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In [HM] it was shown that if κ is a strong partition cardinal then
every function from [κ]κ to [κ]κ is continuous almost everywhere.
In this investigation, we explore whether such functions are
differentiable or integrable in any sense. Some of them are.

In a paper with Adrian Mathias twenty-five years ago, an analogy was drawn between
[κ]κ and the continuum. The analogy was partly topological and partly measure-
theoretic. The goal of this paper is to extend the analogy into real analysis.

We present some background on strong partition cardinals in section 1. In section 2 we
review the relevant results in [HM] on supercontinuity. In section 3 we develop some
arithmetic—pseudo addition, subtraction, and multiplication. In section 4 we define
derivatives. In section 5 we define integration. In section 6 we prove a “Fundamental
Theorem.”

The assumption of [HM] and our assumption here, the existence of a strong partition
cardinal, is moderately special. On the one hand, it violates the Axiom of Choice and
is not relatively consistent with ZF (unlike AC and its negation). On the other hand,
under the Axiom of Determinacy (AD), such cardinals are abundant and consistent
with countable choice and DC, the principle of Dependent Choices. ℵ1, for example,
is a strong partition cardinal and there are strong partition cardinals that are the limits
of strong partition cardinals. AD itself, while once considered unimaginably powerful,
seems fairly tame now by the yardstick of the large cardinal axiom hierarchy (well
below supercompact cardinals in consistency strength). See [Ka] for details.

1 Background

If p is a set of ordinals, α an ordinal, we use [p]α to denote the collection of all subsets
of p of order-type α. We write p(α) for the αth element of p and p � α for the first α

elements of p.

Definition 1.1 A cardinal κ satisfies κ → (κ)β
γ if for all partitions G : [κ]β → γ there

exists p ∈ [κ]κ such that G is constant on [p]κ. The set p is called “homogeneous” for



G. When γ is 2, the subscript is usually omitted. Of course, any well-ordered set of
type κ may be substituted here for κ itself.

Fact 1.1 If κ satisfies κ → (κ)β and α < β, then κ satisfies κ → (κ)α.

Definition 1.2 κ is a strong partition cardinal if κ satisfies κ → (κ)κ
λ for all λ < κ.

With much less than a strong partition cardinal, we can define a useful measure on κ:

Definition 1.3 A subset p of κ is ω-closed if p contains the sups of all increasing ω-
sequences from p. We write (p)ω for the collection of all ω-sups of p. We say µω(p) = 1
iff p contains an ω-closed, unbounded set.

Given p ⊆ κ, we can define Fp : [κ]ω → 2 by Fp(s) = 0 iff ∪s ∈ p. A homogeneous
set q for Fp will have the property that either (q)ω ⊆ p or (q)ω ⊆ κ \ p. This is the
basis of the following fact:

Fact 1.2 (E. M. Kleinberg [K2]) If κ satisfies κ → (κ)ω, then µω defines an ultrafilter
on κ. If κ satisfies κ → (κ)ω+ω, then µω is a κ-complete, normal measure on κ.

Fact 1.3 If κ satisfies κ → (κ)ω·ω, then any partition G : [κ]n → 2 has a µω-measure
one homogeneous set.

With a strong partition cardinal κ we can define a measure on [κ]κ analogous to µω .

Definition 1.4 For p ∈ [κ]κ, we write ωp for the successive ω-sups from p, that is,
ωp = {∪np(λ + n) : λ < k is a limit ordinal}. We write 〈p〉 = {ωr : r ∈ [p]κ}. Note
that if x ∈ 〈p〉, then x ⊆ (p)ω , but x ∩ (x)ω = ∅.

Definition 1.5 For A ⊆ [κ]κ we define ν(A) = 1 iff 〈p〉 ⊆ A for some p ∈ [κ]κ.

Fact 1.4 If κ is a strong partition cardinal, then ν is a κ-additive ultrafilter on [κ]κ.

