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Abstract 

Panmicropsychism is the view that the fundamental physical ingredients of our universe 

are also its fundamental phenomenal ingredients. Since there is only a limited number 

of fundamental physical ingredients, panmicropsychism seems to imply that there exists 

only a small set (palette) of basic phenomenal qualities. How does this limited palette of 

basic phenomenal qualities give rise to our rich set of experiences? This is known as ‘the 

palette problem’. One class of solutions to this problem, large-palette solutions, simply 

denies that the palette is limited. These solutions assume that all types of phenomenal 

qualities (color, sound, odor, taste, etc., and presumably also types not experienced by 

humans) were created fully formed at the birth of our universe. On this view, brains 

evoke conscious experiences by sampling primordial, preexisting phenomenal spaces. 

My main claim in this paper is that, by analogy with the mathematical description of the 

fundamental physical ingredients of our universe, which exhibits simplicity, symmetry, 

and beauty, panmicropsychists should expect the mathematical description of the 

fundamental phenomenal ingredients of our universe to exhibit similar features. The 

goal of this paper is to exemplify this claim using what is arguably the simplest of all 
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types of phenomenal qualities—color. Specifically, I utilize phenomenological data on 

color to construct the maximally symmetric mathematical description of phenomenal 

color space. I then show that this mathematical description is isomorphic to the 

mathematical description of two-state quantum systems in a mixed state. Based on this 

isomorphism, I suggest that color may be the phenomenal dual aspect of two-state 

quantum systems.  

Keywords:  

color phenomenology, opponent-process theory, opponent-colors theory, panpsychism, 

qubit, two-state quantum system 

1. Introduction 

In recent decades, there has been a growing realization that a purely physicalist view of 

nature cannot account for phenomenal experience (Chalmers, 1995, 1996; Foster, 1991; 

Goff, 2017; Jackson, 1982; Levine, 1993; Nagel, 1974; Robinson, 1993). This failure 

compels us to adopt a non-physicalist view of phenomenal experience, namely, a view 

on which phenomenal experience is a fundamental feature of our universe, 

ontologically distinct from the universe’s physical features. Non-physicalist views of 

phenomenal experience come in several forms and sub-forms. My interest here will be 

with panpsychism, which ‘is the view that mentality is fundamental and ubiquitous in 

the natural world’ (Goff et al., 2022). This view has several variants. This paper focuses 

on the most common variant, which is constitutive pan-micro-psychism. The two main 

premises of this view are (a) that the universe’s physical ultimates (i.e., its fundamental, 
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irreducible physical ingredients) are also phenomenal ultimates (i.e., fundamental, 

irreducible phenomenal elements) (Strawson, 2006), and (b) that these phenomenal 

ultimates constitute the macroexperiences of the sort humans (and presumably other 

organisms) have (Chalmers, 2015; Goff et al., 2022).1 The greatest challenge to 

constitutive panmicropsychism is the notorious combination problem (Chalmers, 2017; 

Goff et al., 2022; Seager, 1995). This problem has many aspects. My concern here will be 

with an aspect that Chalmers (2017) dubbed the palette problem: 

There is a vast array of macroqualities, including many different phenomenal 

colors, shapes, sounds, smells, and tastes. There is presumably only a limited 

palette of microqualities. […] How can this limited palette of microqualities 

combine to yield the vast array of macroqualities? (p. 183) 

Chalmers (ibid.) divides the possible solutions to the palette problem into small-palette 

and large-palette solutions. ‘Small-palette solutions argue that all macroqualities can be 

generated from just a few microqualities’ (ibid., p. 205). One problem that afflicts small-

palette solutions is the quality combination problem: ‘How do microqualities combine to 

yield macroqualities?’ (ibid., p. 204). Both Roelofs (2014) and Coleman (2017) address 

this problem and conclude that it isn’t insurmountable, each sketching a rough outline 

of how it can be solved. However, Chalmers (2017, footnote 11) is not convinced that 

either of these outlined solutions is valid. Be that as it may, small-palette solutions 

                                                        
1 Note, however, that the phenomenal ultimates themselves do not have to be conscious; they can be 
merely precursors to conscious experience. This possibility is referred to as pan-proto-psychism 
(Chalmers, 2015; Goff & Coleman, 2020).  
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suffer from a much more serious problem, noted by many (Foster, 1991, p. 127; 

Lockwood, 1993; McGinn, 2006; Roelofs, 2014) and named the incommensurability 

problem by Coleman (2017): 

If ultimates have fixed qualities, just what set of microqualities is it that can be 

rearranged now as the smell of roses, now as an orgasm, now as a percept of the 

blue sky? These macroqualities seem so qualitatively different, it’s hard to 

imagine generating them from some stable basic palette. (p. 252; italics in the 

original) 

Coleman (ibid.) proposes the following solution to this problem: 

I think the answer [to the incommensurability problem] will require radical 

reconceptualization of our quality space: discarding the idea of discrete 

modalities, and coming to think of phenomenal qualities, of all kinds, as on a 

continuum, in the way we think of the colors. So just as it’s possible to move 

across the color spectrum in tiny, almost undetectable steps, it must be possible 

to move from tastes to sounds, sounds to colors, and so on, via equally tiny 

steps. […] If the continuum hypothesis is correct, then there isn’t any genuine 

incommensurability between different kinds of qualities—differences are always 

of degree rather than of kind. (pp. 264–265) 

Roelofs’s (2014) response to the incommensurability problem has some kinship with 

Coleman’s response. He suggests that the qualitative discontinuity between different 
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types of qualia might be illusory; perhaps they have ‘shared features’ (ibid., p. 66) that 

we are simply unable to detect. 

 

These suggested solutions to the incommensurability aspect of the palette problem are 

unconvincing; they appear to be desperate attempts to salvage the hypothesis. 

Therefore, I find the other class of solutions to the palette problem, the large-palette 

solutions, to be much more plausible. These solutions stipulate that ‘the full range of 

macroqualities are included among the microqualities. So there are microqualities 

associated with different colors, sounds, smells, tastes, and so on’ (Chalmers, 2017, p. 

205). One argument against large-palette solutions is that they lead to a ‘bloated 

ontology’ (Roelofs, 2014, p. 66). But this argument is weak unless one supposes that 

panmicropsychism assigns every particular color, sound, scent, etc., to a different 

physical ultimate (ibid., footnote 3). Yet, panmicropsychism is in no way committed to 

such an excessive approach (Coleman, 2017). Rather, a much more reasonable approach 

to panmicropsychism, which does not lead to a bloated ontology, is to assume that 

every type of phenomenal quality (i.e., color, sound, odor, etc.) is assigned a physical 

ultimate. Another potential objection to large-palette solutions is the seemingly 

adaptive associations between some types of qualia and their corresponding behavioral 

responses (a classic example being pain). The problem is that these associations seem to 

imply that qualia (which according to large-palette solutions must have been created 

billions of years ago, at the birth of our universe; see below) were prearranged to serve 

the needs of humans and other biological creatures on our planet. Advocates of large-
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palette solutions can address this objection by invoking the hypothesis suggested by 

Zietsch (2024). According to this hypothesis, the associations between qualia and 

behavior are acquired through associative learning and are therefore only seemingly 

adaptive. 

 

Large-palette solutions to the palette problem assume that all types of phenomenal 

qualities were created fully formed at the birth of the universe. I’ll refer to this 

hypothesis as the Fully-Formed, Primordial Qualia (FFPQ) hypothesis. My main argument 

in this paper will be that panmicropsychists who subscribe to the FFPQ hypothesis 

should expect phenomenal (quality) spaces, namely, the abstract spaces in which 

phenomenal qualities are organized relative to each other (e.g., phenomenal color 

space or phenomenal odor space), to exhibit simplicity, symmetry, and beauty. This 

argument is based on the fact that the mathematical description of the properties of the 

fundamental physical ingredients of our universe is characterized by these attributes 

(e.g., consider the mathematical description of spin-1/2 in quantum mechanics (Blum, 

1981, chapter 1; Zwiebach, 2022, chapter 12)). Therefore, panmicropsychists should 

have every reason to believe that the mathematical description of the properties of the 

fundamental phenomenal ingredients of our universe will exhibit the same features.2 An 

                                                        
2 When I refer to the properties of the fundamental phenomenal ingredients, I am not discussing their 
intrinsic phenomenal properties, but rather their relational properties to one another. For example, the 
way color sensations are organized in phenomenal color space. (Notice that the same restriction applies 
to the properties of the physical ultimates since—as Russellian monists are fond of pointing out—we 
know nothing about their intrinsic nature; we only know how to describe their relational properties.)  
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elegant way of arriving at this prediction is through the dual-aspect (or double-aspect) 

view of panmicropsychism (Benovsky, 2016; Chalmers, 1995, 1996, chapter 8). On this 

view, which suggests that the physical and the phenomenal are two aspects of neutral 

ultimates or that the phenomenal is a dual aspect of physical ultimates,3 the 

mathematical description of phenomenal qualities should be isomorphic to the 

mathematical description of their physical duals (Chalmers, 1995, 1996, chapter 8; 

Lockwood, 1989, chapter 11; also see G. E. Müller’s famous psychophysical axioms 

(Boring, 1942, p. 89)). Therefore, the simplicity, symmetry, and beauty that characterize 

the mathematical description of physical ultimates should be mirrored in the 

mathematical description of phenomenal ultimates. For example, if spin-1/2 systems 

turn out to have phenomenal dual aspects, then the elegant mathematical structure of 

this physical system will, ex hypothesi, be reflected in the mathematical structure of its 

phenomenal dual states.  

 

In summary, the FFPQ hypothesis predicts that the mathematical description of 

phenomenal spaces should exhibit simplicity, symmetry, and beauty. Of these three 

attributes, symmetry stands out as the only one that is objective. (After all, simplicity 

and beauty are in the eye of the beholder.) Therefore, the objective aspect of the 

prediction made by the FFPQ hypothesis is that phenomenal spaces should be 

symmetric. I will refer to this prediction as the SymFFPQ hypothesis. An immediate 

                                                        
3 The former interpretation is a form of neutral monism (Stubenberg, 2014, section 9.4), whereas the 
latter is a form of property dualism (Van Gulick, 2022, section 8.1). 
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objection to the SymFFPQ hypothesis might arise from the observation that when we try 

to reconstruct our phenomenal spaces using psychophysical or psychochemical data, 

the resulting structure is in no way symmetric; instead, it is irregular and nonuniform 

(for example, psychophysical color space (Kuehni, 2003, chapters 2 and 7) or 

psychochemical odor space (Koulakov et al., 2011)). I attribute these deviations from the 

prediction of the SymFFPQ hypothesis to two main factors: (a) our brains are unable to 

fully, isotropically, and uniformly sample phenomenal spaces; and (b) it is inherently 

difficult to objectively measure subjectively perceived phenomena. Subsection 2.5 

provides further details. 

 

The goal of this paper is to exemplify how the SymFFPQ hypothesis can be applied in the 

case of color, which is arguably the simplest of all types of phenomenal qualities. 

According to the SymFFPQ hypothesis, phenomenal color space should have a perfectly 

symmetric structure. Therefore, I utilize phenomenal data on color to construct the 

maximally symmetric mathematical description of phenomenal color space (Section 2). I 

then show that the mathematical model that gives this symmetric structure to 

phenomenal color space has a one-to-one correspondence with the mathematical 

description of two-state quantum systems in a mixed state (Section 5). This isomorphism 

between the two mathematical descriptions leads me to suggest that color is the 

phenomenal dual aspect of two-state quantum systems. Sections 3 and 4 provide the 

necessary background for this suggestion: Section 3 reviews the mathematical 

description of two-state quantum systems, while Section 4 presents the hypothesis that 
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the physical world results from a computation (‘the computational universe 

hypothesis’). The latter section argues that adherents of the computational universe 

hypothesis must assume that Hilbert space, namely, the space in which quantum states 

exist, has a privileged basis—the basis in which the aforementioned computation is 

carried out. 

2. Obtaining the maximally symmetric description of phenomenal 

color space 

Following the rationale of the SymFFPQ hypothesis, the goal of this section is to obtain 

the maximally symmetric description of phenomenal color space. I start (Subsection 2.1) 

with a review of the phenomenal properties of color. I then show (Subsection 2.2) that 

this description is not maximally symmetric. Therefore, Subsection 2.3 develops a color 

model that does comply with our goal, namely, that gives rise to the maximally 

symmetric phenomenal color space. Subsection 2.4 provides an alternative formulation 

for the color model of Subsection 2.3. Subsection 2.5 explains why psychophysical color 

spaces (e.g., the Munsell color space) do not exhibit the symmetry predicted by the 

SymFFPQ hypothesis. 

