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I. THE ORIGIN AND MEANING OF GEOMETRICAL
AXIOMS.

(301)
My object in this article1 is to discuss the philosophical bearing of recent inquiries
concerning geometrical axioms and the possibility of working out analytically
other systems of geometry with other axioms than Euclid’s. The original works
on the subject, addressed to experts only, are particularly abstruse, but I will
try to make it plain even to those who are not mathematicians. It is of course no
part of my plan to prove the new doctrines correct as mathematical conclusions.
Such proof must be sought in the original works themselves.

Among the first elementary propositions of geometry, from which the student
is led on by continuous chains of reasoning to the laws of more and more complex
figures, are some which are held not to admit of proof, though sure to be granted
by every one who understands their meaning. These are the so-called Axioms;
for example, the proposition that if the shortest line drawn between two points
is called straight there can be only one such straight line. Again, it is an axiom
that through any three points in space, not lying in a straight line, a plane may
be drawn, i.e., a surface which will wholly include every straight line joining any (302)
two of its points. Another axiom, about which there has been much discussion,
affirms that through a point lying without a straight line only one straight line
can be drawn parallel to the first; two straight lines that lie in the same plane and
never meet, however far they may be produced, being called parallel. There are

1The substance of the first half of the article has been previously expounded by me, in the
Academy of Feb. 12,1870, It is here set forth anew as necessary context.
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also axioms that determine the number of dimensions of space and its surfaces,
lines and points, showing how they are continuous; as in the propositions, that
a solid is bounded by a surface, a surface by a line and a line by a point, that
the point is indivisible, that by the movement of a point a line is described, by
that of a line a line or a surface, by that of a surface a surface or a solid, but by
the movement of a solid a solid and nothing else is described.

Now what is the origin of such propositions, unquestionably true yet inca-
pable of proof in a science where everything else is reasoned conclusion? Are
they inherited from the divine source of our reason as the idealistic philosophers
think, or is it only that the ingenuity of mathematicians has hitherto not been
penetrating enough to find the proof? Every new votary, coming with fresh zeal
to geometry, naturally strives to succeed where all before him have failed. And
it is quite right that each should make the trial afresh; for, as the question has
hitherto stood, it is only by the fruitlessness of one’s own efforts that one can
be convinced of the impossibility of finding a proof. Meanwhile solitary inquir-
ers are always from time to time appearing who become so deeply entangled in
complicated trains of reasoning that they can no longer discover their mistakes
and believe they have solved the problem. The axiom of parallels especially has
called forth a great number of seeming demonstrations.

The main difficulty in these inquiries is and always has been the readiness
with which results of everyday experience become mixed up as apparent ne-
cessities of thought with the logical processes, so long as Euclid’s method of
constructive intuition is exclusively followed in geometry. In particular it is ex-
tremely difficult, on this method, to be quite sure that in the steps prescribed for
the demonstration we have not involuntarily and unconsciously drawn in some
most general results of experience, which the power of executing certain parts of
the operation has already taught us practically. In drawing any subsidiary line
for the sake of his demonstration, the welltrained geometer asks always if it is
possible to draw such a line. It is notorious that problems of construction play
an essential part in the system of geometry. At first sight, these appear to be
practical operations, introduced for the training of learners; but in reality they (303)
have the force of existential propositions. They declare that points, straight lines
or circles, such as the problem requires to be constructed, are possible under all
conditions, or they determine any exceptions that there may be. The point on
which the investigations turn that we are going to consider is essentially of this
nature. The foundation of all proof by Euclid’s method consists in establishing
the congruence of lines, angles, plane figures, solids, &c. To make the congruence
evident, the geometrical figures are supposed to be applied to one another, of
course without changing their form and dimensions. That this is in fact possible
we have all experienced from our earliest youth. But, when we would build ne-
cessities of thought upon this assumption of the free translation of fixed figures
with unchanged form to every part of space, we must see whether the assump-
tion does’ not involve some presupposition of which no logical proof is given. We
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shall see later on that it does contain one of most serious import. But if so, every
proof by congruence rests upon a fact which is obtained from experience only.

I offer these remarks at first only to show what difficulties attend the complete
analysis of the presuppositions we make in employing the common constructive
method. We evade them when we apply to the investigation of principles the ana-
lytical method of modern algebraical geometry. The whole process of algebraical
calculation is a purely logical operation; it can yield no relation between the
quantities submitted to it that is not already contained in the equations which
give occasion for its being applied. The recent investigations have accordingly
been conducted almost exclusively by means of the purely abstract methods of
analytical geometry.

However, after discovering by the abstract method what are the points in
question, we shall best get a distinct view of them by taking a region of narrower
limits than our own world of space. Let us, as we logically may, suppose reasoning
beings of only two dimensions to live and move on the surface of some solid body.
We will assume that they have not the power of perceiving anything outside this
surface, but that upon it they have perceptions similar to ours. If such beings
worked out a geometry, they would of course assign only two dimensions to their
space. They would ascertain that a point in moving describes a line, and that a
line in moving describes a surface. But they could as little represent to themselves
what further spatial construction would be generated by a surface moving out of
itself, as we can represent what would be generated by a solid moving out of the
space we know. By the much, abused expression “to represent” or “to be able to (304)
think how something happens” I understand — and I do not see how anything
else can be understood by it without loss of all meaning — the power of imagining
the whole series of sensible impressions that would be had in such a case. Now
as no sensible impression is known relating to such an unheard-of event as the
movement to a fourth dimension would be to us, or as a movement to our third
dimension would be to the inhabitants of a surface, such a “representation” is as
impossible as the “representation” of colours would be to one born blind, though
a description of them in general terms might be given to him.

