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Abstract
In a previous paper (Hemmo and Shenker 2003) we discussed a recent proposal by Albert (2000, Ch. 7) to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the quantum state of Ghirardi, Rimini and Weber (1986). We proposed an alternative way to explain thermodynamics within no collapse interpretations of quantum mechanics. In this paper some difficulties faced by both approaches are discussed and solved: the spin echo experiments, and the problem of extremely light gases. In these contexts, we point out several ways in which the above quantum mechanical approaches as well as some other classical approaches to the foundations of statistical mechanics may be distinguished experimentally.

1. Introduction: The GRW Based Approach and a Decoherence Based Approach to the Foundations of Statistical Mechanics

In previous papers (Hemmo and Shenker 2003; see also Hemmo and Shenker 2001) we discussed Albert’s (2000) approach to the foundations of statistical mechanics that relies on the GRW spontaneous localisation theory quantum mechanics as the fundamental dynamical theory. We proposed an alternative approach based on decoherence in no-collapse interpretations of quantum mechanics. In the present paper we focus on some main features of the two approaches and on problems that may seem to appear in them and propose solutions. We point out several ways in which these approaches may be distinguished experimentally by measuring thermodynamical magnitudes.

The paper is structured as follows. We begin by briefly presenting Albert’s GRW approach and our decoherence approach to the foundations of statistical mechanics, in a way which emphasises aspects particularly relevant to the ensuing sections. We then examine two cases in which bring our, in a thermodynamical context, the empirical inequivalence between Albert’s approach and ours. The first is the thermodynamical behaviour of light gases (Section 2) and the second is the spin echo experiments (section 3).  

Both Albert’s approach and ours aim at a quantum mechanical dynamical mechanism that will solve some problems at the foundations of classical statistical mechanics, while reproducing its good predictions.
 One such problem (call it Problem A) is the lack of dynamical explanations for the probabilistic postulates at the foundations of classical statistical mechanics. In producing its predictions, classical statistical mechanics postulates a uniform distribution over the accessible phase space region, on the so-called standard measure. Why does using this measure and this distribution produce successful predictions, and how can they be derived from the underlying dynamics? So far, attempts to derive the classical probability distribution from the underlying classical dynamics, e.g. from ergodicity, have failed (see Sklar 1993, Guttmann 1999 and Earman and Redei 1996). Both approaches aim to solve this problem by relying on replacing the underlying classical dynamics by quantum mechanics.

Another problem (Problem B), which the two approaches aim to solve, is the impossibility of bringing about anti-thermodynamical behaviour, despite the fact that the underyling dynamics allows for such behaviour in Boltzmann’s approach. Although their measure is zero, such anti thermodynamical evolutions are not impossible; there are infinitely many of them. (The existence of anti-thermodynamical trajectories in phase space was the basis for Loschmidt’s reversibility objection to Boltzmann’s first H theorem; see Ehrenfest and Ehrenfest 1912.) One question we shall address is whether this impossibility is a matter of principle, or a practical difficulty only. In classical physics there are possible anti-thermodynamical trajectories, but since their measure is zero (i.e. roughly, they are surrounded by thermodynamic trajectories), their attainment is extremely sensitive to initial conditions, and therefore it is practically very hard to put a system on such a trajectory. In quantum mechanics, as we shall see, the impossibility of bringing about anti thermodynamic evolution may also be a matter of principle, due to the intrinsic stochastic nature of the underlying dynamics. We now turn to explain how problems (A) and (B) are treated in Albert’s approach as well as in ours. 


Both approaches work in a Boltzmannian framework, in which the thermodynamical magnitudes are properties of microstates. In particular, entropy is a property of a microstate in virtue of the macrostate to which it belongs, and is given by the logarithm of the phase space volume of that macrostate as given by the standard measure. Problem (B) (namely, the impossibility to bring about anti-thermodynamical behaviour, despite the fact that the underyling dynamics allows for such behaviour) arises only in a Boltzmannian approach, since in this approach an individual microstate can evolve from a high entropy phase space region to a low entropy one. (Note that, by contrast, in Gibbs’s approach without coarse graining, problem (B) does not arise. Anti thermodynamical evolutions are impossible by construction, since thermodynamical magnitudes are given by averages over the whole accessible region in phase space. To account for the evolution of thermodynamical magnitudes (in particular, entropy) one needs either to use coarse graining or to give up the idealisation of isolated systems and turn to interventionism (see Ridderbos and Redhead 1998 and Ridderbos 2002). As is well known, in addition to coarse graining one needs to postulate a mixing dynamics (or something higher in the ergodic hierarchy). In this context the so-called Gibbsian measure zero problem arises (see Arnold and Avez 1968).)


Albert’s (2000, Ch. 7) approach to the foundations of classical statistical mechanics relies on the dynamics of the quantum state as described by the theory of Ghirardi, Rimini and Weber (1986; see more details in Bell 1997). The GRW theory aims to solve the measurement problem in quantum mechanics by replacing the deterministic and time-reversible Schrödinger equation of motion by a stochastic equation. According to the GRW dynamics, the quantum state of every physical system randomly undergoes collapses in position (the so-called GRW jumps) such that the quantum state immediately after a jump is a localised Gaussian in position. GRW postulate two new constants of nature: one is the probability for a jump per particle per unit time, and the other is the width of the Gaussian immediately after a jump. In addition the GRW theory stipulates that the probability that the Gaussian immediately after a jump is centred on a given point is equal to the square of the amplitude at that point at the instant just before the jump. These new rules guarantee that the chance that the wave function of a macroscopic system will collapse is overwhelmingly high at all times, whereas for microscopic system the dynamics practically does not differ from the Schrödinger equation. Albert’s approach to the foundations of statistical mechanics assumes that the measurement problem and the more general problem of the so-called classical limit are indeed solved in this way by the GRW theory.

