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1.  Introduction

1.1. The Direction of Time

Hans Reichenbach opens his book The Direction of Time with a chapter on 
“the emotive significance of time.” He writes:

The problem of time has always baffled the human mind. Not only the events of the 
external world but even all of our subjective experiences occur in time. ... What we 
experience in one moment, glides, in the next moment, into the past. There it remains 
forever, irretrievable, exempt from further change. ... Our emotional response to the 
flow of time is largely determined by the irresistibility of its passing away. ... We 
cannot stop it; we cannot turn it back. ... [and we know that] the end of all this ... is 
death. ... If we could stop time, we could escape death. ... The fear of death is thus 
transformed into a fear of time. ... Dissatisfied emotion has frequently been projected 
into logic. ... The fear of death has greatly influenced the logical analysis which 
philosophers have given to the problem of time. The belief that they have discovered 
paradoxes in the flow of time is called a ‘projection’ in modern psychological 
terminology. It functions as a defense mechanism; the paradoxes are intended to 
discredit physical laws that have aroused deeply rooted emotional antagonism. 
(Reichenbach 1956, 2–3)

Reichenbach’s words may create the impression that while physics tells us 
clear things about time, philosophers resist its discoveries. It is true, of course, 
that philosophers have always been aware of the difficulty to understand 
the notion of time. The words of Saint Augustine, who studies time in his 
Confessions, are as relevant today as they have been in the 4th century: 

What, then, is time? If no one asks me, I know what it is. If I wish to explain it to him 
who asks me, I don’t know. (Book 11, chap. 14)

Often, scientists give the impression that their understanding of time has 
advanced considerably since the time of Saint Augustine. One example 
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is Isaac Newton, who begins the Principia (1687) by saying, in the first 
scholium:

I do not define time, space, place, and motion, as being well known to all.

He goes on to remark that the “common people” entertain some “prejudices” 
about time that must be removed, and then he turns to remove these prejudices 
in a brief comment on the notion of time. His brief comment reveals how 
far from the truth was the above sentence, how time is anything but “well 
known to all”: Newton’s comment in the scholium opened a debate that is 
still going on today, concerning the absolute versus relational nature of time. 

Indeed, while science has advanced our understanding of certain aspects 
of time, other aspects of time remain as little understood as ever. In particular, 
despite the impression one may sometimes get from the literature, the 
directionality of time is a phenomenon for which physics has no explanation. 
It is this aspect of time on which we shall focus in this paper. 

One often hears that statistical mechanics provides a satisfactory account 
of the arrow of time. But this is wrong: Statistical mechanics does not 
provide an arrow of time, and doesn’t even fully account for the direction in 
which thermodynamic process evolve in time;1 rather, it assumes a direction 
of time as well as a direction in time.2 The other theories of physics assume 
the arrow of time as well. The special theory of relativity assumes a direction 
of time in the same way that classical mechanics does, as we discuss below. 
In general relativity some solutions of Einstein’s field equations are such 
that the spacetime manifold turns out to be globally time orientable, and 
some are not. In the first class of solutions the theory assumes a direction 
of time in the same sense that we shall discuss below in the context of 
classical mechanics. In the second class of solutions, where the manifold 
is not globally time orientable, the direction of time is assumed locally. 
Cosmology is an application of the general theory of relativity together 
with observational data such as the red shift. As such it cannot give an 
arrow of time beyond that of general relativity. Similarly, thermodynamics 
is an application of statistical mechanics, together with observational data 
concerning the behavior of thermodynamic systems. As such it cannot give 

1 The important distinction between an arrow of time and an evolution in time will 
be clarified below.
2 See Albert 2000, chap. 4; Hemmo and Shenker 2012, chaps. 7 and 10.
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an arrow of time beyond that of mechanics. In quantum mechanics time is 
a parameter but the notion of velocity is somewhat different. Although it 
seems to us that our conclusion concerning the direction of time will hold 
also in quantum mechanics, the argument should be different, and therefore 
we do not undertake it here.3 

In view of the scientific and philosophical literature on this topic until 
today, we think we can safely say that nobody understands the arrow of time.4

1.2. The Mathematical Language of Physics 

Newton’s Principia contains not only general comments concerning time 
such as the one quoted above, but also mathematical physics; and here 
Newton has an opportunity to express some of his ideas about time in the 
language of mathematics. Newton begins his preface to the first edition of 
the Principia with the following sentence:

Since the ancients esteemed the science of mechanics of greatest importance in the 
investigation of natural things, and the moderns, rejecting substantial forms and 
occult qualities, have endeavored to subject the phenomena of nature to the laws 
of mathematics, I have in this treatise cultivated mathematics as far as it relates to 
philosophy.

The notions that Newton uses here, such as mechanics, mathematics, and 
philosophy, may not have the meaning we would give these terms today.5 
But we think it is, on the whole, correct to say, that an important aspect of 
Newton’s work was to develop mathematics, and to use this mathematics 
as part of a theory which we would today call physics. Newton emphasizes 
that he cultivates mathematics “as far as it relates to philosophy,” and the 
verb ‘cultivate’ here is very appropriate, for Newton both develops the 
mathematics and uses it for growing the physical crops. 