Our surface-beings would also be able to draw shortest lines in their superficial
space. These would not necessarily be straight lines in our sense, but what are
technically called geodetic lines of the surface on which they live, lines such
as are described by a tense thread laid along the surface and which can slide
upon it freely. I will henceforth speak of such lines as the straightest lines of
any particular surface or given space, so as to bring out their analogy with the
straight line in a plane.

Now if beings of this kind lived on an infinite plane, their geometry would be
exactly the same as our planimetry. They would affirm that only one straight
line is possible between two points, that through a third point lying without this
line only one line can be drawn parallel to it, that the ends of a straight line never
meet though it is produced to infinity, and so on. Their space might be infinitely
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extended, but even if there were limits to their movement and perception, they
would be able to represent to themselves a continuation beyond these limits, and
thus their space would appear to them infinitely extended, just as ours does to
us, although our bodies cannot leave the earth and our sight only reaches as far
as the visible fixed stars.

But intelligent beings of the kind supposed might also live on the surface of
a sphere. Their shortest or straightest line between two points would then be an
arc of the great circle passing through them. Every great circle passing through
two points is by these divided into two parts, and if they are unequal the shorter
is certainly the shortest line on the sphere between the two points, but also the
other or larger arc of the same great circle is a geodetic or straightest line, i.e.,
every smaller part of it is the shortest line between its ends. Thus the notion
of the geodetic or straightest line is not quite identical with that of the shortest
line. If the two given points are the ends of a diameter of the sphere every plane
passing through this diameter cuts semicircles on the surface of the sphere all (305)
of which are shortest lines between the ends; in which case there is an infinite
number of equal shortest lines between the given points. Accordingly, the axiom
of there being only one shortest line between two points would not hold without
a certain exception for the dwellers on a sphere.

Of parallel lines the sphere-dwellers would know nothing. They would declare
that any two straightest lines, sufficiently produced, must finally cut not in one
only but in two points. The sum of the angles of a triangle would be always
greater than two right angles, increasing as the surface of the triangle grew
greater. They could thus have no conception of geometrical similarity between
greater and smaller figures of the same kind, for with them a greater triangle
must have different angles from a smaller one. Their space would be unlimited,
but would be found to be finite or at least represented as such.

It is clear, then, that such beings must set up a very different system of
geometrical axioms from that of the inhabitants of a plane or from ours with our
space of three dimensions, though the logical powers of all were the same; nor are
more examples necessary to show that geometrical axioms must vary according
to the kind of space inhabited. But let us proceed still farther.

Let us think of reasoning beings existing on the surface of an egg-shaped
body. Shortest lines could be drawn between three points of such a surface and
a triangle constructed. But if the attempt were made to construct congruent
triangles at different parts of the surface, it would be found that two triangles
with three pairs of equal sides would not have their angles equal. The sum of the
angles of a triangle drawn at the sharper pole of the body would depart farther
from two right angles than if the triangle were drawn at the blunter pole or at
the equator. Hence it appears that not even such a simple figure as a triangle can
be moved on such a, surface without change of form. It would also be found that
if circles of equal radii were constructed at different parts of such a surface (the
length of the radii being always measured by shortest lines along the surface) the
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periphery would be greater at the blunter than at the sharper end.
We see accordingly that, if a surface admits of the figures lying on it being

freely moved without change of any of their lines and angles as measured along
it, the property is a special one and does not belong to every kind of surface. The
condition under which a surface possesses this important property was pointed
out by Gauss in his celebrated treatise on the curvature of surfaces.2 (306)

The “measure of curvature,” as he called it, i.e., the reciprocal of the product
of the greatest and least radii of curvature, must be everywhere equal over the
whole extent of the surface.

Gauss showed at the same time that this measure of curvature is not changed
if the surface is bent without distension or contraction of any part of it. Thus
we can roll up a flat sheet of paper into the form of a cylinder or of a cone
without any change in the dimensions of the figures taken along the surface of
the sheet. Or the hemispherical fundus of a bladder may be rolled into a spindle-
shape without altering the dimensions on the surface. Geometry on a plane will
therefore be the same as on a cylindrical surface; only in the latter case we must
imagine that any number of layers of this surface, like the layers of a rolled sheet
of paper, lie one upon another and that after each entire revolution round the
cylinder a new layer is reached.

