
A dynamic logic of agency I:
STIT, capabilities and powers

Andreas Herzig, Emiliano Lorini
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Abstract

The aim of this paper is to provide a logical framework for reasoning about
actions, agency, and powers of agents and coalitions in game-like multi-agent sys-
tems. First we define our basic Dynamic Logic of Agency DLA. Differently from
other logics of individual and coalitional capability such as Alternating-time Tem-
poral Logic ATL and Coalition Logic, in DLA cooperation modalities for ex-
pressing powers of agents and coalitions are not primitive, but are defined from
more basic dynamic logic operators of action and (historic) necessity. We show
that STIT logic can be reconstructed in DLA. We then extend DLA with epis-
temic operators, which allows us to distinguish capability and power. We finally
characterize the conditions under which agents are aware of their capabilities and
powers.

1 Introduction
Propositional Dynamic Logic (PDL) [14] has formulas of the form [a]ϕ, expressing
that ϕ holds after every possible execution of action a. Such modalities are not avail-
able in logics of agency such as Coalition Logic (CL) [27], Alternating-time Temporal
Logic (ATL) [2] and the logic of seeing-to-it-that (STIT) [6]: they abstract from action
names and directly relate agents to possible outcomes of their actions. In this way, CL,
ATL and STIT allow to reason about capabilities of agents and coalitions of agents in
game-like multi-agent systems. They have been in focus since the beginning of the 90s
in game theory (CL), in theoretical computer science (ATL) and in philosophy of action
(STIT).1 While several approaches in the literature propose to extend these logics by
PDL-like modalities [17, 1], in this paper we reduce these logics to dynamic logic. As
Johan van Benthem has recently emphasized [7], this is an unsolved and fundamental

1Note that in the STIT literature “capabilities” are usually called “abilities”, cf. e.g. the title of [21].
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problem in the field of logic for multi-agent systems. We show that under the assump-
tion that the number of atomic actions is finite this reduction can be done by adding
to PDL a modality of historic necessity � that quantifies over possible combinations
of actions of all agents. This operator is similar to the operator of historic necessity of
STIT logic. We call the resulting logic Dynamic Logic of Agency, abbreviated DLA.
DLA supports reasoning about individual and joint actions and about individual and
coalitional capabilities, and enables expressing that the agents in a coalition C can en-
sure ϕ by acting together no matter what the other agents do. If C is a singleton {i}
then this just means that i has the capability to ensure ϕ.
DLA is a minimalistic framework for the specification of strategic settings and

multi-agent environments: cooperation modalities for expressing capabilities of agents
and coalitions are not primitive, but are defined from the more basic concept of action.

In this paper we show that DLA embeds STIT logic. Moreover, in order to reason
about the knowledge of agents about their capabilities we extend DLA with epistemic
operators, resulting in the logic DLA+K. This allows to express that an agent i has
the power to bring about a certain state of affairs ϕ, alias ‘i has an uniform strategy to
ensure ϕ’, that is, i knows how to ensure ϕ by acting in a certain way. We show that in
DLA with knowledge operators we can draw nontrivial inferences showing that, given
certain initial conditions, an agent has the power to ensure a certain state of affairs ϕ.

In a follow-up paper [24] we focus on the study of game-theoretic concepts in
Dynamic Logic of Agency. We present a variant ofDLA calledDDLA (Deterministic
DLA) where it is supposed that the outcome that a certain joint action of all agents can
force is uniquely determined, that is, a joint action of all agents δ admits at most one
result state. Therefore, in DDLA, given a certain joint action δ of all agents, it cannot
both be the case that all agents can ensure ϕ by doing δ, and can ensure ¬ϕ by doing
the same δ. We show that DDLA embeds Coalition Logic. We then extend DDLA
with modal operators for expressing agents’ preferences and show that the resulting
logic is sufficiently expressive to formulate game-theoretical solution concepts such as
Nash equilibrium.

The paper is organized as follows. In Section 2 we introduce the dynamic logic
of agency DLA and provide completeness results and definitions for individual and
coalitional capability. In Section 3 we present a discrete version of STIT logic under
the assumption that agents’ choices are bounded, and show that it can be embedded
into DLA. Section 4 is devoted to an epistemic extension of DLA within which we
can characterize a notion of power. Section 5 discusses related work, and Section 6
concludes.

Throughout the paper, we suppose a fixed finite set of individual agents Agt =
{i1, i2, . . . , i|Agt|} (of cardinality |Agt |) and a countable set of atomic formulas Atm =
{p1, p2, . . .}.

2 Dynamic Logic of Agency DLA
The logic DLA (Dynamic Logic of Agency) combines the expressiveness of PDL in
which actions are first-class citizens in the object language, with the expressiveness of
a logic of agency and of individual and coalitional capabilities.
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As several authors have argued [7, 1, 32], it is interesting to add names for ac-
tions (and beyond that, strategies) to logics such as STIT, CL and ATL: first, actions
explain where the agents’ capabilities come from; and second, they give us more ex-
pressive power. In this paper we work out the first perspective, and show that the
STIT-modalities can be reconstructed from PDL-like modalities for actions.

2.1 Syntax
The syntactic primitives of DLA are the finite set of agents Agt , the set of atomic
formulas Atm and a nonempty finite set of atomic actions Act = {a1, a2, . . . , a|Act|}.

The language LDLA of the logic DLA is given by the following BNF:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈i:a〉ϕ | ♦ϕ

where p ranges over Atm , a ranges over Act , and i ranges over Agt .
The classical Boolean connectives ∧,→,↔ and > (tautology) are defined from ⊥,

∨ and ¬ in the usual manner.
We assume that every agent performs exactly one action at a time, that all agents

simultaneously act, leading to a unique successor state. Therefore the formula 〈i:a〉ϕ
reads “agent i performs action a and ϕ holds afterwards”, and 〈i:a〉> reads “i performs
a”. (Note that this reading slightly differs from the standard PDL reading “there is
an execution of action a after which ϕ holds”, which takes into account that there
could be different executions of a leading to different successor states.) The operator ♦
quantifies over agents’ choices of actions. ♦ϕ reads “ϕ is true for some possible joint
action of all agents”, or simply “ϕ is possibly true”.

The formula [i:a]ϕ abbreviates ¬〈i:a〉¬ϕ, and �ϕ abbreviates ¬♦¬ϕ. Therefore,
[i:a]⊥ has to be read “i does not perform action a”, and �ϕ has to be read “ϕ is true
for every possible joint action of all agents”, or simply “ϕ is necessarily true”, or “ϕ is
settled true”.

The following abbreviations are convenient to speak about joint actions. Sets of
agents are called coalitions, noted C1, C2, . . . To every i ∈ Agt we associate the set of
all possible ordered pairs i:a, that is,

Act i
def
= {i:a | a ∈ Act}

In i:a, agent i is the agent which performs a. Besides, we note ∆ the set of all possible
combinations of agents’ actions (or joint actions of all agents), that is,

∆
def
=

∏
i∈Agt

Act i

One might think of ∆ as the set of all possible strategy profiles in the game theoretic
sense. Just as in game theory we suppose that at a given time point every agent performs
exactly one action, and that all actions of different agents occur in parallel. Elements
of ∆ are |Agt |-tuples noted δ, δ′, δ′′, . . . We note δi the element in δ corresponding to
agent i. For example, if Agt = {1, 2, 3} and δ = 〈1:a, 2:b, 3:c〉, then δ1 = 1:a. For
coalitions we note

δC
def
= (δi)i∈C
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the tuple of all δi for i ∈ C. Hence δAgt = δ, and for Agt = {1, 2, 3}, C = {1, 3} and
δ = 〈1:a, 2:b, 3:c〉 we have δC = 〈1:a, 3:c〉. Finally, the following abbreviation will be
useful to axiomatize DLA. For any δ ∈ ∆ and C ⊆ Agt :

〈δC〉ϕ
def
=

∧
j∈C
〈δj〉ϕ

〈δC〉ϕ stands for “the joint action δC is performed by coalition C, and ϕ holds af-
terwards”. For example, 〈1:a, 3:c〉ϕ abbreviates 〈1:a〉ϕ ∧ 〈3:c〉ϕ. By convention
〈δ∅〉ϕ = >. As expected, the dual [δC ]ϕ of 〈δC〉ϕ is defined as ¬〈δC〉¬ϕ.

2.2 DLA-frames
Frames are tuples F = 〈W,R,∼〉 where:

• W is a nonempty set of possible worlds or states;

• R : Agt × Act −→ W × W maps every agent-action pair i:a to a transition
relation Ri:a ⊆W ×W between possible worlds;

• ∼ is an equivalence relation on W .

In order to formulate constraints on frames it is convenient to define

RδC
def
=

⋂
i∈C

Rδi

Moreover, given a possible world w, the sets of worlds ∼(w)
def
= {w′ ∈ W | w′ ∼ w}

and RδC (w)
def
= {w′ ∈W | wRδCw′} will be used throughout the paper. If Ri:a(w) 6=

∅ then i performs a at w. More generally, if RδC (w) 6= ∅ then coalition C performs
joint action δC at w. If w′ ∈ RδC (w) then world w′ results from the performance of
joint action δC by C at w.