Since—according to Newton—the notion of time is “well known to 
all,” it is interesting to see how this notion is described by the mathematics 

3 Von Neumann (1932, chap. 5) attempted to derive the direction of time of the 
measurement process from the Second Law of thermodynamics. See Hemmo and 
Shenker (2006) for the extent in which he succeeded. Perhaps a new theory of 
quantum gravity will provide an arrow of time. 
4 This, of course, is a paraphrase on Richard Feynman’s saying “I think I can safely 
say that nobody understands quantum mechanics” (Feynman 1965, 129). 
5 To the extent that we can specify their meaning at all.
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which he “cultivated.” Of course, by asking this question we make the non-
trivial assumption, that mathematics is an acceptable way of describing 
physical ideas. That this assumption is not trivial is expressed in the famous 
words of Eugene Wigner in his paper “The Unreasonable Effectiveness of 
Mathematics in the Natural Sciences”:

The miracle of the appropriateness of the language of mathematics for the formulation 
of the laws of physics is a wonderful gift which we neither understand nor deserve. 
We should be grateful for it and hope that it will remain valid in future research and 
that it will extend, for better or for worse, to our pleasure, even though perhaps also 
to our bafflement, to wide branches of learning. (Wigner 1960, 237)

In what sense do we say that mathematics is applicable in the natural 
sciences, and how should we examine whether a particular case (such as the 
one discussed here, namely, the directionality of time) is properly captured 
by the mathematics of a given theory (here, classical mechanics)? 

Generally speaking, the idea that mathematics is applicable in science 
means that it is possible to express statements about the world using 
mathematical expressions, and that once these expressions are given, 
mathematical manipulations can be applied in order to derive predictions 
and other insights about the world. 6 Of course, the constraint of logical 
validity entails that we can never get more insights out of the mathematical 
expressions, concerning the world, than we have originally put into them 
when they were formulated.7 Nevertheless, the mathematical formulation 
sometimes makes it easy to see and make explicit ideas put into it implicitly. 

But then the question is, whether we put into the mathematics all and only 
the ideas we intended to, or at least ideas to which we don’t object. With 
respect to the mathematical representation of the arrow of time in classical 
mechanics, this leads to questions such as: Does the notion of the direction of 
time, which appears in the mathematical expressions of classical mechanics, 
include all and only the aspects of the direction of time that we take to be true 
of the world? Or are our mathematical expressions isomorphic to only some 

6 We are not committed to realism here, and statements about ‘the world’ can be 
understood in any realist or anti-realist way the reader prefers.
7 Contra the impression expressed by Hertz, who wrote: “One cannot escape 
the feeling that these mathematical formulae have an independent existence and 
intelligence of their own, that they are wiser than we are, wiser even than their 
discoverers, that we can get more out of them than was originally put into them,” 
quoted in Steiner (1998), 13.
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aspects of the directionality of time, while leaving out others? Or—worse—
can it be that the mathematics that we use tells us things about the arrow of 
time that are simply wrong, that is, things that are unintended artifacts of the 
mathematical apparatus?

Mark Steiner, in his book, The Applicability of Mathematics as a 
Philosophical Problem (1998, 25), deals with what he calls ‘descriptive 
applicability’, which is the appropriateness of specific mathematical 
concepts in describing and lawfully predicting physical phenomena. A central 
criterion for appropriateness in this context is associated with isomorphism 
between the mathematical structure in question and the structure of the way 
in which the physical magnitude allegedly behaves. In the cases where such 
an isomorphism is found, the descriptive applicability of a mathematical 
concept is reasonable and not mysterious; in those cases, “Where the 
[physical] property holds, the mathematical concept is there applicable, and 
vice versa” (1998, 35). 

1.3. The Mathematical Expression of Time’s Arrow

Is this criterion satisfied by the mathematical representation of time in 
classical mechanics? Two options come to mind. One option is that (as 
Newton writes) the notion of time is “well known to all,” and so suitable 
mathematics should be found that is isomorphic in some sense to the main 
properties associated with this well-known notion. The primacy of the “well-
known” notion of time means that should the mathematics turn out not to 
fit the pre-theoretic notion of time, the mathematical apparatus ought to be 
replaced. The other option is that the mathematics gains conceptual primacy: 
once it is chosen, it should be taken as fully expressing the entire notion of 
time, and therefore the properties of the notion of time should be deduced 
from the mathematics. It turns out that, as we will see later, with respect to 
the arrow of time in classical mechanics, the distinction between the two 
options is not always clear.

2. The Minimum Problem

Reichenbach, in the quotation cited earlier, focuses on one aspect of our 
temporal experience, namely, the feeling that the evolution of events has a 
direction. Reichenbach’s words may create the impression that the laws of 
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physics describe a world in which the events flow forward in time, towards 
the inevitable event of death; and that philosophers distort our understanding 
of this phenomenon, with the intention of discrediting the unpleasant picture 
it implies. But the truth of the matter is just the opposite: the fundamental 
theories of physics don’t provide us with any account of the phenomenon of 
the flow of time or of the directedness of time. They provide no explanation of 
this salient aspect of our experience; they hardly even describe it. By contrast, 
the philosophical literature is replete with discussions of this phenomenon, and 
Reichenbach’s book, The Direction of Time, is one of them.

We will later describe in what sense exactly the theories of physics lack 
temporal directionality. But first we wish to describe one result of this lack of 
time direction in these theories, in order to convince the reader that there is 
a serious problem here. The problem we will describe, very briefly, is called 
the minimum problem (or sometimes the parity of reasoning problem).