κ → (κ)κ is used to prove that ν defines an ultrafilter. κ → (κ)κ
γ is used to show

γ-additivity. The full strong partition property is needed to show κ-additivity.

Definition 1.6 For F, G functions from [κ]κ to [κ]κ, we define

F ∼ G ⇔ ν({p : µω({α : F (p)(α) = G(p)(α)}) = 1}) = 1.

It is easy to show ∼ is an equivalence relation.

Definition 1.7 For F : [κ]κ → [κ]κ, we denote by [F ]κ the equivalence class of F

modulo ∼.

For more on strong partition cardinals, see [HM], [K1], or [Ka].
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2 Continuity and Supercontinuity

We assume for the remainder of this paper that κ is a strong partition cardinal.

The usual topology on [κ]κ features basic open sets based on initial segments, that is,
sets of the form: {p ∈ [κ]κ : p � α = s}, where α < κ, s ∈ [κ]α. This leads to the
following definition:

Definition 2.1 F : [κ]κ → [κ]κ is continuous on A ⊆ [κ]κ iff for all p ∈ A and α < κ

there is a β < κ such that p�β = q �β implies F (p)�α = F (q)�α, for all q ∈ A.

The motivation for this paper is the notion of “supercontinuity” introduced in [HM].

Definition 2.2 Let A be a subset of [κ]κ and F a function from [κ]κ to [κ]κ. F is
supercontinuous on A iff for all p, q ∈ A and all α < κ,

p ∩ α = q ∩ α ⇔ F (p) ∩ α = F (q) ∩ α.

In analogy with real analysis, a function is supercontinuous if we may take as the δ in
the usual definition of continuous the given ε.

Proposition 2.1 If F is any function from [κ]κ to [κ]κ, then F is supercontinuous on a
ν-measure one set.

Proposition 3.1 is a deep combinatorial fact. To give the reader some idea of its proof,
we show the following:

Proposition 2.2 If F is any function from [κ]κ to κ, then ν-measure one many p ∈ [κ]κ

satisfy ∃α < κ ∀q ∈ [p]κ q ∩ α = p ∩ α ⇒ F (q) = F (p).

Proof: We show first that there is a set [y]κ such that for all p ∈ [y]κ there exists
α < κ such that ∀q ∈ [p]κ q ∩ α = p ∩ α ⇒ F (q) = F (p).

We begin by defining a partition G : [κ]κ → 2 by G(p) = 0 iff

∀q ∈ [p]κ F (p) ≤ F (q).

Let x ∈ [κ]κ be homogeneous for G. Let z ∈ [x]κ be such that F (z) is least in
{F (p) : p ∈ [x]κ}. Then G(z) = 0 and hence G is constantly 0 on [x]κ. We describe
this by saying that F is “monotonic” on [x]κ.

Next, we define a partition H : [x]κ → 2 by H(p) = 0 iff

∃α < κ ∀q ∈ [p]κ q ∩ α = p ∩ α ⇒ F (q) = F (p).
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Let y ∈ [x]κ be homogeneous for H . If the range of H on [y]κ is {0} we have found
our set y. To show that the range is {0}, we define a third partition, K : [y]κ → 2, by
K(q) = 0 iff

F ((y ∩ q(0)) ∪ (q \ {q(0)})) < q(0).

Let z ∈ [y]κ be homogeneous for K. Let z0, z1 be respectively, the even and odd halves
of z, that is, z0 consists of all z(α) where α is an even ordinal, and so on. Choose
β ∈ z1 greater than F (z0). Now form q = {β} ∪ (z0 \ β). Then F ((y ∩ q(0)) ∪ (q \
{q(0)})) = F ((y ∩ β) ∪ (z0 \ β)). This is no greater than F (z0 ∩ β) ∪ (z0 \ β) by
monotonicity. But F (z0 ∩ β) ∪ (z0 \ β) = F (z0) < β = q(0), hence we have that
K(q) = 0, and so K is constantly 0 on [z]κ.

We now define a fourth partition I : [z \ {z(0)}]κ → z(0) by

I(r) = F ((y ∩ z(0)) ∪ r).