2.1 The phenomenal properties of color 

It was Leonardo da Vinci who first noticed that our color experience contains six 

elementary color sensations: red, yellow, green, blue, white, and black (Valberg, 2001). 

What makes these sensations elementary is that none of them is perceived as being 

composed of any other color sensation. For example, the elementary version of red 

(often referred to as unique red) is perceived as a purely red sensation that cannot be 
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broken down to more basic color sensations. In contrast, an orangish red is perceived as 

a mixture of red and yellow, a purplish red as a mixture of red and blue, and a pinkish 

red as a mixture of red and white. All colors can be described as some combination of 

two, three, or four of the six elementary color sensations (Hård et al., 1996). The six 

elementary colors fall into two phenomenally distinct groups: one group contains two 

hueless (or ‘achromatic’) colors (white and black); the other group contains four hued 

(or ‘chromatic’) colors. The gamut of all hueless colors can be arranged in a one-

dimensional phenomenal continuum that begins in black, continues to dark grays and 

then light grays, and ends in white. The gamut of all hues can also be arranged in a one-

dimensional phenomenal continuum. However, in contrast to the gamut of the hueless 

colors, this one-dimensional continuum is closed (that is, if we start at an arbitrary hue 

and move continuously along the hue dimension, eventually we will return to the hue 

that we started with). This closed continuum is often portrayed as a circle known as the 

hue circle. 

 

In the last quarter of the 19th century, the German physiologist Ewald Hering noticed 

that there are certain combinations of the four elementary hues that don’t appear along 

the hue circle: red and green do not mix to yield intermediate hues (i.e., there are no 

greenish reds or reddish greens) and neither do yellow and blue (i.e., there are no bluish 

yellows or yellowish blues). By contrast, any hue from the red–green pair freely 

combines with any hue from the yellow–blue pair to yield phenomenal intermediates 

(reddish yellows, bluish greens, and so on). Based on these phenomenological 
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observations, Hering proposed that our sensations of hue are produced by two 

opponent-colors (or opponent-processes) mechanisms: a red–green mechanism and a 

yellow–blue mechanism (Hering, 1878, pp. 118–119; Hurvich & Jameson, 1957; Palmer, 

1999, pp. 108–114; Shevell & Martin, 2017). Each such mechanism consists of two 

elementary-color processes that operate in an opponent (or antagonistic) manner to 

each other. Thus, the output of each mechanism results from the difference between 

the activities of its two constituent processes. As its name implies, each elementary-

color process is assumed to give rise to an elementary (i.e., unique) hue. For example, 

the red–green mechanism consists of one process that gives rise to unique red and 

another process that gives rise to unique green. The hue sensation that is produced by 

each mechanism is due to the elementary-color process whose activity is in excess 

relative to its opponent. Consequently, opponent hues are never perceived together in 

one color. In other words, opponent hues are mutually exclusive sensations. Thus, 

Hering’s theory indeed explains the missing intermediate hues along the hue circle.  

 

What about the pair of hueless elementary colors, white and black? Do they also form 

an opponent pair? The situation here is more complicated than for the hued elementary 

colors. On the one hand, because white and black—similarly to red and yellow or green 

and blue—combine to produce a phenomenal intermediate (gray), they don’t seem to 

form an opponent pair. On the other hand, in the phenomena of afterimages and 

simultaneous color contrast, white and black behave analogously to the hued opponent 

pairs (Ladd Franklin, 1899; Titchener, 1910, p. 75). Thus, there is conflicting evidence as 



12 
 

to whether white and black form an opponent pair. It is clear, however, that one cannot 

have the cake and eat it too: either white and black are opponent to each other, in 

which case they must be mutually exclusive sensations (namely, gray is not due to their 

mixture), or gray is taken to be a mixture of white and black, in which case white and 

black cannot be opponent to each other. Confusingly, however, Hering’s approach to 

this dilemma was to hold on to both its horns (Heggelund, 1974a): he suggested that 

white and black are due to a third pair of opponent elementary-color processes (Hering, 

1878, pp. 118–119), yet also contended that gray results from the mixture of white and 

black (Hering, 1878, pp. 58–62), which of course means that they are not mutually 

exclusive and hence not opponent.  

 

The inconsistent treatment of the hueless colors in Hering’s theory did not go unnoticed 

by his contemporaries or by the phenomenologists of the generation after him (Boring, 

1942, p. 209; Ladd Franklin, 1899).4 Here, for example, is Ernst Mach (1897, p. 35f) 

(whose ideas about color greatly influenced Hering): 

The only point that still dissatisfies me in Hering’s theory is that it is difficult to 

perceive why the two opposed processes of black and white may be 

                                                        
4 Quite perplexingly, however, this acute problem in Hering’s theory is almost completely ignored in 
modern accounts of opponent-colors theory. For example, Palmer (1999), in his well-known textbook 
about vision, comments on the problematic status of the white–black mechanism in Hering’s theory, but 
simply asserts that ‘There is thus something qualitatively different about the achromatic dimension’ (p. 
110), without any attempt to explain why or how this difference comes about.  
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simultaneously produced and simultaneously felt, while such is not the case with 

red–green and blue–yellow. 

And here is Christine Ladd Franklin (1899, p. 78; italics in the original):  

A chief objection to the view of Hering, for those who have been interested in its 

theoretical aspect, is the inconsistency which meets us at the very beginning; 

why should black and white be regarded as an antagonistic sensation-pair, when 

they do not destroy each other, but give us, on the contrary, the whole series of 

grays? 

There were two early attempts to fix this problem in Hering’s theory. The earliest 

attempt, which was very influential at the time, was made by the prominent 

experimental psychologist G. E. Müller (Boring, 1942, p. 213; Ladd Franklin, 1899). The 

second (much less-known) attempt was by F. L. Dimmick (1929, 1948, 1962).5 Although 

their theories differ in their details, both Müller and Dimmick solved the problem of the 

hueless colors in Hering’s theory by positing that (a) white and black and opponents and 

are therefore mutually exclusive and (b) grayness is produced by a non-opponent 

mechanism that is separate from the white–black mechanism (see Boring (1949) for a 

review of both theories). To be tenable, both theories need gray to be an elementary 

color. This goes against the strong intuition that gray is an intermediate of white and 

black, and therefore not elementary. Indeed, experiments aimed at testing the 

                                                        
5 It is noteworthy that relatively recently, Nayatani (2001, 2002) proposed a modification to Hering’s 
theory that—to the best of this author’s judgment—is virtually identical to the modification proposed 
long ago by Dimmick. 
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hypothesis that gray is an elementary color unequivocally refuted it (Quinn et al., 1985; 

also see Logvinenko & Beattie, 2011). Thus, both the Müller and the Dimmick theories 

are untenable. 

 

A much more recent solution to the problem of the hueless colors in Hering’s theory 

was proposed by Paul Heggelund in a series of papers starting in the 1970’s (Heggelund, 

1974a, 1974b, 1991, 1992, 1993). Based on systematic observations on the properties of 

hueless colors, Heggelund proposed that, in addition to black and white, there exists a 

third elementary hueless color—luminous (Heggelund, 1974a). This hueless sensation 

exists in colors that are perceived as emitting light. For example, this sensation is 

present in the color of stars in the night sky or in the color produced by light bulbs. On 

Heggelund’s suggestion, the gamut of the hueless colors should be extended to end in a 

purely luminous sensation. That is, according to Heggelund, the hueless colors stretch 

from black, through grays, to white, and then continue through luminous whites all the 

way to a color that is purely luminous. Thus, the color positioned opposite to black on 

the continuum of hueless colors is luminous, not white. This, in turn, suggests that 

luminous, not white, is the opponent color to black (Evans, 1974, p. 100; Heggelund, 

1974a, b; but see Vladusich et al. (2007), who claim that luminous and black are not 

mutually exclusive sensations). Hence, according to Heggelund’s theory, white and black 

are not opponent to each other, which explains why they unproblematically combine to 

yield gray as an intermediate. Heggelund’s theory of hueless colors therefore neatly 

solves the most serious flaw in Hering’s theory. 



15 
 

 

The addition of the luminous sensation to the cadre of elementary color sensations 

means that there are seven elementary colors rather than six. (And since the luminous 

sensation is presumably produced by an elementary-color process, there is now a total 

of seven of those as well.) Importantly, there is independent evidence to support 

Heggelund’s proposal that luminous is a third elementary hueless color. First, Evans 

(1959), based on experimental work that somewhat resembles that of Heggelund, 

emphasized the existence of a luminous attribute in hueless colors (he used the term 

‘fluorent’ rather than luminous). (Notably, however, Evans’s overall model of the 

hueless colors was different from Heggelund’s (Heggelund, 1974a).) Second, Izmailov 

and Sokolov (1991) conducted experiments where observers were asked to rank the 

perceptual distances between pairs of hueless colors. Multidimensional scaling analysis 

of the results showed that they could be best accounted for by adding a luminous 

attribute to the hueless colors (Izmailov and Sokolov used the term bright rather than 

luminous). Results consistent with those of Izmailov and Sokolov were later also 

obtained by Bimler et al. (2009). 

 

When we combine Heggelund’s model of hueless colors with Hering’s model of hued 

colors we obtain a model wherein any color results from a mixture of one, two, three, or 

four of the following phenomenal components: a component of red or green, a 

component of yellow or blue, a component of luminous or black, a white component 
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(Heggelund, 1991, 1993). On Heggelund’s extension of Hering’s opponent-colors theory, 

we can represent every color by the following four-dimensional vector:  

𝑭 = 𝑊�̂�0 + (𝑅 − 𝐺)�̂�1 + (𝑌 − 𝐵)�̂�2 + (𝐿 − 𝐵𝑘)�̂�3, (1) 

where the unit vectors �̂�𝜇, 𝜇 = 0, 1, 2, 3, are the standard basis of ℝ4, namely, 

�̂�0 = (1, 0, 0, 0)T, �̂�1 = (0, 1, 0, 0)T, and so on (the superscript T stands for the 

transpose operation); 𝑊 ≥ 0 is the level of activity of the white elementary-color 

process; 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘 (which are all ≥ 0) are, respectively, the levels of activity 

of the red, green, yellow, blue, luminous, and black elementary-color processes, and 

therefore (𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘) are, respectively, the outputs of the red–

green, yellow–blue, and luminous–black mechanisms. 

 

Heggelund (1974a, 1991) completed his theory by suggesting that the perceived 

intensity of a color, which we will denote by 𝐼, is given by the Euclidean norm of 𝑭, 

namely, 

𝐼2 ≡ ‖𝑭‖2 = 𝑊2 + (𝑅 − 𝐺)2 + (𝑌 − 𝐵)2 + (𝐿 − 𝐵𝑘)2. (2) 

Heggelund used the term ‘color strength’ rather than the term ‘color intensity’ that I use 

here.6 Neither term, however, is commonly used. Nevertheless, there are two good 

reasons to prefer the term ‘color intensity’ (or ‘color strength’) over the much more 

commonly used term ‘brightness’, which refers to the sensation of the amount of light 

                                                        
6 I prefer the term ‘color intensity’ over Heggelund’s ‘color strength’ because it seems to me to generalize 
more naturally to other sensory modalities, e.g., sound intensity, odor intensity, and so on. 
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emitted or reflected from a colored area (Kuehni, 2003, p. 367). First, while brightness is 

usually taken to range from dim to bright (or dazzling) (Evans, 1974, p. 97; Kuehni, 2003, 

p. 367; Shevell, 2003), it is clear from the definition of color intensity in Eq. (2) that a 

patch of black color is perceived as having some intensity (for example, a deep black 

color is perceived as an intense black), yet a black patch is neither dim nor bright. 

Second, different authors define brightness differently thus leading to much confusion 

with respect to the meaning of the term (Evans, 1974, pp. 7–8; Heggelund, 1974b). I will 

therefore follow Heggelund’s decision to use a straightforward, non-ambiguous term for 

the intensive aspect of color sensations. 

 

Figure 1 provides a scheme of phenomenal color space according to Heggelund’s 

extension of Hering’s theory (Heggelund, 1991).  

 

Figure 1 Phenomenal color space according to Heggelund’s extension of Hering’s opponent-colors theory. 
The outputs of the three opponent-colors mechanisms are projected into the three orthogonal opponent-
colors axes shown in the figure. White is located at the intersection of these three axes. All colors in the 
depicted color space have the same color intensity. 
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Notice that even though the Heggelund theory requires four independent phenomenal 

attributes for the description of a color (see Eq. (1)), Fig. 1 shows phenomenal color 

space as only three-dimensional. This was achieved by requiring that all colors in the 

figure have the same color intensity, i.e., by holding the value of 𝐼 fixed. Figure 1 locates 

pure white at the intersection of the three opponent-colors axes, namely, at the origin 

of phenomenal color space. (This is because Heggelund’s theory suggests that when all 

three opponent-colors pairs are in equilibrium, the perceived color is purely white (see 

Eq. (1)).) Thus, as we move away from the origin of phenomenal color space, the color 

contains less and less white and more and more of the other six elementary colors. 

