for every pointed
Φ-model (K,w). Moreover, the Hintikka formula χkK,w captures the essence of
k-bisimulation:

Proposition 2.10 Let Φ be a finite set of proposition symbols, k ∈ N, and
(K,w) and (K ′, w′) pointed Φ-models. Then

K,w ≡k K ′, w′ ⇔ K,w � k K
′, w′ ⇔ K ′, w′ |= χkK,w.

The characterization for the expressive power ofML with respect to Kripke-
semantics can now be stated as follows:

Proposition 2.11 (van Benthem, Gabbay) Assume that Φ is a finite set
of proposition symbols. A class K of pointed Φ-models is definable in ML if
and only if there is k ∈ N such that K is closed under k-bisimulation.
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3 ML(>) and team bisimulation
In this section we prove a characterization for the expressive power ofML(>).
This characterization is based on a natural adaptation of the notion of k-
bisimulation to logics with team semantics.

3.1 Bisimulation in team semantics
We start by defining k-bisimulation in the context of team semantics; the defi-
nition is directly based on the k-bisimulation relation � k for Kripke semantics.
Definition 3.1 Let (K,T ), (K ′, T ′) ∈ KT (Φ) and k ∈ N. We say that K,T
and K ′, T ′ are team k-bisimilar and write K,T [� k] K ′, T ′ if

(i) for every w ∈ T there exists some w′ ∈ T ′ such that K,w � k K,w
′, and

(ii) for every w′ ∈ T ′ there exists some w ∈ T such that K,w � k K,w
′.

It is well known that K,w � k K
′, w′ implies K,w �n K

′, w′ for all n ≤ k.
Using this it is easy to prove that the same holds also for team k-bisimilarity:
Lemma 3.2 Let (K,T ), (K ′, T ′) ∈ KT (Φ) and k ∈ N. If K,T [� k] K ′, T ′,
then K,T [�n] K ′, T ′ for all n ≤ k.

We say that a class K ⊆ KT (Φ) is closed under team k-bisimulation if it
satisfies the condition:
• (K,T ) ∈ K and K,T [� k] K ′, T ′ implies that (K ′, T ) ∈ K.

The next lemma shows that team k-bisimulation satisfies the natural coun-
terparts of the back-and-forth properties that we used in defining � k, as well
as a couple of other useful properties related to team semantics.
Lemma 3.3 Let k ∈ N, and assume that (K,T ), (K ′, T ′) ∈ KT (Φ) are such
that K,T [� k+1] K ′, T ′. Then
(i) for every S s.t. T [R]S there is S′ s.t. T ′[R′]S′ and K,S [� k] K ′, S′;
(ii) for every S′ s.t. T ′[R′]S′ there is S s.t. T [R]S and K,S [� k] K ′, S′;

(iii) K,S [� k] K ′, S′ for S = R[T ] and S′ = R′[T ′];
(iv) for all T1, T2 ⊆ T s.t. T = T1 ∪T2 there are T ′1, T ′2 ⊆ T ′ s.t. T ′ = T ′1 ∪T ′2,

and K,Ti [� k+1] K ′, T ′i for i ∈ {1, 2}.
Proof (i) Assume that T [R]S. We define

S′ := {v′ ∈ R′[T ′] | ∃v ∈ S : K, v � k K
′, v′}.

We will first show that K,S [� k] K ′, S′. By the definition of S′, we have
∀v′ ∈ S′∃v ∈ S : K, v � k K

′, v′. On the other hand, if v ∈ S, then there
is w ∈ T such that wRv. Furthermore, since K,T [� k+1] K ′, T ′, there is
w′ ∈ T ′ such that K,w � k+1 K

′, w′, whence by the definition of � k+1, there
is v′ ∈ W ′ such that w′R′v′ and K, v � k K

′, v′. By the definition of S′, v′ is
in S′. Thus we see that ∀v ∈ S∃v′ ∈ S′ : K, v � k K

′, v′.
To see that T ′[R′]S′ holds, note first that S′ ⊆ R′[T ′] by its definition.