Using κ → (κ)κ
z(0), we can find s ∈ [z \ {z(0)}]κ homogeneous for I . It follows that

H((y ∩ z(0))∪ s) = 0 and hence the range of H on [y]κ is {0} and the set [y]κ has the
promised property.

Extending this to a measure-one set with the same property requires the following
lemma:

Lemma 2.1 If F is any partition from [κ]κ to α, α < κ, then we can find a set of
ν-measure one on which F is constant.

Proof of Lemma 3.1: Given F , we define an auxillary partition GF defined by

GF (p) = F (ωp).

Using κ → (κ)κ
α, let r ∈ [κ]κ be homogeneous for GF . Then F is constant on 〈r〉, a

ν-measure one set. �

We apply Lemma 2.1 to the partitions G, H , I , and K. For G, H , and K, the range of
the partition was forced to be 0. The same is true for FG, FH , and FK since any set
of the form 〈r〉 contains [ωr]κ, an ordinary homogeneous set. Proposition 2.2 follows.
�

3 Arithmetic

In this section we make some choices. They are motivated partly by the analogy we
are building and partly by the results we will obtain in later sections.

The definition of continuity suggests that p ∈ [κ]κ is small if p(0) is large. We conse-
quently define:
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Definition 3.1 For p, q ∈ [κ]≤κ, we will say p ≺ q iff (p4 q)(0) ∈ q.

Note that for α, β < κ, α < β ⇔ {β} ≺ {α}.

Fact 3.1 ≺ is a linear order on [κ]κ.

Our continuum, [κ]κ, has a greatest element, κ, but no least element. For simplicity,
we will aim for an analogy between [κ]κ and the half-open interval, (0, 1]. Later, when
integrating, we will expand to 2ω, and by analogy, [0, 1].

For reals r and s, r is close to s iff |r−s| is small. In [κ]κ two members p and q are close
if p4 q is ≺-small. This suggests that the role of subtraction in [κ]κ should be played
by 4 , the symmetric difference. Since the inverse of 4 is 4 itself, 4 will serve as
both + and −. For example, the increment of a real function, f : R → R, x ∈ R, is
written ∆f = f(x+∆x)− f(x), we will write the increment of F : [κ]κ → [κ]κ with
x, ∆x ∈ [κ]κ, as ∆F = F (x4 ∆x)4 F (x).

Fact 3.2 4 is commutative and associative.

Choosing multiplication is trickier. We can’t expect the usual arithmetic laws to hold,
but we will need the relationship with ≺ to make sense. In particular, we will want
p ≺ q ⇒ rp ≺ rq and pq ≺ p, q. These are both accomplished by composition.

Notation 3.1 For p, q ∈ [κ]κ we will write pq for p ◦ q.

Fact 3.3 Composition is associative but not commutative. The distributive law holds
one way, p(q 4 r) = (pq)4 (pr), but (q 4 r)p does not in general equal qp 4 rp.

Division is problematic. We’ll finesse it when we can.

Fact 3.4 For a, b, c ∈ [κ]κ:

1. a(bc) = (ab)c
2. a ≺ b implies ac ≺ b

3. a ≺ b implies ca ≺ b and ca ≺ cb

4. (a4 b) ≺ c implies (ad4 bd) ≺ c.
5. a, c ≺ b implies (a4 c) ≺ b.
6. ab ≺ a, b

4 Differentiation

Given F : [κ]κ → [κ]κ, we want to define F ′ : [κ]κ → [κ]κ.
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In real analysis, f ′(x) satisfies lim∆x→0
f(x+∆x)−f(x)

h
= f ′(x), that is,

∀ε > 0 ∃δ > 0 ∀∆x 0 < |∆x| < δ ⇒

∣

∣

∣

∣

f(x + ∆x) − f(x)

∆x
− f ′(x)

∣

∣

∣

∣

< ε.

