Skip to main content
Log in

The Two Coexisting Ecological Paradigms

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

We analyse theories and research approaches in ecology and find that they fall into two internally homogeneous groups of linked ideas, each comprising a unique set of premises. The two sets of interpretive statements are thus mutually exclusive; they constitute alternative theoretical developments in ecology and should not be seen as complementary. They can, therefore, be considered two paradigms (Kuhn, 1962). Our interpretation is supported by the minimal overlap, if any, in the premises and research directions of the two approaches. We label the dominant group of ideas the demographic paradigm and the less developed one the autecological paradigm. The internal logic of the demographic paradigm of ecology is strongly developed and consistent. Its premises and logic extend into current models of population genetics, biogeography, palaeontology, evolutionary theory and conservation biology. Nevertheless, many phenomena contradict the premises of the demographic paradigm; these contradictions cannot be accommodated within its theoretical framework without major disruptions in logic ensuing. Such phenomena can, in contrast, be understood in terms of the autecological paradigm. Because the status and strengths of the autecological paradigm are generally unrecognised and because autecology is frequently misrepresented in the literature, we redefine its premises and clarify its structure and aims as an aid to its future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allen, T. F. H. and T. W. Hoekstra (1992). Toward a Unified Ecology. Columbia University Press, New York.

    Google Scholar 

  • Andrewartha, H. G. (1984). Ecology at the crossroads. Australian Journal of Ecology 9; 1–3.

    Google Scholar 

  • Andrewartha, H.G. and L.C. Birch (1954). The Distribution and Abundance of Animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Bakker, K. (1961). An analysis of factors which determine success in competition for food among larvae of Drosophila melanogaster. Archives Neerlandaises de Zoologie 14; 200–281.

    Google Scholar 

  • Brady, R.H. (1982). Dogma and doubt. Biological Journal of the Linnean Society 17: 79–96.

    Google Scholar 

  • Brooks, D.R. (1980). Allopatric speciation and non-interactive parasite community structure. Systematic Zoology 29: 192–203.

    Google Scholar 

  • Brunsfeld, S.J., D.E. Soltis and P.S. Soltis (1991). Patterns of genetic variation in Salix section longifoliae (Salicaceae). American Journal of Botany 78: 855–869.

    Google Scholar 

  • Brunsfeld, S.J., Soltis, D.E. and P.S. Soltis (1992). Evolutionary patterns and processes in Salix section longifoliae: evidence from chloroplast DNA. Systematic Botany 17: 239–256.

    Google Scholar 

  • Cittadino, E. (1990). Nature as the Laboratory. Cambridge University Press, Cambridge.

    Google Scholar 

  • Clements, F.E. (1916). Plant Succession. Carnegie Institute, Washington, Publication 242.

    Google Scholar 

  • Connell, J.H. (1980). Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35: 131–138.

    Google Scholar 

  • Connell, J.H. (1983). On the prevalence and relative importance of interspecific competition: evidence from field experiments. American Naturalist 122: 661–696.

    Google Scholar 

  • Coope, G.R. (1979). Late-Cenozoic fossil Coleoptera: evolution, biogeography, and ecology. Annual Review of Ecology and Systematics 10: 247–267.

    Google Scholar 

  • Coope, G.R. (1995). Insect faunas in ice age environments: why so little extinction? In: J.H. Lawton and R.M. May (eds.), Extinction Rates, pp. 55–74. Oxford University Press, Oxford.

    Google Scholar 

  • Cornell, H.V. and J.H. Lawton (1993). Species interactions, local and regional processes, and limits to the richness of local communities: a theoretical perspective. Journal of Animal Ecology 61: 1–12.

    Google Scholar 

  • Cronin, J. T. and D.R. Strong (1994). Parasitoid interactions and their contribution to the stabilization of Auchenorrhyncha populations. In R. F. Denno and T. J. Perfect (eds.), Planthoppers, their Ecology and Management, pp. 400–428. Chapman and Hall, New York.

    Google Scholar 

  • Curtis, J.T. (1959). The Vegetation of Wisconsin. University of Wisconsin Press, Madison.

    Google Scholar 

  • Darwin, C. (1859). On the Origin of Species, a Facsimile of the First Edition, 1964. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Davis, M.B. (1976). Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13: 13–26.

    Google Scholar 

  • DeAngelis, D.L. and L.J. Gross (eds.), (1991). Individual-Based Models and Approaches in Ecology. Chapman and Hall, London.