InDLA every world w in a frame is identified by a unique joint action of all agents
that is performed in that world. If w ∼ w′ then w and w′ can only be distinguished
by the joint actions of all agents performed at w and w′. In other words, if w ∼ w′

then the joint action of all agents that is performed at w′ is alternative to that performed
at w. For short, we say that w′ is alternative to w. Consider e.g. Agt = {1, 2} and
Act = {a, b}. In the frame in Fig. 1a we have w1 ∼ w2. This means that the joint
action of all agents performed at w1 (i.e., 〈1:a, 2:a〉) is alternative to the joint action
of all agents performed at w2 (i.e., 〈1:a, 2:b〉). We have ∼(w1) = {w1, w2, w3, w4}
and ∼(w5) = {w5}. Readers who are familiar with STIT theory may have noted that
there is a link between an equivalence class ∼(w) in a DLA-frame and the notions of
‘moment’ and ‘history’ of STIT theory: the equivalence class ∼(w) corresponds to a
moment in the STIT sense, and every world in ∼(w) corresponds to a history passing
through this moment.

If there exists w′ ∈ ∼ (w) such that the agents in coalition C perform the joint
action δC at w′ then we say that δC is possible at w (or that δC can be performed at
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w). For example, in the frame in Fig. 1a the joint action 〈1:b, 2:b〉 of agents 1 and 2 is
possible at w1.

Frames will have to satisfy some constraints in order to be DLA-frames. First,
we suppose that at every world w there is a unique joint action of all agents that is
performed at w. Moreover, there exists exactly one successor of w via that joint action.
It follows that an agent performs exactly one deterministic action at w, which occurs in
parallel with the actions of the other agents. We also suppose that, if every individual
action in a joint action δ is possible at w, then their simultaneous occurrence is also
possible at w. Finally, we suppose the temporal structure of actions to be tree-like, in
the sense that two alternative worlds must have the same history of joint actions of all
agents. More precisely, if world v′ is alternative to world v then v′ and v must result
from the performance of the same joint action of all agents at two alternatives worlds
w′ and w.

These constraints are spelled out in the following paragraph.

Constraints on DLA-frames Frames have to satisfy the following semantic con-
straints S.1-S.5 in order to be DLA-frames.

For every w,w′, w′′ ∈W , i, j ∈ Agt , a, b ∈ Act and δ ∈ ∆:

(S.1) if w′ ∈ Ri:a(w) and w′′ ∈ Rj:b(w) then w′ = w′′;

(S.2)
⋃
a∈Act Ri:a(w) 6= ∅;

(S.3) if a 6= b then Ri:a(w) = ∅ or Ri:b(w) = ∅;

(S.4) if for every i ∈ Agt there is vi such that vi ∼ w and Rδi(vi) 6= ∅ then there is a
v such that v ∼ w and Rδi(v) 6= ∅ for all i ∈ Agt ;

(S.5) if there is v ∈ Rδ(w) such that v ∼ v′ then there is a w′ such that w ∼ w′ and
v′ ∈ Rδ(w′).

According to S.1, all actions of the same agent and all actions of different agents
occurring in w lead to the same world, that is, for every world w there is at most one
successor state of w. Therefore all actions that are performed at w occur in parallel.
This justifies our reading of 〈i:a〉ϕ as “i does a and ϕ is true afterwards”, and of 〈i:a〉>
as “i does a”.

Constraint S.2 says that there is at least one action done by agent i at w: agents
are never passive. Together, S.1 and S.2 ensure that there is exactly one next (future)
world:

⋃
δ∈∆Rδ(w) =

⋃
i∈Agt,a∈Act Ri:a(w) is a singleton. We can therefore define

a function Next in order to identify this successor world:

Next(w) = w′ iff
⋃

i∈Agt, a∈Act

Ri:a(w) = {w′}

Constraints S.1 and S.2 ensure that the function Next is defined everywhere on W .
This will allow us in Section 2.5 to interpret the next-operator of linear temporal logic.

Constraint S.3 says that every agent can perform at most one action at a time.

5



Constraint S.4 says that the agents’ choices of actions are independent. It can
be written more concisely: if (∼◦Rδi)(w) 6= ∅ for every i then (∼◦Rδ)(w) 6= ∅.
According to S.4, if at w every individual action δi is possible (i.e., every i-th element
δi of the joint action δ is possible), then the joint action δ of all agents is possible at
w. For example in Fig. 1a, action 1:b and action 2:b are both possible at w1. Indeed,
action 1:b is performed both at w3 and w4, and action 2:b is performed both at w2 and
w4. Therefore joint action 〈1:b, 2:b〉 has to be possible at w1 as well. Indeed, the joint
action 〈1:b, 2:b〉 is performed at w4, and w1 ∼ w4.

According to S.5, if δ is the joint action of all agents performed at w with outcome
v, and v′ is alternative to v, then there exists a world w′ such that δ is the joint action of
all agents performed at w′, world w′ is alternative to w, and v′ is the effect of δ at w′.
This can be written more concisely as: (Rδ◦∼) ⊆ (∼◦Rδ) for all δ ∈ ∆. For example
in Fig. 1b, 〈1:a, 2:a〉 is the joint action of all agents performed at w1 with outcome w9,
and world w10 is alternative to w9. Therefore there is a world alternative to w1 (viz.
w2) in which the joint action 〈1:a, 2:a〉 is performed with outcome w10. Constraint S.5
implies that alternative worlds must have the same history. It follows that the temporal
structure of actions is tree-like. It also follows from S.5 that, if δ is performed at w,
and after δ joint action δ′ is possible, then the sequential composition of δ and δ′ is
possible at w. Imagine there are only two agents Bill and Bob, and w is the world
corresponding to the action of Bill and the action of Bob of going to the same pizzeria
in order to meet each other. Let Next(w) = v, i.e., v is the world resulting from Bob
and Bill going to the pizzeria at w, and let v′ be an alternative to v with respect to
the combination of Bill’s and Bob’s choices for the subsequent action: at v Bill and
Bob both ask for lasagne, while at v′ they both ask for pizza margherita. According
to the condition S.5, there must be an alternative w′ to w with respect to the same
combination of Bill’s and Bob’s choices for the next action such that Next(w′) = v′,
i.e. such that v′ is reachable from w′ through the execution of Bill and Bob’s joint
action of going both to the pizzeria. Constraint S.5 is the DLA counterpart of the no
choice between undivided histories constraint of STIT logic (cf. Section 3).

REMARK. Determinism is not assumed in DLA, in the sense that we do not suppose
that the worlds in an equivalence class ∼(w) correspond to the occurrences of different
joint actions of all agents. In other words, the same joint action δ may be performed
at two different alternatives w and w′. This allows for nondeterministic effects of
δ. Consider for instance w1 ∼ w2 in Fig. 1b: w1 and w2 correspond to the same
joint action of all agents, namely 〈1:a, 2:a〉. In the follow-up paper [24] we integrate
determinism into DLA.

A simple example of a DLA-frame for Agt = {1} is F0 = 〈W,R,∼〉 such that
W = {w, v}, R1:a = {〈w,w〉}, R1:b = {〈v, v〉}, and ∼ is the reflexive and symmetric
closure of the relation {〈w, v〉}. In F0, the agent always has the choice between actions
a and b.

2.3 DLA-models and validity
A DLA-model is an ordered pair M = 〈F, π〉 where F is a DLA-frame (satisfying
constraints S.1-S.5) and π : Atm −→ 2W is a valuation function.
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Figure 1: Two examples of DLA-frames where the equivalence relation ∼ is depicted
by putting boxes around alternative worlds, such as w1, w2, w3 and w4 in frame (a).
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Truth conditions for contradiction, atomic formulas, negation and disjunction are
entirely standard. The truth conditions for the modal operators are:

• M,w |= 〈i:a〉ϕ iff M,w′ |= ϕ for some w′ ∈ Ri:a(w)

• M,w |= ♦ϕ iff M,w′ |= ϕ for some w′ ∈ ∼(w)

A formula ϕ is true in a DLA-model M iff M,w |= ϕ for every world w in M . ϕ is
DLA-valid (noted |=DLA ϕ) iff ϕ is true in all DLA-models. ϕ is DLA-satisfiable
iff ¬ϕ is not DLA-valid.

REMARK. We do not suppose that w′ ∼ w implies that w′ and w differ only by the
agents’ choices for the next action. If we had done so, then we should have imposed
that w′ ∼ w implies that (w′ ∈ V (p) iff w ∈ V (p) for every p). While this is a natural
constraint, it is not required by the present analysis (on this point, see also [21, p. 586,
footnote 2]).

REMARK. It is for philosophical reasons that we chose to have actions as primitives.
Technically, instead of building the semantics of DLA from PDL, it is also possible
to build it from Linear-time Temporal Logic LTL. This would amount to replace the
accessibility relations for actions in models by a total successor function

succ : W −→ (Agt −→ ActAgt)×W )
associating to each world both an action for every agent and an outcome world. From
that we can define relations Ri:a by stipulating wRi:aw′ iff succ(w) = (f, w′) and
f(i) = a.