As is well known, the collapses in the GRW theory bring about slight violations of conservation laws. However, the collapses are stipulated to be onto Gaussians in position, which have tails. These tails ensure an approximate recovery of the conservation of energy and momentum. The first law of thermodynamics is empirically recovered in the GRW theory, in the sense that the theory does not lead to results which are contradicted by experiment. In our opinion the fact that the GRW dynamics implies violations of strict conservation laws in situations which have never been tested, is not by itself enough to reject the GRW theory. 
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The following terminology will be helpful in our discussion. We call an evolution of a system, between times t1 and t2, quantum mechanical normal, just in case the quantum states at both t1 and t2 correspond to well defined classical (including thermodynamic) magnitudes. An example of such states is the so-called coherent states in quantum mechanics, i.e. states that take the form of Gaussians in both position and momentum and which satisfy Ehrenfest’s theorem. In the GRW theory a quantum mechanical evolution would be normal if the state collapses onto such Gaussians at both t1 and t2; see Figure 1. We call a quantum state quantum mechanical normal just in case its Schrödinger evolution is quantum mechanical normal in the above sense. The thermodynamical magnitudes are well defined only for systems which evolve in a quantum mechanical normal way, and therefore such an evolution is a precondition for discussing the recovery of the thermodynamical regularities or their statistical mechanical counterparts. For this reason, in our discussion below we focus on evolutions and states which are quantum mechanical normal, unless otherwise stated. 

We call an evolution of a system, between times t1 and t2, thermodynamical normal, just in case the relation between the thermodynamical states at t1 and t2 corresponds to the laws of thermodynamics or their statistical mechanical counterparts; e.g., the entropy at t2 is not lower than the entropy at t1; see Figure 1. Evolutions which do not satisfy this condition will be called thermodynamical abnormal. We call a quantum state thermodynamical normal just in case its Schrödinger evolution is thermodynamical normal in the above sense. 


We can now concisely formulate how Albert proposes to solve problems (A) and (B). Let us start with problem (A): Why does using a uniform distribution on the standard probability measure produce successful predictions, and how can this distribution be derived from the underlying dynamics? In the GRW theory a microstate is a Gaussian in position. The probability distribution over such microstates is understood as the probability for a Gaussian right after a collapse to be centred on a given position. This probability distribution is determined by the equations of motion and is numerically equal to the Born rule probability distribution. The distribution obtained in this way is, in general, not uniform. In his GRW based approach Albert conjectures that the quantum mechanical probability distribution will reproduce the quantitative results that classical statistical mechanics derives from the uniform probability distribution (see Albert 2000 pp. 152-156). We call this Albert’s Dynamical Hypothesis. One way to recover these classical quantitative results would be to recover the classical uniform distribution as an approximation from the quantum probabilities; but there could be other ways. Albert does not prove the Dynamical Hypothesis but gives some plausibility arguments for it (see Albert 2000 p. 155-156, and Hemmo and Shenker 2003). If the Hypothesis is true, it will solve problem (A) in the foundations of statistical mechanics. 

The use of a uniform probability distribution is usually explained by referring to ignorance regarding the actual microstate (compatible with the macrostate) of the system in question (see Tolman 1938 and Guttmann 1999). In Albert’s approach there is only one origin for the probability in physics, namely, the quantum mechanical probabilities which in the GRW theory may be interpreted as single-case objective probabilities, i.e. chance. In particular, ignorance and the uniform probability distribution play no fundamental role in Albert’s approach. Moreover, in the classical context, no proof has so far been given for the uniqueness of the uniform probability distribution (see Sklar 1993). Indeed, if Albert’s hypothesis is correct, and if the GRW theory is the correct mechanical theory of the world, then the classical uniform probability distribution is not true.


To solve Problem (B) (the impossibility of bringing about anti-thermodynamical behaviour, despite the fact that the underyling dynamics allows for such behaviour in Boltzmann’s approach) Albert makes the following two assumptions, as additional elements in his Dynamical Hypothesis: (i) among the quantum mechanical normal states the set of the thermodynamical abnormal states has measure zero; and (ii) the thermodynamical abnormal states are uniformly distributed, in every microscopic neighbourhood, among the thermodynamical normal ones. 


Assumption (i) is among the postulates of classical statistical mechanics. Attempts to prove it on the basis of the underlying classical dynamics have so far failed (see Sklar 1993). In Albert's approach, too, this assumption is not proven but postulated. Assumption (ii) is not normally among the postulates of classical statistical mechanics. The mainstream approaches to this theory have no need for such a postulate, since their underlying dynamics is deterministic. In Albert’s approach postulate (ii) plays a key role in treating problem (B). (It is also part of his classical Past Hypothesis, see Albert 2000.) 


Consider an evolution from t1 to t2, and suppose that the initial state at t1 is a thermodynamical abnormal state, namely, one whose Schrödinger evolution would be anti thermodynamical (see Figure 1). Assume further that the time interval (t1, t2) is very long relative to the time scales over which the GRW jumps occur, so that with high probability at least one such jump will have taken place during it. Assumptions (i) and (ii) above entail that this jump will be, with very high probability, onto an entropy increasing trajectory, and as a result the evolution will end up being thermodynamical normal. In other words, the evolution from t1 to t2 will be a patchwork, so to speak, of segments of Schrödinger evolutions, and even if one of the patches happens to be taken from a thermodynamical abnormal trajectory, the others will be, with probability one (by assumption (i)), patches of thermodynamical normal trajectories, and so the whole evolution will end up being thermodynamical normal, with probability one. A patchwork that makes up a thermodynamical abnormal evolution is possible (with probability zero), but is the outcome of a series of chancy events. In this way Albert’s approach guarantees that every evolution of a macro system has a very high probability to end up being thermodynamical normal, regardless of its initial state. Albert’s solution to problem (B) is, then, not by precluding thermodynamical abnormal evolutions, which are still possible although with probability zero, but by making the thermodynamical normality of the evolution independent of the thermodynamical normality of the initial state. 