    Google Scholar 

  • Den Boer, P.J. (1968). Stabilization of animal numbers by risk spreading. Acta Biotheoretica 18: 165–194.

    Google Scholar 

  • Den Boer, P.J. and J. Reddingius (1996). Regulation and stabilisation paradigms in population ecology. Chapman and Hall, London.

    Google Scholar 

  • Diamond, J. M. and T.J. Case (eds.), (1986). Community Ecology. Harper and Row, New York.

    Google Scholar 

  • Dingle, H. (1996). Migration. Oxford University Press, Oxford.

    Google Scholar 

  • Eber, S. and R. Brandl (1994). Ecological and genetic spatial patterns of Urophora cardui (Diptera: Tephritidae) as evidence for population structure and biogeographical processes. Journal of Animal Ecology 63: 187–199.

    Google Scholar 

  • Elsasser, W.M. (1987). Reflections on a Theory of Organisms. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Elton, C.S. (1958). The Ecology of Invasions by Animals and Plants. Methuen, London.

    Google Scholar 

  • Ford, M.J. (1982). The Changing Climate. Allen and Unwin, London.

    Google Scholar 

  • Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Constable, London.

    Google Scholar 

  • Frazetta, T.H. (1975). Complex adaptations in evolving populations. Sinauer, Sunderland.

    Google Scholar 

  • Gaugh, H.G. (1982). Multivariate analysis in community ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gause, G.F. (1930). Studies on the ecology of the Orthoptera. Ecology 11: 307–325.

    Google Scholar 

  • Gause, G.F. (1932). Ecology of populations. Quarterly Review of Biology 7: 27–46.

    Google Scholar 

  • Gause, G.F. (1934). The Struggle for Existence (1969 reprint). Hafner, New York.

    Google Scholar 

  • Gilpin, M. and I. Hanski (eds.), (1991). Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, London.

    Google Scholar 

  • Gleason, H.A. (1917). The structure and development of the plant association. Bulletin of the Torrey Botanical Club 44: 463–481.

    Google Scholar 

  • Gleason, H.A. (1926). The individualistic concept of the plant association. Bulletin Torrey Botanical Club 53: 7–26.

    Google Scholar 

  • Gleason, H.A. (1939). The individualistic concept of the plant association. American Midland Naturalist 21: 92–110.

    Google Scholar 

  • Godfray, H.C.J. (1994). Parasitoids: their Behavioral and Evolutionary Ecology. Princeton University Press, Princeton.

    Google Scholar 

  • Golley, F.B. (1993). A History of the Ecosystem Concept in Ecology. Yale University Press, New Haven.

    Google Scholar 

  • Hagen, J.B. (1992). An Entangled Bank. Rutgers University Press, New Brunswick.

    Google Scholar 

  • Hall, C.A.S. (1988). An assessment of several of the historically most influential theoretical models used in ecology and of the data provided in their support. Ecological Modelling 43: 5–31.

    Google Scholar 

  • Hardin, G. (1960). The competitive exclusion principle. Science 131: 1292–1297.

    Google Scholar 

  • Haukioja, E. (1982). Are individuals really subordinated to genes? A theory of living entities. Journal of Theoretical Biology 99: 357–375.

    Google Scholar 

  • Hauser, C.L. (1987). The debate about the biological species concept-a review. Zeitschrift für zoologische und systematische Evolutionsforschung 25: 241–257.

    Google Scholar 

  • Heck, K.L. (1976). Some critical considerations of the theory of species packing. Evolutionary Theory 1: 247–258.

    Google Scholar 

  • Heinrich, B. (1993). The Hot-blooded Insects. Harvard University Press, Cambridge Mass.

    Google Scholar 

  • Hengeveld, R. (1981). The relevance of food and feeding habits of ground beetles (Coleoptera, Carabidac) to the study of their evolution. Entomologia Scandinavica, Suppl. 15: 305–315.

    Google Scholar 

  • Hengeveld, R. (1985). Dynamics of Dutch ground beetle species during the twentieth century. Journal of Biogeography 12: 389–411.

    Google Scholar 

  • Hengeveld, R. (1988). Mayr's ecological species criterion. Systematic Zoology 37: 47–55.

    Google Scholar 

  • Hengeveld, R. (1989a). Caught in an ecological web. Oikos 54: 15–22.

    Google Scholar 

  • Hengeveld, R. (1989b). Dynamics of Biological Invasions. Chapman and Hall, London.