2.4 Axiomatization
The axiom schemas of DLA are the following.

All principles of classical propositional logic(CPL)
All principles of modal logic S5 for �(S5�)
All principles of modal logic K for every [i:a](KAct )
〈i:a〉ϕ→ [j:b]ϕ(AltAct ) ∨
a∈Act

〈i:a〉>(Active)

〈i:a〉> → [i:b]⊥ if a 6= b(Single)

(
∧
i∈Agt

♦〈δi〉>)→ ♦〈δ〉>(Indep)

〈δ〉♦ϕ→ ♦〈δ〉ϕ(Perm)

The items KAct and S5� correspond to standard axiomatizations for the modal opera-
tors [i:a] and � (including rules of necessitation allowing to infer [i:a]ϕ and �ϕ from
ϕ). According to Axiom AltAct , if agent i ensures ϕ by doing action a then after any
agent j performs action b, it is the case that ϕ. This means that all actions occur in
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parallel. Axiom Active says that an agent always performs at least one action. Axiom
Single says that an agent cannot perform more than one action at a time. According
to axiom Indep, given a joint action of all agents δ, if the individual actions δi are
possible for every i ∈ Agt , then the joint action δ is possible. Indep is the counterpart
of the so-called axiom of independence of agents of STIT logic [6]. Axiom Perm is
a permutation principle between the operator ♦ and operators for joint action 〈δ〉. It
expresses that the alternatives after a joint action δ are alternative outcomes of δ now.
Note that the last two axioms are well-formed formulas because Agt is finite, and that
Axiom Active is so because Act is finite.

We callDLA the logic that is axiomatized by the eight principles CPL, S5�, KAct ,
AltAct , Active, Single, Indep and Perm. We write `DLA ϕ if ϕ is a theorem of
DLA. Examples are `DLA 〈i:a, j:b〉ϕ→ 〈i:a〉ϕ and `DLA (♦〈i:a〉> ∧ ♦〈j:b〉>)→
♦〈i:a, j:b〉>.

We can prove that DLA is sound and complete with respect to the class of DLA-
frames.

Theorem 1. DLA is determined by the class of DLA-frames.

Proof. All axioms of DLA are in the Sahlqvist class. Using the Sahlqvist algorithm
[30, 8], it is routine to prove that the Axioms AltAct , Active, Single and Indep ofDLA
respectively correspond to the constraints S.1, S.2, S.3, S.4. Moreover, it is straight-
forward to prove that Axiom Perm corresponds to the following constraint S.5∗. For
every δ ∈ ∆ and v1, . . . , v|Agt|, v

′
1, . . . , v

′
|Agt| ∈W :

(S.5∗) if wRδi1 v1, . . . , wRδi|Agt|
v|Agt| and v′1 ∼ v1, . . . , v

′
|Agt| ∼ v|Agt|, then there is

w′ such that w ∼ w′, and w′Rδiv
′
1 or . . . or w′Rδiv

′
|Agt| for all i ∈ Agt .

(Remember that Agt = {i1, . . . , i|Agt|}.) It is straightforward to prove that the con-
straints S.1 and S.5 together imply S.5∗, and that S.5∗ implies S.5. Therefore, the
class of frames defined by S.1, S.2, S.3, S.4, S.5 is the same as the one defined by S.1,
S.2, S.3, S.4, S.5∗. Completeness of DLA then follows from Sahlqvist’s complete-
ness theorem [30, 8]. ut

2.5 Defining cooperation modalities
Now we define two notions of “seeing to it that” in the language of DLA. The first
notion relates a joint action of a coalitionC to its result. For every δ ∈ ∆ andC ⊆ Agt :

Stit(δC , ϕ)
def
= 〈δC〉> ∧�(〈δC〉> → ϕ)

Stit(δC , ϕ) stands for “the joint action δC is going to be performed by C, and necessar-
ily if C is going to perform δC then ϕ is true, no matter what the agents outside C do”,
or simply “C sees to it that ϕ by performing the joint action δC”. Just as in STIT logic,
ϕ is about the actual state before δC is performed and not about the state resulting from
δC . The truth condition for Stit(δC , ϕ) is the following:

• M,w |= Stit(δC , ϕ) iff RδC (w) 6= ∅ and for all w′ such that w ∼ w′,
if RδC (w′) 6= ∅ then M,w′ |= ϕ.
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Note that Stit(δ∅, ϕ)↔ �ϕ is a DLA-theorem because 〈δ∅〉> is so.
The second notion abstracts from actions and only relates coalitions and outcomes.

For every C ⊆ Agt :
StitCϕ

def
=

∨
δ∈∆

Stit(δC , ϕ)

StitCϕ stands for “coalition C sees to it that ϕ by performing some joint action, no
matter what the agents outside C do” or simply “C sees to it that ϕ”. Hence

StitCϕ =
∨
δ∈∆(〈δC〉> ∧�(〈δC〉> → ϕ)).

The truth condition for StitCϕ is the following:

• M,w |= StitCϕ iff there is δ ∈ ∆ s.th. RδC (w) 6= ∅ and for all w′ s.th. w ∼ w′,
if RδC (w′) 6= ∅ then M,w′ |= ϕ.

Using Axioms Active and Single we get:
`DLA StitCϕ ↔

∧
δ∈∆(〈δC〉> → �(〈δC〉> → ϕ)).

The operators ♦ and StitC and the previous construction Stit(δC , ϕ) allow to ex-
press what C can bring about no matter what agents outside C do.2 ♦Stit(δC , ϕ) has
to be read “C can see to it that ϕ by performing the joint action δC”, whereas ♦StitCϕ
has to be read “C can see to it that ϕ”.

The following DLA-theorems highlight some interesting properties.

Proposition 1. Let δ ∈ ∆ and C ⊆ Agt . Then:

`DLA Stit(δC , ϕ)→ ϕ(1a)
`DLA StitCϕ→ ϕ(1b)

Proof. Theorems 1a and 1b follow straightforwardly from Axiom T for �. ut

According to theorem 1a, if C sees to it that ϕ by performing the joint action δC ,
then ϕ is true. According to theorem 1b, if C sees to it that ϕ then ϕ is true.

Proposition 2. Let δ ∈ ∆ and C,C ′ ⊆ Agt . Then:

`DLA [δC ]ϕ→ [δC∪C′ ]ϕ(2a)

`DLA (
∧
i∈C

♦〈δi〉>)→ ♦〈δC〉>(2b)

`DLA StitC(ϕ1 ∧ ϕ2)↔ (StitCϕ1 ∧ StitCϕ2)(2c)
`DLA StitC>(2d)
`DLA ¬StitC⊥(2e)

if `DLA ϕ1 ↔ ϕ2 then `DLA StitCϕ1 ↔ StitCϕ2(2f)
`DLA StitCϕ→ StitC∪C′ϕ(2g)
`DLA �ϕ→ StitCϕ(2h)

2This corresponds to Weber’s concept of power as the capacity of an individual to resist to all interferences
of other individuals, that is, “. . .the probability that one actor within a social relationship will be in a position
to carry out his own will despite resistance. . .” [34, p. 152].
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Proof. The proof of theorem 2a just requires the definition of [δC ]ϕ. That of theorem
2b is similar to the proof that S.5∗ is the same as S.5 under S.1, as established in the
proof of the completeness theorem for DLA (Theorem 1). That of 2c just requires the
definition of StitCϕ. That of 2d uses Axiom Active, and that of 2e uses Axiom T for
�. The proof of theorem 2g just uses Axiom Active. Finally, theorem 2h is proved
from the definition of StitC using standard modal principles. ut

Theorem 2a is a monotonicity property for joint actions: if after the joint action
δC it is the case that ϕ, then after the joint action δC∪C′ by the bigger C ∪ C ′ it must
be the case that ϕ. Theorem 2b generalizes Axiom Indep to coalitions. Theorems
2c-2f establish that our operators StitC are normal modal operators which satisfy the
principle D. Theorem 2g says that if a coalition ensures ϕ then ϕ is a fortiori ensured
by all bigger coalitions.

Proposition 3. Let C ⊆ Agt . Then:

`DLA StitCϕ→ StitCStitCϕ(3a)
`DLA ¬StitCϕ→ StitC¬StitCϕ(3b)

Proof. We give an extensive proof of theorem 3a. StitCϕ abbreviates
∨
δ∈∆(〈δC〉> ∧

�(〈δC〉> → ϕ)) which implies∨
δ∈∆(〈δC〉> ∧��(〈δC〉> → ϕ)),

by Axiom 4 for �. The latter implies∨
δ∈∆(〈δC〉> ∧�(〈δC〉> → (〈δC〉> ∧�(〈δC〉> → ϕ)))).

Finally, the latter implies∨
δ∈∆(〈δC〉> ∧�(〈δC〉> →

∨
δ∈∆(〈δC〉> ∧�(〈δC〉> → ϕ))))

which is nothing but StitCStitCϕ. Theorem 3b can be proved in a similar way using
Axiom 5 for �. ut

Theorems 3a and 3b are the standard modal axioms 4 and 5. As StitC also obeys T
(Theorem 1b), it follows that the logic of StitC contains S5.

Proposition 4. Let C1, C2 ⊆ Agt such that C1 ∩ C2 = ∅. Then:

`DLA (♦StitC1ϕ1 ∧ ♦StitC2ϕ2)→ ♦StitC1∪C2(ϕ1 ∧ ϕ2)(4a)
`DLA Stit∅ϕ↔ �ϕ(4b)
`DLA (♦StitC1ϕ ∧ ♦StitC2¬ϕ)→ ⊥(4c)

Proof. We only prove theorem 4a.
The formula ♦StitC1ϕ1 ∧ ♦StitC2ϕ2 abbreviates

♦(
∨
δ∈∆(〈δC1〉> ∧�(〈δC1〉> → ϕ1))) ∧ ♦(

∨
δ∈∆(〈δC2

〉> ∧�(〈δC2
〉> → ϕ2)))

which in turn implies
(
∨
δ∈∆(

∧
j∈C1

♦〈δj〉>∧ �(〈δC1
〉> → ϕ1))) ∧

(
∨
δ∈∆(

∧
j∈C2

♦〈δj〉>∧ �(〈δC2
〉> → ϕ2))).