We now turn to briefly presenting our alternative approach to Albert’s that is based on environmental decoherence in stochastic no collapse interpretations of quantum mechanics, such as modal interpretations.
 In essence the two approaches to the foundations of classical statistical mechanics are similar. The main difference is that in stochastic no collapse interpretations of quantum mechanics the quantum state does not collapse. Instead, there are extra dynamical laws, e.g., in modal interpretations the dynamics of the extra values proposed by Bacciagaluppi and Dickson (1999), that produce, in a stochastic way, effective collapses of the quantum state. We assume here that in such interpretations when macro systems undergo decoherence interactions with their environment the extra dynamics results in effective collapses onto coherent states corresponding to what we have called quantum mechanical normal states. In particular, our approach assumes that no collapse interpretations provide adequate solutions to the so-called problem of the classical limit in quantum mechanics (including the measurement problem)
.

The role of decoherence together with the stochastic extra dynamics in our approach is similar to the role played by the stochastic GRW jumps in Albert's approach. First, decoherence (together with the extra dynamics) ensures that macroscopic systems will evolve in a quantum mechanical normal way. In particular, decoherence ensures effective collapses onto the coherent states given by Gaussians in both position and momentum. And second, decoherence ensures that the effective collapses in the evolution of macroscopic systems will not be undone by re-interference in the quantum state of the system in the near future. 

Let us now briefly consider how problems (A) and (B) above are treated in our approach. As to problem (A), namely the predictive success of the uniform probability distribution in classical statistical mechanics, we conjecture that the predictions of classical statistical mechanics (obtained as averages over phase space) can be recovered in no collapse interpretations of quantum mechanics in two steps. First, the extra dynamical laws produce the quantum mechanical probabilities given by the Born rule. This requirement is the usual one in order for the extra dynamics to be empirically adequate in a purely quantum mechanical context. Second, the quantum mechanical probabilities reproduce the quantitative predictions of classical statistical mechanics. This second step is our Dynamical Hypothesis, analogous to Albert’s. We cannot prove our Dynamical Hypothesis, but there are general plausibility arguments for it, based on the idea that the effective collapses are spontaneous, extremely frequent in macroscopic systems that are subjected to decoherence, and these collapses induce changes in position in scales which are extremely small relative to the scales over which thermodynamical magnitudes change. If this Hypothesis is correct then problem (A) in the foundations of statistical mechanics is solved by the extra dynamics in no collapse interpretations, in essentially the same way as in Albert’s approach.

Zurek and Paz (1994) show that the rate of increase of the Von Neumann entropy of a (chaotic) quantum system subjected to environmental decoherence approaches the classical rates (see Hemmo and Shenker 2003 and Wallace 2001). This could be directly relevant for a Gibbsian approach to the foundations of statistical mechanics. However, the approach we discuss here is Boltzmannian. The relationship between the Von Neumann entropy and Boltzmann’s entropy is not clear, for the following reason. One outcome of the conceptual difference between these entropies is that even if the evolution of a system is quantum mechanical normal (in situations of decoherence), this does not guarantee a thermodynamical normal evolution of the Boltzmann entropy: the Boltzmann entropy will behave normally with probability 1, but unlike the Von Neumann entropy, not with certainty. To the extent that an increase in the accessible phase space region leads to an increase in the volume of the most probable macrostate, the results of Zurek and Paz (1994) support our Dynamical Hypothesis. We leave this point for future research, and return to some of its implications in Section 3. Moreover, in our opinion, the Von Neumann entropy is not the quantum mechanical counterpart of the thermodynamical entropy, to begin with; see Hemmo and Shenker (2004).

Problem (B) (the impossibility of bringing about anti-thermodynamical behaviour, despite the fact that the underlying dynamics allows for such behaviour in Boltzmann’s approach) is treated in our approach by relying on the effective collapses in decoherence situations as described by stochastic no collapse interpretations of quantum mechanics. Here the idea is that the effective collapses, brought about by the stochastic extra dynamics together with postulates (i) and (ii) above, guarantee that the evolution of every macro system has an overwhelmingly high probability to be thermodynamical normal, regardless of its initial quantum state. Since in decoherence situations effective collapses onto localised states occur randomly, decoherence neutralises, so to speak, the traces of the initial quantum state of the system, so that the system's effective evolution will be with very high probability thermodynamical normal, regardless of its initial state.
 (Note that this neutralisation of the initial state refers to the thermodynamical normality of the evolution. Since decoherence does not bring about a genuine collapse of the quantum state, whether or not the evolution is quantum mechanical normal depends on the initial quantum state.) As long as the evolution is quantum mechanical normal (e.g. decoherence and the resulting effective collapses persist), thermodynamical abnormal evolutions are highly improbable. Note, however, that they are not ruled out but only have probability zero and are independent of the initial state of the system, as in Albert’s approach.

