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In [HM] it was shown that if « is a strong partition cardinal then
every function from [«]" to [k]"* is continuous almost everywhere.
In this investigation, we explore whether such functions are
differentiable or integrable in any sense. Some of them are.

In a paper with Adrian Mathias twenty-five years ago, an analogy was drawn between
[£]™ and the continuum. The analogy was partly topological and partly measure-
theoretic. The goal of this paper is to extend the analogy into real analysis.

We present some background on strong partition cardinals in section 1. In section 2 we
review the relevant results in [HM] on supercontinuity. In section 3 we develop some
arithmetic—pseudo addition, subtraction, and multiplication. In section 4 we define
derivatives. In section 5 we define integration. In section 6 we prove a “Fundamental
Theorem.”

The assumption of [HM] and our assumption here, the existence of a strong partition
cardinal, is moderately special. On the one hand, it violates the Axiom of Choice and
is not relatively consistent with ZF (unlike AC and its negation). On the other hand,
under the Axiom of Determinacy (AD), such cardinals are abundant and consistent
with countable choice and DC, the principle of Dependent Choices. Xy, for example,
is a strong partition cardinal and there are strong partition cardinals that are the limits
of strong partition cardinals. AD itself, while once considered unimaginably powerful,
seems fairly tame now by the yardstick of the large cardinal axiom hierarchy (well
below supercompact cardinals in consistency strength). See [Ka] for details.

1 Background

If p is a set of ordinals, a an ordinal, we use [p]* to denote the collection of all subsets
of p of order-type a. We write p(«) for the ath element of p and p | « for the first o
elements of p.

Definition 1.1 A cardinal « satisfies k — (n)g if for all partitions G : [k]® — ~ there
exists p € [«]" such that G is constant on [p]”. The set p is called “homogeneous” for



G. When ~ is 2, the subscript is usually omitted. Of course, any well-ordered set of
type x may be substituted here for & itself.

Fact 1.1 If s satisfies k — (x)” and a < g3, then & satisfies k — (k).

Definition 1.2 « is a strong partition cardinal if x satisfies  — (k)% for all A < k.
With much less than a strong partition cardinal, we can define a useful measure on «:
Definition 1.3 A subset p of k is w-closed if p contains the sups of all increasing w-
sequences from p. We write (p),, for the collection of all w-sups of p. We say p.,(p) = 1
iff p contains an w-closed, unbounded set.

Givenp C k, we can define F, : [k]¥ — 2 by F,,(s) = 0iff Us € p. A homogeneous
set ¢ for F,, will have the property that either (¢),, € p or (¢)o € & \ p. This is the

basis of the following fact:

Fact 1.2 (E. M. Kleinberg [K2]) If  satisfies K — (k)“, then u,, defines an ultrafilter
on «. If x satisfies k — (k)“*¥, then u,, is a x-complete, normal measure on .

Fact 1.3 If » satisfies k — (x)“"¢, then any partition G : [k]™ — 2 has a p,,-measure
one homogeneous set.

With a strong partition cardinal « we can define a measure on [«]" analogous to .
Definition 1.4 For p € [x]", we write ,p for the successive w-sups from p, that is,
wp = {Unp(A 4+ n) : X < kisalimit ordinal}. We write (p) = {7 : r € [p]*}. Note
that if z € (p), then z C (p),,, but x N (z), = 0.

Definition 1.5 For A C [x]" we define v(A) = 1 iff (p) C A for some p € [x]".

Fact 1.4 If x is a strong partition cardinal, then v is a «-additive ultrafilter on [x]".

k — (k)" is used to prove that v defines an ultrafilter. x — (k) is used to show

~-additivity. The full strong partition property is needed to show x-additivity.

Definition 1.6 For F, G functions from [x]" to [«]", we define
FrG e v({p:pu({a: F(p)(e) = Gp)(@)}) =1}) = 1.