From the latter we can infer∨
δ∈∆(

∧
j∈C1∪C2

♦〈δj〉>∧ �(〈δC1〉> → ϕ1)∧ �(〈δC2〉> → ϕ2)),
and from this we can infer

11



∨
δ∈∆(♦〈δC1∪C2〉>∧ �(〈δC1〉> → ϕ1)∧ �(〈δC2〉> → ϕ2))

(by theorem 2b and by the fact that C1 ∩ C2 = ∅). The latter implies∨
δ∈∆(♦〈δC1∪C2

〉>∧ �(〈δC1∪C2
〉> → (ϕ1 ∧ ϕ2)))

from which we can infer
♦(

∨
δ∈∆(〈δC1∪C2

〉>∧ �(〈δC1∪C2
〉> → (ϕ1 ∧ ϕ2)))),

and this is nothing but ♦StitC1∪C2(ϕ1 ∧ ϕ2). ut

Theorem 4a says that two disjoint coalitions can combine their efforts to ensure a
conjunction of outcomes.3 Theorem 4b says that the empty coalition sees to it that ϕ
no matter what all agents do iff ϕ is necessarily true. Theorem 4c, which is a direct
consequence of Theorem 4a, says that two disjoint coalitions can never bring about
conflicting effects.

The second of the following two DLA-theorems shows that another principle of
agency holds in DLA as well, namely Xu’s axiom schema for the independence of
agents of STIT logic [6]. We write Stitiϕ instead of Stit{i}ϕ for singleton coalitions,
and recall that Agt = {i1, . . . , i|Agt|}.

Proposition 5.

`DLA (♦Stiti1ϕ1 ∧ . . . ∧ ♦Stiti|Agt|ϕ|Agt|)→ ♦Stit{i1,...,i|Agt|}(ϕ1 ∧ . . . ∧ ϕ|Agt|)
(5a)

`DLA (♦Stiti1ϕ1 ∧ . . . ∧ ♦Stiti|Agt|ϕ|Agt|)→ ♦(Stiti1ϕ1 ∧ . . . ∧ Stiti|Agt|ϕ|Agt|)
(5b)

Proof. Theorem 5a follows from theorem 5b by theorem 2g and theorem 2c.
Theorem 5b is proved by induction on |Agt |. Let us prove first the basic case:

♦Stiti1ϕ1 ∧ ♦Stiti2ϕ2

is equivalent to
♦(

∨
δ∈∆(〈δi1〉> ∧�(〈δi1〉> → ϕ1))) ∧ ♦(

∨
δ∈∆(〈δi2〉> ∧�(〈δi1〉> → ϕ2)))

which in turn implies∨
δ∈∆(♦〈δi1〉> ∧ ♦〈δi2〉> ∧�(〈δi1〉> → ϕ1) ∧�(〈δi2〉> → ϕ2)).

From the latter we can infer∨
δ∈∆(♦(〈δi1〉> ∧ 〈δi2〉>) ∧�(〈δi1〉> → ϕ1) ∧�(〈δi2〉> → ϕ2)),

by theorem 2b. The latter implies∨
δ∈∆ ♦(〈δi1〉> ∧ 〈δi2〉> ∧�(〈δi1〉> → ϕ1) ∧�(〈δi2〉> → ϕ2))

which is equivalent to
♦(Stiti1ϕ1 ∧ Stiti2ϕ2).

For the induction step, suppose
`DLA (♦Stiti1ϕ1 ∧ . . . ∧ ♦Stiti|Agt|−1

ϕ|Agt|−1)→
♦(Stiti1ϕ1 ∧ . . . ∧ Stiti|Agt|−1

ϕ|Agt|−1).
We have to prove that
`DLA (♦Stiti1ϕ1 ∧ . . . ∧ ♦Stiti|Agt|ϕ|Agt|)→ ♦(Stiti1ϕ1 ∧ . . . ∧ Stiti|Agt|ϕ|Agt|).

First,
3This corresponds to the superadditivity axiom of Pauly’s Coalition Logic (CL) [27]. There, it takes the

form [C1]ϕ1 ∧ [C2]ϕ2 → [C1 ∪ C2] (ϕ1 ∧ ϕ2), for C1 ∩ C2 = ∅, where [C]ϕ reads “coalition C can
ensure ϕ no matter the other agents do”. This axiom is going to be explored further in [24].
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♦Stiti1ϕ1 ∧ . . . ∧ ♦Stiti|Agt|ϕ|Agt|
implies

♦(Stiti1ϕ1 ∧ . . . ∧ Stiti|Agt|−1
ϕ|Agt|−1) ∧ ♦Stiti|Agt|ϕ|Agt|

by induction hypothesis. The latter implies
♦(

∨
δ∈∆(

∧
1≤k≤|Agt|−1(〈δik〉> ∧�(〈δik〉> → ϕk))))∧

♦(
∨
a∈Act(〈i|Agt|:a〉> ∧�(〈i|Agt|:a〉> → ϕ|Agt|))),

which in turn implies
♦(

∨
δ∈∆(

∧
1≤k≤|Agt|(〈δik〉> ∧�(〈δik〉> → ϕk))))

by theorem 2b. The latter is finally equivalent to ♦(Stiti1ϕ1 ∧ . . . ∧ Stiti|Agt|ϕ|Agt|).
ut

According to theorem 5a, if i1 can see to it that ϕ1, i2 can see to it that ϕ2, etc., then
agents i1, . . . , i|Agt| can combine their capabilities in such a way that they can jointly
see to it that ϕ1 ∧ . . . ∧ ϕ|Agt|. According to theorem 5b, if i1 can individually ensure
that ϕ1, i2 can individually ensure that ϕ2, etc., then it is possible that simultaneously,
i1 ensures that ϕ1, i2 ensures that ϕ2, etc.

Due to the constraints S.1 and S.2 worlds have unique temporal successors. There-
fore we can introduce a next time operator by means of an abbreviation.

Xϕ
def
=

∧
a∈Act

[i:a]ϕ

where i is an arbitrary agent in Agt . Xϕ can be read “ϕ will be true at the next state”.
Clearly, X can be interpreted by the mapping Next that we have defined in Section 2.2,
that is:

M,w |= Xϕ iff M,Next(w) |= ϕ,
and X is a normal modality. Furthermore, it can be proved (using Axioms Active and
Single) that both Xϕ↔ ¬X¬ϕ and Xϕ↔

∨
a∈Act〈i:a〉ϕ are DLA-valid.

The last DLA-theorems are useful for better understanding the relationship be-
tween DLA and STIT logic. This relationship will be established in Section 3.4.

Proposition 6. Let C ⊆ Agt and i, j ∈ Agt such that i 6= j. Then:

`DLA 〈δC〉♦ϕ→ ♦〈δC〉ϕ(6a)
`DLA X♦ϕ→ ♦Xϕ(6b)
`DLA StitiStitjϕ↔ �ϕ(6c)
`DLA ♦StitiStitjϕ↔ �ϕ(6d)
`DLA StitiXStitjϕ↔ X�ϕ(6e)
`DLA X�ϕ→ ♦StitiXStitjϕ(6f)

Proof. Theorem 6a can be proved as follows: by Axiom Active, 〈δC〉♦ϕ implies
〈δC〉♦ϕ ∧

∨
δ′∈∆〈δ′Agt\C〉>. The latter implies

∨
δ′∈∆〈δC .δ′Agt\C〉♦ϕ by standard

modal principles, from which we get
∨
δ′∈∆ ♦〈δC .δ′Agt\C〉ϕ by Axiom Perm. The lat-

ter implies ♦〈δC〉ϕ. To prove the right-to-the-left direction of theorem 6c, it suffices to
note that `DLA �ϕ → StitiStitjϕ follows from the S5-principles for � and theorem
2h.
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For the left-to-the-right direction we prove the contrapositive. First, by applying
Active twice we get

`DLA ♦ϕ→
∨
i:a(〈i:a〉> ∧ ♦(

∨
j:b(〈j:b〉> ∧ ϕ))).

From the latter we get
`DLA ♦ϕ→

∨
i:a

∨
j:b(〈i:a〉> ∧ ♦(〈j:b〉> ∧ ϕ))

by standard modal principles. We then obtain
`DLA ♦ϕ→

∨
i:a

∨
j:b(〈i:a〉> ∧ ♦(〈i:a〉> ∧ 〈j:b〉> ∧ ♦(〈j:b〉> ∧ ϕ)))

by Axiom Indep and S5 principles. Finally we get
`DLA ♦ϕ→

∨
i:a(〈i:a〉> ∧ ♦(〈i:a〉> ∧

∨
j:b(〈j:b〉> ∧ ♦(〈j:b〉> ∧ ϕ))))

by standard principles. Using the equivalence `DLA Stitiϕ ↔
∧
i:a(〈i:a〉> →

�(〈i:a〉> → ϕ)) the latter is nothing but
`DLA ♦ϕ→ ¬StitiStitj¬ϕ.

ut

Propostion 6 provides evidence that our operator Stiti indeed captures a strong
notion of agency of the kind “an agent sees to it that something is the case no matter
what the other agents do”. If there are only two agents 1 and 2, and 1 sees to it (no
matter what 2 does) that 2 sees to it that ϕ (no matter what 1 does), then ϕ neither
depends on 2’s nor on 1’s choice. This is the reason why ϕ has to be inevitable, i.e.,
necessarily true. The same properties hold in STIT logic.