As is well known the GRW theory is not empirically equivalent to no-collapse interpretations of quantum mechanics. The predictions of these two approaches concerning quantum mechanical observables may differ due to the different dynamical laws for the quantum state that they stipulate. This difference is manifested also in the case of the recovery of the thermodynamical regularities. For example, if re-interference ever occurred in the evolution of a macro system, the status of the laws of thermodynamics would be unclear: the evolution could be either quantum mechanical normal or abnormal, and it could be either thermodynamical normal or abnormal. In the GRW collapse dynamics such possibility is ruled out as extremely unlikely. By contrast, in our decoherence based approach the question of re-interference in the future depends entirely on the initial conditions, and cannot be ruled out neither by the extra dynamical laws nor by the Schrödinger equation (see Hemmo and Shenker 2003, sec. 5). If initial conditions which secure decoherence for long enough times are assumed, then re-interference is extremely unlikely.
 Therefore, for practical purposes the predictions of the two approaches seem empirically equivalent. However as our discussion below reveals the two approaches differ also in their quantitative predictions concerning the thermodynamical regularities.

2. Light Gases

In this section we examine a case in which the predictions of Albert’s approach differ, in principle, from the predictions of the decoherence approach. As we said, there are well known quantitative differences between the predictions of the GRW theory and those of no collapse interpretations of quantum mechanics concerning the results of quantum mechanical measurements. We add further cases of empirical inequivalence between predictions of these theories in the context of measurements of thermodynamical magnitudes.

Albert (2000, Ch. 7) examines the case of small gases, in which the probability for a GRW jump per unit time is too small to account for the thermodynamical behaviour of the gas. If we take a version of the GRW theory in which the collapse rates are proportional to the mass density of the system, then a small number of particles in itself does not pose a problem if the particles are massive enough. The problem of accounting for the thermodynamical behviour arises only if the gas in question is light, i.e., consisting of extremely light particles. In this case, the increase of entropy cannot be explained by the GRW jumps. In the case where initial state of such a light gas is thermodynamical abnormal, the jumps which could turn its evolution into a normal one are (statistically) not available. 

By examining the case of light gases we (as well as Albert) do not aim to propose a thought experiment in which the evolution is thermodynamical abnormal. Rather, we assume that the evolution of the light gases is normal, and we aim to explain how this is possible given that the initial state is thermodynamical abnormal. This discussion will bring to the fore the difference in empirical content between Albert’s approach and our approach.


Albert (2000, Ch. 7) proposes two solutions for the problem of light gases. One relies on the histories of the systems. To ensure a thermodynamical normal evolution, regardless of the initial state in which the gas is prepared, it is enough to let the gas evolve between the preparation and the registration of the results of the experiment, for a time interval which is long enough to make the probability for a GRW collapse close to 1. However, this solution is not general enough for it does not apply to gases that have been prepared recently in a thermodynamical abnormal state. It is possible to carry out experiments in which the time interval between the preparation and the registration is not long enough to ensure a GRW collapse. Since we here deal with extremely light gases such a possibility ought to be considered seriously. 


Albert's second solution focuses on the fact that thermodynamical systems are never isolated from their environment. In particular, they interact with particles in the environment in a way that yields quantum entanglement between the particles of the system and the particles in the environment. For example, no matter how light and small a gas may be, its particles interact extremely quickly (relative to the time scales over which the thermodynamical magnitudes change) with the walls of the container, so that in a fraction of a second we get an entangled quantum state for the composite of gas plus container. Given the mass of ordinary containers in which such gases are contained, the GRW rates for collapses for the quantum state of the total system (gas plus container) are certainly high enough in order to explain the thermodynamical behaviour (given Albert's Dynamical Hypothesis). Thus, according to Albert, the GRW dynamics is enough to explain the thermodynamical regularities, and we don't have to appeal to some special micro conditions at the initial time (nor to probability distributions over initial conditions).
 

Albert's second solution is, again, not general enough, since it relies on contingent facts regarding the experimental context, namely, that the gas is placed in a massive container. Suppose that a small gas or a light gas, which has been prepared recently, occupies a finite space volume, but does not interact with any massive body in its environment, such as a container's walls or particle detectors. In this case the probabilities for GRW collapses in the gas are extremely small, and therefore the GRW description of the gas's spatial expansion reduces to the usual quantum mechanical description, given by the free Schrödinger evolution of the particles and the interaction with the environment. And so whether or not the evolution of the gas is thermodynamical normal or abnormal can only be determined by the initial conditions (as collapses will be too rare). 

Note that for systems that do not interact with their environment at all (including the container’s walls), the temperature and pressure may not be well defined thermodynamically. We therefore focus on the change of volume. Suppose, then, that we were to measure the distribution of the particles of such an isolated gas, say by putting detectors in all directions around the initial region. We expect this gas to expand isotropically in the usual thermodynamical way (on the average, in the case of very small gases). In this case, our measurements ought to detect a homogeneous distribution (again, on the average, in the case of very small gases). 

How can this behaviour be explained in the GRW-Albert approach? Since the gas is light the probability for a GRW jump before the interactions with the detectors is practically zero. The probability for a jump is overwhelmingly increased by the interactions of the particles with the detectors. Therefore, with very high probability, the particles will get localised only at the instant of the detections. Albert's Dynamical Hypothesis implies that immediately after the detection the particles will jump onto thermodynamical normal trajectories, with high probability. This means that a homogeneous distribution is, indeed, most likely to be found independently of the initial state of the gas. This homogeneous distribution depends crucially on the fact that measurements are actually performed.

We can now consider an experimental situation in which the predictions of Albert’s approach will differ from the predictions based on our decoherence approach. 