Suppose that you are given a cup containing coffee and cream that are partly 
mixed, and that you are asked to predict what will happen subsequently. 
Of course, you will predict that they will mix. The theory of thermo- 
dynamics generalizes this prediction in terms of the Second Law of 
thermodynamics. But suppose that you don’t want to rely on mere 
generalization from experience, but rather, to derive the familiar experience 
from the fundamental theories of physics. In this case you will need to turn 
to statistical mechanics. Statistical mechanics is the theory that analyzes this 
phenomenon in terms of the fundamental building blocks of the universe 
which are, in classical mechanics, the particles and fields that make up the 

Figure 1
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coffee and the cream, and in terms of the fundamental theories that govern 
them, which in our discussion we take to be classical mechanics. Statistical 
mechanics predicts that the coffee and cream will mix with extremely high 
probability (see figure 1).8 The probability that, for example, the cream and 
coffee will spontaneously un-mix is so enormously small that we don’t 
expect to ever see this happening. Here, the fundamental theory of mechanics 
fits our experience.

Suppose now that you are asked to retrodict the history of this system. 
You are told that the cream and coffee started out in the past in a completely 
unmixed state, and evolved spontaneously to their partly-mixed state. This 
seems to you a reasonable story, having carried out this little experiment 
almost every day in your life. But now, you are asked not to rely on this 
memory of yours, or on what anybody has told you about the history of 
this particular experiment. Instead, you are told to carry out a calculation, 
based on the principles of statistical mechanics. Such a calculation yields 
a retrodiction that exactly mirrors the prediction: if the prediction is that 
the milk and coffee are highly likely to become completely mixed within, 
say, a few seconds, then the retrodiction will be that the milk and coffee are 
likely to have been completely mixed, a few seconds ago (see figure 1). If 
statistical mechanics is a good theory for prediction, it is a bad theory for 
retrodiction.9 

This incoherence between the theoretical retrodiction and our experience 
is the minimum problem: take any moment as your present; and make any 
prediction about some evolution towards the future; then, when you carry 
out a retrodiction, the fundamental theories of physics will entail that this 
process will be exactly mirrored in the past. In this sense, the fundamental 
theories of current physics do not distinguish at all between past and future, 
and this seems to be inconsistent with our memories.10

8 This is the usual understanding; for reservations and subtle issues see Hemmo and 
Shenker (2012).
9 For more details on this point see Albert (2000, chap. 4) and Hemmo and Shenker 
(2012, chap. 10).
10 We use the term incoherence and not inconsistency since the predictions and 
retrodictions are probabilistic. When we apply probabilistic theories or probabilistic 
explanations, we normally expect the actual future or past occurrence to be a typical 
one, that is, to belong to the high probability set. But of course, probability being 
what it is, this result is not necessary.
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Astonishingly, the only available solution for the minimum problem is to 
assume bluntly that as a matter of fact—despite the probabilistic claims—
the past was as we remember it. This is called the Past Hypothesis, and was 
expressed by Richard Feynman as follows: “I think it necessary to add to the 
physical laws the hypothesis that in the past the universe was more ordered, 
in the technical sense, than it is today” (1967, 116).11 (In Feynman’s terms, 
un-mixed coffee and cream are in a more ordered state, in the technical sense 
of the term, than mixed coffee and cream.) Forget for a moment the ad-hoc 
flavor of this idea; this flavor can be dealt with, in a way that we will not 
discuss here.12 

The problem we would like to focus on is this: where in time—in 
what direction of time—is the past that Feynman is talking about? If the 
fundamental theories do not distinguish between past and future, how can 
we make the Past Hypothesis part of the theory? How can we express this 
hypothesis in terms of the theory of classical mechanics?

In order to make sense of the Past Hypothesis, there must be a way of 
breaking the symmetry between past and future in classical mechanics. This 
symmetry breaking can then be used to express, and then maybe explain, the 
asymmetry in time of our experience. We now turn to ask whether this can 
be done in a way that preserves the main ideas and achievements of classical 
mechanics. 

In a nutshell, our claim will be this. The current mathematical representation 
of the world in classical mechanics is incomplete, since it lacks a direction 
of time, which is necessary to make the theory of classical mechanics well 
defined. That is, some internal aspects of the theory require bringing in a 
direction of time. This can be done either mathematically (in ways that we 
will mention below) or non-mathematically, but in either case this will be an 
addition to our current theories, something that they don’t include in their 
standard formulation as it stands today.

The plan of the rest of the paper is to explain why a direction of time is 
necessary in the theory, in what sense it is lacking, and how it can be brought 
into the theory.

11 See Albert (2000, chap. 4) for a variation on this idea.
12 See Hemmo and Shenker (2012, chap. 10).
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3. The Problem of Ambiguous Velocity

We begin with explaining why a direction of time is necessary in the theory, 
and in what sense it is lacking. And we will do this with the help of an 
example. Our case study will consist of the most elementary mechanical 
evolution, namely, the free evolution of a single particle that moves in a 
straight line from point A to point B, with fixed velocity v, between the 
instants α and β. We deliberately focus on this elementary example since 
the problem of ambiguous velocity, which necessitates adding a direction 
of time to physics, already arises at this basic level. Adding more physical 
details such as forces will only obscure the discussion but our conclusions in 
this elementary discussion will hold in the more general cases as well. 

This evolution is described in figure 2, where the dashed line describes 
the evolution of the state of the particle from one instant to another. 

Figure 2
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The equation of motion governing this motion is this:

(1)  B = A + v ( β – α),

where v is the instantaneous velocity of the particles, at all the instants τ 
between α and β, and is given by the following formula: 

(2) .