We rewrite this avoiding division:

∀ε > 0 ∃δ > 0 ∀|∆x| < δ |f(x + ∆x) − f(x) − f ′(x)∆x| < ε|∆x|.

In the context of F : [κ]κ → [κ]κ and x ∈ [κ]κ, we might write instead

∀ε ∃δ ∀∆x ≺ δ F (x4 ∆x)4 F (x)4 F ′(x)∆x ≺ ε∆x.

This will be our definition except that in the manner of Proposition 2.1 we will restrict
∆x to a ν-measure one subset of subsets of x.

Definition 4.1 For F : [κ]κ → [κ]κ and x ∈ [κ]κ, a derivative of F at x is a set
D ∈ [κ]κ with the property that for all ε ∈ [κ]κ, there is an δ ∈ [κ]κ such that for all
h ∈ 〈δ〉,

F (x4 xh)4 F (x)4 Dxh ≺ εxh.

If D1x ∼ D2x mod µω whenever D1, D2 are derivatives, we say that F is differen-
tiable at x; we will write F ′(x) for any derivative of F at x.

Proposition 4.1 If F has a derivative then F is differentiable.

Proof: Suppose that D1 and D2 are derivatives of F at x. Let δ1, δ2 witness this fact,
i.e., for all h ∈ 〈δi〉, F (x4 xh)4 F (x)4 Dixh ≺ εxh, i = 1, 2. Assume that D1x

and D2x are not equivalent, that is, for some ω-closed y ∈ [κ]κ, D1x(α) 6= D2x(α) for
all α ∈ y. Choose ε ∈ [κ]κ so that εx(α) > D1x(α), D2x(α) for all α. Then for h ∈
〈y〉∩〈δ1〉∩〈δ2〉, D1xh(0) 6= D2xh(0), so one of the sets F (x4 xh)4 F (x)4 Dixh,
i = 1, 2 contains an element below εxh(0). This contradicts that δ1, δ2 witness that
D1 and D2 are derivatives. �

Fact 4.1 Let c ∈ [κ]κ be fixed.

1. The derivative of F (x) = c is F ′(x) = ∅
2. The derivative of F (x) = x is F ′(x) = κ.
3. The derivative of F (x) = cx is F ′(x) = c.
2. The derivative of G(x) = F (x)4 c is G′(x) = F ′(x).

For the last of these, note that c(p 4 ph)4 cp4 cph = cp4 cph4 cp4 cph = ∅ by
the one-way distributive law.
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Proposition 4.2 If F is differentiable and c ∈ [κ]κ, then G = cF is differentiable and
G′(x) = cF ′(x).

Proof: From F (p4 ph)4 F (p)4 F ′(p)ph ≺ εph, from 3.4 (3) and 3.3 we have
cF (p4 ph)4 cF (p)4 cF ′(p)ph ≺ εph. �

We do not have that multiplication on the right by a constant preserves differentiability.
For c, the set of the even ordinals, for example, F (x) = xc is not differentiable.

And there is no sum rule. For F (x) = x + 17 = {β + 17}β∈x, F ′(x) = κ + 17.

F (x) = {x(α), x(α + 1)}α∈κ is not differentiable at any p ∈ [κ]κ. Suppose D is a
possible derivative. Choose ε ∈ [κ]κ so that ε(α) > α + 2 for all α. Given δ ∈ [κ]κ,
choose h ∈ 〈δ〉 so that Dxh(1) > εxh(0). Let α = xh(0). Then below εxh(0),
F (x4 xh)4 F (x) will contain both α and α + 1, but Dxh will have at most one
element, Dxh(0), so F (x4 xh)4 F (x)4 Dxh will not be ≺ εxh.

Proposition 4.3 For all n < ω, F (x) = xn and x ∈ 〈κ〉, F ′(x) = xn−1.