Assume then that w′ ∈ T ′. Since K,T [� k+1] K ′, T ′, there is w ∈ T such
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that K,w � k+1 K
′, w′. Furthermore, since T [R]S, there is v ∈ S such that

wRv, and consequently there is v′ ∈ R′[w′] such that K, v � k K
′, v′. By the

definition of S′ we have now v′ ∈ S′. Thus we conclude that w′ ∈ R′−1[S′].
(ii) The claim is proved in the same way as (i).
(iii) If v ∈ R[T ], then there is w ∈ T such that wRv. By the assumption

K,T [� k+1] K ′, T ′, there is w′ ∈ T ′ such that K,w � k+1 K
′, w′. Hence, there

is v′ such that w′R′v′ and K, v � k K
′, v′. As w′R′v′, we have v′ ∈ R′[T ′].

Thus, we conclude that ∀v ∈ R[T ]∃v′ ∈ R′[T ′] : K, v � k K ′, v′. Using a
symmetrical argument, we see that ∀v′ ∈ R′[T ′]∃v ∈ R[T ] : K, v � k K

′, v′.
(iv) Let T1, T2 ⊆ T be such that T = T1 ∪ T2. Define now

T ′i := {w′ ∈ T ′ | ∃w ∈ Ti : K,w � k+1 K
′, w′},

for i ∈ {1, 2}. Then by the definition of T ′i , ∀w′ ∈ T ′i∃w ∈ Ti : K,w � k+1
K ′, w′. On the other hand, if w ∈ Ti, then w ∈ T , whence there is w′ ∈ T ′
such that K,w � k+1 K

′, w′. By the definition of T ′i , then w′ is in T ′i . Thus
we conclude that ∀w ∈ Ti∃w′ ∈ T ′i : K,w � k+1 K

′, w′, as desired. 2

3.2 Characterizing the expressive power of ML(>)
Our goal is to prove that definability inML(>) can be characterized by down-
ward closure and closure under team k-bisimulation. We already know that
all ML(>)-definable classes are downward closed (see Proposition 2.7). The
next step is to prove that ML(>)-definable classes are closed under team k-
bisimulation for some k.
Theorem 3.4 Let Φ be a set of proposition symbols, and let K ⊆ KT (Φ). If
K is definable in ML(>), then there is a k ∈ N such that K is closed under
k-bisimulation.
Proof Assume that ϕ ∈ ML(>). We prove by induction on ϕ that the class
‖ϕ‖ is closed under k-bisimulation, where k = md(ϕ).
• Let ϕ = p ∈ Φ, and assume that K,T |= ϕ and K,T [� k] K ′, T ′ for k = 0.

Then K,w |= p for all w ∈ T , and for each w′ ∈ T ′ there is w ∈ T such that
K,w � 0 K

′, w′. Thus, for all w′ ∈ T ′, K ′, w′ |= p, whence K ′, T ′ |= ϕ.
• The case ϕ = ¬p is similar to the previous one.
• Let ϕ = ψ ∨ θ, and assume that K,T |= ϕ and K,T [� k] K ′, T ′, where
k = md(ϕ) = max{md(ψ),md(θ)}. Then there are T1, T2 ⊆ T such that
T = T1 ∪ T2, K,T1 |= ψ and K,T2 |= θ.

By Lemma 3.3(iv), there are subteams T ′1, T ′2 ⊆ T ′ such that T ′ = T ′1 ∪ T ′2
and K,Ti [� k] K ′, T ′i for i ∈ {1, 2}, whence K,T1 [�m] K ′, T ′1 and
K,T2 [�n] K ′, T ′2, where m = md(ψ) and n = md(θ). By induction hy-
pothesis, K ′, T ′1 |= ψ and K ′, T ′2 |= θ. Thus, we conclude that K ′, T ′ |= ϕ.

• The cases ϕ = ψ ∧ θ and ϕ = ψ> θ are straightforward.
• Let ϕ = 3ψ, and assume that K,T |= ϕ and K,T [� k] K ′, T ′, where
k = md(ϕ) = md(ψ) + 1. Then there is a team S on K such that T [R]S
and K,S |= ψ. By Lemma 3.3(i), there is a team S′ such that T ′[R′]S′ and
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K,S [� k−1] K ′, S′. By induction hypothesis, K ′, S′ |= ψ, and consequently
K ′, T ′ |= ϕ.

• Let ϕ = 2ψ, and assume that K,T |= ϕ and K,T [� k] K ′, T ′, where
k = md(ϕ) = md(ψ) + 1. Then K,R[T ] |= ψ, and by Lemma 3.3(iii),
K,R[T ] [� k−1] K ′, R′[T ′]. Thus, by induction hypothesis, K ′, R′[T ′] |= ψ,
and consequently K ′, T ′ |= ϕ.

