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Graphs can be used to describe a great variety of real-world situations and have therefore been used extensively in different fields. In
the present analysis, we use graphs to study the interaction between cerebral function, brain hemodynamics, and systemic variables
in premature neonates. We used data from a propofol dose-finding and pharmacodynamics study as a model in order to evaluate
the performance of the graph measures to monitor signal interactions. Concomitant measurements of heart rate, mean arterial
blood pressure, arterial oxygen saturation, regional cerebral oxygen saturation—measured by means of near-infrared
spectroscopy—and electroencephalography were performed in 22 neonates undergoing INSURE (intubation, surfactant
administration, and extubation). The graphs used to study the interaction between these signal modalities were constructed
using the RBF kernel. Results indicate that propofol induces a decrease in the signal interaction up to 90 minutes after propofol
administration, which is consistent with clinical observations published previously. The clinical recovery phase is mainly
determined by the EEG dynamics, which were observed to recover much slower compared to the other modalities. In addition,
we found a more pronounced loss in cerebral-systemic interactions with increasing propofol dose.

1. Introduction

A graph is a structure that can be used to represent the rela-
tion between different objects. In this context, a graph can be
thought of as a diagram which consists of a set of points,
where some or all of them are joined by lines. Formally, the
points of the graph are referred to as vertices or nodes,
whereas the lines between them are called edges or links. In
general, graphs can be used to describe a great variety of
real-world situations [1]. Think, for example, of a social

network, where people are represented by nodes and the
edges between the nodes are used to indicate friendship.
Another example is a geographic network of cities, with an
edge between two cities indicating a direct connection
through a highway. In addition to the presence (or lack) of
an edge connecting two nodes, extra measurements can be
associated with the edges. These measurements are formally
referred to as edge weights. In a social network, edge weights
could be used to denote the strength of the friendship
(acquaintances, close friends, ...). In a geographic network,
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the weights can indicate the physical distance or the amount
of traffic typically encountered on each road. Mathematically,
this type of diagram corresponds to a weighted graph.

In the present analysis, weighted graphs are used to study
the interaction of cerebral function, brain hemodynamics,
and systemic variables in premature neonates. Multiple stud-
ies are available in the literature that studied the pairwise
interactions between some of these variables. Caicedo et al.
analysed the relation between mean arterial blood pressure
(MABP) and regional cerebral oxygen saturation (rScO,),
measured by means of near-infrared spectroscopy (NIRS)
[2]. The coupling between these two variables, defined using
a transfer function approach, was found to be a measure to
assess cerebral autoregulation. Semenova et al. examined
the relation between MABP and electroencephalography
(EEG) [3]. The authors documented that preterm infants
with a high clinical risk index for babies (CRIB) score were
found to be associated with a higher nonlinear coupling
between EEG activity and MABP, quantified by means of
mutual information. Tataranno et al. examined the relation
between rScO, and EEG and found that increased oxygen
extraction was related to spontaneous activity transients
observed in the EEG [4]. In contrast to the studies mentioned
above, we aim to analyse the interaction between cerebral
and systemic variables using an extended multimodal
approach, integrating three systemic variables: heart rate
(HR), MABP and arterial oxygen saturation (SaO,), rScO,,
and EEG.

This study is situated within the interdisciplinary field of
network physiology, which analyses how diverse physiologic
systems dynamically interact and collectively behave to pro-
duce distinct physiologic states and functions [5]. Moreover,
the use of graphs enables a graphical representation of the
interaction between the different physiological systems in
time. This study shows for the first time a comprehensive
model of different physiological processes comprising auto-
regulation, neurovascular coupling, or baroreflex, working
at the same moment in time. In literature, most studies focus
on these processes individually without taking into account
the influence of the other processes. With the graph approach
outlined in this paper, we try to show the different processes,
their interaction, and the importance of the individual pro-
cesses at each moment in time. To the best of our knowledge,
this is a totally new mindset and way of showing the physio-
logical interaction between cerebral function, brain hemody-
namics, and systemic variables in newborn neonates.

The interaction between the different variables is stud-
ied using premedication by means of propofol as a model.
Propofol (2,6 diisopropylphenol) is a short-acting anesthetic:
it has a rapid onset of action and is generally short in
duration. In neonates, however, it is documented that clinical
recovery takes time [6]. In clinical practice, propofol is
administered to the neonates as a single intravenous (IV)
bolus. Propofol administration is frequently associated with
a decrease in MABP in neonates [6-11], children [12], and
adults [13-15]. Propofol distributes into the central ner-
vous system and fat tissue immediately after intravenous
dosing, which explains the rapid onset of this anesthetic
drug. In a secondary phase, propofol is redistributed into
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the circulation, which leads to vasodilation. Combined with
the blunted reflex tachycardia, this can result in hypotension
[10]. Therefore, a decrease in MABP is observed up to one
hour after administration of propofol in neonates [8]. Preme-
dicating neonates with propofol generally causes a modest
and short-lasting decrease in HR, SaO,, and rScO,, as
opposed to the longer-lasting and more pronounced decrease
in MABP [8], [11, 16, 17]. In addition, the discontinuity pat-
tern of the EEG is also influenced by propofol, which induces
a reversible state of diminished responsiveness behaviorally
similar to quiet (nonrapid eye movement (NREM)) sleep
[18]. During quiet sleep, the EEG of premature neonates
shows a spontaneous, physiological discontinuity of electrical
activity, characterized by higher amplitude, lower-frequency
EEG rhythms (tracé alternant (TA)) [19, 20]. This phenom-
enon is generally referred to as burst suppression, which
corresponds to an increase in interburst interval (IBI) dura-
tion [21, 22]. Moreover, a larger IBI duration is associated
with smaller FTOE values, which indicate lower brain energy
consumption [23].