 

The scheme of phenomenal color space in Fig. 1 underscores another advantage in 

Heggelund’s version of opponent-colors theory over Hering’s original theory. To 

understand this advantage, we need to acquaint ourselves with the two ‘modes’ of color 

perception: 

[C]olors may be perceived in two different modes often called the light and the 

object mode [...]. In the light mode the colors are perceived as a property of the 

light emitted from a field. These colors are called light colors. In the object mode 

the colors are perceived as a constant property of object surfaces. These colors 

are called surface colors […]. (Heggelund, 1993, p. 1709) 

Here I will refer to what Heggelund called light colors (which are more often referred to 

as aperture colors) as luminous colors. The conditions under which each mode of color 
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perception is evoked are discussed in Heggelund (1974a). As is evident from Fig. 1, the 

addition of luminous as an elementary color sensation seamlessly unifies surface and 

luminous colors into a single space. This unification does not exist in Hering’s original 

theory, which, as a result, requires two separate color spaces to fully represent all 

colors, one for each mode (see Heggelund (1974a, 1991) for more details). 

Consequently, in the literature it is common to see color spaces in which the hueless 

axis is labeled as ‘lightness or brightness’ (e.g., Purves & Yegappan, 2017), where the 

lightness attribute is for surface colors while the brightness attribute is for luminous 

colors.7  

 

In summary, our understanding of the structure of color experience started with 

Leonardo da Vinci’s observation that there exist six elementary colors: red, yellow, 

green, blue, white, and black. Ewald Hering made the next advancement by arranging 

the six elementary colors into three opponent pairs: red–green, yellow–blue, and 

white–black. However, the hueless opponent pair in Hering’s theory, white–black, is 

anomalous in that its two colors combine to give an intermediate. Paul Heggelund 

solved this problem in Hering’s theory by suggesting that the gamut of hueless colors 

doesn’t end at white, but rather continues to a pure, elementary luminous sensation. It 

is this elementary hueless sensation (which is the seventh elementary color sensation 

                                                        
7 Here we see the confusion with the term ‘brightness’ that was mentioned above: some authors use it to 
refer to the luminousness of luminous colors, while others use it to mean the perceived intensity of a light 
stimulus. 
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overall) rather than white that is the opponent sensation to black. In addition, 

Heggelund’s extension of Hering’s theory also neatly unifies surface and luminous colors 

into a single framework. 

2.2 The current description of phenomenal color space is not maximally symmetric  

According to the SymFFPQ hypothesis, phenomenal color space should be maximally 

symmetric. Heggelund’s extension of Hering’s theory has gone a long way towards 

achieving this goal because the phenomenal color space that it suggests (see Fig. 1) is 

already highly symmetric. First, the two colors of each opponent pair are diametrically 

opposed to each other, i.e., they are positioned at the poles of an axis. Second, the 

three opponent-colors axes are orthogonal. Third, white, which is the only elementary 

color that doesn’t have an opponent counterpart, is located at intersection of the three 

opponent-colors axes. We are left with only one more degree of freedom for 

phenomenal color space: the shape that colors assume in this space. Since the sphere is 

the most symmetric shape in three dimensions, the maximally symmetric phenomenal 

color space is one where the gamut of all colors with the same intensity fills a sphere. 

This space is schematically shown is Fig. 2.  
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Figure 2 The maximally symmetric phenomenal color space. The gamut of all colors with the same 
intensity fills a three-dimensional sphere. This phenomenal color space accords with the SymFFPQ 
hypothesis. 

 

Does Heggelund’s model predict the phenomenal color space of Fig. 2? To get the 

answer, let us look at Eq. (2) of this model. Since to obtain a three-dimensional color 

space we held color intensity constant, we plug in a constant color intensity in this 

equation. If we denote this constant value by 𝐼0, Eq. (2) becomes 

𝐼0
2 = 𝑊2 + (𝑅 − 𝐺)2 + (𝑌 − 𝐵)2 + (𝐿 − 𝐵𝑘)2. (3) 

Notice that if 𝑊, (𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘) are all independent of each other, Eq. 

(3) describes a four-dimensional sphere with a radius of 𝐼0. To relate this conclusion to 

the three-dimensional space of Fig. 1, we rearrange Eq. (3) in the following way: 

𝐼0
2 − 𝑊2 = (𝑅 − 𝐺)2 + (𝑌 − 𝐵)2 + (𝐿 − 𝐵𝑘)2. (4) 

Unique red

Unique yellow

Unique green

Unique blue

Black

Hue circle

White

Luminous
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Since 0 ≤ 𝑊 ≤ 𝐼0,8 Eq. (4) shows that if the variables 𝑊, (𝑅 − 𝐺), (𝑌 − 𝐵), and 

(𝐿 − 𝐵𝑘) are independent of each other, the gamut of all colors in the phenomenal 

color space of Fig. 1 fills a three-dimensional sphere with a radius of 𝐼0.9 Thus, if the 

variables 𝑊, (𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘) are independent of each other, then 

Heggelund’s theory indeed gives rise to the maximally symmetric phenomenal color 

space. However, Heggelund’s observations showed that the value of 𝑊 is not 

independent of the value of (𝐿 − 𝐵𝑘); rather, the value of 𝑊 is anticorrelated with the 

absolute value of (𝐿 − 𝐵𝑘) (Heggelund, 1992, Eq. (6)). Consequently, Heggelund’s 

model does not give rise to a spherical phenomenal color space,10 and therefore does 

not give rise to the maximally symmetric phenomenal color space.  

2.3 A color model that gives rise to the maximally symmetric phenomenal color 

space 

As subscribers to the SymFFPQ hypothesis, our goal is to develop a mathematical model 

of color that provides the maximally symmetric description of phenomenal color space 

(Fig. 2). We notice that if we take the level of whiteness in a color, 𝑊, to be given by  

𝑊2 = 𝐼2 − (𝑅 − 𝐺)2 − (𝑌 − 𝐵)2 − (𝐿 − 𝐵𝑘)2, (5)

and we demand that the variables 𝐼, (𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘) are independent 

of each other, then we have attained our goal. That this is indeed the case is ascertained 

                                                        
8 If this weren’t the case, Eq. (4) would yield imaginary results for the opponent-colors components, which 
is impossible.  
9 For every value of 𝑊, the colors create a spherical shell whose radius is (𝐼0

2 − 𝑊2)1 2⁄ . 
10 Indeed, Heggelund concluded as follows with regard to the shape of phenomenal color space (he called 
it ‘color quality body’) predicted by his theory: ‘The structure [i.e., shape] of such a color quality body is 
unknown. […] The actual structure probably depends to a large extent on the selected value for the 
constant color strength [i.e., color intensity]’ (1991, p. 317). 
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by realizing that taking 𝐼 = 𝐼0 in Eq. (5) gives us Eq. (4), which, as we have already seen 

above, describes a spherical color space. In addition, in accordance with Heggelund’s 

observations (1992; see previous subsection), 𝑊 in Eq. (5) is anticorrelated with the 

absolute value of (𝐿 − 𝐵𝑘). According to Eq. (5), whiteness ‘fills the gap’ between a 

color’s intensity and the overall magnitude of the opponent-colors components. Thus, 

when all three opponent-colors components are zero, the entire intensity goes to white. 

This is why white is located at the intersection of the three opponent-colors axes in Fig. 

2, namely, at the origin of phenomenal color space. As we move away from the origin in 

phenomenal color space, the color contains less and less white, i.e., it becomes more 

and more saturated (or more and more pure).11 Colors located on the surface of the 

color sphere in Fig. 2 are fully saturated (i.e., pure), namely, they have no whiteness in 

them.12 

 

By taking 𝑊 to be given by Eq. (5) and demanding that 𝐼, (𝑅 − 𝐺), (𝑌 − 𝐵), and 

(𝐿 − 𝐵𝑘) are independent of each other we have achieved our goal of a perfectly 

symmetric phenomenal color space. However, Eq. (5) by itself doesn’t constitute a full 

color model because we still need to find an expression for 𝐼 that is independent of 

(𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘). But before we do that, realize that because 𝐼 is now 

                                                        
11 The terms saturation and purity are ordinarily used only with respect to hued colors. Here I am 
generalizing these terms to apply to the hueless colors luminous and black as well. Thus, a pure luminous 
color and a pure black color are taken to be fully saturated (with luminousness and blackness, 
respectively). 
12 For hued colors this is an idealization because even the most saturated hues (which are the spectral 
hues) have some whiteness in them (Gordon & Abramov, 1988; Gordon et al., 1994; Jacobs, 1967). 
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taken to be an independent variable, whereas 𝑊 is taken to be a dependent variable, 

we need to replace the color vector 𝑭 of Eq. (1) with a vector in which 𝐼 takes the place 

of 𝑊 as the �̂�0-component: 

𝑪 = 𝐼�̂�0 + (𝑅 − 𝐺)�̂�1 + (𝑌 − 𝐵)�̂�2 + (𝐿 − 𝐵𝑘)�̂�3. (6)  

We denote the new color vector by 𝑪 to emphasize its distinctness from 𝑭. Examining 

Eq. (5) for 𝑊 and Eq. (6) for the color vector 𝑪 we notice that there exists an elegant 

mathematical connection between them. If we take the vector 𝑪 to be a four-vector in 

Minkowski space rather than a vector in ℝ4, i.e., if we assume that 𝑪 ∈ ℝ1,3,13 then the 

magnitude of 𝑪 is given by 

‖𝑪‖2 = 𝐼2 − (𝑅 − 𝐺)2 − (𝑌 − 𝐵)2 − (𝐿 − 𝐵𝑘)2. 

(For an introduction to four-vectors, see, e.g., Susskind and Friedman (2017).). But this is 

exactly the expression for 𝑊 in Eq. (5). Thus, if we the take the color vector 𝑪 to be a 

four-vector, we get the economical result that 𝑊 is simply the magnitude of this four-

vector, namely, 

𝑊2 = ‖𝑪‖2 = 𝐼2 − (𝑅 − 𝐺)2 − (𝑌 − 𝐵)2 − (𝐿 − 𝐵𝑘)2. (7) 

 

Taking stock, we see that currently our color model consists of Eqs. (6) and (7). What we 

are still missing is an expression for color intensity, 𝐼. There are a few constraints that 

assist us in finding this expression. First, we know that 𝐼 must be independent of 

                                                        
13 ℝ1,3 is Minkowski space with a (+, −, −, −) metric signature. 
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(𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘), i.e., it cannot be a function of these variables. Second, 

an immediate implication of Eq. (7) is that the following inequality must hold: 

(𝑅 − 𝐺)2 + (𝑌 − 𝐵)2 + (𝐿 − 𝐵𝑘)2 ≤ 𝐼2. (8) 

For if this inequality didn’t hold, Eq. (7) would assign an imaginary value to 𝑊, which is 

impossible. Note that even though the value of 𝐼 cannot be a function of (𝑅 − 𝐺), 

(𝑌 − 𝐵), and (𝐿 − 𝐵𝑘), it is clear that for Eq. (8) to be obeyed, its value must be a 

function of 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘. Otherwise, the visual system wouldn’t be able to 

ensure that Eq. (8) always holds. And third, our commitment to the SymFFPQ hypothesis 

provides us with an additional constraint on the expression for 𝐼: this expression must 

be as symmetric as possible. An expression for 𝐼 that obeys the three constraints above 

is the following: 

𝐼 = 𝑅 + 𝐺 + 𝑌 + 𝐵 + 𝐿 + 𝐵𝑘. (9) 

Evidently, this is a very sensible expression for color intensity.14 As required, 𝐼 in this 

expression is evidently not a function of (𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘). In addition, it 

can easily be shown that this expression obeys the inequality of Eq. (8).15 Finally, the 

                                                        
14 Indeed, this expression, with the obvious replacement of 𝐿 with 𝑊, was suggested as the expression for 
brightness by Kaiser et al. (1971). It also seems to be the expression for brightness (again, with the 
replacement of 𝐿 with 𝑊) according to Hering (Boring, 1949).   
15 To show this we begin with the following trivially true inequality: 

(𝑅 − 𝐺)2 + (𝑌 − 𝐵)2 + (𝐿 − 𝐵𝑘)2 ≤ (𝑅 + 𝐺)2 + (𝑌 + 𝐵)2 + (𝐿 + 𝐵𝑘)2. 