Suppose that the gas starts off on a thermodynamical abnormal trajectory. (The gas may be either ideal, i.e. in a product state, or not.) The approach to equilibrium will begin only at the instant of the first interaction of any one of the particles with the detector. In this sense, by choosing the positions of the detectors, and thereby the time of interaction, one case induce an empirically observable delay in the approach of the gas to equilibrium. The delay in question may be defined relative to the rate of approach to equilibrium predicted by theories that do not rely on the interaction with the detectors as the trigger for thermodynamical normality. We will see later that our decoherence approach may be one such theory. Let us consider the account of the experiment in decoherence theory.

We suppose that the gas particles interact with their environment throughout the experiment. On the one hand, the collisions between the particles and the environment result in the destruction of interference terms (the off-diagonal elements in the reduced state of the gas). On the other hand, if the gas particles are extremely light, the collisions distort (due to recoil) the trajectories of the particles. Therefore, in the case of extremely light gases, decoherence does not lead to localisation of the particles’ wave function. As a result, in these interactions the process of decoherence is much slower. This seems to pose a problem for decoherence approach to the explanation of thermodynamics. (This problem is analogous to the problem faced by Albert’s approach, discussed above.) However, it has been conjectured by Professor Dieter Zeh that even for delocalised but decohered gases, some of the classical predictions may be reproduced by quantum mechanics using decoherence theory. For example, in the presence of decoherence the quantum calculation yields the same function of state as calculated in the classical kinetic theory of diluted gases, even for times at which the gas particles are not localised.
 If Zeh’s conjecture is correct, then the thermodynamical behaviour of extremely light gases can be recovered in our approach. 

We can now see, in very rough outline, that the thermodynamical behaviour of extremely light gases may be used in order to carry out experiments that will distinguish empirically between Albert’s approach and our decoherence approach. In Albert’s approach, in the case of a light gas spreading out in space, the rate of approach to equilibrium will depend quantitatively on the distance in which the detectors are placed. By contrast, in our decoherence approach, the time at which the approach to equilibrium will begin will be earlier, and the process will only be accelerated by the interaction with the detectors. 

3. The Spin Echo Experiments

In the spin echo experiments the increase of thermodynamical entropy seems to be reversible. Any attempt to explain the Second Law of thermodynamics must also account for this behaviour. In particular it must account for the seeming fluctuations in entropy during the experiment. The purpose of this section is to offer a quantum mechanical analysis of the experiments, and to show how the puzzling features of the experiments can be explained in Albert's approach as well as in our approach. 


We begin with a brief phenomenological description of the experiments. A system consisting of n protons (specifically, the hydrogen atoms in a sample of glycerine) is placed in a strong magnetic field in the z direction for a while. Then, an intense radio pulse (rf-pulse) is switched on for a short time interval, and as a result a strong electromagnetic signal, resembling a free induction decay signal of a magnet spinning in the xy plane is obtained. This signal decays in time (see the t=0 to t=( evolution in Figure 2). A second rf-pulse is switched on for a duration twice as long as the first pulse. Consequently, at t=2( an echo is obtained: the echo is slightly weaker than the original signal, see t=2( in Figure 2. Upon repeats of this process the echo gradually decays, until it completely fades away.

INSERT FIGURE 2 ABOUT HERE

There are three features of the experiment one needs to explain: (i) the disappearance of the signal in the short-term (t=(, 3(, 5( etc in Figure 2); (ii) the return of the echo signal (t=2(, 4( etc in Figure 2); and (iii) the gradual decay of the signal intensity from t=( to t=3( etc. We now turn to propose a quantum mechanical description of the experiment. Then we shall offer an explanation of the above three features in terms of Albert’s approach as well as ours. 

Schematically, the initial state of the n protons, tracing out the environment, right after the first rf-pulse, is
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 is the state representing the x-up eigenstate in which all the protons are prepared (the state might be a product of the x-up eigenstates of the protons, but this is not the only possibility); and 
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 is the reduced density matrix of the particles in the field representing, as usual, a probability distribution over the positions of the protons. The details of 
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 are determined by the properties of the glycerine sample, the external field and the spin-spin interactions. The alignment of the spins is due to the external field, and not to any interaction between them; the dependence of the position degrees of freedom on the spin degrees of freedom is expressed by 
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As a first approximation, that will be relaxed later, we suppose that no perturbations are exerted on the protons by their external environment. In this approximation the system evolves freely, in accordance with the Schrödinger equation, within the constraints of the field.


When the spins start to evolve right after t=0, the spin-spin interactions bring about an entanglement between the spins of the different protons. The reduced state of the system becomes:
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Here the 
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 denote either spin up or spin down in the w direction of proton i.  We know from the empirical phenomena that at t=( (and also at  3(, 5( etc.) there is no electromagnetic macroscopic signal, and therefore we take it that by t=( the directions wi of the spins become completely random. In other words, if we write the 
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 in, say, the x-spin basis as the superposition
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 for the different protons are completely uncorrelated. The coefficients 
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 are the probability densities for the corresponding spins in the integral. In expression 2 we indicate explicitly the dependence of the position on the spin through 
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 is determined by the spin-spin interactions as well as the inhomogeneity of the external magnetic field.
Let us now describe feature (i) above, namely the decrease of the signal, in terms of expression 2. Consider what happens during the time interval 
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 becomes more and more uniform, until it becomes maximally uniform at t=(. Similarly for the time intervals 
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etc. This explains feature (i) above, namely, the short-term disappearance of the signal. This explanation follows from the quantum mechanical Schrödinger dynamics of the internal system only. In particular, at this stage we did not take into account the effect of external perturbations, nor of internal ones, e.g. GRW collapses.