This paper is structured as follows. Section 2 describes the
dataset used in the present analysis. Section 3 discusses the
methods, which include EEG processing, the construction
of the graph models, and the definition of features computed
from the graph models to quantify the strength of the effect
of propofol on these interactions. Section 4 presents the
results of the paper, which are extensively discussed in
Section 5. Finally, Section 6 summarizes the conclusions.

2. Dataset

The dataset used in the present analysis was collected as
part of a study on propofol dose selection by Smits et al.
[6]. In the study, 50 neonates were sedated using propofol
as part of an endotracheal intubation procedure. All subjects
in the group of study were recruited at the NICU of the
University Hospitals Leuven, Gasthuisberg. The trial was
registered on ClinicalTrials.gov NCT01621373, and ethical
approval was provided by the ethical committee at the
University Hospitals Leuven.

Due to incomplete data and overly noisy channels found
in 28 neonates, only 22 of the 50 neonates are included in this
study. These neonates were all sedated using propofol as part
of an INSURE (intubation, surfactant, and extubation)
procedure. The neonates are characterized by median (range)
postmenstrual ages (PMA) of 30 (26-35) weeks and a median
(range) dose of propofol (Diprivan 1%; AstraZeneca,
Brussels, Belgium) of 1.0 (0.5-4.5) mg-kg . In the present
analysis, the neonates are stratified into three groups,
based on PMA, since this is a major covariate of propofol
clearance in the absence of variability in postnatal age
(PNA) [24]. These groups are generally referred to as
extremely preterm (group 1: <28 weeks PMA), very pre-
term (group 2: 28-31 6/7 weeks PMA), and moderate to
late preterm (group 3: 32-36 6/7 weeks PMA) [25]. Most
of the neonates have a PNA of 1 day. For details regarding
the composition of the patient groups, the PNA of the
patients, and the doses of propofol administered to the
subjects of each group, see Table 1. More information
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TaBLE I: Stratification of the neonates into three age groups, based on postmenstrual age (PMA) in weeks. For each group, the number of
patients, postnatal age (PNA) of the patients, and propofol dose values administered to the subjects in the group are presented.

Group 1 Group 2 Group 3
Extremely preterm Very preterm Moderate to late preterm
<28 weeks 28-31 6/7 weeks 32-36 6/7 weeks

Number of patients 5 13 4
PNA (days)

Median 1 1 1

Range 1-2 1-2 1-3
Dose (mg-kg ")

Median 1.0 1.0 2.75

Range 0.5-1.5 0.5-2.5 1.0-4.5

about the clinical characteristics of the subjects can be
found in the original paper by Smits et al. [6].

Practices on propofol dosing, particularly in highly vul-
nerable premature neonates, are not standardized and vary
between different NICUs. Multiple studies, however, indicate
that propofol dose values of 2.0 to 2.5 mg-kg ™" should be used
as preintubation medication in premature neonates [9-11,
16]. The dataset used in the present analysis was collected
with the aim to find the median effective dose (ED50) of
propofol for sedation. Therefore, lower values of starting pro-
pofol dose were used, as indicated in Table 1. More specifi-
cally, administered dose ranges from 0.5 to 4.5mgkg " [6].
In general, the oldest neonates were sedated using higher
propofol doses compared to the youngest neonates, as can
be observed from Table 1.

The multimodal dataset used in this study consists of
concomitant measurements of five signal modalities, com-
prising HR, MABP, Sa0,, rScO,, and EEG, recorded from
5 minutes before propofol administration up to 10 hours
after. For each neonate, a 6-hour long segment of multi-
modal data was considered in the analysis, where t=0
was aligned with the moment of propofol administration.
This length was defined based on the shortest recording
found in the dataset. Thus, all signals were shortened to
six hours for all patients in order to provide uniformity.
Moreover, the use of a long time window of 6 hours
allows focusing on the regime of interest, since we can
study the effect of propofol together with the recovery of
the neonates from the drug. Propofol is a three-
compartment drug, characterized by a short « and f
(median estimates of 1 and 13 minutes, resp.) and a long
y half-life (median estimate of 350 minutes) [26, 27]. The
pharmacodynamic effects are primarily associated with the
first (&) and second (8) exponential half-life, which indicates
that the effect of propofol at the end of the analysis window is
minimal. This is confirmed by Smits et al., Vanderhaegen
et al., and Ghanta et al., who all observed a clinical recupera-
tion from single intravenous bolus propofol administration
within the first hour in neonates [6, 8, 16]. Therefore,
the analysis window is divided in two parts: the first 3-hour
long time window is used to study the response of the neo-
nates to propofol and the intubation procedure, while the last
3 hours are used as reference. Figure 1 presents an example of

a 6-hour long segment of multimodal data for one neonate
from the group of study.