Next, notice that the following inequality is also trivially true: 

(𝑅 + 𝐺)2 + (𝑌 + 𝐵)2 + (𝐿 + 𝐵𝑘)2 ≤ (𝑅 + 𝐺 + 𝑌 + 𝐵 + 𝐿 + 𝐵𝑘)2 = 𝐼2, 

where the expression for 𝐼 in Eq. (9) was used for the equality on the right-hand side. Since the right-hand 
side of the first inequality equals the left-hand side of the second inequality, we can concatenate the two 
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expression for 𝐼 in Eq. (9) is perfectly symmetric with respect to the six elementary-color 

processes because they all contribute to 𝐼 in the same way. The expression for 𝐼 in Eq. 

(9) therefore completes our model. 

 

In conclusion, in Eqs. (6)–(9) we have attained our goal, namely, a color model that gives 

rise to the maximally symmetric phenomenal color space. Here is a brief summary of 

this model. The model suggests that every color is determined by the values of four 

independent variables—𝐼, (𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘). Therefore, every color can 

be unequivocally described by the color vector 𝑪 of Eq. (6). The amount of whiteness in 

a color, 𝑊, is given by Eq. (5). Since 𝐼, (𝑅 − 𝐺), (𝑌 − 𝐵), and (𝐿 − 𝐵𝑘) are independent 

variables, this equation gives rise to the spherical phenomenal color space of Fig. 2, 

which was our goal. It turns out that by taking 𝑪 to be a vector in Minkowski space, i.e., 

to be a four-vector, we obtain the elegant result that 𝑊 is simply the magnitude of this 

four-vector (Eq. (7)). Finally, by following the rationale of the SymFFPQ hypothesis, we 

concluded that the intensity of a color, 𝐼, is given by the summed activity of all six 

elementary-color processes (Eq. (9)).  

2.4 An alternative formulation of the proposed model 

A crucial argument in favor of adopting Eq. (9) as the expression for 𝐼 was this 

expression’s symmetry with respect to the elementary-color processes. Specifically, in 

                                                        
inequalities above and immediately arrive at the following inequality, which is the desired result, namely, 
Eq. (8): 

(𝑅 − 𝐺)2 + (𝑌 − 𝐵)2 + (𝐿 − 𝐵𝑘)2 ≤ 𝐼2. 
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this expression, all six elementary-color processes contribute to 𝐼 in the same way. An 

expression for 𝐼 that is different from the one in Eq. (9) but is nonetheless perfectly 

symmetric with respect to the elementary-color processes is the following: 

𝐼 = 𝑅 + 𝐺 = 𝑌 + 𝐵 = 𝐿 + 𝐵𝑘. (10) 

Therefore, if we follow the rationale of the SymFFPQ hypothesis and use symmetry as 

our guideline in determining the form of the expression for 𝐼, Eq. (10) should be 

considered as an alternative to Eq. (9). This subsection will demonstrate, however, that 

even though the expressions for 𝐼 in Eqs. (9) and (10) seem be totally different from 

each other, if the variables 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘 are assigned a slightly different 

meaning from their original one as elementary-color processes, then these expressions 

turn out to be mathematically equivalent. The conclusion will be that Eqs. (9) and (10) 

give rise to two different, yet mathematically equivalent, formulations of the proposed 

model.  

 

As was just noted, in the subsequent development, the variables 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘 

will be assigned a different meaning than their original one as elementary-color 

processes. To keep things clear and prevent confusion, in this subsection we will 

therefore denote the elementary-color processes by 𝑟, 𝑔, 𝑦, 𝑏, 𝑙, and 𝑏𝑘. For example, 

in the new notation, Eq. (9) for color intensity will read: 

𝐼 = 𝑟 + 𝑔 + 𝑦 + 𝑏 + 𝑙 + 𝑏𝑘. (11) 
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Similarly, in terms of the newly named elementary-color processes, Eq. (6) for the color 

four-vector 𝑪 will be written as 

𝑪 = (𝑟 + 𝑔 + 𝑦 + 𝑏 + 𝑙 + 𝑏𝑘)�̂�0 + (𝑟 − 𝑔)�̂�1 + (𝑦 − 𝑏)�̂�2 + (𝑙 − 𝑏𝑘)�̂�3, 

where the explicit expression for 𝐼 from Eq. (11) was used for the �̂�0-component.  

 

We now define six auxiliary variables, 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘, in terms of the elementary-

color processes (in their new notation) in the following way: 

𝑅 =
(𝑟 − 𝑔) + 𝐼

2
, 𝐺 =

(𝑔 − 𝑟) + 𝐼

2
,  

(12a) 

𝑌 =
(𝑦 − 𝑏) + 𝐼

2
, 𝐵 =

(𝑏 − 𝑦) + 𝐼

2
,  

(12b) 

𝐿 =
(𝑙 − 𝑏𝑘) + 𝐼

2
, 𝐵𝑘 =

(𝑏𝑘 − 𝑙) + 𝐼

2
,  

(12c) 

where 𝐼 is given in Eq. (11). It can easily be verified from Eq. (12) that 

(𝑅 − 𝐺) = (𝑟 − 𝑔),

(𝑌 − 𝐵) = (𝑦 − 𝑏),

(𝐿 − 𝐵𝑘) = (𝑙 − 𝑏𝑘).

(13) 

That is, the expressions for the opponent-colors components in terms of the auxiliary 

variables are equal to the expressions for these components in terms of the elementary-

color processes. Next, notice that summing the terms for 𝑅 and 𝐺 in Eq. (12a) yields 𝐼 =

𝑅 + 𝐺, as required by Eq. (10). The same result is obtained for 𝑌 and 𝐵 in Eq. (12b) and 
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for 𝐿 and 𝐵𝑘 in Eq. (12c). We thus see that the expression for 𝐼 in Eq. (10) holds true for 

the auxiliary variables 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘 defined in Eq. (12).  

 

We now observe that thanks to Eqs. (10) and (13), Eqs. (6)–(8) above are valid even 

when the variables 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, 𝐵𝑘 are given by the auxiliary variables defined in Eq. 

(12). We have therefore obtained an alternative formulation for the proposed model. 

The two formulations share Eqs. (6)–(8), but differ in their expressions for color 

intensity—Eq. (9) in the original formulation, Eq. (10) in the new formulation. It should 

also be remembered that the meaning of the variables 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘 is different 

in the two formulations. Later in the paper, when we discuss the duality of the proposed 

color model with the mathematical description of two-state quantum systems, the 

alternative formulation will turn out to be more useful. 

2.5 Why psychophysical color spaces are not symmetrical 

When psychophysicists try to organize our color percepts into three-dimensional solids 

(psychophysical color spaces or color order systems), the result is a far cry from the 

symmetrical phenomenal color space of Fig. 2. For example, consider the Munsell color 

order system. The shape of this color order system is irregular (even though Munsell 

initially attempted his system to be spherical), the opponent unique hues in this system 

are not diametrically opposed to each other, and the metric of the system is 

nonuniform, i.e., the perceptual distance between two adjacent color samples (as 

measured, for example, by the number of just noticeable differences) is different in 
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different regions of the system (Judd, 1969; Kuehni, 2003, chapters 2 and 7). An even 

better example is given by the Swedish Natural Color System (NCS). This system ‘is 

based on Hering’s phenomenological analysis of the characteristic relationships of color 

percepts and on the postulate of the six elementary color sensations’ (Hård et al., 1996, 

p. 187). The belief behind the NCS was that observers could reliably compare physical 

color samples to their internal phenomenal color space. Hence, the NCS was 

constructed using observers’ assessments of the degree of similarity between various 

physical color samples and their ‘inherent conceptions of pure white, black, yellow, red, 

blue, and green’ (ibid., p. 186). These physical color samples were then embedded into 

the NCS color solid. This solid was predetermined to have a double-cone shape even 

before any measurement took place.16 Thus, although the NCS color solid has a 

symmetric appearance, this symmetry is completely artificial. In fact, the NCS color solid 

could have been chosen to have any shape whatsoever. For example, ‘[w]ith minor 

changes [the NCS solid] could be fitted into a sphere’ (Kuehni, 2003, p. 310). As a result 

of this artificial packing of colors into a predetermined shape, the NCS solid is grossly 

nonuniform, namely, pairs of adjacent color samples in different regions of the NCS solid 

have different perceptual distances between them (Kuehni, 2003, chapter 7, 2010).  

 

                                                        
16 The double-cone shape arises from Hering’s description of white, black, and each of the unique hues as 
located at the three vertices of an equilateral triangle (Hård et al., 1996, Fig. 7). By combining the four 
triangles created by the four unique hues with the hue circle, one obtains the double-cone shape. 
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According to the SymFFPQ hypothesis, our phenomenal color space is the one shown in 

Fig. 2. What could explain the glaring discrepancies between the properties of that 

space, which is perfectly symmetric and uniform, and the measured properties of 

psychophysical color spaces? At least two reasons come to mind. First, we have no a 

priori reason to think that the visual system is able to fully, isotropically, and uniformly 

sample the phenomenal color space of Fig. 2. Second, there is an inherent difficulty in 

trying to objectively measure the subjective properties of our perceptions. Color 

percepts are no exception. For example, Jacobs (1967) concluded from his experiments 

in which observers were asked to estimate the saturation level of various colors that ‘It 

is, not surprisingly, a relatively difficult task for an observer to judge saturation for a 

series of heterochromatic stimuli’ (p. 273). As another example, Gordon et al. (1994) 

found in their hue and saturation scaling experiments of spectral colors that their 

subjects’ trial-by-trial variance was very large, indicating that the subjects found it hard 

to consistently estimate the relative portion of red, yellow, green, blue, and white (i.e., 

saturation) in their own subjective color sensations. More importantly, the variance in 

the subjects’ trial-by-trial estimated values of hue and saturation differed markedly 

across various levels of saturation. This means that if one were to construct a 

psychophysical color space from the measurements of these subjects, the result would 

necessarily be nonuniform. Overall, then, it is not surprising that psychophysical color 

spaces provide a partial and distorted version of the perfectly symmetric phenomenal 

color space of Fig. 2. 
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3. The mathematical description of two-state quantum systems 

The purpose of this section is to provide a brief review of the basic mathematical 

description of two-state quantum systems. The material covered here can be found in 

many textbooks on quantum mechanics (e.g., Blum, 1981; Zwiebach, 2022). Another 

excellent source for the mathematics of two-state quantum systems is textbooks on 

quantum computation and quantum information (e.g., Avron, 2023; Nielsen & Chuang, 

2010), which refer to these systems as qubits.  

3.1 Two-state quantum systems 

Two-state quantum systems are quantum systems that exhibit two physically 

distinguishable states relative to some type of measurement. Some common examples 

of two-state quantum systems are the spin state of spin-1/2 particles, the polarization 

state of photons, and atomic systems that can be approximated as effectively having 

only two electronic levels (Altepeter et al., 2004). A two-state quantum system is fully 

described by a vector in two-dimensional Hilbert-space.17 This vector is commonly 

referred to as a state vector. The state vector can be represented relative to any basis of 

two-dimensional Hilbert space. For example, suppose we pick the basis {|1⟩ , |2⟩}, where 

|1⟩ and |2⟩ are two orthogonal vectors. We can expand the system’s state vector, which 

we will denote by |𝜓⟩, as some linear combination (also called superposition) of |1⟩ and 

|2⟩: 

|𝜓⟩ = 𝑎|1⟩ + 𝑏|2⟩, (14) 

                                                        
17 A Hilbert space is an inner-product space over the complex numbers (i.e., the result of the inner 
product defined in this vector space is in ℂ). 
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where 𝑎, 𝑏 ∈ ℂ and |𝑎|2 + |𝑏|2 = 1 (Nielsen & Chuang, 2010, chapter 1). Quantum 

mechanics tells us that a measurement conducted to determine the state of the system 

described by Eq. (14) has a probability of |𝑎|2 of finding the system in the state |1⟩ and a 

probability of |𝑏|2 of finding it in the state |2⟩.  

 

Because there is an isomorphism between the set of Hilbert-space vectors |𝜓⟩ and the 

set of their coordinate vectors 𝜓{|1⟩ ,|2⟩} = (𝑎, 𝑏)T ∈ ℂ2 (Lipschutz & Lipson, 2009, 

chapter 4),18 it is common in the physics literature to disregard mathematical niceties 

and treat the vectors |𝜓⟩ as if they themselves were elements of ℂ2 (e.g., Aerts & Sassoli 

de Bianchi, 2017). Here I will follow suit. The motivation behind this is that it allows one 

to directly operate on state vectors with matrices rather than with operators defined 

over Hilbert space.19 This is very convenient during calculations. 