3 Discrete STIT with bounded choices
STIT theory is one of the most prominent accounts of agency in philosophy of action.
It is the logic of constructions of the form ‘agent i sees to it that ϕ holds’. We here
focus on the so-called Chellas STIT theory [6, 21, 20].4

The semantics of STIT is defined in terms of BT +AC structures: branching-time
structures (BT ) augmented by agent choice functions (AC).

We here consider only BT structures where time is discrete, with an initial moment
and without endpoints. Moreover, we only consider AC functions where the number of
choices is bounded. We call this version finite choice STIT logic.

3.1 BT structures
A BT structure is an ordered pair 〈Mom,<〉, where Mom is a nonempty set of mo-
ments and < is a tree-like ordering on Mom. We define m ≤ m′ as: m < m′ or
m = m′. Therefore < and ≤ are interdefinable: m < m′ is equivalent to m ≤ m′ and
m 6= m′.

We suppose that ≤ satisfies the following constraints.

Assumption 1. (tree order).

• Reflexivity5: m ≤ m.

4Chellas’ original operator is nevertheless notably different since it does not come with the principle of
independence of agents that plays a central role in STIT theory.

5This is the original definition. We note in passing that the definition of≤ already guarantees reflexivity.
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• Transitivity: if m ≤ m′ and m′ ≤ m′′ then m ≤ m′′.

• Antisymmetry: if m ≤ m′ and m′ ≤ m then m = m′.

• No backward branching: ifm1 ≤ m andm2 ≤ m thenm1 ≤ m2 orm2 ≤ m1.

We moreover postulate the following constraints.

Assumption 2. (discrete time with initial moment and without endpoints).

• Discreteness: for every m,m′ ∈ Mom, if m < m′ then there is a moment m′′

such that m < m′′ ≤ m′ and there is no m′′′ such that m < m′′′ < m′′.

• Initial moment: there is a m0 ∈Mom such that for all m ∈Mom, m0 ≤ m.

• No endpoints: for every m ∈Mom there is m′ such that m < m′.

Given a discrete BT structure with initial moment and without endpoints, we can
define the immediate successor function Succ:

Succ(m) = {m′ ∈Mom | m < m′ and there is no m′′ such that m < m′′ < m′}

Discreteness and No endpoints together imply that Succ(m) 6= ∅ for all m ∈ Mom,
and No backward branching entails that Succ(m) ∩ Succ(m′) = ∅ when m 6= m′.

A maximal set of linearly ordered moments from Mom is called a history. Due to
the Initial moment constraint every history starts with m0. When m ∈ h we say that
moment m is on the history h. Hist is the set of all histories. We then define the set of
histories passing through the moment m:

Hm = {h ∈ Hist | m ∈ h}

Clearly every Hm is nonempty.
An index is a pair m/h consisting of a moment m and a history h ∈ Hm. If m/h

is an index then Succ(m) ∩ h is a singleton; we call its unique element the next index
after m/h, noted Next(m/h).

3.2 BT + AC structures and STIT-models
A BT +AC structure is a tuple M = 〈Mom,<,Choice, π〉, where:

• 〈Mom,<〉 is a BT structure;

• Choice : Agt ×Mom −→ 22Hist

is a function mapping each agent and each
moment m into a partition of Hm.

The equivalence classes of the partition Choicemi correspond to the possible choices
(alias possible actions) that are available to agent i at moment m. Given a history
h ∈ Hm, the particular choice from Choicemi containing h is defined as:

Choicemi (h) = {h′ ∈ Hm | there is Q ∈ Choicemi such that h, h′ ∈ Q}

In other words, Choicemi (h) is the action performed by agent i at the index m/h.
Several constraints are imposed by Belnap et al. on the Choice function [6, 21].
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Assumption 3. (Liveness).6 For every i ∈ Agt and m ∈ Mom, Choicemi 6= ∅ and
∅ 6∈ Choicemi .

Two histories h1 and h2 are said to be undivided at momentm iff there is a moment
m′ > m such that m′ ∈ h1 ∩ h2.

Assumption 4. (No choice between undivided histories). If two histories h1 and h2

are undivided at a moment m, then h2 ∈ Choicemi (h1) for every agent i.

Given a moment m, an action selection function at m is a mapping
sm : Agt −→ 2Hm

such that sm(i) ∈ Choicemi for each m ∈ Mom and i ∈ Agt . Every sm selects
a particular action for each agent. The set of all selection functions at m is noted
Selectm.

Assumption 5. (Independence of agents). For every moment m and sm ∈ Selectm:⋂
i∈Agt

sm(i) 6= ∅

This constraint says that the agents’ choices combine in an independent way.
We here add the following assumption which is necessary in order to match our

logic DLA.

Assumption 6. (Bounded choice). For every i ∈ Agt and m ∈ Mom, the cardinali-
ties of the sets Choicemi are bounded by a constant NChoice .

Therefore at every moment an agent has at most NChoice available choices.

Horty [20] extends the domain of the Choice function from individual agents to
sets of agents:

ChoicemC = {
⋂
i∈C

sm(i) | sm ∈ Selectm}

In words, the set of choices of a coalition is obtained by pointwise intersection of
individual choices.

A STIT-model with discrete time, with initial moment, without endpoints and bounded
choice (henceforth STIT-model for short) is a quadruple 〈Mom,<,Choice, π〉 where
〈Mom,<,Choice〉 is a BT + AC structure satisfying Assumptions 1-6, and π :
Atm −→ 2Mom×Hist is a valuation function.

3.3 STIT language and truth conditions
The language of STIT logic is given by the following BNF:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | Xϕ | [C cstit:ϕ] | �ϕ
6We note in passing that this is explicitly required in [6], but actually follows from the fact that by

definition, every Choicemi partitions the nonempty set Hm.
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where p ranges over Atm and C ranges over 2Agt . �ϕ reads “ϕ is historically neces-
sary”, [C cstit:ϕ] reads “the coalition of agents C sees to it that ϕ no matter what the
agents outside C do”, and Xϕ reads “ϕ will be true next”.

In a STIT-model M , formulas are evaluated with respect to moment-history pairs.

• M,m/h |= p iff m/h ∈ π(p), for p ∈ Atm

• M,m/h 6|= ⊥

• M,m/h |= ¬ϕ iff M,m/h 6|= ϕ

• M,m/h |= ϕ ∨ ψ iff M,m/h |= ϕ or M,m/h |= ϕ

• M,m/h |= Xϕ iff M,Next(m/h)/h |= ϕ

• M,m/h |= �ϕ iff M,m/h′ |= ϕ for all h′ such that h′ ∈ Hm

• M,m/h |= [C cstit:ϕ] iff M,m/h′ |= ϕ for all h′ such that h′ ∈ ChoicemC (h)

Historic necessity at a moment m is interpreted as truth in all histories passing
through m (the actual history is irrelevant for this); agency is interpreted as truth in all
histories that are in the agent’s current choice.

A formula ϕ is STIT-valid (noted |=STIT ϕ) iff M,m/h |= ϕ for every moment-
history pair m/h of every STIT-model M . As usual, ϕ is STIT-satisfiable iff ¬ϕ is not
STIT-valid.

3.4 Embedding STIT logic into DLA
We can prove that our logic DLA is a generalization of STIT when time is discrete,
without endpoints and with initial moment and when choices are bounded.

Suppose the upper bound of the choices is set to NChoice . Consider the following
translation from the language of STIT to that of DLA.

tr(p) = p
tr(⊥) = ⊥
tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)
tr(Xϕ) = Xtr(ϕ)
tr(�ϕ) = �ϕ

tr([C cstit:ϕ]) = StitCtr(ϕ)

where Act = {a1, . . . , aNChoice
}.

As the following theorem shows, our translation is a correct embedding:

Theorem 2. Let ϕ be a STIT formula. ϕ is satisfiable in STIT-models with choices
bounded by NChoice iff tr(ϕ) is DLA-satisfiable with Act = {a1, . . . , aNChoice

}.

Proof. See the Annex. ut
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3.5 Discussion
Up to now, complete axiomatizations exist only for the fragment of STIT where the
agency operator is parametrized by singletons, i.e., where agentive formulas can only
take the form [i cstit:ϕ] [6, 4]. A complete axiomatization of the full STIT language
with operators for coalitional agency [C cstit:ϕ] (where C ⊆ Agt) was recently shown
to be impossible: the language of STIT with coalitional agency is non-axiomatizable
(even when there are no temporal operators) [15]. Our logic DLA therefore fills an
existing gap in the literature on logical models of agency. The non-axiomatizability of
the full coalitional-agency STIT highlights that our assumption of bounded choice is
crucial for our axiomatizability result.

Furthermore, as it does not mention the temporal dimension, the complete axioma-
tization of the fragment of STIT given in [6] does not guarantee the No choice between
undivided histories constraint. More generally, although we do not have a proof, it
seems to us that this property cannot be expressed in a language without action names.
On the contrary, such a condition is expressed elegantly in DLA by Axiom Perm.