The systemic variables (HR (beats/min), MABP
(mmHg), and SaO, (%)) were measured with IntelliVue
MP70 (Philips, Eindhoven, The Netherlands) with a Nellcor
pulse oximeter. These variables were recorded continuously
with a sampling frequency of 1 Hz (Rugloop; Demed, Temse,
Belgium). All 22 neonates incorporated in the present analy-
sis had an arterial line, which enabled an invasive measure-
ment of MABP. NIRS was used to measure rScO, (%)
noninvasively with INVOS 5100 using a cerebral neonatal
OxyAlert NIRS sensor (Covidien, Mansfield, Massachusetts).
As for the systemic variables, the sampling frequency for
rScO, is equal to 1Hz. Cerebral functioning was assessed
using a one-channel EEG (4V). The EEG was measured
between the C3 and C4 electrodes according to the interna-
tional 10-20 system with a sampling frequency of 100 Hz
(Olympic Cerebral Function Monitor 6000, Natus). EEG
segments with impedance values exceeding 10kQ were
removed from the raw EEG signal [28]. In addition, move-
ment artifacts identified as rapid changes in the impedance
measurement were detected and also removed from the raw
EEG signal.

3. Methods

3.1. Running Interburst Interval Duration. In general, EEG
signals of premature neonates alternate between periods of
activity, called bursts or burst intervals (BIs), and periods of
suppressed activity, referred to as IBIs. Thus, the morphology
of neonatal EEG is discontinuous, as indicated by the IBIs.
However, this discontinuous pattern evolves towards a more
continuous trace with increasing PMA. Therefore, some
studies have investigated the use of the length of the IBIs as
a marker for maturation [29, 30].

Due to the different temporal characteristics between
the EEG and all other signal modalities, the EEG signals
are processed in order to obtain surrogates for brain activ-
ity in a similar time frame as the other measured signals.
The EEG signal is segmented in burst and IBI segments
using an in-house algorithm based on the line length
[31]. The root mean squared (RMS) value and the dura-
tion in time for burst and IBIs in overlapping windows
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FiGurek 1: Illustration of the 5 signal modalities used to construct graph models for the neonates. A 6-hour long segment of multimodal data is
presented for one neonate in the group of study (PMA 27 weeks, 0.5 mg-kg ).

of two minutes are used as a surrogate for EEG. The run-
ning window is shifted in one second, producing a new
score every second. In this way, the sampling frequency
of the surrogate measures for EEG has the same sampling
frequency as the other signal modalities.

In total, five features are computed from the discontinu-
ous neonatal EEG: running RMS values of the original EEG,
Bls, and IBIs and running duration values of the BIs and IBIs.
In this paper, we only report the results using the running IBI
duration, since this is a very robust measure for EEG activity,
and thus cerebral metabolism, as validated by our group in a
previous study [31]. In addition, this measure is highly inter-
pretable. It is important to note, however, that the other EEG
features indicate similar results, since the different feature
values are highly related. An example of the five EEG features
is presented in Figure 2.

3.2. Graph Model Developed for This Study. In order to quan-
tify the common dynamics of the different signal modalities,
and changes thereof due to propofol, the interaction between
the variables is modeled using a graph, as illustrated in
Figure 3. In general, a graph is defined by a nonzero number
of vertices (nodes) and a number of edges (links, connec-
tions) between these nodes. The model for the neonates is
constructed using a complete graph. A complete graph is
characterized by the presence of an edge between all the

vertices. The vertex set V of the graph consists of n = 5 verti-
ces, corresponding to the 5 signal modalities measured in the
present analysis, that is,

V' = {Vir> VMmaBP> V500, Vrsco,> VEEG } (1)

A complete graph with n vertices has m=n(n-1)/2
edges. Therefore, the edge set E of the graph considered
here consists of 10 edges. The vertices of the graph model
defined in (1) are connected by edges. These edges are
defined by the corresponding edge weight values, which
are generally used to assess the strength of the connection
between a pair of vertices.