It is also possible to describe feature (i) in term of the Von Neumann entropy 
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. At t=(, 3(, 5( etc., when the probability distribution becomes uniform, the Von Neumann entropy approaches a maximum. In particular, focusing on the reduced state of the spin part:

3. 
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one can see that the Von Neumann entropy 
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Note that the rate of the decay towards equilibrium at this stage depends on the degree of inhomogeneity in the external field. Therefore, if we could control the field’s homogeneity we could test the adequacy of the above description.  


We now turn to describing feature (ii), namely, the occurrence of the echo (at times 2(, 4( etc in Figure 2). The effect of the rf-pulse is to transform the reduced quantum state of the protons 
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 (we write a state after the rf-pulse by `, and (t denotes the duration of the pulse) such that the Schrödinger dynamics of the total quantum states results in a reduced state of the protons in which the spins return, at t=2(, to an aligned state such as state 1. Similarly for times t=4(, t=6( etc., at which echoes are obtained. In these states the spins of the protons are correlated, but the Von Neumann entropy of the spin part is reduced to a minimum, since the spins of the different protons are no longer entangled with each other. Note that in this explanation of feature (ii) we do not yet take into account any perturbations, external or internal; the dynamics so far is purely unitary and deterministic. As we shall see below, taking perturbations into account will prevent the system from returning exactly to state 1, and will therefore play a decisive role in the explanation of the decay (feature (iii) above), to which we now turn. 


In order to describe the decay of the echo in the long run we now relax our assumption that no perturbations are exerted on the protons. Most of the explanations that have been proposed for the spin echo experiments sought for some sort of perturbations. In some explanations the source of the perturbations is external to the system (e.g. Ridderbos and Redhead 1998; see below),
 and in other the source was internal (e.g. Albert 2000). The effect of the perturbations is such that at t=( the reduced quantum state of the protons is not 
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 (we denote perturbed states by ~), such that the rf-pulse does not transform the state to 
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 as above but rather to 
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. However, the quantum mechanical evolution of 
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 does not take the protons to an exactly aligned spin state. Since an echo is emitted at t=2(, 4( etc., it is reasonable to assume that the fully aligned state 1 and the states which evolve from 
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etc. are close (in the appropriate measure). In other words, these states are close at t=2( but get farther apart at the subsequent times t=4(, 6( etc., as a result of the perturbations. Note also that it is reasonable to assume (especially in non-chaotic systems) that the distance (in the appropriate measure) between the unperturbed state 
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 and the perturbed state 
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 is of the same order of magnitude as the distance between the fully aligned state 1 and the state at t=2(, evolved from 
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. If one wishes to explain the decay of the echo by appealing to perturbations (and we see no other way of doing so), then the explanation must rely on the gradual increase in the distance between the states at t=2(, 4( etc. and the fully aligned state 1, as we just described. 


What is the origin of the perturbations? In the literature there are two main proposals. One is in the framework of an interventionist approach to classical statistical mechanics, according to which the source of the perturbations is the environment; e.g. Ridderbos and Redhead (1998), see discussion below. Another is that the source of perturbations is internal. Both Albert’s GRW approach and our decoherence-based approach belong to this second framework.  In both, the perturbations are internal to the dynamics of the system; but whereas in Albert’s approach they are brought about by the dynamics of the quantum state (via the GRW collapses), in our approach they are brought about by the stochastic dynamics (that we have called effective collapses) of the extra variables. Note that our approach is interventionist only in the sense that it is the interaction with the environment, which is supposed to guarantee that the effective collapses yield the classically well-behaved magnitudes (see Section 1). In this sense, by contrast to Ridderbos and Redhead (1998), the environment in our approach contributes only as a by-product to the occurrence of perturbations in the spin echo experiments. The perturbations themselves are brought about by the stochastic dynamics of the extra variables in our approach.


We now wish to point out an apparent difficulty in the above explanation of the decay of the signal , and to solve it. The glycerin sample is solid, and therefore the positions of the atoms are rigidly fixed. Therefore the quantum states before and after the jumps are close to each other in position (in the appropriate measure). The jumps (either GRW collapses or effective collapses in no collapse approaches) are centred around points which are already contained in the spatial envelope of the initially localised quantum state. A difficulty in the above explanation of the decay would arise if (and only if) the quantum states of the spin part before and after the jumps are also close. The difficulty seems to be, in other words, perturbations induced by the jumps might not result in a significant change of spin and therefore they might not induce the right perturbations in order to explain the decay of the echo (see Albert 2000 Ch. 7). 

However, this is not quite right. Since the spin amplitudes are extremely sensitive to position, the jumps in position are enough to bring about significant changes in the spins. (This sensitive dependence of spin on position is a result of the dependence of spin on the field at that position, and is given by 
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.) Because of this sensitivity the jumps gradually take the spins away from a perfect return to state 1, and towards a decay of the echo. In the short run (actually, the first 3 or 4 repeats of the rf pulse; see Hahn 1950) the protons return to a state which is close enough to state 1, so that an echo is emitted (therefore we can explain (i) and (ii) despite the collapses), but the distance (in the appropriate measure) from state 1 increases gradually in time, so that in the long run the echo decays completely.


Note that the frequency of the jumps determines the rate of the decay in the long run. Therefore if we can experimentally control the factors which determine the frequency of the jumps (e.g. the mass density of the sample, or the rate of decoherence) then we have a way of testing the above explanation.


Let us consider now the behaviour of the Von Neumann entropy during the experiments. As we noted above, the Von Neumann entropy fluctuates with the signal, due to the changes in the degree of entanglement between the spins of the different protons. It now turns out that the decay of the signal in the long run is also paralleled by a gradual increase in the minima of the Von Neumann entropy, since the quantum states at the minima become more and more entangled. In sum, the behaviour of the Von Neumann entropy is a mirror image of the behaviour of the signal (see Figure 2). 