These observations are meant to give the reader a notion of a kind of sur-
face the geometry of which is on the whole similar to that of the plane, but in
which the axiom of parallels does not hold good, namely, a kind of curved sur-
face which geometrically is, as it were, the counterpart of a sphere, and which
has therefore been called the pseudospherical surface by the distinguished
Italian mathematician, E. Beltrami, who has investigated its properties.3 It is a
saddle-shaped surface of which only limited pieces or strips can be connectedly
represented in our space, but which may yet be thought of as infinitely continued
in all directions, since each piece lying at the limit of the part constructed can
be conceived as drawn back to the middle of it and then continued. The piece
displaced must in the process change its flexure but not its dimensions, just as
happens with a sheet of paper moved about a cone formed out of a plane rolled
up. Such a sheet fits the conical surface in every part, but must be more bent
near the vertex and cannot be so moved over the vertex as to be at the same
time adapted to the existing cone and to its imaginary continuation beyond.

Like the plane and the sphere, pseudospherical surfaces have their measure of
curvature constant, so that every piece of them can be exactly applied to every (307)
other piece, and therefore all figures constructed at one place on the surface

2Gauss, Werke, Bd. IV., p. 215, first published in Commentationes Soc. Reg. Scientt.

Gottingensis recentiores, vol. vi., 1828.
3Saggio di Interpretations della Geometria Non-Euclidea, Napoli, 1868. —

Teoria fondamentale degli Spazii di Curvatura costante, Annnafi di Matematica,
Ser. II., Tom. II., pp. 232–55. Both, have been translated into French by J. Hoüel, Annales
Scientifiques de l’Ecole Normale, Tom. V., 1869.
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can be transferred to any other place with perfect congruity of form and perfect
equality of all dimensions lying in the surface itself, The measure of curvature
as laid down by Gauss, which is positive for the sphere and zero for the plane,
would have a constant negative value for pseudospherical surfaces, because the
two principal curvatures of a saddle-shaped surface have their concavity turned
opposite ways.

A strip of a pseudospherical surface may, for example, be represented by the
inner surface (turned towards the axis) of a solid anchor-ring. If the plane figure
aabb (Fig. 1) is made to revolve on its axis of symmetry AB, the two arcs ab will

describe a pseudospherical concave-convex surface like that of the ring. Above
and below, towards aa, and bb, the surface will turn outwards with ever-increasing
flexure, till it becomes perpendicular to the axis and ends at the edge with one
curvature infinite. Or, again, half of a pseudospherical surface may be rolled
up into the shape of a champagne-glass (Fig. 2) with tapering stem infinitely
prolonged. But the surface is always necessarily bounded by a sharp edge beyond
which it cannot be directly continued. Only by supposing each single piece of
the edge cut loose and drawn along the surface of the ring or glass, can it be
brought to places of different flexure at which farther continuation of the piece
is possible.

In this way too the straightest lines of the pseudospherical surface may be
infinitely produced. They do not like those on a sphere return upon themselves,
but, as on a plane, only one shortest line is possible between two given points.
The axiom of parallels does not however hold good. If a straightest line is given
on the surface and a point without it, a whole pencil of straightest lines may (308)
pass through the point, no one of which, though infinitely produced, cuts the
first line; the pencil itself being limited by two straightest lines, one of which
intersects one of the ends of the given line at an infinite distance, the other the
other end.

As it happened, a system of geometry excluding the axiom of parallels was
devised on Euclid’s synthetic method, as far back as the year 1829, by N. J.
Lobatschewsky, professor of mathematics at Kasan,4 and it was proved that this
system could be carried out as consistently as Euclid’s. It agrees exactly with

4 Principien der Geometrie, Kasan, 1829-30.



7

the geometry of the pseudospherical surfaces worked out recently by Beltrami.
Thus we see that in the geometry of two dimensions a surface is marked out

as a plane or a sphere or a pseudospherical surface by the assumption that any
figure may be moved about in all directions without change of dimensions. The
axiom that there is only one shortest line between any two points distinguishes
the plane and the pseudospherical surface from the sphere, and the axiom of
parallels marks off the plane from the pseudosphere. These three axioms are in
fact necessary and sufficient to define as a plane the surface to which Euclid’s
planimetry has reference, as distinguished from all other modes of space in two
dimensions.

The difference between plane and spherical geometry has been long evident,
but the meaning of the axiom of parallels could not be understood till Gauss had
developed the notion of surfaces flexible without dilatation and consequently that
of the possibly infinite continuation of pseudospherical surfaces. Inhabiting a
space of three dimensions and endowed with organs of sense for their perception,
we can represent to ourselves the various cases in which beings on a surface
might have to develop their perception of space; for we have only to limit our own
perceptions to a narrower field. It is easy to think away perceptions that we have;
but it is very difficult to imagine perceptions to which there is nothing analogous
in our experience. When, therefore, we pass to space of three dimensions we are
stopped in our power of representation by the structure of our organs and the
experiences got through them which correspond only to the space in which we
live.

There is however another way of treating geometry scientifically. All known
space-relations are measurable, that is they may be brought to determination of
magnitudes (lines, angles, surfaces, volumes). Problems in geometry can there-
fore be solved by finding methods of calculation for arriving at unknown mag- (309)
nitudes from known ones. This is done in analytical geometry, where all forms
of space are treated only as quantities and determined by means of other quan-
tities. Even the axioms themselves make reference to magnitudes. The straight
line is defined as the shortest between two points, which is a determination
of quantity. The axiom of parallels declares that if two straight lines in a plane
do not intersect (are parallel), the alternate angles, or the corresponding angles,
made by a third line intersecting them, are equal; or it may be laid down instead
that the sum of the angles of any triangle is equal to two right angles. These are
determinations of quantity.