The topology of the complete graph described in (1) is
assumed to be fixed in time. The edge weights, however,
change in time, which we hypothesize to reflect the changes
in the interaction between the different signals. In order to
compute the graph models, the signals are first normalized
to N(0,1), since we are interested in the assessment of com-
mon dynamics (signal trends in time) and not absolute values
of the signals. Next, the edge weights are computed using a
15-minute long running window of multimodal data, which
is shifted by 1 minute (14 minutes overlap). Thus, new edge
weight values are computed every minute. Finally, two types
of interaction curves are extracted from the graph models:
the pairwise interaction between two signal modalities,
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F1Gure 2: Illustration of the features computed from the EEG signal. (a) illustrates a 6-hour long EEG segment for one neonate in the group of
study (PMA 27 weeks, 0.5 mg~kg_1). (b) illustrates the running RMS value. (c) and (d) illustrate the running RMS and running duration values

for Bls (black) and IBIs (gray), respectively.
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Ficure 3: Physiological network representing the interaction
between 5 signal modalities recorded on a neonate after propofol
administration. The graph consists of 5 vertices, corresponding to
the signal modalities. In addition, an edge is present between every
pair of nodes (complete graph). Each edge is defined by a weight
value that represents the interaction between the corresponding
signal modalities.

represented by the time course of the corresponding edge
weight, and the overall signal interaction, represented by
the graph average degree (see Section 3.4).

In the present analysis, weight values are used to denote
the interaction between two vertices, that is, two signal
modalities. If two modalities are characterized by common
nonlinear interactions, they follow the same trends in time.
We compute the pairwise similarity using two different sim-
ilarity measures. Consequently, we generate two graph
models for each neonate. Both similarity measures use the
radial basis function (RBF) kernel, which is a nonlinear sim-
ilarity measure. As such, the similarity of the different signals
is assessed in a possibly infinitely dimensional feature space,
defined by the nonlinear map ¢. However, the similarity in
this feature space is computed implicitly using the RBF ker-

nel function. The first similarity measure ky(x;, x;) uses the

raw signals in the RBF kernel and is thus defined as

lx; _xj||§>’ )

e (xiox;) = $(x:) "¢ (x;) = exp <_ o
where x; and x; represent two segments of multimodal data
[32] (subscript T indicates that time domain signals are used
for the Euclidean distance in the exponent of the RBF kernel).
In the present analysis, x; and x; are segments with a length of

7

15 minutes, as mentioned before. The similarity k7 (x;, x;) is

bounded by 0 (absence of common interactions) and 1 (exact



common interactions). The signal similarity computed by (2)
is a function of the Euclidean distance between input signals.
Consequently, it highly depends on signal amplitudes and
can be affected by delays between the signals. A graph model
computed using the similarity measure kr(x;, x;) is denoted
as Gr.

The second similarity measure uses the power spectral
density (PSD) of the signals in the RBF kernel. Thus, the time
input data is transformed to the frequency domain, before
computing the RBF kernel function. Mathematically, this
similarity measure kp(x;, x;) is defined as

2

N C)

ke (x;x;) = exp

where S, and S, represent the PSD of input signals x; and x;
(length of 15 minutes), respectively (subscript F indicates
that frequency domain signals are used for the Euclidean
distance in the exponent of the RBF kernel). The PSD is com-
puted using Welch’s method using overlapping subwindows
of 5 minutes in order to reduce the noise in the PSD estimate
(with use of Hamming window, overlap of 4 minutes and 59
seconds). Note that the kernel presented in (3) is a valid pos-
itive definite kernel, since the input data is transformed
before application of the kernel function. As before, the
similarity defined by kp(x;, x;) is bounded by 0 and 1. The
transformation to the frequency domain allows to include
time-delayed signal interactions and interactions of oppo-
site sign, in contrast to kr(x;,x;) which only takes into
account instantaneous amplitude interactions. In physiolog-
ical systems, it is possible that if one signal increases
(decreases), another signal decreases (increases) to maintain
homeostasis and that this interaction is not instantaneous
but delayed. A graph model computed using the similarity
measure kp(x;, x;) is denoted as G.

3.3. Kernel Tuning. In order to compute the similarity mea-
sure, the bandwidth o of the RBF kernel should to be tuned,
that is, optimized to avoid kernel overfitting and underfitting.
In the present analysis, the similarity measures kr(x;, x;) and
kp(x;, x;) both depend on this parameter 0. The optimization
procedure is the same for both similarity measures. There-
fore, it is outlined in terms of k(x;, x;), which represents the
two similarity measures. The strategy used to select the kernel
bandwidth for the present analysis considers kernel matrix
Q, which is defined as

Q; =k(x; %)),

ij ; Lji=1,...,nm. (4)

Note that the kernel matrix Q is defined by the kernel
bandwidth o through the definitions presented in (2) and
(3). The kernel bandwidth o is tuned by maximizing the
Shannon entropy of kernel matrix Q. The Shannon entropy
H(Q) is defined as

H(Q) =-) pi log,p;. ()
k
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where p, is equal to the probability of seeing the kth pos-
sible element of matrix Q. The entropy is thus deter-
mined by estimation of the probability density function
(PDF) of matrix ©. By maximizing the Shannon entropy,
we try to obtain a uniform distribution of the values in
the kernel matrix, and therefore, we avoid overfitting as
well as underfitting.