4 Adding knowledge
We now extendDLA by epistemic operators. Such an extension allows to reason about
the agents’ knowledge of their capabilities. This is crucial when we want to say that
an agent has the power to make ϕ true: it is not enough that agent i has an action
ensuring ϕ in his repertoire, i also has to know that the action indeed ensures ϕ [13, 5].
Consider a room where the light is off, and consider a blind agent Bob who does not
know whether the light is on or not. Such a situation can be described by the epistemic
formula ¬Light ∧ ¬KBobLight ∧ ¬KBob¬Light . Bob might either do nothing (noted
λ), or toggle the switch (action toggle). If Bob opts for the latter then he switches the
light on, but he does not know this. In other words, while Bob has the capability to
make Light true, he does not have the power to make Light true.

A lot of effort was spent in the last years in order to build logics of strategic ca-
pability. Most of the approaches added epistemic concepts to game logics such as CL
and ATL [1, 23, 22, 18]. All these approaches face difficulty in meeting an important
desideratum for a logic of strategic capability, namely to allow to express the concept
of uniform strategy (an agent being able to identify a strategy that enforces a certain
result ϕ [31]). In other words, what is required is to distinguish de re sentences of the
form “agent i knows that there is an action to achieve ϕ” and de dicto sentences of the
form “there is an action of which agent i knows that it achieves ϕ”. Let us illustrate
this point by our example.

CL has cooperation modalities [C] and constructions of the form [C]ϕ, read “coali-
tion C can ensure ϕ no matter what the other agents do”. Consider the straightforward
extension of CL that is obtained by adding epistemic operators of the form Ki to the
CL language, and adding corresponding relations of epistemic uncertainty to the CL-
models, and suppose our example scenario is modelled by some epistemic CL-model
M with actual world w. Then the formula KBob [Bob]Light is true at world w of M :
indeed, at every world that is possible for Bob the formula [Bob]Light is true, that is,
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there is an action he might choose achieving the goal. But Bob’s choice is not uniform,
because at a possible world w he should choose toggle , and at a possible world w′ he
should choose λ (do nothing). To sum it up, it seems that there is no straightforward
extension of CL allowing to express in a natural way that Bob does not have the power
to make Light true (i.e. Bob does not know how to make Light true).

It has been argued in [16, 11] that the problem comes from the fact that the modal
operators in CL and ATL are fused: a single operator quantifies first existentially over
agents’ choices, and then universally over the possible outcomes of choices. In order to
meet the previous desideratum for a logic of strategic capability, it was proposed there
to rather add epistemic operators to STIT logic. This can be illustrated by our example:
the epistemic STIT formula

♦KBobStitBobLight
is false, while

KBob♦StitBobLight
is true. This highlights the distinction between the de dicto sentence “there is an action
of which Bob knows that it achieves Light” and the de re sentence “Bob knows that
there is an action achieving Light”. The former sentence also expresses that Bob has a
uniform strategy to achieve Light .

In this section we ‘put to work’ the STIT solution and show that in DLA we can
go beyond what can be done in STIT. From which set of hypotheses do we deduce that
Bob does not have the power to achieve Light? It seems that the only way to do this in
an epistemic extension of STIT is by describing the static situation by

ϕs = ¬Light ∧ ¬KBobLight ∧ ¬KBob¬Light ,
and the dynamics by

KBob♦StitBobLight ∧ ¬♦KBobStitBobLight .
But the latter already contains the intended conclusions. In the epistemic extension
DLA+K of our DLA we can go beyond that: we can describe the situation and the
available actions explicitly, and draw nontrivial inferences. We shall show in Section
4.2.2 that

Γ |=DLA+K ϕs → (KBob♦StitBobLight ∧ ¬♦KBobStitBobLight)

holds, where the set of formulas Γ describes the behavior of the ‘skip’ and ‘toggle’
actions and the formula ϕs describes the initial situation. But let us first introduce
DLA+K.

4.1 Syntax and semantics
We extend the language of DLA by constructions Kiϕ that are read as usual “agent i
knows that ϕ”. We call the resulting logic DLA+K.
DLA+K-frames are tuples F = 〈W,R,∼, E〉 where 〈W,R,∼〉 is a DLA-frame

as defined in Section 2.1, and

• E : Agt −→ W ×W associates to every agent i an equivalence relation Ei on
W .

When wEiw′ then for agent i, world w′ is (epistemically) possible at w.
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We suppose that DLA+K-models moreover satisfy the following uniformity con-
straint. For any w,w′ ∈W , i ∈ Agt and a ∈ Act :

(S.6) if wEiw′ then Ri:a(w) 6= ∅ iff Ri:a(w′) 6= ∅.

This means that agents know what they are going to do. Such a principle is a conse-
quence of our assumptions that (1) the performance of an atomic action a by an agent
i is the product of i’s decision to do a (in this sense atomic actions are performed in-
tentionally) and (2) that an agent is always aware of the occurrence of the action he has
decided to perform (see [25] for an extensive analysis of these assumptions). Thus, if
an agent starts to perform a certain atomic action a (after his decision to perform it), he
knows that he is actually performing it. For example if I decide to close the window of
my office and start to do this, I am aware of the fact that I am in the process of closing
the window. This principle has also been studied in [28].

Due to S.6, 〈i:a〉> → Ki〈i:a〉> is valid. We call that Axiom Awareness. The
logic of Ki being S5, the equivalence 〈i:a〉> ↔ Ki〈i:a〉> is also valid, as well as
[i:a]⊥ ↔ Ki [i:a]⊥.

The truth condition for the epistemic operator is then as usual:

• M,w |= Kiϕ iff M,w′ |= ϕ for all w′ such that wEiw′.

Understanding sets of hypotheses Γ as being global, we define logical consequence by:

• Γ |=DLA+K ϕ iff for every DLA+K-model M , if M,w |= ψ for all ψ ∈ Γ and
all worlds w in M , then M,w |= ϕ for all worlds w in M .

Deduction with global hypotheses Γ ` ϕ is defined accordingly (allowing to apply
necessitation to global hypotheses of Γ). In our example Γ contains action laws such as
Light → [Bob:toggle]¬Light . Such formulas have to be viewed as global hypotheses
because they hold before and after any sequence of actions, and are supposed to be
known by the agent: necessitation by �, [Bob:toggle], [Bob:toggle] and KBob can be
applied to them.

4.2 Deducing powers
In our example we have Agt = {Bob}, and Act = {λ, toggle}. We prove that

Γ |=DLA+K ϕs → (KBob♦StitBobLight ∧ ¬♦KBobStitBobLight)

holds in DLA+K, where

ϕs = �¬KBobLight ∧�¬KBob¬Light ∧ KBob(�Light ∨�¬Light)

describes the initial situation, and

Γ = { Light → [Bob:λ]Light ,
¬Light → [Bob:λ]¬Light ,
Light → [Bob:toggle]¬Light ,
¬Light → [Bob:toggle]Light ,
♦〈Bob:λ〉>,
♦〈Bob:toggle〉> }
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models the action laws. Remember that as the formulas in Γ are global hypotheses, we
thus suppose that Bob knows the action laws, that action laws are necessary, and that
they hold after any (sequence of) action(s). We take Γ to be global hypotheses since we
want an action theory to be a description of the possible effects of agents’ action which
holds everywhere in a model, as usually supposed in logical approaches to action and
change such as Situation Calculus [29].

We first prove that Γ ` ϕs → KBob♦StitBobLight .
1. ` ϕs → KBob(�Light ∨ �¬Light) from CPL

2. Γ ` KBob♦〈Bob:toggle〉> from Γ

3. Γ ` KBob♦〈Bob:λ〉> from Γ

4. Γ ` ϕs → KBob((�Light ∧ ♦〈Bob:λ〉>) ∨ (�¬Light ∧ ♦〈toggle〉>)) from 1, 2, 3
5. Γ ` KBob(�Light → � [Bob:λ]Light) from Γ

6. Γ ` KBob(�¬Light → � [Bob:toggle]Light) from Γ

7. Γ ` ϕs → KBob((� [Bob:λ]Light ∧ ♦〈Bob:λ〉>) ∨ (� [Bob:toggle]Light ∧ ♦〈toggle〉>))
from 4, 5, 6

8. Γ ` ϕs → KBob
∨

a∈Act (♦〈Bob:a〉> ∧ � [Bob:a]Light) from 7
9. Γ ` ϕs → KBob

∨
a∈Act ♦(〈Bob:a〉> ∧ � [Bob:a]Light) from 8 by S5-principles for �

10. Γ ` ϕs → KBob♦
∨

a∈Act (〈Bob:a〉> ∧ �(〈Bob:a〉> → XLight) from 97

11. Γ ` ϕs → KBob♦StitBobXLight from 10

We finally prove that Γ ` ϕs → ¬♦KBobStitBobLight .
1. ` �(〈Bob:toggle〉> → KBob〈Bob:toggle〉>) from DLA+K Axiom Awareness
2. ` ϕs → �¬KBob¬Light from ϕs

3. ` ϕs → �(〈Bob:toggle〉> → ¬KBob¬(Light ∧ 〈Bob:toggle〉>)) from 1, 2
4. Γ ` �KBob(Light → [Bob:toggle]¬Light) from Γ