2

Next we prove that downward closure and closure under team k-bisimulation
are together a sufficient condition for ML(>)-definability.
Theorem 3.5 Let Φ be a finite set of proposition symbols and let K ⊆ KT (Φ).
Assume that K is downward closed and closed under k-bisimulation for some
k ∈ N. Then K is definable in ML(>).
Proof Let ϕ be the formula

6
(K,T )∈K

∨
w∈T

χkK,w,

where χkM,w is the k-th Hintikka-formula of the pair (K,w). Note that since Φ
is finite, there are only finitely many different Hintikka-formulas χkK,w. Thus,
the disjunction

∨
w∈T and the intuitionistic disjunction 6(K,T )∈K in ϕ are

essentially finite, whence ϕ ∈ML(>). We will now prove that ϕ defines K.
Assume first that (K0, T0) ∈ K. By Proposition 2.5, K0, {v} |= χkK0,v

for
each v ∈ T0. Thus, K0, T0 |=

∨
w∈T0

χkK0,w
, and consequently, K0, T0 |= ϕ.

Assume for the other direction that K0, T0 |= ϕ. Then there is a pair
(K,T ) ∈ K such that K0, T0 |=

∨
w∈T χkK,w. Thus, there are subsets Tw,

w ∈ T , of T0 such that T0 =
⋃
w∈T Tw, and K0, Tw |= χkK,w. By Proposition 2.5,

K0, v |= χkK,w for every v ∈ Tw. Let T ′ = {w ∈ T | Tw 6= ∅}. Since K is
downward closed, we have (K,T ′) ∈ K. Observe now that for every v ∈ T0 there
is w ∈ T ′ such that K0, v |= χkK,w, and for every w ∈ T ′ there is v ∈ T0 such
that K0, v |= χkK,w. By Proposition 2.10 this means that K,T ′ [� k] K0, T0.
Since K is closed under k-bisimulation, we conclude that (K0, T0) ∈ K. 2

Putting Proposition 2.7, Theorem 3.4 and Theorem 3.5 together, we finally
get the promised characterization for the expressive power of ML(>).
Corollary 3.6 A class K ⊆ KT (Φ) is definable in ML(>) if and only if K
is downward closed and there exists k ∈ N such that K is closed under k-
bisimulation.

Note that from the proof of Theorem 3.5 we obtain the following normal
form for ML(>)-formulas: every formula ϕ ∈ ML(>) is equivalent with a
formula of the form 6Ψ, where Ψ is a finite set ofML-formulas. This normal
form was proved in [12], but the idea goes back to [15]. Note further that each
formula in Ψ can be assumed to be a disjunction of Hintikka formulas χkK,w,
where k is the modal depth of ϕ.
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4 EMDL is equivalent to ML(>)
By Proposition 2.6, we know that ML(>) is at least as expressive as EMDL.
In this section we show that the converse is also true, thus solving the problem
that was left open in [3].
Theorem 4.1 ML(>) ≤ EMDL.

The proof we give for Theorem 4.1 is an adaptation of the proof in [18] of
the corresponding result for propositional logic with intuitionistic disjunction
and propositional dependence atoms. The main idea (Lemma 4.3) is originally
due to Taneli Huuskonen.

Before proving Theorem 4.1, we introduce some auxiliary concepts, and
prove a couple of lemmas concerning them.

Let Ψ be a finite set ofML(Φ)-formulas, and let K be a Kripke model over
Φ and w a state in K. The Ψ-type of w in K is defined as

tpΨ(K,w) := {ψ ∈ Ψ | K,w |= ψ}.

Furthermore, the Ψ-type of a team T of K is just the set of Ψ-types of its
elements:

TpΨ(K,T ) := {tpΨ(K,w) | w ∈ T}.
Each Ψ-type Γ ⊆ Ψ can be defined by a formula: Let

θΓ :=
∧
ψ∈Γ

ψ ∧
∧

ψ∈Ψ\Γ

ψ¬

where ψ¬ denotes the formula obtained from ¬ψ by pushing the negations in
front of proposition symbols. Then it is easy to see that tpΨ(K,w) = Γ if and
only if K,w |= θΓ.
Lemma 4.2 Assume that (K,T ), (K ′, T ′) ∈ KT (Φ), and let Ψ be a finite set
of ML(Φ)-formulas.
(i) For each ψ ∈ Ψ, K,T |= ψ if and only if ψ ∈

⋂
TpΨ(K,T ).