The kernel bandwidth is tuned for each neonate individ-
ually. The tuned bandwidth is denoted as 0,,,,,. The following
optimization problem is defined to estimate o,

aopt = m;\x H(QC)’ (6)
with
Qc=[Q,Q, ... Oy, (7)

where Q. is a collection of kernel matrices, computed from
all the signal segments recorded per neonate. Thus, a collec-
tion of kernel matrices is computed from the 6-hour long
data segment instead of only one kernel matrix in the optimi-
zation procedure. If we would consider only one kernel
matrix per neonate, it would only contain 25 entries, since
the kernel matrix is a 5 x 5 matrix. Clearly, this is not enough
data to estimate a robust PDF. Therefore, to solve this prob-
lem, we assume that the graph model does not change and
that it is situated in the same nonlinear subspace throughout
the 6-hour long analysis window. This assumption indicates
that o, should be uniform throughout the analysis window
and that o, can be computed using a concatenation of
kernel matrices Q, as defined in the optimization problem
in (6) and (7).

Figure 4 illustrates the optimization procedure in a sche-
matic way. The original data segment of 6 hours was seg-
mented into nonoverlapping segments of 15 minutes. Thus,
N =24 signal segments of 15 minutes were defined. For each
of these segments /, kernel matrix ; was computed and all
these kernel matrices €3; were concatenated as indicated in
(7). The use of a collection of kernel matrices allows to esti-
mate the probability density function, and consequently,
the Shannon entropy. Therefore, H(Q,) is characterized by
one global maximum. For the group of study, median (range)
values of o, are 27 (26-29) and 94 (86-113) for kr(x;, x;)
and kg(x;, x;), respectively.

3.4. Graph Measures. In order to assess the overall interac-
tion of the multimodal dataset, the average degree of the
graph is used. This section introduces the adjacency matrix
A of a graph, the degree d; of a vertex, and the average degree
8(G) of a graph G.

3.4.1. Adjacency Matrix. A weighted graph G consists of a
nonempty finite set V of elements called vertices v; (or nodes)
and a finite set E of distinct unordered pairs of distinct ele-
ments of V called edges Wi (or links) [33]. Note that the edges
of the graph are represented by their weights w;. The adja-
cency matrix A is a matrix commonly used to define the
graph G. The adjacency matrix A denotes the presence of
edges between the vertices v; of V and their corresponding
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FIGURE 4: Method used to tune the kernel bandwidth ¢. In (a), the data is segmented in nonoverlapping signal segments of 15 minutes. For all
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which is depicted in (b). Next, the Shannon entropy of Q. is computed. This procedure is repeated for a range of o values. The o value
associated with maximal H(Q) is selected as the bandwidth for the kernel function.

weights. More precisely, the adjacency matrix A is con-
structed as

A wy;,  if thereisan edge betweenv;and v, ®)
Y 0, otherwise.
3.4.2. Vertex Degree. The degree d; associated with a vertex v;

of an undirected weighted graph G, with adjacency matrix A,
is defined as the sum of all edges incident to v;

dj=2wz-j=

i1 -

M:

A ©)

Il
—

where 7 is the number of vertices. Therefore, the degree
characterizes the connection strength of the vertex v; with
respect to the other vertices of the graph. In practice, the
weights of the edges of a graph are often restricted to a

predefined range, which is often normalized to w;; € [0, 1].
Considering normalized weights, the degree is bounded by
0 and n — 1, where #n is the number of vertices of the graph,
that is,

0<d;<n-1 ifVij:w;eo,1].

(10)

If d;=0, vertex v; s called an isolated vertex, since it is not
connected to any other vertex of the graph. A vertex degree

d;=n-1 indicates a dominating vertex v, connected to all
other vertices of the graph with edge weight equal to 1.

3.4.3. Average Degree. The average degree §(G) of a graph G
is defined as the mean value of all vertex degrees d;

8(G) = %Zdj (11)
J=i

and is a measure associated with the overall connectivity
of the graph. Evidently, the bounds of §(G) are equal to
those of the individual vertex degree dj defined in (10).
Small values (close to 0) imply a weak connectivity,
whereas high values (close to n—1) indicate a very strong
connectivity of the graph.

3.5. Features to Quantify Interaction Strength. In order to
quantify the strength of the changes in signal interaction,
two features are computed from the interaction curves: the
normalized area S between the interaction curve and refer-
ence level and the maximal deviation A from the reference
level. Both feature values are computed in a time frame from
0 to 90 minutes after propofol administration. Reference
levels are defined as the median value of an interaction curve
in a time frame from 180 to 360 minutes after propofol
administration, as mentioned before. Normalization of S is
done by dividing the area by the length of the time interval.
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FIGURE 5: Features used to quantify the reduction in signal interaction strength: S (gray shaded area) (a) and A (gray arrow) (b). The feature
values are illustrated for one neonate in the group of study (PMA 30 weeks, 2.5 mg-kg '), where the pairwise interaction was computed using
kr(x;,x;) (2). Feature values S and A are computed from 0 to 90 minutes, while the reference level is defined as the median value of the

interaction curve from 180 to 360 minutes.