Now we may start with this view of space, according to which the position
of a point may be determined by measurements in relation to any given figure
(system of co-ordinates), taken as fixed, and then inquire what are the special
characteristics of our space as manifested in the measurements that have to be
made, and how it differs from other extended quantities of like variety. This path
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was first entered by one too early lost to science, B. Riemann of Göttingen.5. It
has the peculiar advantage that all its operations consist in pure calculation of
quantities, which quite obviates the danger of habitual perceptions being taken
for necessities of thought.

The number of measurements necessary to give the position of a point is equal
to the number of dimensions of the space in question. In a line the distance
from one fixed point is sufficient, that is to say, one quantity; in a surface the
distances from two fixed points must be given; in space, the distances from three;
or we require as on the earth longitude, latitude and height above the sea, or,
as is usual in analytical geometry, the distances from three co-ordinate planes.
Riemann calls a system of differences in which one thing can be determined by n
measurements an “nfold extended aggregate” or an “aggregate of n dimensions.”
Thus the space in which we live is a three-fold, a surface is a twofold and a
line is a simple extended aggregate of points. Time also is an aggregate of one
dimension. The system of colours is an aggregate of three dimensions, inasmuch
as each colour, according to the investigations of Th. Young and Clerk Maxwell,
may be represented as a mixture of three primary colours, taken in definite
quantities. The particular mixtures can be actually made with the colour-top.

In the same way we may consider the system of simple tones as an aggregate of
two dimensions, if we distinguish only pitch and intensity and leave out of account (310)
differences of timbre. This generalisation of the idea is well-suited to bring out
the distinction between space of three dimensions and other aggregates. We can,
as we know from daily experience, compare the vertical distance of two points
with the horizontal distance of two others, because we can apply a measure first
to the one pair and then to the other. But we cannot compare the difference
between two tones of equal pitch and different intensity with that between two
tones of equal intensity and different pitch. Riemann showed by considerations of
this kind that the essential foundation of any system of geometry is the expression
that it gives for the distance between two points lying in any direction from one
another, beginning with the interval as infinitesimal. He took from analytical
geometry the most general form for this expression, that, namely, which leaves
altogether open the kind of measurements by which the position of any point
is given.6 Then he showed that the kind of free mobility without change of
form which belongs to bodies in our space can only exist when certain quantities
yielded by the calculation7 — quantities that coincide with Gauss’s measure of
surface-curvature when they are expressed for surfaces — have everywhere an

5Ueber die Hypothesen welche der Geometrie zu Grunde liegen, Habilitationsschrift vom 10
Juni 1854. (Abhandl. der königl. Gesellsch. zu Göttingen, Bd. XIII.

6For the-square of the distance of two infinitelv near points the expression is a homogeneous
quadric function of the differentials of their co-ordinates.

7They are algebraical expressions compounded from the co-efficients of the various terms in
the expression for the square of the distance of two contiguous points and from their differential
quotients
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equal value. For this reason Riemann calls these quantities, when they have the
same value in all directions for a particular spot, the measure of curvature of
the space at this spot. To prevent misunderstanding I will once more observe
that this so-called measure of space-curvature is a quantity obtained by purely
analytical calculation and that its introduction involves no suggestion of relations
that would have a meaning only for sense-perception. The name is merely taken,
as a short expression for a complex relation, from the one case in which the
quantity designated admits of sensible representation.

Now whenever the value of this measure of curvature in any space is ev-
erywhere zero, that space everywhere conforms to the axioms of Euclid; and it
may be called a flat (homaloid) space in contradistinction to other spaces,
analytically constructible, that may be called curved because their measure of
curvature has a value other than zero. Analytical geometry may be as completely
and consistently worked out for such spaces as ordinary geometry for our actually
existing homaloid space. (311)

If the measure of curvature is positive we have spherical space, in which
straightest lines return upon themselves and there, are no parallels. Such a space
would, like the surface of a sphere, be unlimited but not infinitely great. A con-
stant negative measure of curvature on the other hand gives pseudospherical
space, in which straightest lines run out to infinity and a pencil of straightest lines
may be drawn in any flattest surface through any point which do not intersect
another given straightest line in that surface.

Beltrami8 has rendered these last relations imaginable by showing that the
points, lines and surfaces of a pseudospherical space of three dimensions can be
so portrayed in the interior of a sphere in Euclid’s homaloid space, that every
straightest line or flattest surface of the pseudospherical space is represented
by a straight line or a plane, respectively, in the sphere. The surface itself of
the sphere corresponds to the infinitely distant points of the pseudospherical
space and the different parts of this space, as represented in the sphere, become
smaller the nearer they lie to the spherical surface, diminishing more rapidly in
the direction of the radii than in that perpendicular to them. Straight lines in
the sphere which only intersect beyond its surface correspond to straightest lines
of the pseudospherical space which never intersect.