It is easy to show ~ is an equivalence relation.

Definition 1.7 For F : [k]® — [k]", we denote by [F],. the equivalence class of F’
modulo ~.

For more on strong partition cardinals, see [HM], [K1], or [Ka].



2 Continuity and Supercontinuity

We assume for the remainder of this paper that « is a strong partition cardinal.

The usual topology on [k]" features basic open sets based on initial segments, that is,
sets of the form: {p € [k]" : p [« = s}, where & < &, s € [k]®. This leads to the
following definition:

Definition 2.1 F': [s]® — [k]* is continuouson A C [s]~ iffforallp € Aand o < &
thereisa 0 < ksuchthatp |3 = q[ g implies F(p) [a = F(q) o, for all ¢ € A.

The motivation for this paper is the notion of “supercontinuity” introduced in [HM].

Definition 2.2 Let A be a subset of [<]® and F' a function from [x]* to [x]". F'is
supercontinuous on A iff forall p,q € Aand all o < &,

pNa=gNa & F(p)Na=F(q) Na.

In analogy with real analysis, a function is supercontinuous if we may take as the ¢ in
the usual definition of continuous the given e.

Proposition 2.1 If F is any function from [k]” to []", then F' is supercontinuous on a
v-measure one set.

Proposition 3.1 is a deep combinatorial fact. To give the reader some idea of its proof,
we show the following:

Proposition 2.2 If F' is any function from [x]" to x, then v-measure one many p € [x]*
satisfy Ja < k Vg € [p]" ¢Na=pnNa= F(q) = F(p).

Proof: We show first that there is a set [y]* such that for all p € [y]” there exists
a < rksuchthatVg € [p]" ¢Na=pna= F(q) = F(p).
We begin by defining a partition G : [k]* — 2 by G(p) = 0 iff

Vg € [plx F(p) < F(q).

Let x € [x]® be homogeneous for G. Let z € [z]® be such that F(z) is least in
{F(p) : p € [z]"}. Then G(z) = 0 and hence G is constantly 0 on [z]"*. We describe
this by saying that F is “monotonic” on [z]".

Next, we define a partition H : [z]® — 2 by H(p) = 0 iff

Ja<kVge[p|"¢gna=pna= F(q) = F(p).



Let y € [x]* be homogeneous for H. If the range of H on [y]"* is {0} we have found
our set y. To show that the range is {0}, we define a third partition, K : [y]" — 2, by

K(q) = 0iff

F((ynq(0)) U(g\{q(0)})) < q(0).
Let z € [y]" be homogeneous for K. Let zq, 21 be respectively, the even and odd halves
of z, that is, zo consists of all z(«) where « is an even ordinal, and so on. Choose
B € z; greater than F'(zo). Now form ¢ = {8} U (20 \ ). Then F((y N ¢(0)) U (¢ \

{q(0)})) = F((y N B) U (20 \ B)). This is no greater than F(zo N 3) U (20 \ §) by
monotonicity. But F'(zo N B) U (20 \ B) = F(z0) < B = ¢(0), hence we have that
K(q) =0, andso K is constantly 0 on [z]".

We now define a fourth partition I : [z \ {z(0)}]* — z(0) by
I(r) =F((ynz(0))Ur).

Using k — (n);’"(o), we can find s € [z \ {z(0)}]" homogeneous for I. It follows that
H((ynz(0))Us) = 0and hence the range of H on [y]"* is {0} and the set [y]* has the
promised property.

Extending this to a measure-one set with the same property requires the following
lemma:

Lemma 2.1 If F' is any partition from [«]"” to o, o < &, then we can find a set of
v-measure one on which F' is constant.