Proof: First, for n = 2, F (x) = x2, let D = x and suppose we are given ε ∈ [κ]κ.
Choose any δ ∈ [κ]κ. For any h ∈ 〈δ〉, let q = x4 xh and consider where x and
q differ. Clearly, x(ξ) 6= q(ξ) if ξ = h(α) or if ξ = h(α) + n, n < ω. But if
h(α + 1) > h(α) + ω, then x(ξ + ω) = q(ξ + ω). Altogether, we have that x and q

differ only at ξ + n for ξ ∈ h.

Next, we claim that xq = q2. Suppose x and q differ at q(α). Then q(α) = ξ + n,
ξ ∈ h, n ∈ ω. But h ⊆ (δ)ω ⊆ (κ)ω , q ⊆ x, and x ∩ (x)ω = ∅ (see Def. 1.4), so q and
h are disjoint, a contradiction.

From this it follows that q2 4 x2 = xq 4 x2 = x(q 4 x) = x(xh) = x2h so that
F (x4 xh)4 F (x)4 Dxh = ∅ ≺ εxh, so F ′(x) = x.

We can show by an easy induction that xk 4 qk = xkh, for q = x4 xh and the result
follows. �

Differentiability forces some homogeneity:

Proposition 4.4 If F is supercontinous on A and differentiable at x ∈ A then for
almost every α, F (x)4 F (x4 {x(α)}) contains at most one point.

Proof: If not, say µω(X) = 1 and α ∈ X implies there are ξα, γα ∈ F (x)4 F (x4 {x(α)}),
ξα 6= γα. Let D be the derivative of F at x. Take ε ∈ [κ]κ such that εx(α) > ξα, γα

for all α ∈ X . Then no matter what δ is, a sufficiently thin h has the property that
h ⊆ X , Dxh(1) ≥ xh(1) > εxh(0). Then Dxh has only one point below εxh(0),
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but F (x)4 F (x4 {x(h(0))}) will have two points below εxh(0), namely ξh(0) and
γh(0). Furthermore, x4 {x(h(0))} and x4 xh are the same below xh(1), hence
F (x4 {x(h(0))}) and F (x4 xh) are the same below xh(1), hence they are the same
below εxh(0), so F (x4 xh)4 F (x)4 Dxh contains at least one of ξh(0), γh(0) and
so fails to be less than εxh. �

Proposition 4.4 shows that F (x) = (κ 4 x)2 is not differentiable and so there is no
simple Chain Rule. Consider:

F (x)4 F (x4 {x(α)})
= (κ4 x)2 4 (κ4 x4 {x(α)})2

= (κ4 x)κ4 (κ4 x)x4

(κ4 x4 {x(α)})κ4 (κ4 x4 {x(α)})x4 (κ4 x4 {x(α)}){x(α)}
= κ4 x4 (κ4 x)x4

κ4 x4 {x(α)}4 (κ4 x4 {x(α)})x4 (κ4 x4 {x(α)}){x(α)}
= (κ4 x)x4 {x(α)}4 (κ4 x4 {x(α)})x4 (κ4 x4 {x(α)}){x(α)}

For ν-measure-one many x, α + x(α) = x(α) and |(κ 4 x) ∩ α| = α, so we have
(κ4 x4 {x(α)}){x(α)} = {x(α)}, leaving us with

F (x)4 F (x4 {x(α)}) = (κ4 x)x4 (κ4 x4 {x(α)})x.

Then (κ4 x)x = {x(δ) + 1}δ and (κ4 x4 {x(α)})x = {x(δ) + 1}δ 6=α ∪ {x(α)},
so F (x)4 F (x4 {x(α)}) = {x(α) + 1, x(α)}. By 4.4 then, F is not differentiable.

While there is no Chain Rule, we do have the odd fact that for differentiable F ,
(F (x)x)′ = F (x).

We can prove the converse to Proposition 4.4:

Proposition 4.5 Let F be supercontinuous on 〈h〉, x ∈ 〈h〉, x ∈ [κ]κ. Then if
F (x)4 F (x4 {x(α)}) contains at most one point for µω-measure-one many α then
F is differentiable at x.