Thus it appeared that space, considered as a region of measurable quantities,
does not at all correspond with the most general conception of an aggregate of
three dimensions, but involves also special conditions, depending on the perfectly
free mobility of solid bodies without change of form to all parts of it and with all
possible changes of direction, and, farther, on the special Value of the measure
of curvature which for our actual space equals, or at least is not distinguishable
from, zero. This latter definition is given in the axioms of straight lines and
parallels.

8Teoria fondamentale,&c., ut sup.
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Whilst Riemann entered upon this new field from the side of the most general
and fundamental questions of analytical geometry, I myself arrived at similar
conclusions,9 partly from seeking to represent in space the system of colours,
involving the comparison of one threefold extended aggregate with another, and
partly from inquiries on the origin of our ocular measure for distances in the
field of vision. Riemann starts by assuming the above-mentioned algebraical
expression, which represents in the most general form the distance between two (312)
infinitely, near points, and deduces therefrom the conditions of mobility of rigid
figures. I, on the other hand, starting from the observed fact that the movement
of rigid figures is possible, in our space, with the degree of freedom that we know,
deduce the necessity of the algebraic expression taken by Riemann as an axiom.
The assumptions that I had to make as the basis of the calculation were the
following.

First, to make algebraical treatment possible, it must be assumed that the
position of any point A can be determined, in relation to certain given figures
taken as fixed bases, by measurement of some kind of magnitudes, as lines, angles
between lines, angles between surfaces and so forth. The measurements necessary
for determining the position of A are known as its co-ordinates. In general the
number of co-ordinates necessary to the complete determination of the position
of a point marks the number of the dimensions of the space in question. It is
further assumed that with the movement of the point A the magnitudes used as
co-ordinates vary continuously.

Secondly, the definition of a solid body, or rigid system of points, must be
made in such a way as to admit of magnitudes being compared by congruence.
As we must not at this stage assume any special methods for the measurement of
magnitudes, our definition can, in the first instance, run only as follows: Between
the co-ordinates of any two points belonging to a solid body, there must be an
equation which, however the body is moved, expresses a constant spatial relation
(proving at last to be the distance) between the two points, and which is the
same for congruent pairs of points, that is to say, such pairs as can be made
successively to coincide in space with the same fixed pair of points.

However indeterminate in appearance, this definition involves most impor-
tant consequences, because with increase in the number of points the number of
equations increases much more quickly than the number of co-ordinates which
they determine. Five points, A, B, C,D, E give ten different pairs of points
(AB, AC, AD, AE, BC, BD, BE,CD, CB, DE) and therefore ten equations, in-
volving in space of three dimensions fifteen variable co-ordinates. But of these
fifteen six must remain arbitrary if the system of five points is to admit of free
movement and rotation, and thus the ten equations can determine only nine
co-ordinates as functions of the six variables. With six points we obtain fif-

9Ueber die Thatsachen die der Geometric zum Grunde liegen (Nachrichten von der

königl. Ges. d. Wiss, zu Göttingen,, Juni 3,1868).
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teen equations for twelve quantities, with seven points twenty-one equations for
fifteen, and so on. Now from n independent equations we can determine n con-
tained quantities, and if we have more than n equations, the superfluous ones (313)
must be deducible from the first n. Hence it follows that the equations which
subsist between the co-ordinates of each pair of points of a solid body must have
a special character, seeing that, when in space of three dimensions they are satis-
fied for nine pairs of points as formed out of any five points, the equation for the
tenth pair follows by logical consequence. Thus our assumption for the definition
of solidity becomes quite sufficient to determine the kind of equations holding
between the co-ordinates of two points rigidly connected.

Thirdly, the calculation must further be based on the fact of a peculiar cir-
cumstance in the movement of solid bodies, a fact so familiar to us that but for
this inquiry it might never have been thought of as something that need not be.
When in our space of three dimensions two points of a solid body are kept fixed,
its movements are limited to rotations round the straight line connecting them.
If we turn it completely round once, it again occupies exactly the position it had
at first. This fact that rotation in one direction always brings a solid body back
into its original position needs special mention. A system of geometry is possible
without it. This is most easily seen in the geometry of a plane. Suppose that
with every rotation of a plane figure its linear dimensions increased in proportion
to the angle of rotation, the figure after one whole rotation through 360 degrees
would no longer coincide with itself as it was originally. But any second figure
that was congruent with the first in its original position might be made to co-
incide with it in its second position by being also turned through 360 degrees.
A consistent system of geometry would be possible upon this supposition, which
does not come under Riemann’s formula.

On the other hand I have shown that the three assumptions taken together
form a sufficient basis for the starting-point of Biemann’s investigation, and
thence for all his further results relating to the distinction of different spaces
according to their measure of curvature.

It still remained to be seen whether the laws of motion as dependent on
moving forces could also be consistently transferred to spherical or pseudospher-
ical space. This investigation has been carried out by Professor Lipschitz of
Bonn.10 It is found that the comprehensive expression for all the laws of dy-
namics, Hamilton’s principle, may be directly transferred to spaces of which the (314)
measure of curvature is, other than zero. Accordingly, in this respect also the
disparate systems of geometry lead to no contradiction.