Proof of Lemma 3.1:  Given F', we define an auxillary partition G r defined by

Gr(p) = F(up)-

Using k — (k)%, let r € [x]" be homogeneous for Gr. Then F' is constant on (r), a
v-measure one set. |

We apply Lemma 2.1 to the partitions G, H, I, and K. For G, H, and K, the range of
the partition was forced to be 0. The same is true for Fi¢, Fy, and Fx since any set
of the form (r) contains [,,]*, an ordinary homogeneous set. Proposition 2.2 follows.
|

3 Arithmetic

In this section we make some choices. They are motivated partly by the analogy we
are building and partly by the results we will obtain in later sections.

The definition of continuity suggests that p € []* is small if p(0) is large. We conse-
quently define:



Definition 3.1 For p, ¢ € [k]=%, we will say p < ¢ iff (p A ¢)(0) € q.
Note that for o, 5 < k, a < B = {0} < {a}.
Fact3.1 < isalinear order on [k]".

Our continuum, []", has a greatest element, «, but no least element. For simplicity,
we will aim for an analogy between [x]* and the half-open interval, (0, 1]. Later, when
integrating, we will expand to 2¢, and by analogy, [0, 1].

Forrealsr and s, r is close to s iff |r—s| is small. In [«]” two members p and ¢ are close
if pA g is <-small. This suggests that the role of subtraction in [x]* should be played
by A, the symmetric difference. Since the inverse of A is A itself, A will serve as
both 4+ and —. For example, the increment of a real function, f : R — R, z € R, is
written Af = f(z+ Ax) — f(z), we will write the increment of F' : [x]" — [k]* with
z, Az € [K]", a8 AF = F(x & Azx) & F(x).

Fact 3.2 A is commutative and associative.

Choosing multiplication is trickier. We can’t expect the usual arithmetic laws to hold,
but we will need the relationship with < to make sense. In particular, we will want
p < q = 1rp < rqand pq < p, q. These are both accomplished by composition.

Notation 3.1 For p,q € [k]" we will write pg for p o q.

Fact 3.3 Composition is associative but not commutative. The distributive law holds
oneway, p(qg A r) = (pg) & (pr), but (¢ & r)p does not in general equal gp A rp.

Division is problematic. We’ll finesse it when we can.

Fact3.4 Fora,b,c € [k]":

. a(be) = (ab)c

.a < bimpliesac < b

.a < bimpliesca < band ca < ¢b
. (a2 b) < cimplies (ad & bd) < c.
.a,c < bimplies (a A ¢) < b.
.ab<a,b

o0 WN -

4 Differentiation

Given F': [k]" — [k]", we want to define F’ : [k]® — [k]".



In real analysis, f'(x) satisfies lima,, o LEEAD=@) — p/(4) that s,

flz+Az) — f(x)

Ve>030>0VAz 0 < |Az| < 0 =
Ax

— fl(2)| <e.

We rewrite this avoiding division;

Ve>036 > 0V|Az| <§ |f(z + Ax) — f(z) — f'(z)Ax| < | Az|.

In the context of F': []® — [«]" and = € [k]*, we might write instead

Ve 36 VAz <6 F(zn Ax) A F(z) A F'(z)Az < eAx.

This will be our definition except that in the manner of Proposition 2.1 we will restrict
Az to a v-measure one subset of subsets of .

Definition 4.1 For F : [k]" — [k]® and x € [k]", a derivative of F' at x is a set
D < [k])" with the property that for all £ € [«]", thereis an ¢ € [k]" such that for all
h € (),

F(z & xh) A F(x) & Dxh < exh.

If Dyx ~ Dox mod ., whenever Dy, Do are derivatives, we say that F' is differen-
tiable at =-; we will write F(z) for any derivative of F' at .

Proposition 4.1 If F' has a derivative then F' is differentiable.