Proof: Given x ∈ [κ]κ, if for almost every α, F (x)4 F (x4 {x(α)}) is empty, then
F ′(x) = ∅ as in Fact 4.1. Otherwise, let A be a µω-measure 1 set of limit ordinals
such that for all α ∈ A F (x)4 F (x4 {x(α)}) is a singleton. Define g : A → κ by
{g(α)} = F (x)4 F (x4 {x(α)}). Using Fact 1.3 we can find B ⊆ A, µω(B) = 1,
such that α1, α2 ∈ B, α1 < α2 imply that x(α2) > g(α1). This allows the construc-
tion of D ∈ [κ]κ such that for all α ∈ B D(x(α)) = g(α).

Claim: F ′(x) = D. Proof of Claim: Given ε ∈ [κ]κ, take δ ∈ [κ]κ with (δ)ω ⊆ B.
Then for h ∈ 〈δ〉, xh(1) > εxh(0). By supercontinuity, F (x) 4 F (x4 xh) and
F (x)4 F (x4 {xh(0)}) are the same below xh(1), hence they are the same below
εxh(0). Thus, below εxh(0),

[F (x)4 F (x4 xh)4 Dxh] ∩ εxh(0) = [{gxh(0)}4 Dxh] ∩ εxh(0)
= [{Dxh(0)}4 Dxh] ∩ εxh(0)
= ∅,
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again, since Dxh(1) > εxh(0). This gives us F (x) 4 F (x4 xh)4 Dxh ≺ εxh.
�

There is a function which is equal to its own derivative. Let c = {α + 1 : α < κ} and
consider F (x) = x4 c. From 4.1, F ′(x) = κ, but we can also say F ′(x) = F (x) as
follows: For any δ ∈ [κ]κ, x ∈ 〈δ〉, x consists only of limit ordinals, so

F (x4 {x(α)})4 F (x) = {x(α)}.

But below any limit ordinal λ, there are λ-many successors. Thus, F (x)(x(α)) =
{x(α)}, so

F (x4 {x(α)})4 F (x)4 F (x)(x(α)) = 0,

so F ′(x) = F (x).

5 Integration

What should be the area below a function F ? For a constant function F (x) = c on
an interval [a, b],

∫ b

a
F (x) dx should be simply c times the difference between a and b,

that is, c(a4 b). This works well. We have easily, for example:
∫ b

a
c dx +

∫ d

b
c dx =

∫ d

a
c dx.

Our plan will be to define integrals of the form
∫ b

∅ F (x) dx, then set
∫ b

a
F (x) dx =

∫ b

∅ F (x) dx4
∫ a

∅ F (x) dx. We will use sums over subintervals delineated by consec-
utive elements of b (as when we defined F ′, we only used subsets of x for ∆x):

[b \ b(α + 1), b \ b(α)].

Peculiar things happen, however, and any function less trivial than a constant function
can produce surprises. Consider F (x) = x. The width of [b \ b(α + 1), b \ b(α)] is
(b \ b(α + 1))4 (b \ b(α)) = {b(α)}. On [b \ b(α + 1), b \ b(α)] the greatest value
of F is b \ b(α) and the least value of b \ b(α + 1). Assuming the ordinals of b are
indecomposable (the indecomposable ordinals form a µω-1 set—δ is indecomposable
if γ, ζ < δ ⇒ γ+ζ < δ), we will have (b\b(α))(b(α)) = (b\b(α+1))(b(α)) = b2(α).
This suggests that

b2(α)) ≤

∫ b\b(α)

b\b(α+1)

x dx ≤ b2(α).

But if we are composing a Riemann sum we could find e ∈ [b \ b(α+1), b \ b(α)] with
e(b(α)) < b2(α).

Indeed, nothing is secure in the usual sense here. The largest value of F (c)(b 4 a)
for c ∈ [a, b] may not involve using the largest F (c). Other odd things can happen.
Nonetheless, a respectable definition is feasible.
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For a first approximation we can use a 4 -sum using the right-endpoint rule:

∫ b

∅

F (x) dx ≈ 4
δ<κ

F (b \ b(δ))b(δ).