5. Γ ` �KBob((Light ∧ 〈Bob:toggle〉>)→ 〈Bob:toggle〉¬Light) from 4
6. Γ ` ϕs → �(〈Bob:toggle〉> → ¬KBob¬〈Bob:toggle〉¬Light) from 3,5
7. ` �KBob(〈Bob:toggle〉> → [Bob:λ]⊥) from DLA axiom Single
8. Γ ` ϕs → �(〈Bob:toggle〉> → ¬KBob¬(〈Bob:toggle〉¬Light ∧ [Bob:λ]⊥)) from 6,7
9. Γ ` ϕs → �(〈Bob:toggle〉> → ¬KBob¬

∧
a∈Act (〈Bob:a〉> → ♦〈Bob:a〉¬Light)) from 8

10. Γ ` ϕs → �(〈Bob:λ〉> → ¬KBob¬
∧

a∈Act (〈Bob:a〉> → ♦〈Bob:a〉¬Light))
similarly to proof of 9 from 1-8

11. ` �(〈Bob:toggle〉> ∨ 〈Bob:λ〉>) from DLA Axiom Active
12. Γ ` ϕs → �¬KBob¬

∧
a∈Act (〈Bob:a〉> → ♦〈Bob:a〉¬Light) from 9,10,11

13. Γ ` ϕs → �¬KBob
∨

a∈Act (〈Bob:a〉> ∧ �(〈Bob:a〉> → XLight)) from 12
14. Γ ` ϕs → ¬♦KBobStitBobLight from 13

REMARK. We have only postulated here very few properties governing the interaction
between the epistemic operator K and the other operators ofDLA because they suffice
to highlight our way of inferring powers from a given action description. However,
supplementary principles might be introduced to strengthen DLA. For example, a
principle of no-forgetting Ki [j:a]ϕ → [j:a]Kiϕ, and the symmetric principle of no-
learning ([j:a]Kiϕ ∧ ¬ [j:a]⊥) → Ki [j:a]ϕ (where i and j might be different) seem
reasonable under some assumptions such as public action. See [12] for a discussion
about interaction axioms between historic necessity and knowledge.

7This is the case because � [i:a]ϕ↔ �(〈i:a〉> → Xϕ) is valid inDLA (and hence also inDLA+K).
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5 Comparison with other logics of cooperation
Beyond STIT As shown in [10], STIT is more expressive than CL, and STIT ex-
tended with strategies (strategic STIT) is even more expressive than ATL. Our logic
DLA embeds finite choice STIT logic and inherits the expressive advantages of STIT
over ATL and CL, and over the existing approaches based on ATL and CL (see for
example [3, 17]). In particular, while ATL and CL only support reasoning about what
agents and coalitions can bring about, STIT and DLA also enable expressing what
agents and coalitions actually bring about.

Moreover, as we have shown in Section 4, differently from ATL and CL, in STIT
and DLA it is straightforward to capture the distinction between de re sentences of
the form “agent i knows that there is an action to achieve ϕ” and de dicto sentences of
the form “there is an action of which agent i knows that it achieves ϕ”. As shown in
Section 4, this distinction can be captured in DLA by permuting ♦ and Ki, that is, by
moving fromKi♦Stitiϕ (de re) to ♦KiStitiϕ (de dicto). We therefore can characterize
the concept of uniform strategy inDLA (as an agent being able to identify and execute
a strategy that enforces a certain result ϕ).

Nevertheless, it has to be noted that DLA goes beyond STIT. As shown in [4],
while complexity of satisfiability is PSPACE-complete in CL and EXPTIME in ATL,
it is NEXPTIME-hard in STIT already even for the language without coalitions and
without time. As we have already stressed in Section 3.5, recently it was shown that
the language of STIT with coalitions is non-axiomatizable even without time [15]. On
the contrary, DLA has a sound and complete axiomatization due to our assumption of
bounded choices.

Moreover, DLA is more expressive than STIT since it makes explicit the actions
and joint actions on which capabilities of agents and coalitions are based. That is,
while in STIT (as well as in ATL and CL) the means for achieving a certain outcome
are only available at the semantic level, in DLA they are also represented in the object
language. More generally, while STIT, ATL and CL merely focus on who can achieve a
certain state of affairs,DLA also considers how that state of affairs can be achieved. As
shown in Section 4, given this feature of DLA, we can provide an epistemic extension
of it in which nontrivial inferences of the following form can be drawn: given an initial
situation ϕs and an action theory Γ describing the effects of the agents’ actions, infer
whether a certain agent i has a uniform strategy to ensure a certain state of affairs ϕ
(i.e., whether i knows how to ensure ϕ).

Logics of ∃∀-capability The DLA formula ♦StitCϕ (corresponding to the STIT
construction ♦ [C cstit:ϕ]) is read “coalition C can ensure ϕ no matter what the other
agents do”, and express a classical concept of game theory called ∃∀-capability (also
called α-ability in the literature) of agents and coalitions. Intuitively, a coalition C is
said to have ∃∀-capability for ϕ if and only if there exists a joint action (or collective
choice) δC of the agents in C such that, for all joint actions (or collective choices)
δ′Agt\C of the agents in Agt \C, if C does δC and Agt \C does δ′Agt\C , then ϕ will be
true. This translates into the DLA formula

∨
δ(♦〈δC〉> ∧ �(〈δC〉> → ϕ)), which is

equivalent to ♦StitCϕ. Note that the formula ♦StitCXϕ better expresses the concept
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of C’s ∃∀-capability for ϕ as given in CL in which actions are supposed to produce
effects in the next state.

There is another important type of capability of agents and coalitions that is studied
in game theory and that we have not considered until now. This is commonly referred
to as ∀∃-capability, or β-ability (see for instance [26] for a discussion on the distinction
between ∃∀-capability and ∀∃-capability). Intuitively, a coalition C is said to have ∀∃-
capability for ϕ, if and only if for every joint action (or collective choice) δAgt\C of the
agents in Agt \ C, there exists a possible joint action (or collective choice) δ′C of the
agents in C such that necessarily ϕ will be true if C does δ′C and Agt \C does δAgt\C .

The concept of ∀∃-capability can be expressed in CL as well as in some variants of
CL such as Coalition Logic of Propositional Control (CL-PC) [19].8 It is worth noting
that we can do the same in our logic DLA. The fact “coalition C has the ∀∃-capability
for ϕ” is expressed by the following DLA formula:∧

δ∈∆

(♦〈δAgt\C〉> →
∨
δ′∈∆

(♦〈δ′C〉> ∧�((〈δAgt\C〉> ∧ 〈δ′C〉>)→ ϕ)))

It explicitly formalizes the informal definition of ∀∃-capability given above (where
‘explicit’ means that the universal and the existential quantification over actions appear
in the formula). It is equivalent in DLA to the construction ¬♦StitAgt\C¬ϕ. This
means that a coalition C has ∀∃-capability for a certain outcome ϕ if and only if,
coalition Agt \ C cannot ensure ¬ϕ no matter what the agents in C do. That is, for
every joint action of coalition Agt \C, coalition C can prevent ϕ to be false. Note that
the formula ¬♦StitAgt\CX¬ϕ better expresses the concept of C’s ∀∃-capability for ϕ
in CL’s sense.

REMARK. Related works extending CL by PDL-like actions such as [9] and [32] will
be discussed in the follow-up paper [24].

6 Conclusion
We have introduced a logic of action, individual and coalitional power called Dynamic
Logic of Agency (DLA). We have shown that DLA provides a sound and complete
axiomatization for coalitional agency, and that it embeds a variant of STIT logic having
discrete time, initial moment, no endpoints and bounded choices. We have presented
an extension of DLA with knowledge operators and we have shown that such an ex-
tension allows to characterize the conditions under which agents become aware of their
capabilities and powers, and therefore allows to reason about uniform strategies.

In the follow-up paper [24] we show that the fact that DLA has action names in its
language makes it a suitable framework for reasoning about game theoretic concepts
which require an explicit representation of the joint actions (or strategy profiles) of
agents and coalitions.

Directions for future research are manifold. For instance,DLA only allows reason-
ing about next states and single-step actions, and is therefore too weak to account for

8See [33] for a recent application of CL-PC to game theory.
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strategies in the sense of ATL and strategic STIT. A way to overcome this limitation is
to enrich the dynamic logic fragment of our two logics by introducing additional PDL
constructs such as action composition (;), choice (∪) and iteration (∗). Starting from
such an extension one should be able to find a translation from strategic STIT to DLA
and to generalize the results presented in Section 3.4.

The assumption that the set Act of atomic actions is finite is central in the present
paper. It is needed in order to define the STIT operator in DLA by means of the dis-
junction over all combinations of agents’ actions (see Section 2.5). We think that this
assumption is not overly restrictive at least for game-theoretic scenarios and for AI set-
tings, where agents are generally supposed to have a finite number of atomic actions in
their repertoires.9 For example, in a robotics application, we can safely suppose that an
agent’s action repertoire consists of a finite number of elementary bodily movements.
This will allow to extend our analysis to human agency.
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A Annex: proof of Theorem 2 of Section 4
We first prove the left-to-right direction, and then provide an extensive proof of the
right-to-left direction of the theorem.

If ϕ0 is STIT-satisfiable then tr(ϕ0) is DLA-satisfiable.
Suppose thatϕ0 is STIT-satisfiable, i.e., there isMSTIT = 〈Mom,<,Choice, πSTIT 〉
and there is an index m/h in M such that MSTIT ,m/h |= ϕ0.