Proof: Suppose that D, and Ds are derivatives of I at 2. Let §1, d> witness this fact,
i.e, forall h € (0;), F(z & zh) A F(z) & Dizh < exh, i = 1,2. Assume that D,z
and Dqx are not equivalent, that is, for some w-closed y € [k]”, D1x(a) # Dox(«) for
all « € y. Choose ¢ € [k]" so that ex(«) > Dyz(a), Dax(cx) for all . Then for h €
(y)N{61)N{d2), D1xh(0) # D2xh(0), so one of the sets F'(z A xh) A F(x) A D;xh,
i = 1,2 contains an element below zh(0). This contradicts that 61, do witness that
D and D, are derivatives. [ |

Fact4.1 Let ¢ € []" be fixed.

cis F'(z) =0

xis F'(z) = k.

cxis F'(x) = c.

F(z)A cisG'(z) = F'(x).

1. The derivative of F'(z
2. The derivative of F'(x
3. The derivative of F'(x
2. The derivative of G(x

— N — —
I

For the last of these, note that c(p A ph) A cp A cph = cp A cph A cp A cph = () by
the one-way distributive law.



Proposition 4.2 If F is differentiable and ¢ € [x]", then G = cF is differentiable and
G'(z) = cF'(z).

Proof: From F(pA ph)A F(p) A F'(p)ph < eph, from 3.4 (3) and 3.3 we have
cF(p & ph) & cF(p) A cF' (p)ph <eph. N

We do not have that multiplication on the right by a constant preserves differentiability.
For ¢, the set of the even ordinals, for example, F'(z) = zc is not differentiable.

And there is no sumrule. For F'(z) = + 17 = {f + 17} ges, F'(z) = k + 17.

F(z) = {x(a), z(a + 1) }aex is not differentiable at any p € [«]". Suppose D is a
possible derivative. Choose ¢ € [k]* so that e(«) > « + 2 for all . Given ¢ € [x]",
choose h € (§) so that Dxh(1) > exh(0). Let o = xzh(0). Then below exh(0),
F(z A zh) A F(z) will contain both o and « + 1, but Dah will have at most one
element, Dxh(0), so F(x A xh) A F(x) A Dxh will not be < ezh.

Proposition 4.3 Foralln < w, F(z) = 2™ and z € (), F'(z) = 2"~ L.

Proof: First, for n = 2, F(z) = 22, let D = z and suppose we are given ¢ € [x]".
Choose any § € [x]|®. Forany h € (9), let ¢ = x A zh and consider where x and
q differ. Clearly, z(§) # q(§) if £ = h(a) orif & = h(a) +n, n < w. Butif
h(a+ 1) > h(a) + w, then z(§ + w) = ¢(€ + w). Altogether, we have that = and ¢
differonly at £ + n for € € h.

Next, we claim that zq = ¢2. Suppose x and ¢ differ at g(«). Then g(a) = £ + n,
E€h,new Buth C (), C (k)w, ¢ Cz,andzN(z), =0 (see Def. 1.4), so g and
h are disjoint, a contradiction.

From this it follows that ¢> A 22 = xqA 22 = x(qA x) = x(xh) = 2%h so that
F(z A zh)A F(z)A Dzh =0 < exh, so F'(z) = x.

We can show by an easy induction that z* A ¢* = 2*h, for ¢ = 2 A xh and the result
follows. H

Differentiability forces some homogeneity:

Proposition 4.4 If F' is supercontinous on A and differentiable at x € A then for
almost every a, F(z) A F(xz & {x(«)}) contains at most one point.

Proof: Ifnot,say ., (X) = landa € X impliesthereare &,, v, € F(z) A F(z A {z(a)}),
€a 7 Ya- Let D be the derivative of F at z. Take € € [x]" such that ez(a) > £a, Va
for all & € X. Then no matter what ¢ is, a sufficiently thin & has the property that
h C X, Dzxh(1) > xzh(1) > exh(0). Then Dxh has only one point below ezh(0),



but F(z) A F(z A {x(h(0))}) will have two points below exh(0), namely &, (o) and
Yh(o)- Furthermore, z A {x(h(0))} and = A xzh are the same below xh(1), hence
F(z A {z(h(0))}) and F(xz A xh) are the same below xzh(1), hence they are the same
below exh(0), so F(z A xh) A F(xz) A Dxh contains at least one of & 0), 40y and
so fails to be less than exh. [ |