We will need:

Definition 5.1 For any collection, {Aδ}δ<α, α ≤ κ,

4
δ<α

Aδ = {β : |{δ : β ∈ Aδ}| is an odd ordinal}.

We could subdivide the intervals further, breaking each [b \ b(α + 1), b \ b(α)] into

{[{b(α)} ∪ (b \ b(δ + 1)), {b(α)} ∪ (b \ b(δ))]}α<δ<κ

and using the 4 -sum:

4
α<δ<κ

F ({b(α)} ∪ (b \ b(δ)))b(δ),

but this doesn’t lead to a meaningful definition of the integral. The βth approximation
would be

4
σ ⊆ δ < κ

o.t.(σ) = β

F (σ ∪ (b \ b(δ)))b(δ),

and the limit of these sums is ∅ for any F since the least element of the βth approx-
imation is greater than β. Consequently, we take the first approximation as the last
approximation and define

Definition 5.2 For any F : [κ]κ → [κ]κ, b ∈ [κ]κ,

∫ b

∅

F (x) dx = 4
δ<κ

F (b \ b(δ))b(δ).

We let
∫ b

a
F (x) dx =

∫ b

∅ F (x) dx4
∫ a

∅ F (x) dx. We will say G is a primitive of F if

for some r ∈ [κ]κ and all a, b ∈ 〈r〉,
∫ b

a
F (x) dx = G(b)4 G(a).

With this definition, every function is integrable; every function has a primitive. This
is appropriate. In real analysis all continuous functions are integrable and from [HM],
all our functions will be continuous.

If G is a primitive of F then so is G4 C for any constant C. The reverse is true on a
ν-measure one set so we can unambiguously write

∫

F (x) dx = G(x)4 C.
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Fact 5.1

1.
∫

h dx = hx4 C

2.
∫

xn dx = xn+1 4 C

3.
∫

(x4 κ) dx = (x + 1)4 C

The function on page 7, F (x) = {x(α), x(α + 1)}α∈κ, which was not differentiable
has as integral,

∫

F (x) dx = x2 4 C.

For functions with a stronger type of continuity, the integral has a special form.

Definition 5.3 A function F is superdupercontinuous on A if for all x, y ∈ A, α ∈ x,

(x4 y) ⊆ α ⇒ F (x)(α) = F (y)(α).

Proposition 5.1 For every n, F (x) = xn is superdupercontinuous on a ν-measure one
set.

Proof: Choose 〈r〉 so that for all α, r(α + 1) > r(α) ·ω. Then it will be the case that
β < α ∈ r implies that β + α = α. Then for any x, y ∈ 〈r〉, (x 4 y) ⊆ α ∈ x, we
have x∩α = x�β for some β < α, so x(α) = (x \ x(α))(α), and similarly for y, and
since (x \ x(α)) = (y \ y(α)) we get x(α) = y(α). We can extend this inductively to
xn. �

All the functions discussed so far have been superdupercontinuous (and supercontin-
uous) but if we take a partition {Aδ}δ<κ of κ into disjoint members of [κ]κ, then
F (x) = Ax(∅) is not superdupercontinuous.

Proposition 5.2 If F is superdupercontinuous, then
∫

F (x) dx = F (x)x4 C.

Proof:
∫ b

∅ F (x) dx = 4
δ<κ

F (b \ b(δ))(b(δ)) = 4
δ<κ

F (b)b(δ) = F (b)b. �

6 Antidifferentiation

We can prove a sort of “Fundamental Theorem,” although that would be far too grand
a title for it. First, we prove

Proposition 6.1 If
∫

F (x) dx = G(x)4 C, then G is differentiable.
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Proof: We prove a more general statement. Any function of the form: H(x) =

4
δ<κ

Ax(δ)(x(δ)) is differentiable. This follows from the fact that H(x) 4 H(x4 {x(δ)}) =

{H(Ax(δ)(x(δ)))}, a singleton. �

Proposition 6.2 If F is supercontinuous and superdupercontinuous on A, then F has
an antiderivative and for all x ∈ A,

(
∫

F (x) dx

)′

= F (x).