    Google Scholar 

  • Hengeveld, R. (1990). Dynamic Biogeography. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hengeveld, R. (1992). Potential and limitations of predicting invasion rates. Florida Entomologist 75: 60–72.

    Google Scholar 

  • Hengeveld, R. (1993). Ecological biogeography. Progress in Physical Geography 17: 448–460.

    Google Scholar 

  • Hengeveld, R. (1994). Biogeographical ecology. Journal of Biogeography 21: 341–351.

    Google Scholar 

  • Hengeveld, R. (1997). Impact of biogeography on a population-biological paradigm shift. Journal of Biogeography 24: 541–547.

    Google Scholar 

  • Hengeveld, R. (in prep.) Santa Claus can't rescue, but neither can Levins.

  • Hengeveld, R. and J. Haeck (1981). The distribution of abundance. II. Models and implications. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen C84: 257–284.

    Google Scholar 

  • Hengeveld, R. and J. Hacek (1982). The distribution of abundance. I. Measurements. Journal of Biogeography 9: 303–316.

    Google Scholar 

  • Hengeveld, R., S.A.L.M. Kooijman and C. Taillie (1979). A spatial model explaining species-abundance curves. In: J.K. Ord, G.P. Patil and C. Taillie (eds.), Statistical Distributions in Ecological Work, pp. 333–347. International Co-operative Publishing House, Fairland, Maryland.

    Google Scholar 

  • Hengeveld, R. and A.J. Stam (1978). Models explaining Fisher's log-series abundance curve. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen C81: 415–427.

    Google Scholar 

  • Himmelfarb, G. (1959). Darwin and the Darwinian Revolution. Doubleday, New York.

    Google Scholar 

  • Hutchinson, G.E. (1959). Homage to Santa Rosalia, or why are there so many species? American Naturalist 93: 145–159.

    Google Scholar 

  • Hutchinson, G.E. (1978). An Introduction to Population Ecology. Yale University Press, New Haven.

    Google Scholar 

  • Huxley, J.S. (1932). Problems of Relative Growth. Methuen, London.

    Google Scholar 

  • Kikkawa, J. and D.J. Anderson (1986). Community Ecology. Pattern and Process. Blackwell, Oxford.

    Google Scholar 

  • Kingsland, S. (1985). Modelling Nature. Episodes in the History of Population Ecology, University of Chicago Press, Chicago.

    Google Scholar 

  • Kooijman, S.A.L.M. (1993). Dynamic Energy Budgets in Biological Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kuhn, T.S. (1962). The Structure of Scientific Revolutions. University of Chicago Press, Chicago.

    Google Scholar 

  • Lawton, J.H. (1986). Surface availability and insect community structure: the effects of architecture and fractal dimension of plants. In: B. Juniper and T.R.E. Southwood (eds.), Insects and the Plant Surface, pp. 317–331. Edward Arnold, London.

    Google Scholar 

  • Levins, R. (1970). Extinction. In: M. Gerstenhaber (ed.), Some Mathematical Problems in Biology, pp. 77–107. American Mathematical Society, Providence, R.I.

    Google Scholar 

  • Linnaeus, C. (1749). Oeconomia Naturae. Amoenitates Academicae II: 1–58.

    Google Scholar 

  • Linnaeus, C. (1760). Politia Naturae.

  • Madsen, T. and R. Shine (1999). Rainfall and rats: climatically driven dynamics of a tropical rodent population. Australian Journal of Ecology 24: 80–89.

    Google Scholar 

  • Mallett, J. (1995). A species definition for the modern synthesis. Trends in Ecology and Evolution 10: 294–299.

    Google Scholar 

  • Matis, J.H., T.R. Kiffe and R. Hengeveld (1996). Estimating parameters for birth-death-migration models from spatio-temporal abundance data: case of muskrat spread in the Netherlands.

  • May, R.M. (1976). Simple mathematical models with very complex dynamics. Nature 261: 459–467.

    Google Scholar 

  • May, R.M. and J. Seger (1986). Ideas in ecology. American Scientist 74: 256–267.

    Google Scholar 

  • Mayr, E. (1957). Species concepts and definitions. In: E. Mayr (ed.), The Species Problem. American Association for the Advancement of Science, Publication 50: 371–388. Washington, D.C.

    Google Scholar 

  • Morris, D. (1958). The reproductive behaviour of the ten-spined stickleback. Behaviour, Suppl. 6: 1–154.

    Google Scholar 

  • Morse, R., J.H. Lawton, M.M. Dodson and M.H. Williamson (1985). Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314: 713–733.