Proposition 4.4 shows that F'(z) = (k2 z)? is not differentiable and so there is no
simple Chain Rule. Consider:

F)n F(z A {z(a)})
= (ko 2)?n (ko o {z(a)})?
= (ko)A (KA 2)x A
(ko xza{z(a))rA (Ko o {z(a) )z (kA x A {z(a)}){z(a)}
= kAzA (KA T)T A
knzA{z(@)}a (ko xo {z(a))z s (ko z o {z(a)}){z(a)}

}
= (kaz)za{z(@)}a (ko o {x()Dz A (ko xa {z(a)}){z(a)}
(

For v-measure-one many z, « + z(a) = z(a) and |(k A ) N a| = «, S0 we have
(k2 z A {z(a)}){z(a)} = {z(a)}, leaving us with

F)s Flza{z(a)}) = (ko 2)z A (ko 20 {x(a)})z.

Then (k& )z = {z(d) + 1}s and (k& 2 & {z(a)})z = {x(0) + 1}s2a U {z(a)},
S0 F(z) A F(z A {z(a)}) = {z(a) + 1,2(a)}. By 4.4 then, F is not differentiable.

While there is no Chain Rule, we do have the odd fact that for differentiable F,
(F(z)z) = F(z).

We can prove the converse to Proposition 4.4:

Proposition 4.5 Let F' be supercontinuous on (h), = € (h), x € [k]*. Then if
F(z) & F(xz A {z(a)}) contains at most one point for x,-measure-one many « then
F is differentiable at x.

Proof: Given z € [x]", if for almost every o, F(z) & F(z & {x(«)}) is empty, then
F'(x) = 0 as in Fact 4.1. Otherwise, let A be a u,,-measure 1 set of limit ordinals
such that for all « € A F(z) & F(x A {z(«)}) is asingleton. Define g : A — & by
{9(a)} = F(z) & F(x & {z(a)}). Using Fact 1.3 we can find B C A4, p,(B) =1,
such that a1, 0 € B, a1 < ao imply that z(a2) > g(c). This allows the construc-
tion of D € [x]" such that forall « € B D(z(«)) = g(«).

Claim: F’(z) = D. Proof of Claim: Given e € [k]", take § € [k]* with (§),, C B.
Then for h € (), zh(1) > exh(0). By supercontinuity, F(x) A F(xz A zh) and
F(z)~ F(xz A {zh(0)}) are the same below zh(1), hence they are the same below
exh(0). Thus, below ezh(0),

[F(z) & F(x & zh) A Dzh] Nexh(0)

[{gzh(0)} & Dxh] Nexh(0)
= [{Dzh(0)} 2o Dzh]Nexh(0)
= 0,



again, since Dzh(1) > exh(0). This gives us F(x) A F'(z A xh) A Dxh < exh.
|

There is a function which is equal to its own derivative. Letc = {« + 1 : a < k} and
consider F'(x) = x A c. From 4.1, F'(x) = k, but we can also say F’(z) = F(z) as
follows: Forany ¢ € [«]*, z € (§), = consists only of limit ordinals, so

Flea{z(a)}) s F(z) = {z(0)}-
But below any limit ordinal A, there are A-many successors. Thus, F(z)(z(a)) =

{z(a)}, sO
Fza {z(a)}) s F(z) s F(x)(z(a)) =0,

so F'(z) = F(x).

5 Integration

What should be the area below a function F? For a constant function F'(z) = c on

an interval [a, b], f: F(x) dz should be simply ¢ times the difference between a and b,

that is, c(a 2 b). This works well. We have easily, for example: ff cdr + fbd cdr =
d

[, cdx.