This formula expresses the well-known idea that as the continuous series of 
instances of time t approaches the instant τ (whether from the past forward 
or from the future backwards), the series of positions x(τ) converges to the 
position x(τ), and the rate of convergence is the same on both sides of τ. And 
the full expression, with explicit role for this derivative, and with adding up 
the continuous sequence of instantaneous states from time α to time β is:

(3)  B = A + .
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What do these equations tell us about time? A useful way to think about this 
question is to consider the boring film that shows our particle that starts out 
in position A at time α and ends up in position B at time β. In the old days, this 
film would consist of a sequence of still frames on celluloid. This sequence 
of frames provides a convenient metaphor for the description of mechanical 
evolutions. On this metaphor, the mechanical picture of the world may  
be described in terms of time slices, analogous to frames of a film: each time-
slice contains the position of the particle at that instant, as do the film frames. 
The continuous sequence of time-slices makes up the history of the universe.

But there are important dis-analogies between movie frames and the time 
slices that make up the mechanical history of the world. One dis-analogy is 
that the frames are discrete and therefore quite independent: if we take one 
frame out of the film, we can replace it with a variety of other frames, all of 
which will be consistent with the rest of the film. In mechanics, by contrast, 
the sequence of time-slices is continuous, and the positions of the particle 
converge everywhere in a way that determines a unique instantaneous 
speed13 of the particle at all times.14 

But, the continuous sequence of time-slices (which determines the speed 
of the particle uniquely) still leaves some ambiguity with respect to the 
velocity of the particle. To see why, consider again expression (2) above, 
which describes the instantaneous velocity at all the instants τ between α 
and β.15 In fact, expression (2) determines only the magnitude of the velocity 

13 Speed, not velocity; see below.
14 The assumption that the motion of our particle, and mechanical motions in general, 
are smooth, is not necessary in any sense, nor entailed by the laws of mechanics, 
but it reflects our contingent experience. The equations of motion of classical 
mechanics are such that the instantaneous position and instantaneous velocity of a 
system, together, determine uniquely its positions at all other times; but this does not 
entail that a given system actually has an instantaneous velocity at all times. For a 
discussion of determinism in classical mechanics see Earman (1986).
15 The notion of instantaneous velocity is notoriously problematic. Although the 
concept of instantaneous velocity is mathematically well defined in continuous space 
and time, its physical significance is questionable, since in order to measure velocity 
one needs to measures position in at least two instances. This problem is known since 
Zeno’s arrow paradox. Russell’s suggestion that instantaneous velocity is not part of 
the ontology runs into the problem of explaining what, exactly, is the aspect of the 
ontology which has the role of initial conditions that determine a system’s evolution 
(see discussion in Arntzenius 2000). In this paper we address a problem concerning 
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along each spatial direction, but the sign of this velocity (that is, the direction 
of the velocity) is not fully given by (2) alone. In order to read off from (2) 
a unique description of the velocity of a particle at τ we need to supply two 
additional pieces of information: one determines the counterpart in physical 
space of the expression at the numerator x(t)–x(τ), and the other piece of 
information is about the counterpart in physical time of the expression at the 
denominator, t–τ. 

Normally, supplying these two pieces of information is taken to be an 
easy task: the direction of the difference between two positions can be fixed 
by some convenient convention such that, for example, if position B is to 
the right of position A, relative to a given reference point of view, then the 
number B is set to be greater than the number A. And the difference between 
two instances of time can be fixed such that, for example, if the instant β  
is later than the instant α then the number β is set to be greater than the 
number α. 

However, there is a significant difference between the ways in which these 
two conventions are determined. The spatial relation of “to the right of” holds 
between two positions, if these positions stand in a certain relation relative to 
a privileged point, which is the point of view of the observer, called “here,” 
which is defined at every instant for every observer. The “here” position by 
itself does not suffice in order to determine the relation of “to the right of”: 
given the information concerning the location of “here,” the observer needs 
some non trivial additional information, namely, some convention,16 in order 
to be able to determine the “to the right of” relation uniquely. 

The case of time is different. Any observer is able to report to any other 
observer which of any two events is later than the other (in the first observer’s 
rest frame), without using any convention to determine the direction of “later 
than.”17 And given the privileged instant of the present, the “now” (any “now”),  

instantaneous velocity, which is different from and additional to the set of problems 
which followed the attempts to deal with Zeno’s paradox: the problem we address 
concerns the connection between instantaneous velocity and the direction of time.
16 The violation of the postulated charge-parity (CP) symmetry is an interesting 
exception, discovered as a surprising fact, not an outcome of some fundamental 
principle, nor as a matter of convention. We don’t address it here.
17 At least locally. If the spacetime manifold is not globally temporally orientable, a 
motion toward the future may be also a motion toward the past, e.g., in the so-called 
rotating universe solution in general relativity.



178   Meir Hemmo and Orly Shenker

an observer is able to determine whether another instant is earlier or later 
than “now,” without needing any additional information (again, in the 
observer’s rest frame).18 In this sense it appears that, unlike the relation of “to 
the right of,” the relation of “later than” is not conventional; our experience 
is time directed but not space directed. This unique determination of the 
time direction is used in order to determine the sign of the denominator t–τ 
uniquely.

However, the way in which the time directedness of our experience enters 
the theory in the denominator of (2) is not via the mathematical aspect 
of the usual formulation of classical mechanics. In this sense, there is no 
mathematical representation of the arrow of time in classical mechanics. 
This fact brings to mind two questions: one question is (i) whether adding  
an arrow of time to classical mechanics is needed at all; and in case the  
answer to the first question is in the affirmative, the second question 
is (ii) in what way can this be done, and in particular, if this aim is to be 
achieved through the mathematics of the theory, how can one alter the usual 
mathematical formulation of classical mechanics in order to add such a 
representation.