Proof: Define G to be the following primitive of F :

G(x) = 4
δ<κ

F (x \ x(δ))(x(δ)).

Let r ∈ [κ]κ witness the superdupercontinuity of F and take x ∈ 〈r〉. Choose s ∈ [κ]κ

such that for α ∈ s F (x) ∩ x(α) has order-type x(α). Let h be in 〈s〉. By superduper-
continuity, F (x \x(δ))(x(δ)) = F (x)(x(δ)). Thus, G(x)(δ) = F (x)(x(δ)). Then for
β < h(0),

G(x4 xh)(β) = F (x4 xh)((x4 xh)(β))
= F (x)((x4 xh)(β)) (supercontinuity and choice of s)
= F (x)(x(β))
= G(β).

And if β = h(0),

G(x4 xh)(β) = F (x4 xh)((x4 xh)(β))
= F (x4 xh)(x(β + 1))
= F (x \ {xh(0)})(x(β + 1)) (supercontinuity)
= F (x)(x(β + 1)) (superdupercontinuity)
= G(β + 1).

Thus, the least element of G(x4 xh)4 G(x) is G(x)(h(0)) = F (x)(x(h(0))) =
F (x)(xh(0)).

We can similarly show that the next least element of G(x 4 xh)4 G(x) is F (x)xh(1)
and in general that

G(x4 xh)4 G(x)4 F (x)xh = ∅,

so G′ = F . �

We have one last result, one that mirrors real analysis and suggests that superdupercon-
tinuous functions may be the analog of analytic functions.

Proposition 6.3 If F is superdupercontinuous, then so is
∫

F (x) dx.
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Proof: Let G(x) =
∫

F (x) dx = 4
δ<κ

F (x \ x(δ))(x(δ)) = 4
δ<κ

F (x)(x(δ)). Fix

α and let q = x \ x(α) and β = x(α). Note that we can easily compel x to be such
that x(α) + x(β) = x(β), so q(β) = x(β) = x2(α) = q(x(α)). Note also that
x \ x2(α) = q \ x2(α) = q \ q(β). Then

G(x \ x(α))(x(α)) = G(q)(x(α))
= F (q)(q(x(α))
= F (q)(q(β))
= F (q \ q(β))(q(β))
= F (x \ x2(α))(x2(α))
= F (x)(x2(α))
= G(x)(x(α).

�

7 Questions

1. The definitions of derivative and integral are on probation. Are more appropriate or
more fruitful definitions possible?

2. How special is superdupercontinuous? Can we prove a limited form, for example,
for functions satisfying the Fundamental Theorem?

3. To what extent are differentiable functions locally linear? We can prove that for
F (x) = xn, F is linear at almost every p in the sense that F (x) = F (p) 4 F ′(p)(p4 x),
for x ∈ [p]κ. In general, if F is differentiable on 〈r〉, p ∈ 〈r〉, we can prove F (x) =
F (p)4 F ′(p)(p4 x) if p4 x is a finite subset of x.

4. Is an interesting theory of series possible with this or any other definition of deriva-
tive?

8 References

[HM] Henle, J. M. and Mathias, A. R. D.,“Supercontinuity” Mathematical Proceedings
of the Cambridge Philosophical Society 92(1):1-16, 1982.

[H] Henle, J. M., “Researches into the world of κ → (κ)κ,” Annals of Mathematical
Logic 17:151-169, 1970.

[Ka] Kanamori, A., The Higher Infinite, Springer-Verlag, 1994.

[K1] Kleinberg, E. M., Infinitary Combinatorics and the axiom of determinateness,

13



Springer Lecture Notes in Mathematics no. 613.

[K2] Kleinberg, E. M., “Strong partition properties for infinite cardinals” The Journal
of Symbolic Logic, 35:410-428, 1970.

14