3.2 The Pauli matrices 

The following four 2×2 matrices are known as the Pauli matrices: 

𝜎0 = [
1 0
0 1

] , 𝜎1 = [
0 1
1 0

] , 𝜎2 = [
0 −𝑖
𝑖 0

] , 𝜎3 = [
1 0
0 −1

] . (15) 

This representation of the Pauli matrices is referred to as their standard representation 

because it is given relative to the standard basis of ℂ2, S = {(1,0)T, (0,1)T}. That is, 

although this is not denoted explicitly, both input and output vectors of the Pauli 

                                                        
18 The coordinate vector 𝜓 is sometimes called the wave function. 
19 Thus, it is very common to see the operator |𝜓⟩⟨𝜙|, where |𝜓⟩ and |𝜙⟩ are state vectors, treated as a 
matrix (e.g., Bertlmann & Krammer, 2008). 
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matrices in Eq. (15) are assumed to be represented relative to the basis S.20 As can be 

verified from Eq. (15), all four Pauli matrices are Hermitian, i.e., 𝜎𝜇 = 𝜎𝜇
† ≡ (𝜎𝜇

∗)
T

, 𝜇 =

0, 1, 2, 3. This means that these matrices are observables of two-state quantum 

systems.21 I will therefore sometimes refer to these matrices as the Pauli observables. 

The set {𝜎0, 𝜎1, 𝜎2, 𝜎3} constitutes a basis for the vector space of 2×2 complex matrices 

(Aerts & Sassoli de Bianchi, 2017). Therefore, the Pauli basis necessarily also spans the 

vector space of all 2×2 Hermitian matrices, namely, the space of all observables of two-

state quantum systems. Any 2×2 Hermitian matrix 𝐴 can be expanded in the Pauli basis 

as 𝐴 = 𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 + 𝑑𝜎3, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ (Zwiebach, 2022, chapter 12). 

 

From Eq. (15) it is straightforward to show that the eigenvalues of the three Pauli 

matrices 𝜎𝑖, 𝑖 = 1,2,3, are ±1. Therefore, if we denote the two eigenvectors of the Pauli 

matrix 𝜎𝑖  by |±�̂�𝑖⟩ ∈ ℂ2, we have the following eigenvector/eigenvalue equations: 

𝜎𝑖|±�̂�𝑖⟩ = ±|±�̂�𝑖⟩ 

𝑖 ∈ {1, 2, 3}. Because the Pauli matrices are Hermitian, their eigenvectors, |±�̂�𝑖⟩, are 

orthogonal. From the explicit representation of the Pauli matrix 𝜎3 in Eq. (15), it is easy 

to verify that the eigenvectors of this matrix, i.e., |±�̂�3⟩, are equal to the vectors of the 

                                                        
20 To denote this explicitly we would write [𝜎𝜇]

S⟶S
, 𝜇 = 0, 1, 2, 3, or more simply: [𝜎𝜇]

S
. 

21 A quantum observable of a quantum system is a Hermitian operator that corresponds to a measurable 

property of the system. For example, the spin-1/2 observable is a Hermitian operator, usually denoted 𝑺, 
that corresponds to the intrinsic angular momentum of a quantum system, which is a measurable 
property of the system. Notice that here, because we are treating vectors in two-dimensional Hilbert 
space as if they were vectors in ℂ2, we can refer directly to the Pauli matrices as observables.   
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standard basis of ℂ2. That is, |+�̂�3⟩ = (1,0)T and |−�̂�3⟩ = (0,1)T. (Notice that this 

means that the representation of the Pauli matrices in Eq. (15) is relative to the basis 

{|+�̂�3⟩, |−�̂�3⟩}.) It is therefore common to represent the vectors |±�̂�1⟩ and |±�̂�2⟩ 

relative to the basis {|+�̂�3⟩, |−�̂�3⟩}. It is easily shown that the expansion of the vectors 

|±�̂�1⟩ and |±�̂�2⟩ relative to this basis is given by 

|±�̂�1⟩ =
1

√2
(|+�̂�3⟩ ± |−�̂�3⟩),

|±�̂�2⟩ =
1

√2
(|+�̂�3⟩ ± 𝑖|−�̂�3⟩).

(16) 

 

We can employ the spectral decomposition theorem (Zwiebach, 2022, chapter 15) to 

obtain the following expression for three Pauli matrices 𝜎𝑖, 𝑖 = 1, 2, 3: 

𝜎𝑖 = |+�̂�𝑖⟩⟨+�̂�𝑖| − |−�̂�𝑖⟩⟨−�̂�𝑖|, (17) 

where the vectors ⟨+�̂�𝑖| and ⟨−�̂�𝑖| are, respectively, the transposed complex 

conjugates of the vectors |+�̂�𝑖⟩ and |−�̂�𝑖⟩, i.e., ⟨±�̂�𝑖| = (|±�̂�𝑖)
† ≡ (|±�̂�𝑖⟩

∗)T. Thus, Eq. 

(17) shows that each one of the three Pauli matrices 𝜎𝑖  is an operator whose output 

results from the antagonistic operation of two matrices, |+�̂�𝑖⟩⟨+�̂�𝑖| and |−�̂�𝑖⟩⟨−�̂�𝑖|. By 

utilizing the linearity of the matrices |±�̂�𝑖⟩⟨±�̂�𝑖| in Eq. (17), it is easy to show that the 

expectation values of the Pauli observables 𝜎𝑖  (i.e., the mean values of these 

observables gleaned from many measurements on a two-state quantum system) are 

given by 

〈𝜎𝑖〉 = 〈|+�̂�𝑖⟩⟨+�̂�𝑖|〉 − 〈|−�̂�𝑖⟩⟨−�̂�𝑖|〉 (18) 
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(Altepeter et al., 2004), where the brackets 〈⋅〉 denote expectation value.22 

 

Just as we did above for the three Pauli matrices 𝜎𝑖, 𝑖 = 1, 2, 3, we can use the spectral 

decomposition theorem on the Pauli matrix 𝜎0 (which, as will be recalled, is the identity 

matrix). Since any two-dimensional vector is an eigenvector of the identity matrix with a 

corresponding eigenvalue of 1, the result of eigenvalue decomposition in this case is the 

following: 

𝜎0 = |+�̂�⟩⟨+�̂�| + |−�̂�⟩⟨−�̂�|, (19) 

where |+�̂�⟩ and |−�̂�⟩ are any two orthogonal unit vectors in two-dimensional Hilbert 

space. Equation (19) is known as the completeness relation (Zwiebach, 2022, chapter 

15). In our case, we will be mostly interested in using the completeness relation with the 

pairs of orthogonal vectors |+�̂�𝑖⟩ and |−�̂�𝑖⟩, 𝑖 = 1, 2, 3, namely, 

𝜎0 = |+�̂�𝑖⟩⟨+�̂�𝑖| + |−�̂�𝑖⟩⟨−�̂�𝑖|. 

From the linearity of the matrices |+�̂�𝑖⟩⟨+�̂�𝑖| and |−�̂�𝑖⟩⟨−�̂�𝑖| we obtain that the 

expectation value of the Pauli observable 𝜎0 is given by 

〈𝜎0〉 = 〈|+�̂�𝑖⟩⟨+�̂�𝑖|〉 + 〈|−�̂�𝑖⟩⟨−�̂�𝑖|〉, (20) 

 𝑖 ∈ {1, 2, 3}. 

                                                        
22 When we measure the expectation value 〈𝜎𝑖〉, it is assumed that we have at our disposal a large 
population of the two-state systems in the same state. This allows us to carry out many experiments on 
this population and obtain the mean value (i.e., expectation value) of the observable 𝜎𝑖. 



37 
 

3.3 The isomorphism between 2×2 Hermitian matrices and four-vectors 

We saw in the previous subsection that the Pauli basis spans the vector space of 2×2 

Hermitian matrices. Thus, any 2×2 Hermitian matrix 𝐴 can be expanded in the Pauli 

basis as 𝐴 = 𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 + 𝑑𝜎3, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. It is easy to show that there 

is an isomorphism between the set of all 2×2 Hermitian matrices and the set of all four-

vectors in Minkowski space: 

𝐴 = 𝑎𝜎0 + 𝑏𝜎1 + 𝑐𝜎2 + 𝑑𝜎3 ⟷ 𝑣𝜇 = (𝑎, 𝑏, 𝑐, 𝑑), (21) 

where 𝒗 ∈ ℝ1,3 (Schulten, 2000, chapter 11). In fact, the vector 𝒗 is simply the 

coordinate vector of 𝐴 relative to the Pauli basis, i.e., 𝒗 = [𝐴]{𝜎0,𝜎1,𝜎2,𝜎3}. Notice that Eq. 

(21) gives the contravariant representation of this coordinate vector. (For an 

introduction to contravariant and covariant representations of vectors, see Fleisch 

(2012).) The covariant form of Eq. (21) is given by 

�̃� = 𝑎𝜎0 − 𝑏𝜎1 − 𝑐𝜎2 − 𝑑𝜎3 ⟷ 𝑣𝜇 = (𝑎, −𝑏, −𝑐, −𝑑) 

(Schulten, 2000, chapter 11). The matrix �̃� is therefore the ‘covariant form’ of the matrix 

𝐴.  

 

The vector space of 2×2 Hermitian matrices is equipped with the following inner 

product: 

〈𝐴, 𝐵〉 ≡ tr(�̃�𝐵), (22) 
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where 𝐴 and 𝐵 are any 2×2 Hermitian matrices and tr(⋅) is the trace operation (ibid.). 

Given the inner product in Eq. (22) we can complete the isomorphism given in Eq. (21) 

with a correspondence between the inner products in the space of 2×2 Hermitian 

matrices and Minkowski space: 

〈𝐴, 𝐵〉 ≡ tr(�̃�𝐵) ⟷ 〈𝒗, 𝒖〉 ≡ ∑ 𝑣𝜇𝑢𝜇 ,

3

𝜇=0

 

where 𝒗, 𝒖 ∈ ℝ1,3 and �̃� ⟷ 𝑣𝜇, 𝐵 ⟷ 𝑢𝜇. 

3.4 Two-state quantum systems in a mixed state and the density matrix 

A mixture of quantum systems is an ensemble of quantum systems in which the 

quantum states do not coherently interfere with each other (Altepeter et al., 2004; 

Blum, 1981, chapter 1; Nielsen & Chuang, 2010, chapter 2). The ensemble as a whole is 

then said to be in an incoherent state, or, more commonly, in a mixed state. By contrast, 

quantum systems whose component states do coherently interfere with each other, are 

said to be in a pure state (for example, the two-state quantum system described by Eq. 

(14) above is in a pure state). A second physical situation where mixed states arise is in 

composite quantum systems whose constituent subsystems are entangled with each 

other (Altepeter et al., 2004; Nielsen & Chuang, 2010, chapter 2). In this case, it is not 

the composite system that is in a mixed state, but rather each of the entangled 

subsystems. (Note: since most of the material covered in this subsection is standard, 

henceforth I will cite references only when some nonstandard issue is discussed. The 

sources cited in the paragraph above, and many other standard sources, can be used to 

find information on the properties of two-state quantum systems in a mixed state.) 
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Quantum systems in a mixed state cannot be described by a state vector. Rather, they 

are described by a density matrix.23 This matrix provides the full physical description of a 

system in a mixed state.24 Density matrices have several distinct mathematical 

properties. Most important for our purposes will be the fact that these matrices are 

Hermitian. Here we will focus on density matrices of two-state quantum systems. It 

turns out that these 2×2 matrices can be expanded in the Pauli basis, {𝜎0, 𝜎1, 𝜎2, 𝜎3}, in 

the following manner: 

𝜌 =
1

2
∑〈𝜎𝜇〉𝜎𝜇

3

𝜇=0

(23) 

(𝜌 is the standard notation for density matrices).25 Notice that the expectation values 

〈𝜎𝜇〉 in Eq. (23) are computed from the two-state system that the density matrix 𝜌 

describes. It is noteworthy that 〈𝜎1〉, 〈𝜎2〉, 〈𝜎3〉 ∈ ℝ, while 〈𝜎0〉 ∈ ℕ+. The latter 

expectation value, 〈𝜎0〉, carries a special meaning—it is the number of two-state 

systems in the mixture (Blum, 1981, chapter 1). This number is sometimes referred to as 

                                                        
23 It would be more precise to say that a mixture is described by a density operator. The density matrix is a 
representation of this operator relative to some basis, whose identity is generally understood from the 
physical context. Here, however, I follow most textbooks and refer directly to the density matrix. The 
reason textbooks often take this approach is that in calculations one must use a specific representation of 
the density operator, namely, one must use the density matrix. (This issue of committing to a 
representation of vectors and operators relative to a specific basis when performing calculations will 
figure prominently in Section 4 below.)  
24 This means the following: the density matrix allows the calculation of the probability of finding the 
system in any particular pure state upon measurement of any observable (Altepeter et al., 2004; Blum, 
1981, chapter 1). 
25 Equation (23) gives the unnormalized version of the density matrix. It is more common to see this 

matrix with all its values normalized by 〈𝜎0〉 (Altepeter et al., 2004). 
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the intensity of the mixture (ibid.).26 The expectation values appearing in Eq. (23) obey 

the following inequality: 