Our answer to (i) is that adding a direction of time to the theory is 
absolutely necessary, for otherwise velocity is not well defined.19 The claim 
that we seem to do quite well without such an addition, and therefore don’t 
need it, is simply wrong: for we do add an arrow of time to the theory, but 
we do it implicitly, and not via the standard mathematical formalism or 
otherwise explicit aspect of the theory. The very fact that we know where 
the future is and that we use well-defined velocities is an outcome of this 
implicit assumption. In this paper our aim is to point out this fact, and 
then ask whether one should simply acknowledge and maybe explicate it, 
or whether one should aim to change the structure of the theory in order 
to incorporate the assumption of an arrow of time into the mathematics of 
the theory. We stress that the need to add a direction of time stems from 
conceptual consideration concerning the notion of velocity; it does not arise 

18 Note that here we do not consider the question of the privileged status of the “now” 
in the context of the discussion about the view called presentism in the philosophy 
of time. Everything we said above holds no matter how one defines what Putnum 
(1967) calls the R relation,
19 That is, adding an arrow is necessary, whether one is a relationist or an absolutist 
with respect to time. 
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from empirical considerations (the latter are relevant in statistical mechanics 
in the context of the Past Hypothesis; see section 2).

As to (ii), our answer is that adding an arrow of time to classical 
mechanics can be done either by changing the mathematics of the theory, 
or non-mathematically. The non-mathematical solution is the one used 
in the usual way of thinking about classical mechanics, and we analyze 
below in more detail the nature of this extra-mathematical assumption. As 
to the mathematical option, one can think of ways of changing the usual 
mathematical formulation of the theory in order to add a direction of time, 
e.g., by adding a locally time orientable manifold; however such a change 
may have implications that ought to be examined carefully. 

Let us now examine in more detail the way in which the direction of  
time is added, implicitly and non-mathematically, to the usual way of for-
mulating classical mechanics. As we said, we do add such a direction in such 
a way, and we do it necessarily, for otherwise we wouldn’t have well-defined 
velocities.

The lack of a mathematical representation of the direction of time in the 
usual formulation of classical mechanics is expressed by the fact that while 
x is a vector, t is a scalar. We can, of course, name instants in a convenient 
way by using a series of numbers which increases towards the future, but 
these names will indicate a direction only if we assume, or take for granted, 
something comparable to a unit vector of time, relative to which the names 
of instants are organized. This direction isn’t part of the mathematics of 
classical mechanics in the usual way of thinking about it. Although it isn’t 
part of the explicit mathematics of the theory, it is an implicit part of it, since 
we assume a direction of time whenever we ascribe a directed velocity to a 
particle. Without this assumption, as we said, the instantaneous velocity of 
our particle would be ambiguous: it could be any one of two velocities. And 
so whenever we take it that the velocity is well defined, we tacitly assume a 
direction of time.20 

Since an assumption about the direction of time goes into ascribing a 
well-defined velocity to a particle, and since instantaneous velocity is part 
of the instantaneous mechanical state of a particle, which we plug into the 
equations of motion in order to predict or retrodict the system’s evolution, 
it turns out that the direction of time, which is implied whenever we ascribe 

20 This holds even if the spacetime manifold is not globally temporally orientable. 
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instantaneous velocity to a system, is part of the instantaneous mechanical 
state of a particle.21 

We express this idea by using the notion of time directed time-slices, as 
illustrated in figure 3. Suppose that we are given the continuous sequence 
of time-slices, each of which describes the positions of all the particles of 
the system of interest at that instant. The time slices in this stack satisfy a 
relation of betweenness that makes the spatial evolution differentiable with 
respect to time, so that instantaneous speed is a well-defined notion. But  
the direction of time, the direction in which this stack should be read, cannot 
be read off of this stack of time slices: neither from the individual time-
slices nor from the relation between them. And so in order to disambiguate 
velocity we need to add a direction of time to the slices. This can be done  
by adding an arrow of time as an inherent part of each time-slice. The  
arrow of time then becomes part of the elementary instantaneous state of a 
particle.

The addition of an arrow of time to each time-slice can be accomplished 
mathematically in various ways. For example, one can represent time by a 
vector or (as we said) by a manifold that is (at least locally) time orientable, 
which amounts essentially to the same thing. (Luckily, the fact that time is 
one dimensional saves us the need to worry about whether time should be 
fully treated as a vector.) We shall not go into the details of such endeavors, 
since the point we wish to put forward here is the very general claim, that 
regardless of how we choose to do that, an arrow of time must be added to 
each time-slice in order to have a well-defined notion of velocity.22 

21 Again, in a rotating universe a local direction of time is necessary for a well-
defined notion of velocity. 
22 Incidentally, adding arrows of time to the individual time-slices may become part 
of an explanation of the passage of time, that is, of the transition from one time-slice 
to the next—a matter for which physics offers no account. But we will not explore 
this matter here.

Figure 3
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In the way we illustrated the idea of adding arrows of time to the time slices 
in figure 3, we assumed that all of the arrows of time point in the same 
direction. This assumption seems to fit our experience, but does not seem 
to be entailed by our theories; should we choose to add an explicit arrow of 
time to the theory by way of altering its mathematics, this issue will have 
to be dealt with according to the new theory. Until then, in order to keep 
the option of different arrows for different time-slices open, it is important 
to have an arrow attached to each slice, rather than having an arrow that 
is external to all the slices and determines their order. We shall not go into 
this issue here any further, and in particular will not discuss the meaning of 
having different time arrows attached to different time-slices.