(ii) If K,T |= 6Ψ and TpΨ(K ′, T ′) ⊆ TpΨ(K,T ), then K ′, T ′ |= 6Ψ.
Proof (i) If K,T |= ψ, then by Proposition 2.5, K,w |= ψ for every w ∈ T ,
which means that ψ ∈ tpΨ(K,w) for every w ∈ T . On the other hand, if
ψ ∈

⋂
TpΨ(K,T ), then K,w |= ψ for every w ∈ T . By Proposition 2.5, it

follows that K,T |= ψ.
(ii) Assume that K,T |= 6Ψ and TpΨ(K ′, T ′) ⊆ TpΨ(K,T ). Thus,

K,T |= ψ for some ψ ∈ Ψ, and by claim (i), ψ ∈
⋂

TpΨ(K,T ). Since
TpΨ(K ′, T ′) ⊆ TpΨ(K,T ), it follows that ψ ∈

⋂
TpΨ(K ′, T ′). Thus, K ′, T ′ |=

ψ, and consequently K ′, T ′ |= 6Ψ. 2

Consider next the formula γ :=
∧
ψ∈Ψ =(ψ). It says that the truth value

of each ψ in Ψ is constant, whence K,T |= γ if and only if |TpΨ(K,T )| ≤ 1.
Define now recursively

γ0 := p ∧ ¬p, γk+1 := (γk ∨ γ)
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It is straightforward to show by induction that for all k ∈ N, K,T |= γk if and
only if |TpΨ(K,T )| ≤ k.
Lemma 4.3 Let Ψ be a finite set of ML(Φ)-formulas. If (K,T ) ∈ KT (Φ),
T 6= ∅, then there is a formula ξK,T ∈ EMDL(Φ) such that for every (K ′, T ′) ∈
KT (Φ)

K ′, T ′ |= ξK,T ⇔ TpΨ(K,T ) 6⊆ TpΨ(K ′, T ′).
Proof Let |TpΨ(K,T )| = k + 1. We define

ξK,T :=
( ∨

Γ∈X
θΓ

)
∨ γk,

where X = P(Ψ) \ TpΨ(K,T ). Now given a pair (K ′, T ′) ∈ KT (Φ) we have

K ′, T ′ |= ξK,T ⇔ there are T1, T2 such that T1 ∪ T2 = T ′ and
TpΨ(K ′, T1) ⊆ X and |TpΨ(K ′, T2)| ≤ k

⇔ |TpΨ(K,T ) ∩ TpΨ(K ′, T ′)| ≤ k
⇔ TpΨ(K,T ) 6⊆ TpΨ(K ′, T ′).

2

Proof of Theorem 4.1. Let ϕ be an ML(>)(Φ)-formula. By the normal
form derived in the proof of Theorem 3.5, we may assume that ϕ is of the form
6Ψ, where Ψ is a finite set of ML(Φ)-formulas.

Let η be the formula ∧
(K,T )∈‖ϕ‖

ξK,T ,

where ‖ϕ‖ = KT (Φ)\‖ϕ‖ and ξK,T is as in Lemma 4.3. Since Ψ is finite, there
are finitely many different formulas of the form ξK,T . Thus, the conjunction in
η is essentially finite, and hence η is in EMDL.

To prove that ‖η‖ = ‖ϕ‖, let (K0, T0) ∈ KT (Φ). Assume first that
(K0, T0) ∈ ‖ϕ‖, and consider any pair (K,T ) ∈ ‖ϕ‖. It follows from Lemma 4.2
that TpΨ(K,T ) 6⊆ TpΨ(K0, T0), whence by Lemma 4.3, K0, T0 |= ξK,T . Thus
we see that (K0, T0) ∈ ‖η‖.