〈𝜎1〉2 + 〈𝜎2〉2 + 〈𝜎3〉2 ≤ 〈𝜎0〉2 (24) 

(ibid.). By substituting the standard representations of the four Pauli matrices (Eq. (15)) 

into the expression for the density matrix in Eq. (23) we obtain the explicit form of this 

matrix: 

𝜌 =
1

2
[

〈𝜎0〉 + 〈𝜎3〉 〈𝜎1〉 − 𝑖〈𝜎2〉

〈𝜎1〉 + 𝑖〈𝜎2〉 〈𝜎0〉 − 〈𝜎3〉
] . (25) 

Recall that because 𝜌 is a 2×2 Hermitian matrix, it can be viewed as a vector in the space 

of 2×2 Hermitian matrices. The magnitude of this ‘vector’, ‖𝜌‖, is given by √〈𝜌, 𝜌〉, 

where the inner product 〈⋅,⋅〉 is defined in Eq. (22). From Eq. (25) it is easy to calculate 

this magnitude to be 

‖𝜌‖2 =
〈𝜎0〉2 − 〈𝜎1〉2 − 〈𝜎2〉2 − 〈𝜎3〉2

2
. (26) 

 

We saw in the preceding subsection that there is an isomorphism between the vector 

space of 2×2 Hermitian matrices and Minkowski space. Therefore, the density matrix 𝜌 

of Eq. (23), which is a 2×2 Hermitian matrix, can be assigned a corresponding four-

vector 𝑩 ∈ ℝ1,3: 

                                                        
26 This term is usually used in the context of particle beams (e.g., a beam of silver atoms (these are spin-
1/2 particles)). 
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𝜌 =
1

2
∑〈𝜎𝜇〉𝜎𝜇

3

𝜇=0

⟷ 𝑩 = ∑〈𝜎𝜇〉𝑥𝜇 .

3

𝜇=0

(27) 

Often, the number of two-state systems in the mixture is immaterial to us. In such cases, 

we can ignore the zeroth component of the four-vector 𝑩 and represent any mixture of 

two-state quantum systems by the following ℝ3 vector: 

𝒃 = 〈𝜎1〉�̂�1 + 〈𝜎2〉�̂�2 + 〈𝜎3〉�̂�3. (28) 

These ℝ3 vectors are known as Bloch vectors. Since ‖𝒃‖ ≤ 〈𝜎0〉 (see Eq. (24)), the set of 

all Bloch vectors is contained within a sphere whose radius is 〈𝜎0〉. This sphere is known 

as the Bloch sphere.27 Figure 3 provides an illustration of this sphere. Note that Bloch 

vectors for which ‖𝒃‖ = 〈𝜎0〉, namely, those that lie on the surface of the Bloch sphere, 

represent two-state quantum systems in a pure state, like the one described in Eq. (14). 

Six special cases are the Bloch vectors ±�̂�𝑖, 𝑖 = 1, 2, 3, which correspond to the six 

eigenvectors of the Pauli matrices 𝜎𝑖, i.e., to |±�̂�𝑖⟩. 

 

                                                        
27 As was noted above, density matrices are usually given after a normalization by the expectation value 
〈𝜎0〉. Consequently, the Bloch sphere is usually shown as a unit sphere.  

–

–

–
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Figure 3 The Bloch sphere. There is a one-to-one correspondence between the set of all density matrices 
describing a mixture of two-state quantum systems (Eq. (23)) and the set of vectors contained within a 
sphere in ℝ3 whose radius is given by the number of systems in the mixture, 〈𝜎0〉 (Eq. (28)). This sphere is 
known as the Bloch sphere and the vectors contained within it are known as Bloch vectors. Thus, the 
Bloch vector 𝒃 shown in the figure (‖𝒃‖ < 〈𝜎0〉) represents some mixture of two-state quantum systems. 

The vector �̂�, which resides on the surface of the Bloch sphere (i.e., ‖�̂�‖ = 〈𝜎0〉), represents a mixture of 

two-state systems that are all in the same state, namely, the mixture is in a pure state. Six special cases 
are the Bloch vectors ±�̂�𝑖, 𝑖 = 1, 2, 3. These correspond to the eigenvectors of the Pauli matrices 𝜎𝑖, i.e., 
to the Hilbert=space vectors |±�̂�𝑖⟩.  

 

4. The computational universe hypothesis and the universal 

computational basis of Hilbert space 

In recent decades, several notable researchers have advocated the hypothesis that the 

physical world is the result of a gigantic computation (Fredkin, 2003; Lloyd, 2007, 2013; 

‘t Hooft, 2016; Wolfram, 2002; Zuse, 1982). A similar hypothesis, which elegantly 

explains the mysterious success that mathematics has had in describing the physical 

world (Wigner, 1960), is that the universe is an abstract mathematical model (Carroll, 

2022; Tegmark, 2008; Tipler, 2005; Woit, 2015). Evidently, these two hypotheses are 

very closely related.28 This is because mathematical models are inherently atemporal 

and, therefore, for a mathematical model to constitute an implementation of the 

physical universe, it must be run in time.29 But this turns it into a computation.30  

 

In this paper I will adopt the general metaphysical framework suggested by the above 

hypotheses, namely, that the physical world results from a computation. In addition, I 

                                                        
28 And both have some kinship with the ‘simulation hypothesis’ (Bostrom, 2003). 
29 As pointed out by Tegmark (2008), the time dimension in which the computation supposedly takes 
place is not the same time dimension that is simulated by the computation. 
30 Initial conditions will also be required. 
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will assume that quantum mechanics provides a correct description of the physical 

world. Taking these two assumptions together, we arrive at the computational universe 

hypothesis, which suggests that the physical world results from a computation that 

either directly follows the rules of quantum mechanics (Lloyd 2007, 2013; Carroll, 2022) 

or is classical but gives rise to quantum mechanics (‘t Hooft, 2016).  

 

In quantum theory it is often emphasized that a quantum state, i.e., a Hilbert-space 

vector, can be represented in any basis of Hilbert space (e.g., position space, 

momentum space, etc.). However, when one carries out computations on Hilbert-space 

vectors, one must commit to a definite representation of these vectors, namely, one 

must choose a particular basis for Hilbert space. Indeed, in the context of quantum 

computation and quantum information, physicists define a computational basis, in 

which all computations are carried out (Avron, 2023, chapter 1; Nielsen & Chuang, 2010, 

chapter 1). Therefore, since in the metaphysical worldview adopted here the physical 

world results from a computation, we must assume that there exists a computational 

basis for universal Hilbert space. Ex hypothesi, the universe represents all quantum 

states relative to this universal computational basis (UCB). 

 

Two-state quantum systems are represented in a two-dimensional subspace of the 

universal Hilbert space. I will denote the basis of this subspace by UCB(2). The two 

orthogonal vectors that constitute this basis will be denoted |𝐶1⟩ and |𝐶2⟩, i.e., 
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UCB(2) = {|𝐶1⟩, |𝐶2⟩ }. As an example, consider a two-state quantum system in the 

pure state |𝜓⟩ of Eq. (14). This state can be represented relative to any basis of two-

dimensional Hilbert space. In Eq. (14) we chose to represent it in the basis {|1⟩, |2⟩}. 

However, on the computational universe hypothesis, the universe itself represents this 

state in the universal computational basis of two-dimensional Hilbert space, UCB(2): 

|𝜓⟩UCB(2) = 𝑝|𝐶1⟩ + 𝑞|𝐶2⟩, 

where 𝑝, 𝑞 ∈ ℂ and |𝑝|2 + |𝑞|2 = 1.  

 

Since quantum observables (i.e., Hermitian operators) take quantum states in Hilbert 

space as input and produce quantum states in Hilbert space as outputs, consistency 

requires that if quantum states are represented relative to some basis, observables 

must also be represented relative to the same basis. Thus, in the quantum 

computational universe hypothesized here, quantum observables are represented as 

matrices relative to the universal computational basis. For example, the Pauli matrices 

𝜎𝜇, 𝜇 = 0, 1, 2, 3, will be represented as [𝜎𝜇]
UCB(2)

. Notice that the matrices [𝜎𝜇]
UCB(2)

 

are simply the Pauli matrices appearing in Eq. (15), but we now understand the input 

and output vectors of these matrices to be given relative to the privileged basis UCB(2).  

 

Since the Pauli matrices constitute a basis for all two-dimensional quantum observables, 

their representation relative to UCB(2) constitutes a universal computational basis for 
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two-dimensional quantum observables, {[𝜎𝜇]
UCB(2)

}. This allows us to represent 

observables of two-state quantum systems either through UCB(2) or through 

{[𝜎𝜇]
UCB(2)

}. As an example, let us consider the density matrix 𝜌. Its representation 

relative to the basis UCB(2) is given by 

[𝜌]UCB(2) = [
⟨𝐶1|𝜌|𝐶1⟩ ⟨𝐶1|𝜌|𝐶2⟩

⟨𝐶2|𝜌|𝐶1⟩ ⟨𝐶2|𝜌|𝐶2⟩
]. 

However, we can also represent 𝜌 relative to the basis {[𝜎𝜇]
UCB(2)

}. We do this using 

the expansion of Eq. (23): 

[𝜌]UCB(2) =
1

2
∑ 〈[𝜎𝜇]

UCB(2)
〉 [𝜎𝜇]

UCB(2)
.

3

𝜇=0

 

 

Before we go on, there is one last issue that is worthwhile pointing out now since it will 

become important later. We saw in Subsection 3.2 that the representation of the Pauli 

matrices in Eq. (15) is, in fact, given relative to the basis formed from the eigenvectors 

of 𝜎3, i.e., relative to {|+�̂�3⟩, |−�̂�3⟩}. Therefore, it must be the case that 

|+�̂�3⟩UCB(2) = |𝐶1⟩,

|−�̂�3⟩UCB(2) = |𝐶2⟩.
(29) 

That is, the basis {|+�̂�3⟩UCB(2), |−�̂�3⟩UCB(2)} is identical to UCB(2). 
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5. Color is the phenomenal dual aspect of two-state quantum 

systems in a mixed state 

5.1 An isomorphism between the mathematical description of two-state quantum 

systems and the proposed model of color phenomenology  

The goal of this subsection is to show that there exists a one-to-one correspondence 

(isomorphism) between the mathematical description of two-state quantum systems in 

a mixed state and the model of color phenomenology developed in Section 2.  We begin 

by positing the following set of correspondences between the six expectation values 

〈|±�̂�𝑖⟩⟨±�̂�𝑖|〉, 𝑖 = 1, 2, 3, and the six processes 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘: 

〈|+�̂�1⟩⟨+�̂�1|〉 ⟷ 𝑅, 〈|−�̂�1⟩⟨−�̂�1|〉 ⟷ 𝐺,

〈|+�̂�2⟩⟨+�̂�2|〉 ⟷ 𝑌, 〈|−�̂�2⟩⟨−�̂�2|〉 ⟷ 𝐵,

〈|+�̂�3⟩⟨+�̂�3|〉 ⟷ 𝐿, 〈|−�̂�3⟩⟨−�̂�3|〉 ⟷ 𝐵𝑘.

(30) 

It immediately follows that 

〈𝜎0〉 = 〈|+�̂�1⟩⟨+�̂�1|〉 + 〈|−�̂�1⟩⟨−�̂�1|〉 ⟷ 𝑅 + 𝐺 = 𝐼,

〈𝜎0〉 = 〈|+�̂�2⟩⟨+�̂�2|〉 + 〈|−�̂�2⟩⟨−�̂�2|〉 ⟷ 𝑌 + 𝐵 = 𝐼,

〈𝜎0〉 = 〈|+�̂�3⟩⟨+�̂�3|〉 + 〈|−�̂�3⟩⟨−�̂�3|〉 ⟷ 𝐿 + 𝐵𝑘 = 𝐼,

(31) 

where the equalities on the left-hand side are from Eq. (20) and the equalities on the 

right-hand side are from Eq. (10). Thus, quite satisfyingly, Eq. (31) shows a 

correspondence between a mixture’s intensity, 〈𝜎0〉, and color intensity, 𝐼. Another 

immediate result from Eq. (30) is the following: 
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〈𝜎1〉 = 〈|+�̂�1⟩⟨+�̂�1|〉 − 〈|−�̂�1⟩⟨−�̂�1|〉 ⟷ 𝑅 − 𝐺,

〈𝜎2〉 = 〈|+�̂�2⟩⟨+�̂�2|〉 − 〈|−�̂�2⟩⟨−�̂�2|〉 ⟷ 𝑌 − 𝐵,

〈𝜎3〉 = 〈|+�̂�3⟩⟨+�̂�3|〉 − 〈|−�̂�3⟩⟨−�̂�3|〉 ⟷ 𝐿 − 𝐵𝑘,

(32)

where the equalities on the left-hand side are from Eq. (18). Thus, the antagonistic 

operation between the two matrices that comprise each of the Pauli matrices 𝜎𝑖, i.e., 

|+�̂�𝑖⟩⟨+�̂�𝑖| and |−�̂�𝑖⟩⟨−�̂�𝑖|, 𝑖 = 1, 2, 3, corresponds to the opponent operation of the 

two processes that comprise each of the opponent-colors pairs. 