Arrows of time built into the basic time-slices (whether or not they are 
also represented mathematically) is the minimum we must add in order to be 
able to express a direction of time in classical mechanics, a direction that is a 
salient feature of our experience and that disambiguates velocity. The crucial 
point is that the mathematical representation of time by a scalar without a 
component of directionality is conceptually inadequate if we wish to have a 
well-defined notion of velocity in physics. If an arrow of time is not added to 
each basic frame as an inherent part of it, nothing can encode such an arrow, 
nothing can be used in order to deduce an arrow of time; nothing can add 
a direction to the relation of betweenness in order to construct a relation of 
‘before’ and ‘after’ and yield well-defined velocities.23 

As we said, these arrows don’t directly enter the usual mathematical 
formalism of classical mechanics. This theory has no way of expressing 
them. They must be either specified in a non-mathematical way, or be part 
of a new theory that differs from the previous one in the mathematical 
representation of the arrow of time. And so one may, at this point, return to 
the questions posed earlier: Is the mathematical part of the theory adequate 
and complete? Should it be completed in, for example, the non-mathematical 
way we just did? Or should the fact that the direction of time remains absent 
from the usual mathematics teaches us something about the physics of the 
direction of time? For example, the theory may be taken to express the fact 
that there is only one conceivable direction of time, and so there is no need 
to mention a direction.
23 It is also hard to see how the physical transition we experience from one time-slice 
to the next—rather than to the previous one—can be accounted for, without such a 
built-in arrow. But we don’t pursue here the subject of the passage of time.
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One way of approaching these questions is by looking at other places where 
time appears in the equations of motion: in expression (3) the magnitude t 
appears in several places, and it may be instructive to compare the roles of its 
different appearances. This comparison, to which we now turn, will help us 
distinguish between the way the theory expresses the direction of processes 
in time, and the direction of time. On the way to distinguishing between 
the direction in time, and the direction of time, we will distinguish among 
three different concepts associated with reversing the magnitude t: velocity 
reversal, retrodiction, and time reversal. The distinction among these three 
concepts is important in order to understand the mathematical representation 
of the arrow of time in classical mechanics.

4. Velocity Reversal

Consider again our case study, illustrated in figure 2: a particle that moves in 
a straight line from point A to point B during the time beginning at the instant 
α and ending at the instant β. Suppose now that this evolution is filmed, and 
the show of the film starts at time t=0. This case is illustrated in figure 4.

At time 0 we, the spectators at the cinema, see the particle at position A, that 
is, in the position the particle had, in real life, at time α. And we then follow 
its motion until it arrives at the position B, which is the position the particle 
had, in real life, at time β. When the particle arrives to its destination B, the 
film ends, and the time at the cinema is t=1. As is always the case in movies, 
we feel as if the particle moved from A to B during the time of our experience 
at the cinema, namely, from time 0 to time 1, although we know (of course) 
that it is a film of an event that took place from time α to time β.

Suppose now that this film is shown to us in a reversed order, as illustrated 
in figure 5. That is: suppose that the last frame of the film is shown to us first. 

Figure 4
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In this case, the first frame of the film that we see is the last frame that was 
taken when the real evolution took place. As before, the show will begin at 
time 0 and end at time 1. And in this show, our experience will be as if we 
are watching a particle that starts out in B at time 0 and ends up in A at time 
1. The direction of the velocity that we experience is, of course, the reversal 
of the velocity of the real particle that was filmed, or of the velocity of the 
particle in the forward show of this film. 

24 We focus here on velocity reversal in kinematics, and we do not address here the 
significance of the symmetry of other theories under velocity reversal. In particular 
we don’t discuss the fact that in order for a particle to return from B to A, if its 
evolution from A to B was affected by a magnetic field, one needs to reverse not 
only the velocity but also the field. See discussions on this topic in for example 
Albert (2000, chap. 1), Malament (2004), and Arntzenius and Greaves (2009). Our 
focus on the simple kinematic case is intended to emphasize the point concerning the 
ambiguity of velocity.

Figure 5
1

β

α

0

t

xBA

This film seems perfectly natural. And the reason is that the laws of 
mechanics are such that if the real evolution (figure 2) is possible, from A to 
B during α to β with velocity v, then so is the velocity reversal from B to A 
during α to β, with velocity -v (figure 6).24 Of course, which of them actually 
obtains depends on the initial position and velocity of the system. Since both 
evolutions are equally possible by the theory, the reversed film seems to us 
as natural as the forward movie.

Figure 6
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This symmetry of mechanics under velocity reversal has non trivial 
consequences. Recall our example of a cup of coffee with cream (figure 1):  
an evolution in which the velocities of all their molecules are reversed, 
and in which—consequently—they un-mix with time, is analogous to the 
velocity reversal of the particle in our discussion above. Nevertheless, when 
we proceed from the case of the velocity reversal of a single particle to 
the velocity reversal of all the molecules of the coffee and the cream, the 
evolution appears unnatural and in contradiction to our experience. Statistical 
mechanics solves this puzzling difference by saying that a velocity reversal 
that brings about un-mixing is overwhelmingly unlikely and therefore we 
ought not to expect to see it happening. (This does not yet solve the minimum 
problem, which we discuss later.) 

Going back to our case study of a single particle in constant velocity, 
illustrated in figure 2 and figure 6, it is crucial to realize that the difference 
between the evolutions in these two figures is that of velocity reversal: 
in figure 6 the velocity is reversed relative to figure 2, but the time is not 
reversed: in both evolutions—just as in both shows of the film—time flows 
forward, as usual, from α to β, in the same direction as all the other elements 
of our experience. (We stress this point since in the literature this fact is 
often described under the name of the ‘time reversal invariance’ of classical 
mechanics. We return to the notion of time reversal invariance below.)