We have now to seek an explanation of the special characteristics of our own
flat space, since it appears that they are not implied in the general notion of

10Untersuchungen über die ganzen homogenen Functionen von n Differentialen (Borchardt’s
Journal für Mathematik, Bde. lxx. 3, 71; lxxiiii. 3, 1) ; Untersuchung eines Problems der
Variationsrechnung (Ibid. Bd. lxxiv.)
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an extended quantity of three dimensions and of the free mobility of bounded
figures therein. Necessities of thought, involved in such a conception, they are
not. Let us then examine the opposite assumption as to their origin being empir-
ical, and see if they can be inferred from facts of experience and so established,
or if, when tested by experience, they are perhaps to be rejected. If they are
of empirical origin we must be able to represent to ourselves connected series
of facts indicating a different value for the measure of curvature from that of
Euclid’s flat space.. But if we can imagine such spaces of other sorts, it cannot
be maintained that the axioms of geometry are necessary consequences of an a

priori transcendental form of intuition, as Kant thought.
The distinction between spherical, pseudospherical and Euclid’s geometry

depends, as was above observed, on the value of a certain constant called by
Riemann the measure of curvature of the space in question. The value must be
zero for Euclid’s axioms to hold good. If it were not zero, the sum of the angles
of a large triangle would differ from that of the angles of a small one, being larger
in spherical, smaller in pseudospherical space. Again, the geometrical similarity
of large and small solids or figures is possible only in Euclid’s space. All systems
of practical mensuration that have been used for the angles of large rectilinear
triangles, and especially all systems of astronomical measurement which make the
parallax of the immeasurably distant fixed stars equal to zero (in pseudospherical
space the parallax even of infinitely distant points would be positive), confirm
empirically the axiom of parallels and show the measure of curvature of our space
thus far to be indistinguishable from zero. It remains, however, a question, as
Riemann observed, whether the result might not be different if we could use
other than our limited base-lines, the greatest of which is the major axis of the
earth’s orbit.

Meanwhile, we must not forget that all geometrical measurements rest ul-
timately upon the principle of congruence. We measure the distance between
points by applying to them the compass, rule or chain. We measure angles by
bringing the divided circle or theodolite to the vertex of the angle. We also
determine straight lines by the path of rays of light which in our experience
is rectilinear; but that light travels in shortest lines as long as it continues in (315)
a medium of constant refraction would be equally true in space of a different
measure of curvature. Thus all our geometrical measurements depend on our
instruments being really, as we consider them, invariable in form, or at least on
their undergoing no other than the small changes we know of as arising from
variation of temperature or from gravity acting differently at different places.

In measuring we only employ the best and surest means we know of to de-
termine what we otherwise are in the habit of making out by sight and touch or
by pacing. Here our own body with its organs is the instrument we carry about
in space. Now it is the hand, now the leg that serves for a compass, or the eye
turning in all directions is our theodolite for measuring arcs and angles in the
visual field.
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Every comparative estimate of magnitudes or measurement of their spatial
relations proceeds therefore upon a supposition as to the behaviour of certain
physical things, either the human body or other instruments employed. The
supposition may be in the highest degree probable and in closest harmony with
all other physical relations known to us, but yet it passes beyond the scope of
pure space-intuition.

It is in fact possible to imagine conditions for bodies apparently solid such
that the measurements in Euclid’s space become what they would be in spherical
or pseudospherical space. Let me first remind the reader that if all the linear
dimensions of other bodies and our own at the same time were diminished or in-
creased in like proportion, as for instance to half or double their size, we should
with our means of space-perception be utterly unaware of the change. This
would also be the case if the distension or contraction were different in different
directions, provided that our own body changed in the same manner and further
that a body in rotating assumed at every moment, without suffering or exert-
ing mechanical resistance, the amount of dilatation in its different dimensions
corresponding to its position at the time. Think of the image of the world in a
convex mirror. The common silvered globes set up in gardens give the essential
features, only distorted by some optical irregularities. A well-made convex mir-
ror of moderate aperture represents the objects in front of it as apparently solid
and in fixed positions behind its surface. But the images of the distant horizon
and of the sun in the sky lie behind the mirror at a limited distance, equal to its
focal length. Between these and the surface of the mirror are found the images
of all the other objects before it, but the images are diminished and flattened
in proportion to the distance of their objects from the mirror, The flattening,
or decrease in the third dimension, is relatively greater than the decrease of the (316)
surface-dimensions. Yet every straight line or every plane in the outer world is
represented by a straight line or a plane in the image. The image of a man mea-
suring with a rule a straight line from the mirror would contract more and more
the farther he went, but with his shrunken rule the man in the image would count
out exactly the same number of centimetres as the real man. And, in general, all
geometrical measurements of lines or angles made with regularly varying images
of real instruments would yield exactly the same results as in the outer world, all
congruent bodies would coincide on being applied to one another in the mirror as
in the outer world, all lines of sight in the outer world would be represented by
straight lines of sight in the mirror. In short I do not see how men in the mirror
are to discover that their bodies are not rigid solids and their experiences good
examples of the correctness of Euclid’s axioms. But if they could look out upon
our world as we can look into theirs, without overstepping the boundary, they
must declare it to be a picture in a spherical mirror, and would speak of us just
as we speak of them; and if two inhabitants of the different worlds could commu-
nicate with one another, neither, so far as I can see, would be able to convince
the other that he had the true, the other the distorted relations. Indeed I cannot
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see that such a question would have any meaning at all so long as mechanical
considerations are not mixed up with it.