 

From Eqs. (31) and (32) we see that there exists an exact correspondence between the 

density matrix 𝜌 in Eq. (23) and the color vector 𝑪 in Eq. (6): 

𝜌 =
1

2
∑〈𝜎𝜇〉𝜎𝜇

3

𝜇=0

⟷ 𝑪 = 𝐼�̂�0 + (𝑅 − 𝐺)�̂�1 + (𝑌 − 𝐵)�̂�2 + (𝐿 − 𝐵𝑘)�̂�3, (33) 

where, it will be noticed, the correspondences 𝜎𝜇 ⟷ �̂�𝜇, 𝜇 = 0, 1, 2, 3, are implicitly 

assumed. From Eq. (33) it is evident that the magnitude of 𝜌 (when treated as a vector 

in the vector space of 2×2 Hermitian matrices; see Eq. (26)) should correspond to the 

magnitude of the four-vector 𝑪. But since the latter magnitude gives the amount of 

whiteness in a color, 𝑊, (Eq. (7)), we see that ‖𝜌‖ (Eq. (26)) corresponds to 𝑊: 

‖𝜌‖2 =
〈𝜎0〉2 − 〈𝜎1〉2 − 〈𝜎2〉2 − 〈𝜎3〉2

2
⟷ 𝑊2 = 𝐼2 − (𝑅 − 𝐺)2 − (𝑌 − 𝐵)2 − (𝐿 − 𝐵𝑘)2. (34) 

Another correspondence that is easily obtained from Eqs. (31) and (32) is between Eq. 

(24) and Eq. (8), namely,  
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〈𝜎1〉2 + 〈𝜎2〉2 + 〈𝜎3〉2 ≤ 〈𝜎0〉2 ⟷ (𝑅 − 𝐺)2 + (𝑌 − 𝐵)2 + (𝐿 − 𝐵𝑘)2 ≤ 𝐼2. (35) 

 

A more direct way to see the correspondence of Eq. (33) is through the four-vector 𝑩 

that is isomorphic to 𝜌 (see Eq. (27)). Using this isomorphism, Eq. (33) can be expressed 

as 

𝑩 = ∑〈𝜎𝜇〉𝑥𝜇 ⟷ 𝑪 = 𝐼�̂�0 + (𝑅 − 𝐺)�̂�1 + (𝑌 − 𝐵)�̂�2 + (𝐿 − 𝐵𝑘)�̂�3,

3

𝜇=0

(36) 

where 𝑥𝜇 ⟷ �̂�𝜇. An implication of Eq. (36) is that there is a one-to-one correspondence 

between the Bloch sphere of Fig. 3 and the phenomenal color space of Fig. 2. Hence, 

−�̂�1 ⟷ Unique green +�̂�1 ⟷ Unique red,

−�̂�2 ⟷ Unique blue +�̂�2 ⟷ Unique yellow,

−�̂�3 ⟷ Black +�̂�3 ⟷ Luminous,

(37) 

𝟎 ⟷ White, 

where 𝟎 is the zero vector.  

 

Overall, Eqs. (30)–(37) show that the mathematical description of two-state quantum 

systems in a mixed state and the color model of Eqs. (6)–(8) and (10) are isomorphic to 

each other.31 (Since the formulation of the color model in Eqs. (6)–(8) and (10) is 

                                                        
31 It is noteworthy that even though color scientists and quantum physicists were unaware of the 

isomorphism established here, and even though they worked totally independently of each other, both 
communities converged on an identical terminology to describe their subjects of study. Thus, in color 



49 
 

equivalent to the formulation of Eqs. (6)–(9) (Subsection 2.4), this isomorphism also 

applies to the latter formulation of the model.)  

5.2 The hypothesis 𝒞𝒬: Color qualia are the phenomenal dual aspects of the mixed 

states of a two-state quantum system 

The preceding subsection established that there exists an isomorphism between the 

mathematical description of two-state quantum systems in a mixed state and the 

mathematical description of the structure of the phenomenal qualities of color. Dual-

aspect theory predicts that such an isomorphism between physical states and 

phenomenal states should exist if the latter are phenomenal duals of the former (see 

the Introduction). We therefore seem to be in a position to suggest that color is the 

phenomenal dual aspect of two-state quantum systems. There is a snag here, however: 

the values on the left-hand sides of the correspondences in Eqs. (30)–(37) change with 

the choice of basis for Hilbert space. Thus, from the perspective of dual-aspect theory, 

the correspondences in Eqs. (30)–(37) are underdetermined. To clearly see the problem, 

consider, for example, Eq. (30). The expectation values 〈|±�̂�𝑖⟩⟨±�̂�𝑖|〉, 𝑖 = 1, 2, 3, 

appearing in this equation depend on the specific basis that is chosen for two-

dimensional Hilbert space. That is, different bases for two-dimensional Hilbert space will 

lead to different expectation values. But according to Eq. (30), these expectation values 

correspond to the fundamental color sensations, 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘. Thus, if we take 

                                                        
science pure colors (i.e., fully saturated colors, which are the colors on the surface of the sphere in Fig. 2) 
give rise to a color mixture when combined. Analogously, in quantum physics, pure states, which are the 
states located on the surface of the Bloch sphere of Fig. 3, combine to give a mixture. We have also seen 
that a mixture’s intensity corresponds to color intensity. 
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Eq. (30) to mean that our elementary color sensations 𝑅, 𝐺, 𝑌, 𝐵, 𝐿, and 𝐵𝑘 are 

phenomenal duals of the expectation values 〈|±�̂�𝑖⟩⟨±�̂�𝑖|〉, 𝑖 = 1, 2, 3, we will have to 

conclude that our color sensations should depend on the particular basis chosen for 

two-dimensional Hilbert space. This, of course, is absurd.  

 

To solve this problem, we invoke the computational universe hypothesis suggested in 

Section 4. Recall that on this hypothesis, the universe represents the quantum states of 

all the systems in the universe relative to a privileged basis, which is the computational 

basis of the universal Hilbert space. This solves the problem of underdeterminism 

pointed out above because from nature’s point of view, the mathematical description of 

two-state quantum systems given in Eqs. (30)–(37) exists in a specific representation—

the representation relative to the universal computational basis of two-dimensional 

Hilbert space, UCB(2). Therefore, following the principles of dual-aspect theory, we 

reach the main hypothesis of this paper: 

𝒞𝒬: Color qualia are the phenomenal dual aspects of the mixed states of a two-

state quantum system. (These mixed states are represented in the universal 

computational basis of two-dimensional Hilbert space, UCB(2).) 

5.3 The hypothesis 𝒞𝒬 explains several fundamental phenomenal properties of 

color  

The goal of this subsection is to show how the hypothesis 𝒞𝒬 accounts for several 

fundamental phenomenal properties of color. 
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1. 𝒞𝒬 explains why there exist seven special colors in phenomenal color space, i.e., the 

seven elementary colors. The reason is that two-state quantum systems have seven 

special states. The first six of these special states occur when the entire mixture 

occupies one of the six eigenvectors of the three privileged Pauli matrices, 

[𝜎𝑖]UCB(2), 𝑖 = 1, 2, 3, namely, the six Hilbert-space vectors |±�̂�𝑖⟩UCB(2).32 The 

seventh special state occurs when the mixture is in the fully mixed state: 

[𝜌]UCB(2) =
𝑁

2
[
1 0
0 1

], 

where 𝑁 is the number of systems in the mixture (i.e., 𝑁 = 〈[𝜎0]UCB(2)〉 = 〈𝜎0〉). As 

Eq. (37) shows, the seven special states of two-state quantum systems correspond 

to the seven special colors of phenomenal color space.  

2. As can be easily realized from Eq. (31), 𝒞𝒬 neatly explains why color sensations 

result from the operation of three pairs of opponent-colors processes.  

3. 𝒞𝒬 provides an explanation for why the sensations of luminous and black 

(essentially light and dark) are perceived as more fundamental than the four 

elementary hues. To see this, recall from Eq. (29) that the vectors |±�̂�3⟩UCB(2) are 

the two vectors of the universal computational basis of two-dimensional Hilbert 

space, UCB(2). Thus, the colors that are the dual aspects of the vectors |±�̂�3⟩UCB(2) 

should be perceived as the most fundamental colors in phenomenal color space. As 

Eq. (37) shows, these colors are luminous and black. Contrast this with the four 

                                                        
32 Written in terms of density matrices, the six pure states |±�̂�𝑖⟩UCB(2) are given by [𝜌]UCB(2) =
〈𝜎0〉

2
(𝜎0 ± [𝜎𝑖]UCB(2)). (Notice that because 𝜎0 is the identity matrix, 𝜎0 = [𝜎0]UCB(2).)  
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vectors |±�̂�1⟩UCB(2) and |±�̂�2⟩UCB(2), which, as Eq. (16) shows, are due to linear 

combinations of the two privileged basis vectors, |±�̂�3⟩UCB(2). This explains why the 

four elementary hues, which are the phenomenal dual aspects of |±�̂�1⟩UCB(2) and 

|±�̂�2⟩UCB(2) (Eq. (37)), are perceived as less fundamental than luminous and black. 

4. 𝒞𝒬 explains the age-old puzzle (Purves & Yegappan, 2017; Shepard, 1994) of why 

the hues can be ordered in a closed continuum (the hue circle). As is evident from 

Eq. (16), the four vectors |±�̂�1⟩UCB(2) and |±�̂�2⟩UCB(2), whose dual aspects are the 

four fundamental hues, can all be converted to each other by varying the relative 

phase between the basis vectors |±�̂�3⟩UCB(2). Thus, on 𝒞𝒬, the continuum of hues 

between the four elementary hues is closed because this continuum reflects a phase 

angle.  

6. Discussion 

The starting point of this paper was the FFPQ (fully-formed, primordial qualia) 

hypothesis, which posits that the qualia experienced by humans (and other organisms) 

were created fully-formed at the creation of the universe. It was then argued that the 

FFPQ hypothesis naturally leads to the prediction that the phenomenal spaces of the 

fully-formed, primordial qualia should exhibit simplicity, symmetry, and beauty. The 

objective part of this prediction is that phenomenal spaces should be perfectly 

symmetric. This prediction was dubbed the SymFFPQ hypothesis. The goal of this paper 

was to apply this hypothesis to the (arguably) simplest type of phenomenal 

experience—color. The result is the hypothesis 𝒞𝒬, which suggests that color qualia are 

the phenomenal dual aspects of the mixed states of two-state quantum systems.  
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Since the universe contains a mind-boggling number of two-state quantum systems, a 

straightforward reading of 𝒞𝒬 seems to imply that color qualia should be practically 

everywhere. This predicted uniquity of phenomenal experience is, of course, a feature 

common to all panmicropsychist theories. Whether one sees this wild proliferation of 

phenomenal experience as a problem or not probably depends on one’s philosophical 

predilections. Thus, Chalmers (1996) is ‘not sure that [the ubiquity of phenomenal 

experience] is such a bad prospect’ (p. 154),33 whereas Coleman (2012) asserts that ‘If 

the cost of solving the mind–body problem is that there are subjects everywhere, it is 

not a cost most philosophers will ever want to pay, nor is it a cost that we should pay’ 

(p. 149). My own response to this issue is to adopt a form of panprotopsychism known 

as panqualityism. Panqualityism rejects the standard panmicropsychist suggestion that 

phenomenal ultimates are minds, namely, that they are microsubjects entertaining 

experiences; instead, it posits that phenomenal ultimates carry unexperienced qualia 

(Coleman, 2012, 2014, 2017; Chalmers, 2015, 2017; Lockwood, 1989). Thus, 

panqualityism distinguishes between phenomenal qualities (i.e., qualia) and 

phenomenal experience. Panqualityists argue that to close this gap between quality and 

experience, a conscious subject is required. Hence, the hard problem for panqualityism 

is to explain how conscious subjects arise.34 The fact that panqualityism does not 

                                                        
33 It should be stressed, however, that Chalmers is in no way committed to panmicropsychism (e.g., 
Chalmers, 1996, p. 299).  
34 To solve this problem, panqualityists can choose one of two options. One option is to argue that 
conscious subjects can be reduced to structural or functional properties of the phenomenally-qualitied 
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consider qualitied ultimates to be subjects of experience means that it avoids the 

excessive proliferation of conscious subjects that afflicts standard panmicropsychism.35 

Specifically, panqualityists will interpret 𝒞𝒬 as suggesting that color qualia are ‘painted’, 

so to speak, on two-state quantum systems, but that these qualia are unexperienced 

until they are (somehow) incorporated into a conscious subject. 