Our plan will be to define integrals of the form fwb F(x)dz, then set f: F(x)dr =

fwb F(z)dz A f(a“ F(z) dz. We will use sums over subintervals delineated by consec-
utive elements of b (as when we defined F”, we only used subsets of = for Azx):

b\ bla + 1), b\ b(a)].

Peculiar things happen, however, and any function less trivial than a constant function
can produce surprises. Consider F'(z) = x. The width of [\ b(a + 1),b\ b(«)] is
b\ bla+1))a (b\bla) = {b(a)}. On [b\ b(a + 1),b \ b(«)] the greatest value
of Fis b\ b(a) and the least value of b \ b(« + 1). Assuming the ordinals of b are
indecomposable (the indecomposable ordinals form a 1,,-1 set—d is indecomposable
if v, < & = v+ < 6), wewill have (b\b(a))(b(a)) = (b\b(a+1))(b(x)) = b% ().
This suggests that
b\b(a)
B(a)) < / vdz < b(a).
b\b(a+1)

But if we are composing a Riemann sum we could find e € [b\ b(ac+ 1), b\ b(«)] with
e(b(a)) < b*(a).

Indeed, nothing is secure in the usual sense here. The largest value of F(c)(b A a)
for ¢ € [a,b] may not involve using the largest F'(c). Other odd things can happen.
Nonetheless, a respectable definition is feasible.



For a first approximation we can use a A -sum using the right-endpoint rule:
b
/ Fz)de ~ [\ F(b\ b(8))b(5).
0 <K

We will need:

Definition 5.1 For any collection, {As}s_ ., a < &,

JAN As ={B: {0 : 8 € As}| is an odd ordinal}.

é<a

We could subdivide the intervals further, breaking each [b\ b(« 4 1), b\ b(«)] into

{[{o(@)} U (5N b(6 + 1)), {b(a)} U (0\ b(9))]}a<s<n

and using the A -sum:

AN F({b(a)} U (b b(5)b(5),

a<d<k

but this doesn’t lead to a meaningful definition of the integral. The Fth approximation
would be
A F(oU®)\b(6))bo),
cCod<k

ot(o)=p

and the limit of these sums is () for any F since the least element of the 5th approx-
imation is greater than 3. Consequently, we take the first approximation as the last
approximation and define

Definition 5.2 For any F : []" — [&]", b € [x]",

/bF(a:)da:: /N B\ b(5)b(5).
0

6<k

We let f: F(z)dx = f@ x)dx A f@ x) dz. We will say G is a primitive of F if
for some r € []" andalla be fFa" dx = G(b) A G(a).

With this definition, every function is integrable; every function has a primitive. This
is appropriate. In real analysis all continuous functions are integrable and from [HM],
all our functions will be continuous.

If G is a primitive of F' then so is G A C for any constant C. The reverse is true on a
v-measure one set so we can unambiguously write [ F(z) dz = G(z) & C.

10



Fact5.1

1. [hdz=hzns C
2. [z"de =2t A C
3. [(za r)de =(x+1)a C

The function on page 7, F(z) = {z(a), z(a + 1)}4ex, Which was not differentiable
has as integral, [ F(z)dz = z? & C.

For functions with a stronger type of continuity, the integral has a special form.

Definition 5.3 A function F' is superdupercontinuouson A ifforall z,y € A, o € z,

(zay) Ca= Fz)(a) = F(y)(a).

Proposition 5.1 Forevery n, F'(z) = x™ is superdupercontinuous on a v-measure one
set.

Proof: Choose (r) so that for all o, r(av 4 1) > () - w. Then it will be the case that
8 < a € rimpliesthat 3 + a = «. Thenforany z,y € (r), (zA y) C a € x, we
have x Na = x| B for some § < «, 50 z(a) = (2 \ z(a))(«), and similarly for y, and
since (z \ z(a)) = (y \ y(a)) we get z(a) = y(a). We can extend this inductively to
™. |

All the functions discussed so far have been superdupercontinuous (and supercontin-
uous) but if we take a partition {As}s<. Of x into disjoint members of [x]*, then
F(x) = Ay () is not superdupercontinuous.