    Google Scholar 

  • Nowak, M.A. and R.M. May (1992). Evolutionary games and spatial chaos. Nature 359: 826.

    Google Scholar 

  • Ohnesorge, B. (1963). Beziehungen zwischen Regulationsmechanismus und Massenwechselverlauf bei Insekten. Zeitschrift für angewante Zoologie 50: 427–483.

    Google Scholar 

  • Parry, M.L. and T.R. Carter (1985). The effect of climatic variations on agricultural risk. Climatic Change 7: 95–110.

    Google Scholar 

  • Paterson, H.E.H. (1981). The continuing search for the unknown and the unknowable: a critique of contemporary ideas on speciation. South African Journal of Science 7: 113–119.

    Google Scholar 

  • Paterson, H.E.H. (1985). The recognition concept of species. In: E.S. Vrba (ed.), Species and Speciation, pp. 21–29. Transvaal Museum, Pretoria.

    Google Scholar 

  • Paterson, H.E.H. (1986). Environment and species. South African Journal of Science 82: 62–65.

    Google Scholar 

  • Paterson, H.E.H. (1993). Evolution and the Recognition Concept of Species. Collected writings. S.F. McEvey (ed.) Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Peters, R.H. (1983). The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pielou, E.C. (1985). Ecological Diversity. Wiley, New York.

    Google Scholar 

  • Pimm, S.L. (1991). The Balance of Nature? University of Chicago Press, Chicago.

    Google Scholar 

  • Price, P. W., W. S. Gaud and C.N. Slobodchikoff (1984). A New Ecology. Novel Approaches to Interactive Systems. John Wiley, New York.

    Google Scholar 

  • Proctor, M., P. Yeo and A. Lack (1996). The Natural History of Pollination. HarperCollins, London.

    Google Scholar 

  • Ramensky, L.G. (1926). Die Grundgesetzmässigkeiten im Aufbau der Vegetationsdecke. Botanisches Zentralblatt 7: 453–455.

    Google Scholar 

  • Rapport, D.J. (1991). Myths in the foundations of economics and ecology. Biological Journal of the Linnean Society 44: 185–202.

    Google Scholar 

  • Reddingius, J. and P.J. Den Boer (1970). Simulation experiments illustrating stabilization of animal numbers by risk spreading. Oecologia 5: 240–284.

    Google Scholar 

  • Rehbock, P.F. (1983). The Philosophical Naturalists. University of Wisconsin Press, Madison.

    Google Scholar 

  • Rensch, B. (1947). Neuere Probleme der Abstammungslehre, Enke, Stuttgart (English translation: 1960. Evolution above the Species Level. Columbia University Press, New York).

    Google Scholar 

  • Ricklefs, R. E. and D. Schluter (eds.), (1993). Species Diversity in Ecological Communities. University of Chicago Press, Chicago.

    Google Scholar 

  • Rosenberg, A. (1985). The Structure of Biological Science. Cambridge University Press, Cambridge.

    Google Scholar 

  • Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary Ecology: an Introduction. MacMillan, New York.

    Google Scholar 

  • Ruelle, D. (1991). Chance and Chaos. Princeton University Press, Princeton.

    Google Scholar 

  • Simberloff, D. (1984). The great god of competition. The Sciences 24: 17–22.

    Google Scholar 

  • Sinclair, M. (1988). Marine Populations. An Essay on Population Regulation and Speciation. University of Washington Press, Seattle.

    Google Scholar 

  • Smart, J.J.C. (1963). Philosophy and Scientific Realism. Routledge and Kegan Paul, London.

    Google Scholar 

  • Solomon, M.E. (1949). The natural control of animal populations. Journal of Animal Ecology 18: 1–35.

    Google Scholar 

  • Southwood, T.R.E., M.P. Hassell, P.M. Reader and D.J. Rogers (1989). Population dynamics of the viburnum whitefly (Aleurotrachelus jelinekii). Journal of Animal Ecology 58: 921–942.

    Google Scholar 

  • Strangeland, C.E. (1966). Pre-Malthusian Doctrines of Population. Kelley, New York.

    Google Scholar 

  • Strong, D. R., D. Simberloff, L.G. Abele and A.B. Thistle (eds.), (1984). Ecological Communities: Conceptual Issues and Evidence. Princeton University Press Princeton.

    Google Scholar 

  • Strong, D.R. (1986). Density-vague population change. Trends in Ecology and Evolution 1: 39–42.