 

In the remainder of the Discussion, I address three issues. In Subsection 6.1, I propose 

that ‘color-blind’ individuals offer a possible way to test 𝒞𝒬. In Subsection 6.2, I tackle 

the possible skepticism regarding the plausibility of two-state quantum systems existing 

in the brain. I argue that two-state ion channels (or, more likely, a component in them) 

can be the two-state quantum systems whose phenomenal dual aspect is color. Finally, 

in Subsection 6.3, I generalize 𝒞𝒬 to all types of qualia. The generalized hypothesis, 

denoted 𝒬, suggests that all types of qualia, not only color, are dual aspects of quantum 

systems (each type is assigned a quantum system with a certain dimensionality). 

                                                        
ultimates (e.g., Coleman, 2012, 2014, 2017). Not everyone is convinced that this deflationary approach to 
conscious subjects succeeds in closing the quality–experience gap (Blamauer, 2013; Chalmers, 2015; 
Mihálik, 2022; Shani, 2021). The second option (which happens to be the option I prefer) is to suggest that 
conscious subjects are irreducible entities (e.g., Lockwood, 1989, 1993). On this view, a natural law 
prescribes when conscious subjects arise. For example, Lockwood suggested that quantum measurement 
has an inherent ‘phenomenal perspective’ and thus gives rise to a conscious subject (Lockwood, 1989, p. 
215). More specifically, Lockwood’s hypothesis was that subjective awareness in humans arises from 
quantum measurement performed by the brain on its own quantum state (ibid., p. 213). 
35 An additional advantage that panqualityism has over standard forms of panmicropsychism is that it 
evades the hardest aspect of the combination problem, which is the subject combination problem 
(Coleman, 2014; Goff, 2009; Roelofs, 2020). 
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6.1 Color-blind individuals can be used to test the hypothesis 𝒞𝒬 

Dichromats and (the much rarer) monochromats respectively lack one or two of the 

three types of photoreceptors that normal human trichromats have in their retinas 

(Sharpe et al., 1999). There is no question that such individuals are color-deficient, 

meaning that the color gamut that they perceive is partial relative to the color gamut 

perceived by trichromatic individuals (ibid.). However, the question of exactly what 

colors such individuals experience has been contentious ever since Dalton realized that 

his color vision was different from those around him (for a thorough historical review of 

this controversy, see Broackes (2010)).  

 

According to 𝒞𝒬, all our color sensations result from an ensemble of two-state quantum 

systems somewhere in our brains. Since, ex hypothesi, the presence of these two-state 

quantum systems is required for any color experience, they should also exist in the 

brains of dichromats and monochromats. Therefore, 𝒞𝒬 predicts that dichromats and 

monochromats should have the potential to experience the full gamut of colors. For 

example, protanopes and deuteranopes, i.e., dichromats who lack L- and M-cones, 

respectively, are usually described as not perceiving the sensations of red and green 

(Sharpe et al., 1999). However, according to 𝒞𝒬, if we ‘shake’, so to speak, such 

individuals vigorously enough, they should be able to experience these color sensations 

nonetheless. Remarkably, from his review of the many experiments that were 

conducted to determine what colors the color-blind see (including fascinating 

experiments on individuals whose one eye is trichromatic but the other is dichromatic), 
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Broackes (2010) concluded that (under the appropriate conditions) dichromats probably 

experience all the color sensations that trichromats do: ‘as for the broad structures of 

the color space of the normal trichromat—hues (forming a circle), saturation, and 

brightness—I would be very surprised if the majority of dichromats did not have all of 

that’ (p. 375).36 This conclusion corroborates the prediction of 𝒞𝒬. However, an 

unequivocal verification of this prediction will require more systematic experiments on 

the color experience of color-deficient individuals (admittedly, these experiments will 

need to be quite ingenious).37  

6.2 Two-state ion channels may be the two-state quantum systems that give rise 

to color 

According to the hypothesis 𝒞𝒬, our color sensations arise from an ensemble of two-

state quantum systems that exists somewhere in the brain. Since discussions on 

ensembles of two-state quantum systems in the physics literature usually involve beams 

of spin-1/2 particles or photons, one might get the impression that 𝒞𝒬 predicts such 

beams should exist in the brain—a prediction that seems ludicrous. The goal of this 

subsection is to dispel such suspicions and show that the biochemical machinery of the 

brain is rich enough to (theoretically) contain an ensemble of two-state quantum 

systems. 

 

                                                        
36 There is no doubt that given sufficiently large color stimuli or long exposure times, dichromats can 
discriminate between colors that theoretically they should confuse (see Broackes (2010) for a survey of 
studies). However, the question of what colors they experience is more subtle. 
37 Broackes (2010) proposed a series of such experiments.  
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Where, then, can we find two-state quantum systems in the brain? Since we are looking 

for a quantum system, we should probably aim our searches at the molecular level. I 

suggest that two-state ion channels—or, more likely, some component in these 

channels—are the two-state quantum systems whose phenomenal dual aspect is color.  

 

These channels, which lie at the very basis of neuronal activity, are large membrane-

spanning proteins that transition between two discrete molecular conformations in 

response to the binding/release of a ligand or the presence/absence of voltage 

(Siegelbaum & Koester, 2000). The two molecular conformations of two-state ion 

channels correspond to two functional states: an open state, in which channel-specific 

ions are free to cross from the extracellular side to the intracellular side (or vice versa), 

and a closed state, in which ions cannot pass through the channel. Since ion channels 

are huge protein molecules, and since the transition from one molecular conformation 

to the other entails many structural changes in the amino acids that comprise the 

channels (see DaCosta & Baenziger, 2013), it is unlikely that a two-state ion channel as a 

whole can be considered to be a two-state quantum system. Rather, it is more likely 

that the sought-for two-state quantum system is some component of the ion channel. 

Specifically, I suggest that the two-state quantum system that gives rise to color is the 

molecular component that resides at the orthosteric site, namely, the site where the 

channel’s agonist operates (Changeux & Christopoulos, 2016). The interaction with the 

channel’s agonist (e.g., the docking of a ligand) causes some conformational change in 
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the orthosteric site which, in turn, cascades into the many structural changes that 

constitute the conformational change of the entire ion-channel molecule.  

 

A well-established example of a conformational change in the orthosteric site of a 

receptor protein is given by rhodopsin, which is the photoreceptor molecule of rod cells 

in the retina (Tessier-Lavigne, 2000).38 The rhodopsin molecule is composed of a large 

protein, opsin, that is covalently bonded to a small, light-absorbing molecule—retinal. 

‘In its nonactivated form rhodopsin contains the 11-cis isomer of retinal. Absorption of 

light by 11-cis retinal causes a rotation around the 11-cis double bond. As retinal returns 

to its more stable all-trans configuration, it brings about a conformational change in the 

opsin portion of rhodopsin, which triggers the other events of visual transduction’ (ibid., 

p. 511). If the cis and trans configurations of retinal constitute the only two physical 

configurations of this molecule, then the configuration state of the retinal molecule is a 

two-state quantum system. Therefore, on the hypothesis suggested here, the quantum 

states of the retinal molecule have color qualia as phenomenal dual aspects. (Of course, 

I do not claim that our color sensations arise from retinal molecules in our retinas 

(rather, these sensations likely arise from somewhere in the visual cortex (see next).39)  

 

                                                        
38 Notably, rhodopsin is not an ion channel, but rather a G-protein-coupled receptor. However, the 
biophysical principles behind its conformational changes are similar to those in ion channels (Changeux & 
Christopoulos, 2016). 
39 Panqualityists (see the beginning of the Discussion) will argue that while retinal molecules indeed carry 
color qualia, these qualia are not experienced, because (presumably) they are not part of a subject. 
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Where can we expect to find the hypothesized two-state ion channels that give rise to 

color? The recent work by Li et al. (2022) has shown that there exist cone-opponent 

functional domains in the primary visual cortex (V1). The hue preferences in these 

functional domains are geometrically organized into so-called ‘pinwheels’. It is therefore 

natural to suggest that the first place to look for two-state ion channels that give rise to 

color experience is in the neurons within these cone-opponent functional domains.  

6.3 The hypothesis 𝒬: Generalizing 𝒞𝒬 to all types of qualia 

According to 𝒞𝒬, color qualia are the phenomenal dual aspects of two-state quantum 

system in a mixed state. Nothing in this hypothesis indicates that the fact that two-state 

quantum systems have phenomenal dual aspects depends on their two-dimensionality. 

It is therefore natural to generalize 𝒞𝒬 to all types of qualia and suggest that: 

𝒬: All types of qualia are the phenomenal dual aspects of the mixed states of 

quantum systems. Each specific type of qualia (color, sound, odor, taste, etc.) is  

the dual aspect of a quantum system with a certain dimensionality 𝐷 = 2, 3, ….. 

(The mixed states are represented in the universal computational basis of 𝐷-

dimensional Hilbert space, UCB(𝐷).) 

Thus, color is merely the simplest example of a general rule. Notice that 𝒬 is consistent 

with the FFPQ hypothesis: since quantum systems were created at the birth of our 

universe, their phenomenal dual aspects were born fully formed with them. As is shown 

next, 𝒬 is also consistent with the SymFFPQ hypothesis.  
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The mixed states of a 𝐷-state quantum system can be represented by vectors contained 

within a (𝐷2 − 1)-dimensional hypersphere (Aerts & Sassoli de Bianchi, 2017; 

Bertlmann & Krammer, 2008). For the case 𝐷 = 2, namely, for two-state quantum 

systems, this hypersphere is a three-dimensional sphere, i.e., the Bloch sphere of Fig. 3. 

Notably, when 𝐷 > 2, the vectors representing the mixed states do not fill the 

(𝐷2 − 1)-dimensional hypersphere, but rather create a complex shape within it. Two-

state quantum systems and their Bloch-sphere representation are therefore an 

exception in this regard. According to 𝒬, each 𝐷-state quantum system has a specific 

type of phenomenal quality as its dual. Therefore, 𝒬 predicts that the phenomenal 

space of each type of phenomenal quality will be a (𝐷2 − 1)-dimensional hypersphere 

(again, we saw an example for this in the case of the phenomenal space that is dual to 

two-state quantum systems, namely, the spherical phenomenal color space of Fig. 2). 

This prediction accords with the SymFFPQ hypothesis.  

 

A boon of the prediction that the dimensionalities of all types of phenomenal spaces 

should be quantized to 𝐷2 − 1 is that it can be used to test 𝒬. Let us consider 

phenomenal odor space as an example. Mamlouk and Martinetz (2004) concluded that 

odor space is at least 32-dimensional but is no more than 68-dimensional. Since 

according to 𝒬 the dimensionalities of phenomenal spaces are quantized to 𝐷2 − 1, the 

only dimensionalities that are in line with the results of Mamlouk and Martinetz are 35, 

48, and 63 (for 𝐷 = 6, 7, 8, respectively). However, since Mamlouk and Martinetz 

showed that the quality of fit of their model does not rise appreciably beyond 32 
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dimensions, we remain with a prediction of 35-dimensional odor space (i.e., 𝐷 = 6). 

Interestingly, Weiss et al. (2012) showed that different odorant mixtures all smell alike 

once the number of molecular components in them exceeds ~30. They concluded that ‘a 

common olfactory percept, “olfactory white,” is associated with mixtures of ∼30 or 

more equal-intensity components that span stimulus space’ (p. 19959). Since a 

minimum of ∼30 odorants that span odor space was required to reach ‘olfactory white’, 

we can conclude that odor space is ~30-dimensional. A more detailed look at the results 

of Weiss et al. shows that for a mixture of odorants to be identified as ‘olfactory white’ 

with a probability of 50%, the mixture needs to contain between 35 and 40 components 

(see their Fig. 3). These results are consistent with the prediction made above of a 35-

dimensional odor space. In summary, then, when we combine the hypothesis that odor 

sensations are the phenomenal dual aspects of some 𝐷-state quantum system with 

experimental results on the dimensionality of odor space, we arrive at a quantitative 

prediction on this space: it should be 35-dimensional. To test this prediction, the 

procedure described by Meister (2015, p. 9) may be used. 
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