The equation of motion of the evolution described in figure 2 is

(I)   B = A +

and the equation of motion of the velocity reversed evolution described in 
figure 6 is

(II)  A = B +

The difference between the two equations is only in spatial direction. Given 
the convention that B>A if B is to the right of A, the numerator dx in (I) is 
an infinitely small positive interval relative to our convention. To express a 
reversal of the velocity as in (II), all we need to do is replace the numerator 
with –dx, which is negative by our convention. Space itself remains of course 
isotropic, and it is our convention that enables us to distinguish between dx 
and –dx. 
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Equations (I) and (II) differ in the sign of the spatial direction of the 
evolution; let us turn to see the meaning of the way in which time is represented 
in these equations. Time appears in two places: in the denominator of the 
derivative, and in the integral. Let us see what these two appearances stand 
for.

5. Retrodiction

Suppose now that we are given the same particle as before, but in this case 
we see only its end state, that is, we see it at position B at time β. We are 
told—or we know from the nature of the situation—that the velocity of the 
particle was v throughout its evolution. And suppose that we now want to 
calculate where that particle was earlier, at time α. 

We plug all this information into the equation of motion, and easily 
conclude that the particle underwent evolution (I), and that at time α it was 
in position A. The algorithm for doing this is called retrodiction, and is given 
by the following expression:

(III)  A = B + .

The only difference between the equation of the actual evolution, (I), and 
the equation for retrodiction, (III), is the order of the integration, which is 
reversed: from β to α. Equation (III) describes the same evolution described 
in equation (I), but whereas in (I) we are given the initial state of position 
and velocity at time α, in (III) we are given the final state of position and 
velocity at time β. Expression (III) does not describe a physical evolution 
which is different from (I), and cannot be interpreted as such, since such an 
evolution would mean that the particle moved from B to A with a velocity 
that is directed from A to B. The difference between (I) and (III) is only in 
the order of inference; the retrodiction in (III) is merely a reconstruction or a 
re-description of the same physical evolution (I), from its last state to its first 
state. This is a mere epistemic difference.

The calculation in (III) carries us backwards along the same sequence of 
time-slices, through which we went in (I): the time slices are the same not 
only in the positions of the particles which they describe, and not only in the 
direction of the velocity which is determined by the relation of betweenness 
in the stack of time slices, but also in the direction of time, which is built 
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into each of the time slices: time goes forward in (III) as well as in (I). This 
means that the order of integration and the direction of time are independent 
of each other.

Finally, just to complete the picture, case (IV) is a retrodiction of evolution 
(II). 

(IV)  B = A + .

The relation between (IV) and (II) is the same as the relation between (III) 
and (I).

The analysis of these four equations illustrates an important idea concerning 
the role of mathematics in physics: mathematical equivalence does not 
indicate physical equivalence. For example, the mathematical expressions 
for velocity reversal and for retrodiction are formally equivalent, since 
reversing the direction of integration is formally equivalent to multiplying 
the expression by –1:

 
This formal equivalence gives rise to the minimum problem, described 
in figure 1. In this case, mathematical equivalence conceals a significant 
physical difference. It turns out that if we focus our attention too much 
on mathematical equivalence, we may lose significant physical contents.  
For example, expressions (II) and (III) are mathematically equivalent, but 
they describe different physical evolutions and two very different physical 
ideas. 

All four equations describe evolutions in time, relative to the same 
direction of time, which is the direction of time built into the time slices. We 
now turn to address the possibility of a reversed direction of time.

6. Time Reversal and Time Reversal Invariance

As we saw, a direction of time must be added to each time-slice, if we want 
instantaneous velocities to be defined uniquely, that is, to have a well-defined 
direction. But the very requirement to add a direction of time implies that, 
formally, we can add to the time-slices one direction out of two possible 
directions of time, each of which is the time reversal of the other. By the term 
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‘time reversal’ we refer here to a reversal of the time arrow itself, which is 
built into each of the time-slices, as illustrated in figure 7.

25 In other theories the idea of time reversal may be used to explain certain 
phenomena. A famous example is Feynman’s theory that anti particles are particles 
going backwards in time. 

Since the time arrows built into the time slices are not part of the standard 
formalism of classical mechanics, and since there is no way to derive 
from this formalism a preferred direction of time, classical mechanics is 
consistent with such a time-reversed universe. The time reversed time-slices 
indeed represent a different universe from our own, since although these 
time-slices may be identical to our time-slices in the positions of particles, 
and even in the magnitude of their velocities, which is determined by the 
relation of betweenness in the stack of the slices, nevertheless, the time 
reversed time-slices differ from ours in the arrow of time, which forms part 
of the elementary mechanical states. Is the idea of a time-reversed universe 
acceptable as part of classical mechanics?25 This is an important question, 
but we will not address it fully here. We will only examine the options  
that seem open, given the explicit standard mathematics of the theory and  
the way in which the magnitude t of time features in it. Let us see how a  
time-reversed universe can be described in the mechanical equations of 
motion. 

To do that we need to choose a convention, and here we choose to stick to 
the conventions that we used so far, and are illustrated in figure 8: if position 
B is to the right of position A then the number B is greater than the number  
A; and if the instant β is later in our universe than the instant α, then 
the number β is greater than the number α. This means that in the time-
reversed universe, if β is earlier than α, then the number β is greater than the  
number α. Like every convention, this one has its advantages as well as 
shortcomings.