    Google Scholar 

  • Sylvan, R. (1994). Illusion and illogic in evolution. Rivista di Biologia-Biology Forum 87: 191–221.

    Google Scholar 

  • Tansley, A.G. (1935). The use and abuse of vegetational concepts and terms. Ecology 16: 284–307.

    Google Scholar 

  • Turner, M. (ed.), (1986). Malthus and his Time. MacMillan, London.

    Google Scholar 

  • Van den Bosch, F., R. Hengeveld and J.A.J. Metz (1992). Analysing the velocity of animal range expansion. Journal of Biogeography 19: 135–150.

    Google Scholar 

  • Varley, G.C., G.R. Gradwell and M.P. Hassell (1973). Insect Population Ecology. An Analytical Approach. Blackwell, Oxford.

    Google Scholar 

  • Von Bertalanffy, L. (1968). General System Theory. Penguin ed. (1973), Harmondsworth.

    Google Scholar 

  • Walter, G.H. (1988). Competitive exclusion, coexistence and community structure. Acta Biotheoretica 37: 281–313.

    Google Scholar 

  • Walter, G.H. (1991). What is resource partitioning? Journal of Theoretical Biology 150: 137–143.

    Google Scholar 

  • Walter, G.H. (1993). The concept of interaction in ecological theory. In: K. Kull and T. Tiivel (eds.), Lectures in Theoretical Biology. The Second Stage, pp. 131–148. Estonian Academy of Science, Tallinn.

    Google Scholar 

  • Walter, G.H. (1995). Species concepts and the nature of ecological generalizations about diversity. In: D.M. Lambert and H.G. Spencer (eds.), Speciation and the Recognition Concept: Theory and Application, pp. 191–224. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Walter, G.H. and J.S. Donaldson (1994). Heteronomous hyperparasitoids, sex ratios and adaptations. Ecological Entomology 19: 89–92.

    Google Scholar 

  • Walter, G.H. and R. Hengeveld (1999). The structure of the two ecological paradigms. Acta Biotheoretica 47

  • Walter, G.H., P.E. Hulley and A.J.F.K. Craig (1984). Speciation, adaptation and interspecific competition. Oikos 43: 246–248.

    Google Scholar 

  • Walter, G.H. and H.E.H. Paterson (1994). The implications of palaeontological evidence for theories of ecological communities and species richness. Australian Journal of Ecology 19: 241–250.

    Google Scholar 

  • Walter, G.H. and H.E.H. Paterson (1995). Levels of understanding in ecology: interspecific competition and community ecology. Australian Journal of Ecology 20: 463–466.

    Google Scholar 

  • Walter, G.H. and M.P. Zalucki (1999). Rare butterflies and theories of evolution and ecology. In: R.L. Kitching, R.E. Jones and R.E. Pierce (eds.), Biology of Australian Butterflies, Chapter 21. CSIRO, Melbourne.

    Google Scholar 

  • Wangersky, P.J. (1978). Lotka-Volterra population models. Annual Review of Ecology and Systematics 9: 189–218.

    Google Scholar 

  • Wanntorp, H.-E. (1983). Historical constraints in adaptation theory: traits and non-traits. Oikos 41: 157–160.

    Google Scholar 

  • White, T.C.R. (1993). The Inadequate Environment. Nitrogen and the Abundance of Animals. Springer, Berlin.

    Google Scholar 

  • Whittaker, R.H. (1967). Gradient analysis of vegetation. Biological Reviews 42: 207–264.

    Google Scholar 

  • Whittaker, R.H. (1978). Ordination of Plant Communities. Junk, The Hague.

    Google Scholar 

  • Wiens, J.A. (1977). On competition and variable environments. American Scientist 65: 590–597.

    Google Scholar 

  • Wiklund, C. (1977). Oviposition, feeding and spatial separation of breeding and foraging habitats in a population of Leptidea sinapsis (Lepidoptera). Oikos 28: 56–68.

    Google Scholar 

  • Williams, G.C. (1966). Adaptation and Natural Selection. A Critique of Some Current Evolutionary Thought. Princeton University Press, Princeton.

    Google Scholar 

  • Williams, G.C. (1966). Adaptation and Natural Selection. Princeton University Press. Princeton.

    Google Scholar 

  • Worster, D. (1977). Nature's Economy. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hengeveld, R., Walter, G. The Two Coexisting Ecological Paradigms. Acta Biotheor 47, 141–170 (1999). https://doi.org/10.1023/A:1002026424015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002026424015

Keywords

Navigation