Note that S and A are bounded by 0 (no deviation from the
reference level) and 1 (very strong deviation from the refer-
ence level). Figure 5 presents a graphical example of S
(Figure 5(a)) and A (Figure 5(b)). The features are computed
from the interaction curves in order to assess the effect of
propofol on the dynamical interactions among the different
signal modalities. In addition, we investigated how these fea-
tures change with PMA and propofol dose.

In the present analysis, the relation between the feature
values S and A (dependent variables) and PMA and propofol
dose (predictor variables) is studied using linear regression
models. The coefficient of determination R/ is used to indi-
cate the goodness of fit of the linear model (subscript i denotes
the predictor variable 7). In addition, the coeflicient of partial
determination was computed to account for the effect of
both predictor variables at the same time. The significance
of the coefficient of (partial) determination was assessed
using the Monte Carlo permutation test with 10° repetitions.
A p <0.05 was defined to be statistically significant. A single
asterisk, double asterisks, and triple asterisks denote a p value
smaller than 0.05, 0.01, and 0.001, respectively.

3.6. Implementation. The analysis, the corresponding com-
putations, and figures presented throughout this study are
implemented using MATLAB Release 2016b (The Math-
Works, Natick, Massachusetts). Graph theory analysis is per-
formed using the MATLAB toolbox for network analysis,
provided by MIT Strategic Engineering [34].

4. Results

4.1. MABP-EEG Pairwise Interaction. The interaction curves
of MABP with respect to EEG after administration of pro-
pofol at t=0 minutes are illustrated in Figure 6. These

curves are computed using kr(x;, x;), defined in (2). The
EEG signal is represented by the running IBI duration,
as outlined in Section 3. From top to bottom, the interaction
pattern is shown for the entire group of study (N =22) and
the individual age groups presented in Table 1. First, a pro-
nounced loss in interaction is observed, followed by a gradual
increase to a reference level, which is in general reached at
t=90 minutes. Note that this loss in interaction is present
among all of the signal modalities of the multimodal dataset,
as indicated by the graphs in Figure 7. Figure 8 presents the
relation between the features used to quantify interaction
strength (S and A) and PMA and propofol dose. In addition
to the data points, the least squares linear fit is defined
(straight lines), together with the 0.95 percentiles of the linear
fit (shaded area). The goodness of the linear fit is assessed
using the coefficient of determination R?, which is equal
to R% =0.09 and R}, = 0.53 for feature S and R} =0.17 and
R} =0.30 for feature A (subscripts A and D are used to
denote PMA and dose, resp.). Since PMA and dose are corre-
lated (Pearson correlation coefficient r,p, =0.45), we also
define the coefficient of partial determination in order to
account for the effect of both predictor variables on features
S and A. Numerical values are equal to anD =0.002 and
Rjy, =0.49 for feature S and R, =0.05 and R}, =0.20
for feature A. The statistical significance of the coeflicients
of (partial) determination is denoted in Figure 8. Finally, it
is important to note that PMA and dose are not collinear
using a linear model. This can be assessed by computing
the variance inflatable factor (VIF) [35], which is equal to V
IF =1.2572. A VIF close to 1 indicates the lack of collinearity.

4.2. Overall Interactions. Figure 9(a) presents a comparison
of the vertex degree d; (in red is the interaction of modality
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FIGURE 6: Signal interaction between MABP and EEG after administration of propofol at t =0 minutes. The signal interaction was computed
using k7 (x;, x;). A reduction in interaction is observed among the different signal modalities after the administration of propofol, with a slow

recovery to the reference level. The black line and gray shaded area present the median and interquartile range (IQR), respectively.

i with respect to the other modalities) with the average degree
8(Gy) (in black is the average interaction of all signal modal-
ities) for all of the signal modalities after administration of
propofol at t=0minutes. The curves are computed from
graph models constructed using the similarity measure
kr(x;,x;) (2). The results are presented for the whole
group of study (N =22). Propofol-induced loss of interac-
tion among the signals is associated with a drop in 8(Gy).
The drop in average graph degree can also be observed in
Figure 7, which illustrates the graph model for one neonate
in the group of study at different time instances. As shown
in Figure 9(a), the §(Gy) value is highly determined by dy; s sp
during the first 30 minutes. Indeed, the MABP vertex degree
is considerably lower compared to the degree of the other

modalities in this time frame. From 30 minutes onwards,
the increase of §(Gy) to the reference level is highly influ-
enced by dp, which is associated with the slowest recovery
in signal dynamics.