Figure 7
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If indeed the two universes are identical in the positions of all the particles 
on all of the time slices, and if they are also identical in the relation of 
betweenness that determines the magnitude of the velocities, and if in our 
universe the particle evolves from A to B during the time interval from α to 
β with velocity v, then the evolution in the time-reversed universe will be the 
one illustrated in figure 9. The particle will evolve from B to A during the 
time interval from β to α, with velocity v. (We will discuss the sign of the 
velocity in a minute.)

Figure 8
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The equation of motion describing this evolution, using the above convention, 
is this:

(I*)  A = B + .

This expression needs some clarification. The order of integration in the 
time-reversed evolution is from the earlier instant β to the later instant α. 
To see the logic of the signs in the derivative, consider the following two 
expressions, of non-instantaneous velocity in the forward-time universe 
(expression (I) and figure 2) and in the time-reversed universe (expression (I*)  
and figure 9):

v(I*) = 

In the denominator of each of these expressions, the relations of earlier and 
later determine the sign: the sign of the denominator α – β, in the expression 
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v (I*) for the velocity in the time-reversed universe, is negative, relative to 
the temporal convention. In the numerator of the expression v(I*), A–B is 
negative as well, this time by our spatial convention; but here some subtlety 
is involved. The numerator A–B describes the difference not only between 
any two positions, but between the earlier position B and the later position 
A, where ‘earlier’ and ‘later’ are determined in parallel to the time difference 
in the denominator. In this sense, already the numerator in this expression 
presupposes a direction of time. The position differences that go into the 
velocity expression are not purely geometrical differences, and assume not 
only the spatial convention, but involve also the direction of time from one end 
of the difference to the other. Formally, the result is that the velocity has the 
same sign, whether the direction of time is forward or reversed. Although this 
may seem a bit odd at first sight, it is a result of the choice of convention, and 
conveys some of the subtleties involved here. A different choice of convention 
may entail different signs for the velocities in the two universes, and all 
other quantities will have to be changed accordingly. As already mentioned 
above, if we focus our attention too much on mathematical equivalence, we 
lose significant physical content: this time, the same value of v conveys two 
different ideas concerning two different physically possible worlds.26

For completion of the picture, we briefly mention that we can easily 
express the velocity reversals and the retrodictions for the time-reversed 
evolution, exactly as we did for the forward-time evolution. Expression (II*) 
is the velocity reversal of (I*), expression (III*) is the retrodiction of (I*) 
(here the notion of retrodiction is relative to the reversed direction of time), 
and (IV*) is the retrodiction of (II*):

(II*)  B = A + .

(III*)  B = A + .

(IV*)  A = B + .

26 One must be careful with the use of ‘possible’ here, for it involves two problems. 
One is whether the time-reversed universe is physically possible, given our physical 
theory; and the other is whether it is conceptually meaningful, and here the debate of 
relationism vs. absolutism ought to be addressed.
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There is no need to enter into the details of these equations—they repeat 
what we said about the forward-time kinematics, replacing the order of time 
wherever necessary. 

Classical mechanics happens to be such that formally, all its fundamental27 
laws hold in this imaginary time-reversed universe: the general form of the 
laws of nature is exactly the same in both universes. As a result, by looking 
at the fundamental laws of nature one is unable to tell whether one inhabits 
this universe or the other. In this sense, classical mechanics is time reversal 
invariant. Whether or not the fact that the two universes are empirically 
indiscernible in this sense makes the very notion of time reversal meaningless 
is an old debate, that goes back at least to the exchanges of Newton, Leibniz, 
and Clarke.28 

7. Conclusion

Be the physical significance of the time-reversed universe as it may, the 
very idea that our time does have a direction is an assumption we have to 
make, in order to obtain a non ambiguous notion of velocity. And once we 
have this direction, we can break the symmetry between past and future in 
our fundamental theories, concerning our universe. Recall that we started 
out this discussion by describing the minimum problem, that is, the well-
known result that the retrodictions of our fundamental theories are such 
that it is highly likely that the past was not as we remember it, but rather 
was similar to the predicted future. We said that the only available solution 
of this problem, by way of the Past Hypothesis, says that as a matter of 
fact the universe was as we remember it, despite the contrary probabilistic 
claims. But to make sense of this hypothesis, as part of our physics, we need 
a difference between past and future, within the fundamental theories. And 
we saw in this paper that, in fact, the very notion of a well-defined velocity 
already assumes such a difference. Although the standard mathematical 
representation of time in classical mechanics does not express a direction 

27 The term ‘fundamental’ is meant to exclude the theory of thermodynamics, which 
describes the effective appearance at the macroscopic level. If the fundamental 
theories are true of the world (to some extent and in some sense), then they should 
be able to explain this effective appearance. For a discussion of the difficulties in 
coming up with a proof of such entailment see Hemmo and Shenker (2012).
28 See Alexander (1955).
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of time, the elementary notion of a well-defined velocity already assumes 
such a direction. We can either change the mathematics to express this fact, 
or, if we want to keep the mathematics unchanged, the way to represent this 
direction of time is by adding an arrow of time to the elementary time-slices, 
that is, to the definition on an elementary mechanical state of a particle. Once 
we realize that the most elementary physics, at the level of the description 
of an instantaneous state of a single particle, already assumes an arrow of 
time, we at least have a way to express the Past Hypothesis. Whether or not 
it also makes the Past Hypothesis a reasonable or acceptable solution to the 
minimum problem is another matter.29
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