Assume then that (K0, T0) 6∈ ‖ϕ‖. Since TpΨ(K0, T0) ⊆ TpΨ(K0, T0),
it follows from Lemma 4.3 that K0, T0 6|= ξK0,T0 . Thus we conclude that
(K0, T0) 6∈ ‖η‖. 2

Combining Proposition 2.6 and Theorem 4.1, we see that the expressive
power of EMDL and ML(>) coincide. This means that the characterization
for the expressive power of ML(>) given in Corollary 3.6 is true for EMDL,
too.
Corollary 4.4 EMDL ≡ML(>).
Corollary 4.5 A class K ⊆ KT (Φ) is definable in EMDL if and only if
K is downward closed and there is a k ∈ N such that K is closed under k-
bisimulation.
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5 Dimensions for modal formulas
In this section we introduce two semantical invariants for formulas of EMDL
andML(>). We will will first show that the truth of a formula ϕ in a team T
of a Kripke model K can be determined by considering only subteams T ′ ⊆ T
of a fixed size n; we define the lower dimension of ϕ to be the least n such
that this holds. Thus, lower dimension is a natural measure that can be used
for classifying formulas with respect to their semantical complexity. We also
believe that lower dimension can be useful in analyzing the computational
complexity of the model checking problem of modal formulas.

The other semantical invariant we introduce, the upper dimension of a for-
mula ϕ, is defined as the largest number of maximal teams T that satisfy ϕ
in any single Kripke model K. We will show that the lower dimension of ϕ
is always less than or equal to the upper dimension. Moreover, we will show
that the upper dimension admits well-behaved estimates that are defined com-
positionally. These estimates are very useful in establishing upper bounds for
lower dimension as well, since finding good estimates for the lower dimension
directly is not straightforward.

As we proved in the previous section, the expressive power of EMDL and
ML(>) coincide. However, there can be a considerable difference in the sizes
of equivalent formulas under any translation. It was already pointed out in [3]
that there is an intrinsic difference in the complexity of EMDL and ML(>):
the satisfiability problem for the former is NEXP-complete ([3]), while for the
latter it is PSPACE-complete ([15]). This strongly hints to the possibility
that there is no polynomially bounded translation from EMDL to ML(>).
Using the upper dimension, we will prove that this is indeed the case: any
translation from EMDL toML(>) introduces an exponential blow-up for the
size of formulas.

5.1 Lower and upper dimension
Let ϕ be a formula in ML(>)(Φ), and let n ∈ N. Adapting a notion that was
introduced by Jarmo Kontinen in [11] for first-order dependence logic, we say
that ϕ is n-coherent if the condition

K,T |= ϕ ⇔ K,T ′ |= ϕ for all T ′ ⊆ T such that |T ′| ≤ n

holds for all (K,T ) ∈ KT (Φ).
It follows from Corollary 3.6 that for everyML(>)(Φ)-formula ϕ there is a

natural number n such that ϕ is n-coherent. This can be seen as follows: Let
k ∈ N be such that ‖ϕ‖ is closed under team k-bisimulation, and let n be the
number of � k-equivalence classes of pointed Φ-models (K,w). If K,T |= ϕ,
then by downward closure, K,T ′ |= ϕ for every subteam T ′ ⊆ T . On the other
hand, if K,T 6|= ϕ, then K,T ′ 6|= ϕ for any subteam T ′ of T such that for every
w ∈ T there is w′ ∈ T ′ with K,w � k K,w

′. Clearly there is such a subteam
T ′ with |T ′| ≤ n.

Intuitively, the lower dimension of a formula ϕ ∈ML(>)(Φ) can be defined
as the least n such that ϕ is n-coherent. However, due to technical reasons,
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we formulate the definition of lower dimension in a bit different, but equivalent
way. Given a Kripke model K over Φ, let N(ϕ,K) denote the family of minimal
teams T of K such that T 6∈ ‖ϕ‖K .
Definition 5.1 Let ϕ ∈ML(>)(Φ). The lower dimension dim(ϕ) of ϕ is the
least n ∈ N such that for every Kripke model K over Φ and every T ∈ N(ϕ,K)
we have |T | ≤ n.

We will next define the upper dimension for ML(>)-formulas. Let K be a
Kripke model over Φ and let ϕ an ML(>)(Φ)-formula. As ‖ϕ‖K is downward
closed, it is natural to study the family M(ϕ,K) consisting of maximal elements
of ‖ϕ‖K . We will see below that ‖ϕ‖K is generated by M(ϕ,K) in the sense
that every team T ∈ ‖ϕ‖K is contained in some team S ∈M(ϕ,K).
Definition 5.2 Let ϕ ∈ML(>)(Φ). The upper dimension Dim(ϕ) of ϕ is the
leastm ∈ N such that for every Kripke modelK over Φ we have |M(ϕ,K)| ≤ m.