Proposition 5.2 If F' is superdupercontinuous, then

/F(J:)d:c:F(x)xA C.

Proof: [} F(z)de = /N FO\BE)B(©) = AN FOBE) = F(b)h. W

0<k 0<K

6 Antidifferentiation

We can prove a sort of “Fundamental Theorem,” although that would be far too grand
a title for it. First, we prove

Proposition 6.1 If [ F(z)dz = G(z) o C, then G is differentiable.

11



Proof: We prove a more general statement. Any function of the form: H(z) =
A A s)(2(0)) is differentiable. This follows fromthe fact that H () A H(x A {x(d)}) =
0<k

{H(Ag5)(2(0)))}, asingleton. W

Proposition 6.2 If F' is supercontinuous and superdupercontinuous on A, then F' has
an antiderivative and for all x € A,

(/F(a:) da:>/ — Fla).

Proof: Define G to be the following primitive of F:

= & F@\a0)((0)
Let r € [k]* witness the superdupercontinuity of F and take = € (r
such that for « € s F(x) N x(«) has order-type z(«). Let h be in {
continuity, F(z \ z(8))(z(d)) = F(z)(z(d)). Thus, G(z)(6) = F(
B < h(0),

). Choose s € [k]*
s). By superduper-
x)(x(d)). Then for

Glesah)(B) = Fzaah)(xa zh)(p)) o |
= F(z)((x 2 zh)(B)) (supercontinuity and choice of s)
= F(x)(x(9))
= G()

And if 5 = h(0),
G(xr zh)(B) = F(zxa xh)((xzA zh)(B))
= F(za zh)(z(8+1))
= F(xz\{zh(0)})(x(8+1)) (supercontinuity)
= F(z )( (6+1)) (superdupercontinuity)
= G+,

Thus, the least element of G(z A zh) A G(z) is G(z)(h(0)) = F(z)(xz(h(0))) =
F(x)(zh(0)).

We can similarly show that the next least element of G(x A zh) A G(x) is F(xz)xh(1)
and in general that
G(z A zh) A G(z) A F(z)xh =0,

soG' =F. [ |

We have one last result, one that mirrors real analysis and suggests that superdupercon-
tinuous functions may be the analog of analytic functions.

Proposition 6.3 If F is superdupercontinuous, thenso is | F'(z) dx.
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Proof: LetG(z) = [F(z)dz = [\ F(a )z(8)) = I\ F(z)(x(6)). Fix
aandletg = z \ z(a) and 8 = a:((k)n Note that we can ea5|lygc<oﬂmpel x to be such
that z(a) + z(3) = z(8), s0 ¢(B) = z(B) = z*(a) = q(z()). Note also that
v\ 2*(a) = ¢\ 2*(a) = ¢\ ¢(f). Then
Gz \ z(a))(z(a)) = Glg)(x()

= F(g)(q(x(a))

= F(g)(a(B))

= F(q\q(p)(a(B))

= F(z\2%(a))(z*(e))

= F(z)(2*(e))

= G(x)(z(a).
|
7 Questions

1. The definitions of derivative and integral are on probation. Are more appropriate or
more fruitful definitions possible?

2. How special is superdupercontinuous? Can we prove a limited form, for example,
for functions satisfying the Fundamental Theorem?

3. To what extent are differentiable functions locally linear? We can prove that for
F(x) = 2™, Fislinear at almost every p in the sense that F'(z) = F(p) & F'(p)(p & z),
for z € [p]*. In general, if F is differentiable on (r), p € (r), we can prove F(z) =
F(p)~ F'(p)(pa x) if pa zis afinite subset of z.

4. Is an interesting theory of series possible with this or any other definition of deriva-
tive?
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