As we see from the above analysis, the Von Neumann entropy at t=(, 3( etc., (at which the system is in quasi equilibrium in Blatt’s (1959) term), has the same value as after the complete decay of the echo. In all these states applying the appropriate rf-pulse brings about a reversal of the dynamics, as described above; however, only in the so-called quasi-equilibrium states the reversal of the dynamics brings about a decrease of entropy. This difference boils down to the preparation of the initial state at t=0 in the experiment. The so-called quasi equilibrium states are therefore cases in which: (1) a particular low entropy state is prepared; and (2) a reversal of the dynamics by means of a macroscopic manipulation is available. In all other respects, e.g. the Von Neumann entropy, the short term quasi equilibrium states and the long term genuine equilibrium are exactly the same.


We now turn to discuss the Boltzmannian entropy in the experiments. The Boltzmannian entropy is different from the Von Neumann entropy, in that whereas the latter measures the degree in which the quantum mechanical reduced state is mixed, the former counts permutations between microstates belonging to the same macrostate. Despite this difference the two kinds of entropy behave in a similar way in this experiment. To make sense of a Boltzmannian approach in a quantum mechanical framework, the reduced state 2 or 3 should be interpreted as describing a weighted mixture of different quantum states in each of which both position and spin have definite values.  Consider, first, a Boltzmannian semi-classical description of the experiment (see Figure 3). 

INSERT FIGURE 3 ABOUT HERE

At t=0 the system is in macrostate A. Since there are no permutations in the spin degree of freedom in the fully aligned state 1, the volume of A is determined by the number of permutations in position. The system then evolves freely; its state, 
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, evolves according to the Schrödinger equation, through macrostates B and C (in which the signal intensity gradually decreases), towards the equilibrium macrostate at t=(, at which the signal completely disappears. The evolution is in accordance with the Second Law of thermodynamics. During this evolution, at some points the system undergoes quantum jumps; in Figure 3 we indicate only one such jump. The subsequent states are denoted by 
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. The Schrödinger evolution of  
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 does not take the state back to macrostate A, but only to macrostate B, in which the spins are not fully aligned and a signal slightly weaker than in A is emitted. Note that the degree of quantum mechanical mixing in the spin degree of freedom as measured by the Von Neumann entropy in macrostate B is positive. The system does not return to macrostate A because of the quantum jumps, as explained above. From macrostate B the system evolves, by the Schrödinger dynamics, back to equilibrium, again - according to the usual thermodynamical considerations. At t=3( another rf-pulse is applied, and the state of the system is transformed into 
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. (This evolution is not indicated in Figure 3.)  The Schrödinger evolution of 
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 does not send the system back to macrostate B but only to C, in which the signal obtained is even weaker. After several repeats of this process the rf-pulses are no longer able to take the system out of equilibrium. 

It seems to us that this description of the Boltzmannian account of the spin echo experiment is appropriate although it is semi classical. In the above analysis we have assumed that the Dynamical Hypotheses put forward in Section 1 are true. On this assumption given that the glycerine sample is a macroscopic solid, the system undergoes decoherence and (effective) collapses continuously take place, and therefore it is legitimate to interpret the quantum state as a mixture, and so the quantum mechanical description should deliver the usual classical behaviour. 


However, as we emphasised in Section 1, the Dynamical Hypotheses have not been proven; only plausibility argument have been given for them. Recall that these hypotheses say that the quantum mechanical probability distribution reproduces the successful predictions of classical statistical mechanics based on the uniform probability distribution. The problem in the present context is that it is not clear how to calculate the size of the Boltzmannian macrostates, given that the quantum mechanical probability distribution is not, in general, uniform. Calculating these sizes would be necessary in order to find out to what extent the evolution of the Boltzmannian entropy mirrors the intensity of the signal (Figure 2) and the evolution of the Von Neumann entropy as described above. We leave this question for future research, together with the proof of the Dynamical Hypotheses.

Another question concerning the Dynamical Hypotheses is the following. The special feature of the spin echo experiment is that in the short term the set of thermodynamically abnormal states has a positive measure! This is seen from the fact that the many GRW jumps (or effective collapses in no collapse quantum mechanics), which take place during a time interval of length ( (in Figure 3), and which take the system from its initial trajectory to a nearby one, are not enough to remove the system from a thermodynamically abnormal evolution to a thermodynamically normal evolution. Despite the fact that, with high probability, the system jumps from one trajectory to another several times during the time from t=( to t=2(, its short term evolution is thermodynamically abnormal: it evolves from equilibrium to a clearly non equilibrium state. The positive measure of the thermodynamically abnormal states is a result of the strong constraints on position in a solid. This problem is that this behaviour might be taken to be a counter example to our Dynamical Hypothesis. We believe that this is not the case, for the following reason. So far we focused on the behaviour of the protons only, and ignored other elements of the experiment, e.g. the source of the rf-pulses, the work invested in preventing the sample from heating up, and so forth. But the system is open, and the short-term anti-thermodynamical behaviour of the protons is an outcome of the external investments of work. Indeed, the price of reversing the equilibrium state at t=( by a macroscopic manipulation is that the work invested in producing the pulse must be greater than the work we can produce from the echo signal. Some of the work must be wasted, and therefore this is not a case of perpetual motion of the Second kind. The system as a whole obeys the Second Law of thermodynamics, and this is explained by the Dynamical Hypotheses. Formally the positive measure is not in the total space (of the sample plus its evironment) but only in the space of the reduced state of the sample. This case resembles Albert’s (2000, Ch. 5) notion of a pseudo Maxwellian Demon.