Note that it is not a priori clear that the upper dimension is well-defined:
if there is no uniform bound m ∈ N for the size of M(ϕ,K) over all Kripke
models K, then Dim(ϕ) does not exist. In particular, the definition of Dim(ϕ)
requires that ‖ϕ‖K is always finitely generated by M(ϕ,K), i.e., that M(ϕ,K)
is finite and generates ‖ϕ‖K for all K.
Lemma 5.3 Dim(ϕ) is well-defined for all ϕ ∈ ML(>)(Φ). Moreover, we
have the following estimates for ϕ,ψ ∈ML(>)(Φ):

(i) Dim(p) = Dim(¬p) = 1.
(ii) Dim(ϕ ∧ ψ) ≤ Dim(ϕ) Dim(ψ).

(iii) Dim(ϕ ∨ ψ) ≤ Dim(ϕ) Dim(ψ).

(iv) Dim(ϕ>ψ) ≤ Dim(ϕ)+Dim(ψ).
(v) Dim(3ϕ) ≤ Dim(ϕ).
(vi) Dim(2ϕ) ≤ Dim(ϕ).

Proof We prove the first claim and the dimension estimates simultaneously
by induction on ϕ. Let K = (W,R, V ) be an arbitrary Kripke model over Φ.
We omit the cases for (i), (iii) and (vi), since (i) is trivial, and (iii) and (vi) are
analogous to (ii) and (v), respectively.
(ii) We first notice that ‖ϕ ∧ ψ‖K = ‖ϕ‖K ∩ ‖ψ‖K . By induction hypothesis,
‖ϕ‖K and ‖ψ‖K are finitely generated by M(ϕ,K) and M(ψ,K), respec-
tively. Moreover, |M(ϕ,K)| ≤ Dim(ϕ) and |M(ψ,K)| ≤ Dim(ψ). It is
immediate that M(ϕ ∧ ψ,K) ⊆ {T ∩ U | T ∈M(ϕ,K), U ∈M(ψ,K)}.

Clearly, by the induction hypothesis the right-hand side of the inclusion
above also generates the family ‖ϕ ∧ ψ‖K . The inclusion now implies
|M(ϕ∧ψ,K)| ≤ |M(ϕ,K)×M(ψ,K)| ≤ Dim(ϕ) Dim(ψ). Hence, Dim(ϕ∧
ψ) ≤ Dim(ϕ) Dim(ψ).

(iv) For the intuitionistic disjunction, it holds that

M(ϕ>ψ,K) ⊆M(ϕ,K) ∪M(ψ,K)

and the right-hand side of the inclusion generates the family ‖ϕ>ψ‖K .
The dimension estimate follows immediately.
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(v) For the diamond, we have that M(3ψ,K) ⊆ {R−1[T ] | T ∈ M(ϕ,K)},
and that {R−1[T ] | T ∈ M(ϕ,K)} generates ‖3ψ‖K . Thus we get that
|M(3ψ,K)| ≤ |M(ϕ,K)|, which implies that Dim(3ϕ) ≤ Dim(ϕ).

2

Remark 5.4 In [1], Ciardelli gave estimates, that he calls Groenendijk’s in-
equalities, for the size of inquisitive meanings of formulas. These estimates are
essentially equivalent to (i), (ii) and (iv) above. In addition, he gave a similar
estimate for the case of (intuitionistic) implication.

The estimates given in Lemma 5.3 are sharp in the sense that we cannot
improve the upper bounds. For conjunction (and implicitly also for the intu-
itionistic disjunction), the following example demonstrates this sharpness.
Example 5.5 Let m and n be positive integers. We show that there are
ϕ,ψ ∈ ML(>) such that Dim(ϕ) = m, Dim(ψ) = n and Dim(ϕ ∧ ψ) = mn.
Let p0, . . . , pm−1, q0, . . . , qn−1 be distinct propositional symbols. Put

ϕi := pi ∧
∧

k<m,k 6=i
¬pk and ψj := qj ∧

∧
l<n,l 6=i

¬ql,

for i < m and j < n. Note that the formulas ϕi, i < m, are satisfiable,
but mutually contradictory in the classical sense, and similarly for ψj ’s. If
K = (W,R, V ) is a Kripke model over {p0, . . . , pm−1, q0, . . . , qn−1}, then

‖ϕi‖K = P(Ti) and ‖ϕj‖K = P(Uj)

for appropriate teams Ti and Uj . Clearly we can pick K such that the inter-
sections Ti ∩ Uj are all non-empty, for i < m and j < n. Define

ϕ := 6
i<m

ϕi and ψ := 6
j<n

ψj .