Now Beltrami’s representation of pseudospherical space in a sphere of Euclid’s
space is quite similar except that the background is not a plane as in the convex
mirror, but the surface of a sphere, and that the proportion in which the images
as they approach the spherical surface contract, has a different mathematical
expression. If we imagine then, conversely, that in the sphere, for the interior of
which Euclid’s axioms hold good, moving bodies contract as they depart from
the centre like the images in a convex mirror, and in such a way that their
representatives in pseudospherical space retain their dimensions unchanged, —
observers whose bodies were regularly subjected to the same change would obtain
the same results from the geometrical measurements they could make as if they
lived in pseudospherical space.

We can even go a step further, and infer how the objects in a pseudospherical
world, were it possible to enter one, would appear to an observer whose eye-
measure and experiences of space had been gained like ours in Euclid’s space.
Such an observer would continue to look upon rays of light or the lines of vision
as straight lines, such as are met with in flat space and as they really are in (317)
the spherical representation of pseudospherical space. The visual image of the
objects in pseudospherical space would thus make the same impression upon him
as if he were at the centre of Beltrami’s sphere. He would think he saw the most
remote objects round about him at a finite distance,11 let us suppose a hundred
feet off. But as he approached these distant objects, they would dilate before
him, though more in the third dimension than superficially, while behind him
they would contract. He would know that his eye judged wrongly. If he saw two
straight lines which in his estimate ran parallel for the hundred feet to his world’s
end, he would find on following them that the farther he advanced the more they
diverged, because of the dilatation of all the objects to which he approached. On
the other hand behind him their distance would seem to diminish, so that as he
advanced they would appear always to diverge more and more. But two straight
lines which from his first position seemed to converge to one and the same point
of the background a hundred feet distant, would continue to do this however far
he went, and he would never reach their point of intersection.

Now we can obtain exactly similar images of our real world if we look through
a large convex lens of corresponding negative focal length, or even through a pair
of convex spectacles if ground somewhat prismatically to resemble pieces of one
continuous larger lens. With these, like the convex mirror, we see remote objects
as if near to us, the most remote appearing no farther distant than the focus of
the lens. In going about with this lens before the eyes, we find that the objects
we approach dilate exactly in the manner I have described for pseudospherical

11The reciprocal of the square of this distance, expressed in negative quantity, would be the
measure of curvature of the pseudospherical space.
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space. Now any one using a lens, were it even so strong as to have a focal length
of only sixty inches, to say nothing of a hundred feet, would perhaps observe for
the first moment that he saw objects brought nearer. But after going about a
little the illusion would vanish, and in spite of the false images he would judge
of the distances rightly. We have every reason to suppose that what happens
in a few hours to any one beginning to wear spectacles would soon enough be
experienced in pseudospherical space. In short, pseudospherical space would
not seem to us very strange, comparatively speaking] we should only at first be
subject to illusions in measuring by eye the size and distance of the more remote
objects.

There would be illusions of an opposite description, if, with eyes practised to (318)
measure in Euclid’s space, we entered a spherical space of three dimensions. We
should suppose the more distant objects to be more remote and larger than they
are, and should find on approaching them that we reached them more quickly
than we expected from their appearance. But we should also see before us objects
that we can fixate only with diverging lines of sight, namely, all those at a greater
distance from us than the quadrant of a great circle. Such an aspect of things
would hardly strike us as very extraordinary, for we can have it even as things are
if we place before the eye a slightly prismatic glass with the thicker side towards
the nose: the eyes must then become divergent to take in distant objects. This
excites a certain feeling of unwonted strain in the eyes but does not perceptibly
change the appearance of the objects thus seen. The strangest sight, however, in
the spherical world would be the back of our own head, in which all visual lines
not stopped by other objects would meet again, and which must fill the extreme
background of the whole perspective picture.

At the same time it must be noted that as a small elastic flat disc, say of
india-rubber, can only be fitted to a slightly curved spherical surface with relative
contraction of its border and distension of its centre, so our bodies, developed
in Euclid’s flat space, could not pass into curved space without undergoing sim-
ilar distensions and contractions of their parts, their coherence being of course
maintained only in as far as their elasticity permitted their bending without
breaking. The kind of distension must be the same as in passing from a small
body imagined at the centre of Beltrami’s sphere to its pseudospherical or spher-
ical representation. For such passage to appear possible, it will always have to
be assumed that the body is sufficiently elastic and small in comparison with the
real or imaginary radius of curvature of the curved space into which it is to pass.

These remarks will suffice to show the way in which we can infer from the
known laws of our sensible perceptions the series of sensible impressions which
a spherical or pseudospherical world would give us, if it existed. In doing so we
nowhere meet with inconsistency or impossibility any more than in the calcu-
lation of its metrical proportions. We can represent to ourselves the look of a
pseudospherical world in all directions just as we can develop the conception of
it. Therefore it cannot be allowed that the axioms of our geometry depend on
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the native form of our perceptive faculty, or are in any way connected with it.
It is different with the three dimensions of space. As all our means of sense- (319)

perception extend only to space of three dimensions, and a fourth is not merely a
modification of what we have but something perfectly new, we find ourselves by
reason of our bodily organisation quite unable to represent a fourth dimension.