Figure 9(b) shows the vertex degree d; (red) with the
graph average degree §(Gp) (black) after propofol adminis-
tration at =0 for the graph models constructed using the
second similarity measure, that is, kz(x;, x;) (3). As before,
the results are presented for the whole group of study
(N =22). A reduction in interaction can be observed after
propofol administration, which is in agreement with the
results of Figure 9(a). Again, MABP is observed to be the con-
tributing factor in the propofol-induced loss of interaction
during the first 30 minutes after propofol administration.
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FiGurg 7: Changes in the physiological network, assessed using a graph model G, for one neonate in the group of study (PMA 30 weeks,
1.0 mg~kg_1) at three different time instances: plots (a), (b), and (c) illustrate the edge weights for =10, 30, and 180 minutes after
propofol administration, respectively. The graph model was constructed using kr(x;, x;) defined in (2). Under each graph, the average

graph degree §(Gy) is presented in a time frame starting right after propofol administration (¢=0) up to 6 hours after. The average graph
degree measures the average connection strength of the graph edges. From (a) to (c), the edge weights increase, which translates in an

increased 6(Gy).

Indeed, this vertex is associated with the lowest degree values
during this time frame. From 30 minutes onwards, the
increase of §(Gy) is again influenced by EEG dynamics. This
effect is however less pronounced compared to the observa-

tion of Figure 9(a). In general, the results from ky(x;,x;)

and kp(x; x;) are similar, which might indicate that time
delayed and/or interaction of opposite signs are not present
in our dataset or that the influence of those interactions is
not relevant, probably due to the length of the analysis win-
dow (15 minutes) that we used in the analysis.

5. Discussion

In the present analysis, we study how different physiologic
systems dynamically interact and collectively behave after a
propofol bolus administration in preterm neonates. These
physiologic systems are presented by the different signal
modalities under study. Note that we focus on the interaction
between the brain and the cardiovascular system. This study
can therefore be situated in the interdisciplinary field of net-
work physiology [5].

Results indicate that propofol causes a change in the
dynamical interactions between the different signals up to
90 minutes after propofol administration. The strength of
this effect was observed to be mainly determined by propofol
dose. In addition, the recovery phase was observed to be
mainly determined by EEG dynamics, due to a much
slower recovery to the reference level compared to the
other signal modalities.

5.1. MABP-EEG Pairwise Interaction. Sedation of neonates
using propofol induces a reduction in the interaction

between MABP and EEG (Figure 6), with only a slow, grad-
ual increase back to the reference level. The most pronounced
decrease in interaction pattern is associated with the oldest
neonates in the group of study (moderate to late preterm):
a strong loss of interaction is observed during the first 60
minutes after propofol administration, followed by a brisk
increase back to baseline (Figure 6(d)). This pattern clearly
differs from that of the younger neonates (extremely to very
preterm), which are characterized by a less-pronounced
reduction in interaction and a more gradual increase back
to reference levels (Figures 6(b) and 6(c)).

Two possible indicators for the observed difference in
signal interaction patterns are proposed. Both indicators are
based on signal amplitude changes, since the signal interac-
tion measure kr(x;, x;) highly depends on signal amplitudes.
Firstly, the discontinuity pattern of neonatal EEG changes
with age. Especially, the oldest neonates (moderate to late
preterm) are characterized by a much more continuous
EEG pattern (tracé continue) compared to the younger neo-
nates (extremely to very preterm; tracé discontinue) [30]. A
more continuous EEG can result in a more pronounced
increase in IBI duration after propofol, potentially explaining
the more pronounced loss in signal interaction observed
among the oldest neonates in the group of study. Secondly,
Simons et al. observed a higher incidence of hypotension
with increasing dose of propofol [10]. In this study, higher
doses were administered to older neonates, as demonstrated
by Table 1. Evidently, a more pronounced impact on MABP
can be responsible for a stronger loss in signal interaction.

Since PMA and propofol dose (predictor variables) are
correlated (r,,, =0.45), the influence of each factor on the
resulting signal interaction pattern is assessed using features
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F1GURE 8: The relation between features S and A, computed from the MABP-EEG interaction curves presented in Figure 6, and PMA
and propofol. The data points and the linear least squares fit are depicted in black and gray, respectively. The shaded area indicates the
95-percentage confidence bounds on the least squares fit. The coeflicient of (partial) determination is indicated in each plot (subscripts
A and D denote PMA and propofol dose, resp.). A single asterisk, double asterisks, and triple asterisks denote a p value smaller than

0.05, 0.01, and 0.001, respectively.

S and A (independent variables). Figure 8 presents the
relation between these features and PMA and propofol
dose. From Figure 8, it is clear that the influence of
PMA on the independent variables is minimal, especially
when taking into account the influence of the dose. Indeed,
the coefficients of partial determination are very small for
PMA. (R};;=0.002 and R}, =0.05 for S and A, resp.).
This observation is confirmed by the fact that the coefficient
of partial determination is only slightly smaller compared to
the coeflicient of determination for propofol dose, especially
for feature S. Therefore, it is clear that the interaction

between MABP and EEG is mainly influenced by propofol
dose. The difference in interaction pattern observed in
Figure 6 is thus mainly caused by the difference in propofol
dose administered to the neonates in the different age groups,
and not by the difference in PMA.