The previous lemma gives the estimates Dim(ϕ) ≤ m and Dim(ψ) ≤ n for the
upper dimensions. However, in the Kripke model we have chosen,

‖ϕ‖K =
⋃
i<m

P(Ti) and ‖ψ‖K =
⋃
j<n

P(Uj),

so M(ϕ,K) = {T0, . . . Tm−1} and M(ψ,K) = {U0, . . . , Un−1}, which implies
Dim(ϕ) = m and Dim(ψ) = n. Consider now the sentence ϕ ∧ ψ. We have

‖ϕ ∧ ψ‖K =
⋂

i<m,j<n

P(Ti ∩ Uj),

so M(ϕ ∧ ψ,K) = {Ti ∩ Uj | i < m, j < n}. Consequently, Dim(ϕ ∧ ψ) = mn.
We will now prove that the upper dimension Dim(ϕ) is always a uniform

upper bound for |N(ϕ,K)|, whence dim(ϕ) is less than or equal to Dim(ϕ).
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Lemma 5.6 Assume that ϕ ∈ML(>)(Φ). Then dim(ϕ) ≤ Dim(ϕ).
Proof Let K be a Kripke model, and let U ∈ N(ϕ,K). We need to prove that
|U | ≤ Dim(ϕ) (if there are no such sets U , there is nothing to prove). For each
T ∈M(ϕ,K), pick a state wT ∈ U \T . Then the set U0 = {wT | T ∈M(ϕ,K)}
is a subset of U , but not included in any T ∈ M(ϕ,K). Hence, U0 ∈ N(ϕ,K)
and by the minimality of U , we get U = U0 and |U | = |U0| ≤ |M(ϕ,K)| ≤
Dim(ϕ). Hence, dim(ϕ) ≤ Dim(ϕ). 2

The next example shows that the gap between upper and lower dimension
may be arbitrarily large.
Example 5.7 For j < n, let the formulas ψj , as well as the Kripke model K
and sets Uj , be as in Example 5.5, Assume that n ≥ 4. To simplify notation,
write ψn = ψ0 and Un = U0. Consider the sentence

θ := 6
j<n

(ψj ∨ ψj+1).

Lemma 5.3 gives the estimate Dim(θ) ≤ n. In the Kripke model K, it is easy
to see that M(θ,K) = {Uj ∪ Uj+1 | j < n}. Hence, Dim(θ) = n. However,
if a team T is such that K,T 6|= θ, then there is either a single point w ∈ T
such that K, {w} 6|= θ, or there are w ∈ Uj , w′ ∈ Uk with j 6≡ k (mod n). In
the latter case, K, {w,w′} 6|= θ. The same reasoning applies to other Kripke
models than K, so dim(θ) = 2.

5.2 The dimension of dependence atoms
As EMDL ≡ML(>) and the definition of the upper and lower dimensions is
purely semantical, Dim(ϕ) and dim(ϕ) are defined for every EMDL-formula ϕ.
Moreover, the estimates given in Lemma 5.3 are valid also for EMDL-formulas.
For the modal dependence atoms, we have the following estimate for the upper
dimension:
Lemma 5.8 For the dependence atoms of EMDL(Φ), we have that
Dim(=(ψ1, . . . , ψn, θ)) ≤ 22n

. Moreover, equality holds if ψi, 1 ≤ i ≤ n, and θ
are distinct proposition symbols.
Proof Denote the set {ψ1, . . . , ψn} by Ψ and the dependence atom
=(ψ1, . . . , ψn, θ) by ϕ. let K = (W,R, V ) be a Kripke model over Φ, and
let X = {tpΨ(K,w) | w ∈ W}, where tpΨ(K,w) is the Ψ-type of w in K (see
Section 4). If T ∈ M(ϕ,K), then there is a function fT : X → {⊥,>} such
that for all w ∈W

M,w |= θ ⇔ fT (tpΨ(K,w)) = >.