In conclusion I would again urge that the axioms of geometry are not propo-
sitions pertaining only to the pure doctrine of space. As I said before, they
are concerned with quantity. We can speak of quantities only when we know
of some way by which we can compare, divide and measure them. All space-
measurements and therefore in general all ideas of quantities applied to space as-
sume the possibility of figures moving without change of form or size. It is true
we are accustomed in geometry to call such figures purely geometrical solids,
surfaces, angles and lines, because we abstract from all the other distinctions
physical and chemical of natural bodies; but yet one physical quality, rigidity, is
retained. Now we have no other mark of rigidity of bodies or figures but congru-
ence, whenever they are applied to one another at any time or place, and after
any revolution. We cannot however decide by pure geometry and without me-
chanical considerations whether the coinciding bodies may not both have varied
in the same sense.

If it were useful for any purpose, we might with perfect consistency look upon
the space in which we live as the apparent space behind a convex mirror with its
shortened and contracted background; or we might consider a bounded sphere
of our space, beyond the limits of which we perceive nothing further, as infinite
pseudospherical space. Only then we should have to ascribe to the bodies which
appear as solid and to our own body at the same time corresponding disten-
sions and contractions, and we must change our system of mechanical principles
entirely; for even the proposition that every point in motion, if acted upon by
no force, continues to move with unchanged velocity in a straight line, is not
adapted to the image of the world in the convex-mirror. The path would indeed
be straight, but the velocity would depend upon the place.

Thus the axioms of geometry are not concerned with space-relations only
but also at the same time with the mechanical deportment of solidest bodies
in motion. The motion of rigid geometrical figure might indeed be conceived
as transcendental in Kant’s sense, namely, as formed independently of actual
experience, which need not exactly correspond therewith, any more than natural
bodies do ever in fact correspond exactly to the abstract notion we have obtained
of them by induction. Taking the notion of rigidity thus as a mere ideal, a strict (320)
Kantian might certainly look upon the geometrical axioms as propositions given a

priori by transcendental intuition which no experience could either confirm or
refute, because it must first be decided by them whether any natural bodies can
be considered as rigid. But then we should have to maintain that the axioms of
geometry are not synthetic propositions, as Kant held them: they would merely
define what qualities and deportment a body must have to be recognised as rigid.
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But if to the geometrical axioms we add propositions relating to the mechan-
ical properties of natural bodies, were it only the axiom of inertia or the single
proposition that the mechanical and physical properties of bodies and their mu-
tual reactions are, other circumstances remaining the same, independent of place,
such a system of propositions has a real import which can be confirmed or refuted
by experience, but just for the same reason can also be got by experience. The
mechanical axiom just cited is in fact of the utmost importance for the whole
system of our mechanical and physical conceptions. That rigid solids, as we call
them, which are really nothing else than elastic solids of great resistance, retain
the same form in every part of space if no external force affects them, is a single
case falling under the general principle.

For the rest, I do not, of course, suppose that mankind first arrived at space-
intuitions in agreement with the axioms of Euclid by any carefully executed sys-
tems of exact measurement. It was rather a succession of every day experiences,
especially the perception of the geometrical similarity of great and small bodies,
only possible in flat space, that led to the rejection, as impossible, of every geo-
metrical representation at variance with this fact. For this no knowledge of the
necessary logical connection between the observed fact of geometrical similarity
and the axioms was needed, but only an intuitive apprehension of the typical
relations between lines, planes, angles, &c., obtained by numerous and attentive
observations — an intuition of the kind the artist possesses of the objects he is to
represent, and by means of which he decides surely and accurately whether a new
combination which he tries will correspond or not to their nature. It is true that
we have no word but intuition to mark this; but it is knowledge empirically
gained by the aggregation and reinforcement of similar recurrent impressions in
memory, and not a transcendental form given before experience. That other such
empirical intuitions of fixed typical relations, when not clearly comprehended,
have frequently enough been taken by metaphysicians for a priori principles,
is a point on which I need not insist; (321)

To sum up, the final outcome of the whole inquiry may be thus expressed: —
(1.) The axioms of geometry, taken by themselves out of all connection

with mechanical propositions, represent no relations of real things. When thus
isolated, if we regard them with Kant as forms of intuition transcendentally
given, they constitute a form into which any empirical content whatever will
fit and which therefore does not in any way limit or determine beforehand the
nature of the content. This is true, however, not only of Euclid’s axioms, but
also of the axioms of spherical and pseudospherical geometry.

(2.) As soon as certain principles of mechanics are conjoined with the axioms
of geometry we obtain a system of propositions which has real import, and which
can be verified or overturned by empirical observations, as from experience it can
be inferred. If such a system were to be taken as a transcendental form of intuition
and thought, there must be assumed a pre-established harmony between form
and reality.

H. Helmholtz.