5.2. Overall Interactions. The phase of sedation using propo-
fol is characterized by a markedly different network structure
compared to the reference phase, indicating a clear associa-
tion between network topology and physiologic function.
This is illustrated in Figure 7: after 10 minutes, the graph is
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FiGUrg 9: Comparing the vertex degree values (red) with the graph average degree (black) after administration of propofol at ¢ = 0 minutes.
The graph models were constructed using k(x;, xj) (a) and kg (x;, xj) (b). The results are presented for the whole group of study (N = 22).
From top to bottom, the vertex degree d; is compared to the graph average degree 8(G) for HR, MABP, Sa0,, rScO,, and EEG,
respectively. dy,,pp highly determines the signal interaction pattern during the first 30 minutes after propofol administration, while dpp
highly influences the signal interaction pattern from 30 minutes to 90 minutes after propofol administration. After 90 minutes, the
neonates are recovered from propofol, as indicated by the steady reference levels observed after 90 minutes.

weakly connected indicating a highly reduced overall signal
interaction as opposed to the strongly connected graph
observed at 3 hours after propofol administration.

MABP is observed to be the main contributor to the
reduction in signal interaction during the first 30 minutes
after propofol administration, as indicated in Figure 9. Dur-
ing this time frame, MABP strongly influences the strength
of the overall interaction pattern, since the vertex degree is
lower compared to the average graph degree. This effect can
partly be explained as an amplitude effect. Indeed, propofol
administration is associated with a pronounced decrease in
MABP, which can last up to one hour after propofol admin-
istration, as described by many authors [6-8, 10]. The phys-
iologic response of the other signal modalities is less affected
by propofol compared to MABP. This pronounced change in

signal amplitude could explain why MABP highly influences
the overall interactions, especially during the first 30 minutes
after propofol administration. It is important to note, how-
ever, that the explained loss in signal interaction can not be
entirely explained by only taking into account the signal
amplitude and change thereof in time. Indeed, the
propofol-induced loss in signal interaction is also observed
in Figure 9(b), which presents the results using similarity
measure kp(x;, x;). This measure assesses the interaction of
the signals in the frequency domain.

For 30 minutes up to 90 minutes after propofol adminis-
tration, the degree of the EEG signal is considerably lower
than the degree values of the other modalities. As before, this
finding can be observed in Figure 9. The EEG signal is the
only signal associated with degree values below the average
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degree, indicating the slow recovery of EEG dynamics with
respect to the other modalities. Thus, MABP dynamics
recover faster (generally recovered 30 minutes after propo-
fol administration) compared to EEG dynamics (recovery
takes up to 90 minutes after propofol administration).
From a signal processing point of view, this might indicate
the safety of propofol, since MABP can adapt to the needs
of brain metabolism, once the EEG signal is recovered. It
is important to note, however, that the neonates included
in the present analysis were all sedated using propofol as
part of an INSURE procedure. Surfactant causes a signifi-
cant decrease in EEG activity, which can last up to 24
hours after surfactant administration, as described by van
den Berg et al. [36]. Therefore, surfactant could also influ-
ence the decreased EEG interactions observed in Figure 9.
The extent of this effect is however not clear at this point,
since no control group without surfactant was available to
compare with.

From 90 minutes after propofol administration onwards,
the vertex degree and average degree curves presented in
Figure 9 are characterized by stable reference levels. This
indicates that the signal interaction pattern is restored after
propofol administration.

6. Conclusions

In this study, we have shown that graph theory can be used to
assess changes in signal interaction and that the resulting
graph models can be used to study the difference between
distinct physiologic states.

Moreover, for our propofol case study, we derived that
the overall signal interaction pattern after propofol adminis-
tration is highly influenced by both MABP and EEG. The
MABP signal is the main contributor to the loss in signal
interactions during the first 30 minutes after propofol, due
to the strong decoupling of MABP dynamics with respect
to the other signal modalities, while the EEG signal highly
influences the interaction pattern thereafter. This finding
indicates that MABP dynamics recover first, followed by
a much slower recovery of the EEG signal, meaning that
MABP dynamics are recovered while EEG metabolism is
still down. Thus, when EEG dynamics recover, MABP
can adapt to supply new needs of the brain in order to
sustain its function.

Propofol affects signal dynamics with an overall recov-
ery time of around 90 minutes, as assessed by the graph
average degree. After 90 minutes, these curves are charac-
terized by steady reference levels, indicating that, at least
from a biosignal processing point of view, the overall sig-
nal dynamics are recovered from propofol and that the
physiological system is associated with a high degree of
signal interaction.

The signal interaction pattern observed after propofol
administration is influenced only by propofol dose, and
thus not by PMA. This relation was observed for the pair-
wise interaction curves and the system interaction measure
(average graph degree) derived from the graph model of
the neonate.
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