If T and U are different elements of M(ϕ,K), then T ∪U 6∈ ‖ϕ‖K , whence
there are states w ∈ T and u ∈ U such that tpΨ(K,w) = tpΨ(K,u), but
K,w |= θ ⇔ K,u 6|= θ. This means that fT 6= fU . Thus, we see that M(ϕ,K)
has at most 2|X| elements. Since X ⊆ P(Ψ) and |Ψ| = n, we arrive at the
upper bound 22n for |M(ϕ,K)|.
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For the second claim, note that if ψi ∈ Φ, 1 ≤ i ≤ n, and θ ∈ Φ are distinct,
then there is a Kripke model such that every Γ ⊆ Ψ is the Ψ-type of some w
in K, and for every f : X → {⊥,>} there is a team T ∈ M(ϕ,K) such that
f = fT . Then |X| = 2n, and hence |M(ϕ,K)| = 2|X| = 22n . 2

Thus, the upper dimension of dependence atoms can be doubly exponential
with respect to the number of formulas occurring in it. On the other hand,
any ML(>)-formula can reach only single exponential upper dimension with
respect to its size. We prove this by considering the number occ>(ϕ) of occur-
rences of >-symbols in the formula ϕ.
Proposition 5.9 Let ϕ ∈ML(>). Then Dim(ϕ) ≤ 2occ>(ϕ).
Proof The proof is a straightforward application of Lemma 5.3 and induction.
For the literals, we have

Dim(p) = Dim(¬p) = 1 = 20 = 2occ>(p) = 2occ>(¬p).

Suppose Dim(ϕ) ≤ 2occ>(ϕ) and Dim(ψ) ≤ 2occ>(ψ). Then

Dim(ϕ ∧ ψ) ≤ Dim(ϕ) ·Dim(ψ)
≤ 2occ>(ϕ) · 2occ>(ψ) = 2occ>(ϕ)+occ>(ψ) = 2occ>(ϕ∧ψ),

Dim(ϕ ∨ ψ) ≤ Dim(ϕ) ·Dim(ψ) ≤ 2occ>(ϕ) · 2occ>(ψ) = 2occ>(ϕ∨ψ) and
Dim(ϕ>ψ) ≤ Dim(ϕ) + Dim(ψ) ≤ 2occ>(ϕ) + 2occ>(ψ)

≤ 2occ>(ϕ) · 2occ>(ψ) + 1 ≤ 2occ>(ϕ) · 2occ>(ψ) · 2
= 2occ>(ϕ)+occ>(ψ)+1 = 2occ>(ϕ>ψ).

The case of the modal operators is trivial. 2

Theorem 5.10 Assume that ϕ ∈ ML(>) is a formula such that ‖ϕ‖ =
‖=(p1, . . . , pn, q)‖. Then ϕ contains more than 2n symbols.
Proof By Lemma 5.8, Dim(ϕ) = Dim(=(p1, . . . , pn, q)) = 22n . Thus, by
Proposition 5.9, 22n ≤ 2occ>(ϕ) implying 2n ≤ occ>(ϕ). This means that ϕ
contains at least 2n intuitionistic disjunction symbols. 2

Thus, any translation from EMDL to ML(>) necessarily leads to an ex-
ponential blow-up in the size of formulas.

6 Summary
We studied the expressive power of various modal logics with team semantics:
modal logic with intuitionistic disjunction ML(6), modal dependence logic
MDL, and extended modal dependence logic EMDL. We introduced the
notion of team bisimulation and showed that a class K of Kripke structures with
teams is definable by a sentence ofML(>) if and only if K is downward closed
and closed under team k-bisimulation. In addition, we established that the
expressive power of ML(>) and EMDL coincide and thus answered an open
problem from [3]. Furthermore, we introduced novel semantical invariants for
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formulas of EMDL andML(6), i.e., the notions of upper and lower dimension.
By using these invariants, we obtained that the translations from MDL and
EMDL into ML(>) are always worst-case exponential.

The characterization of the expressive power of EMDL and ML(>) gives
rise to the question whether similar characterizations can be found for other
modal logics with team semantics. In particular, is there such a characterization
for the extension ofML with inclusion atoms or independence atoms? For the
definitions of these atoms, see the Ph.D. thesis [18] of Fan Yang.
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