We now turn to briefly discussing a classical Gibbsian analysis of the experiment, proposed by Ridderbos and Redhead (1998). They reject the use of coarse graining in accounting for the Second Law in the Gibbsian framework (for details see ibid and Ridderbos 2002). Instead they advocate an interventionist approach to the foundations of classical statistical mechanics in a Gibbsian approach. In this approach the gradual decay of the signal can be explained in terms of a monotonic increase of the fine grained Gibbsian entropy. However, the intermediate fluctuations of the signal, in this approach, do not correspond to fluctuations in fine grained Gibbsian entropy. Gibbs’s entropy measures the degree to which one can change the thermodynamical properties of a system by means of macroscopic manipulations. Indeed, the spin echo experiments illustrate the fact that Gibbs and Boltzmann ask different questions and so obviously give different answers, in terms of their different concepts of entropy. 

 
The Von Neumann entropy 
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 is often seen as the quantum mechanical counterpart of the Gibbsian fine grained entropy. However, in the spin echo experiment, as we saw above, the two entropies behave in a significantly different way. The Von Neumann entropy mirrors both the fluctuations and the decay of the signal, while the Gibbsian entropy mirrors the decay only. The reason for this difference is that the Von Neumann entropy is a function of the quantum mechanical actual microstate of the system; whereas the Gibbsian entropy is an average over all possible (classical) microstates. Surprisingly, in this sense Von Neumann’s entropy resembles Boltzmann’s entropy, which is also a property of the actual microscopic state of the system (in virtue of the macrostate to which it belongs). This illustrates the fact that the Von Neumann entropy is not an exact counterpart of the Boltzmannian entropy nor of the Gibbsian entropy; 
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 should be directly connected to thermodynamical entropy, as Von Neumann attempts to do in his (1932) Ch. 5.
 

4. Conclusions

In this paper we focused on a Boltzmannian approach to the foundations of statistical mechanics, based on a quantum mechanical underlying dynamics. We discussed two different approaches: one due to Albert (2000, Ch. 7) based on the GRW interpretation of quantum mechanics and the other based on no collapses interpretations. As we saw, both approaches to the foundations of statistical mechanics rely crucially on what we have called Dynamical Hypotheses. Both Hypotheses say that the underlying quantum mechanical dynamics reproduce the quantitative predictions of classical statistical mechanics. In the classical context those predictions are based on the postulate that the phase space probability distribution on the standard measure is uniform. In the quantum mechanical context the probability distribution is not, in general, uniform, and the crucial task now is to prove that the quantum distribution will reproduce the predictions based on the classical uniform distribution. In our opinion this is plausible, but it is clear that both approaches stand or fall with these hypotheses. If the Hypotheses will be proven, one of the remarkable consequences will be that all physical probabilities will be reduced to the quantum mechanical ones.

The choice between the two Boltzmannian approaches to the foundations of classical statistical mechanics discussed in this paper hinges on two types of considerations. One is the preferred interpretation of quantum mechanics, a collapse theory of the GRW type, or a no collapse theory. The other is the way in which each approach explains thermodynamics and classical statistical mechanics. The two types of considerations may be closely linked: as is well known, the two approaches to quantum mechanics are not empirically equivalent. In our paper we outlined new contexts in which this inequivalence is brought out: the spin echo experiments and the case of extremely light gases. We conjecture that controlling the parameters which determine the rate of GRW collapses or the rate of decoherence in thermodynamic systems may provide ways of empirically distinguishing between the two approaches.
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Figure 1: Thermodynamical Normal and Abnormal Evolutions 
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Figure 2: The Spin Echo Experiments: Macroscopic Signal Intensity
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Figure 3: The Spin Echo Experiments: A Boltzmannian Representation
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� As in Hemmo and Shenker (2003) we don't address problems in no collapse interpretations of quantum mechanics, nor in the GRW theory, that are not directly related to the foundations of statistical mechanics.


� See Dieks and Vermaas 1998 for modal interpretations.


� In some models, decoherence interactions yield highly degenerate (reduced) states for the macro systems in question. This leads to problems with the recovery of effective collapses onto the quantum mechanical normal states in some versions of the modal interpretation. These versions are thus not empirically adequate, and they don't satisfy our assumption above, but we set aside this issue here. 


�  I Bohm’s pilot wave theory the underlying dynamics is completely deterministic, and therefore the evolution is always fixed deterministically be the initial conditions. This is why our solution to problem (B) cannot be obtained on the basis of such dynamics. 


� Of course, the Poincare recurrence theorem holds for unitary quantum evolutions, and therefore in principle there will be recoherence and thermodynamical abnormal behaviour. The time scale over which such recurrence occurs depends on initial conditions.


� Note that although Albert’s solution relies on the environment, it does not do so in the traditional interventionist way. For first, in the GRW theory, the environment must be massive (e.g., the container’s walls) in order to increase significantly the probability for the jumps, and second, the role of the environment in the GRW theory is dynamical, in the sense that it is not intended to bring in considerations of ignorance.


� We thank professor Dieter Zeh for pointing this out to us. 


� For a semi classical explanation of the experiments see Hahn 1950, 1953, Ridderbos and Redhead 1999, Lebowitz (1993).


� For a discussion of classical interventionism (the open systems approach), and the explanations of how external perturbations affect systems, see Shenker (2000).


� Albert (2000, Ch. 7) proposes a somewhat different explanation of the decay of the echo in the long run, which makes an appeal to the GRW jumps in the history of the sample. This explanation does not account for the intermediate fluctuations of the signal, (i) and (ii).


� We discuss in details whether or not Von Neumann succeeds in establishing this linkage in Hemmo and Shenker (2004)
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