Let NChoice = |Act |, i.e., Act = {a1, . . . , aNChoice
}.

The DLA-model M ′ = 〈W,R,∼, π〉 associated with the STIT-model MSTIT is
defined as follows.

• W = {m/h | m ∈Mom,h ∈ Hm};

• for every m/h and m′/h′ ∈W , m/h ∼ m′/h′ iff m = m′;

• for every m/h ∈W and p ∈ Atm , m/h ∈ π(p) iff m/h ∈ πSTIT (p).

W is defined as the set of indexes of the STIT-model MSTIT . Two worlds m/h and
m′/h′ in W are ∼-equivalent iff they are indexes of the STIT-model MSTIT which
belong to the same moment in Mom.

In order to define the accessibility relationsRi:a we label the elements of Choicemi
by actions from Act . Formally, we associate mappings fi,m : Hm −→ Act to every
moment m in Mom and agent i in Agt such that:

fi,m(h) = fi,m(h′) iff there is Q ∈ Choicemi (h) such that h, h′ ∈ Q.
Therefore Choicemi (h) = {h′ | fi,m(h) = fi,m(h′)}.

Intuitively, fi,m assigns a distinct action in Act to every element of the partition
Choicemi . This is possible because Act has at least as many elements as Choicemi due
to Assumption 6 of Section 3.

We are now in the position to define the accessibility relations Ri:a. For every
i ∈ Agt , a ∈ Act and m/h and m′/h′ ∈W :

• m′/h′ ∈ Ri:a(m/h) iff fi,m(h) = a and m′ ∈ Succ(m) and h = h′.

It is a routine task to check that M ′ is indeed a DLA-model and that tr(ϕ0) is true
at M ′,m/h.

If tr(ϕ0) is DLA-satisfiable then ϕ0 is STIT-satisfiable.
Suppose that tr(ϕ0) isDLA-satisfiable, i.e., there is aDLA-modelM = 〈W,R,∼, π〉
and a world ω0 ∈W such that M,ω0 |= tr(ϕ0). We are going to unravel R into a tree
model [8]. Let us first introduce two useful notations.

First, we abbreviate sequences 〈w1, . . . , wn〉 by −→wn, and write −→wn.wn+1 instead of
〈w1, . . . , wn, wn+1〉. Second, we define:

w ∼i v iff w ∼ v and for every a ∈ Act , Ri:a(w) 6= ∅ iff Ri:a(v) 6= ∅
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and
w ∼C v iff w ∼i v for every i ∈ C

We therefore have ∼∅ = ∼. Due to constraint S.5, if Next(w) ∼ v′ then there is v
such that w ∼Agt v and v′ = Next(v).

Definition of the new DLA-model M ′

We are now ready to transform theDLA-modelM into a new modelM ′ = 〈W ′, R′,∼′
, π′〉 where:

• W ′ = {−→wn | n ∈ N, w1 ∼ ω0, and wk+1 = Next(wk) for 1 ≤ k ≤ n−1};

• ∼′(−→wn) = {−→vm | m = n and vk ∼Agt wk for 1 ≤ k ≤ n};

• R′i:a(−→wn) = {−→wn.wn+1 | wn+1 ∈ Ri:a(wn)};

• −→wn ∈ π′(p) iff wn ∈ π(p).

By our definition, −→wn.wn+1 ∼′ −→vn.vn+1 implies −→wn ∼′Agt
−→vn. More generally we

have:

(A) if −→wn ∼′ −→vn then wk ∼ vk and −→wk ∼′Agt
−→vk for all k < n.

Moreover, by our definition and because M satisfies constraint S.5, we have:

(B) if −→wn ∈W and wn ∼ v then there is −→vn ∈W ′ such that vn = v and −→wn ∼′ −→vn.

Consider a variant of the example frame F0 of Section 2.2 such that W = {w, v},
Ri:a = {〈w,w〉, 〈v, v〉} and ∼ is the reflexive and transitive closure of the relation
{〈w, v〉}. Then F ′0 = 〈W ′, R′,∼′〉 such that
W ′ = {−→wn | wk = w for every k ≤ n} ∪ {−→vn | vk = v for every k ≤ n}
R′i:a = {〈−→wk,−−−→wk+1〉 | k ≥ 1} ∪ {〈−→vk,−−→vk+1〉 | k ≥ 1}
∼′ =

⋃
k≥1{〈

−→wk,−→wk〉, 〈−→vk,−→vk〉, 〈−→wk,−→vk〉, 〈−→vk,−→wk〉}.

Bounded morphism

It is routine to check that the mapping f : −→wn 7→ wn defines a bounded morphism from
M ′ to M . Indeed, it follows straightforwardly from the definition of R′i:a and ∼′ that
−→wn ∈ R′i:a(−→vm) implies wn ∈ Ri:a(vm), and that −→wn ∼′ −→vm implies wn ∼ vm. The
other way round it follows from the definition of R′i:a that v ∈ Ri:a(f(−→wn)) implies
that there is −→vm ∈ R′i:a(−→wn) (viz. −→vm = −→wn.v) such that f(−→vm) = v. It remains to
prove that if f(−→wn) ∼ v then there is −→vn such that vn = v and −→vn ∼′ −→wn. This is our
observation (B) after the definition of M ′.

As f is a bounded morphism it holds that M,ω0 |= tr(ϕ0) iff M ′,−→ω0 |= tr(ϕ0).
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M ′ is a DLA-model

M ′ clearly satisfies the constraints S.1, S.2, S.3 for DLA-models. We prove that it
also satisfies S.4 and S.5.

Let us start with constraint S.4. Consider a world −→vn in W ′. Suppose that for every
j ∈ Agt it holds that there is −−→wn,j such that −→vn ∼′ −−→wn,j and R′δj (−−→wn,j) 6= ∅. By
the definitions of ∼′ and R′δj , the latter implies that there is wn such that wn ∼ vn
and Rδj (wn) 6= ∅ for every j ∈ Agt . By our observation (B) above, there must be
−→wn ∈W ′ such that −→wn ∼′ −→vn and for every j ∈ Agt , R′δj (−→wn) 6= ∅.

Now let us prove that the model M ′ satisfies S.5. Suppose
−→vn.vn+1 ∈

⋂
j∈Agt R

′
δj

(−→vn)

and −→vn.vn+1 ∼′ −→wn.wn+1. It follows from our observation (A) after the definition of
M ′ that we must have −→vn ∼′Agt

−→wn. Therefore there is −→un ∈ W ′ such that −→vn.wn+1 ∈⋂
j∈Agt R

′
δj

(−→un).
Note that M ′ is infinite because of constraint S.2 on DLA-models.
For the sequel, observe that we have

Next′(−→wn) = −→wn.Next(wn)

where Next and Next′ are the mappings respectively associated to
⋃
i,aRi:a and

⋃
i,aR

′
i:a

as defined in Section 2.2. If we view Next′ as a relation then the

(Next′)∗ = (
⋃

a∈Act

Ri:a)∗ for some i ∈ Agt

is the transitive closure of Next′.

From the DLA-model M ′ to the DLA-model M ′′

Our aim being to define a STIT-model fromM ′ by identifying moments with∼′ equiv-
alence classes, we still have to deal with one detail before we can do that. Consider the
above example frame F ′0 = 〈W,R,∼〉. Intuitively, F ′0 contains two (infinite) histories,
viz. {−→wn}n∈N and {−→vn}n∈N. The problem is that according to the BT +AC definition
of histories these two are identical because they never split up. To remedy this, what
we are going to do is simply to force these two histories to split from a depth on where
they are not going to modify the truth value of our formula ϕ0 that is true at world −→ω
of M ′.

Let SD(ϕ0) be the maximal number of nested STIT operators [C cstit: ] in ϕ0 (the
‘STIT-depth of ϕ0’).

We define M ′′ = 〈W ′′, R′′,∼′′, π′′〉 such that W ′′ = W ′, R′′ = R′, π′′ = π′, and

• −→vn ∼′′ −→wm iff −→vn = −→wm or −→vn ∼′ −→wm and m,n ≤ SD(ϕ0).

Therefore, if n > SD(ϕ0) and −→vn ∼′′ −→wm then −→vn = −→wn. Intuitively, our transfor-
mation from M ′ to M ′′ splits up all ∼′-equivalence classes beyond level SD(ϕ0) in
the tree model M ′. Therefore, two Next′-paths −→w1, . . . ,

−→vn and −→w1, . . . ,
−→wn such that

−→vk 6= −→wk and −→vk ∼′ −→wk for every k, are going to be separated in model M ′′ from level
SD(ϕ0) on in a way such that −→vi 6∼′′ −→wi for every i > SD(ϕ0).
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It is a routine task to prove that M ′′ is still a DLA-model and that M ′′ is unique.
Moreover, by construction of M ′, it is also a routine task to check that the transforma-
tion fromM ′ toM ′′ does not modify the truth value of formula tr(ϕ0) at−→ω0. Therefore
we have M ′′,−→ω0 |= tr(ϕ0).

We call a history in M ′′ any maximal Next-sequence in W ′′. Hence every h′′ :
N −→ W ′′ such that h′′(1) ∼′′ ω0 and h′′(n+1) = Next′′(h(n)) is a history in M ′′,
where Next′′ is the same as Next′.

Due to our transformation histories inM ′′ split up at some point in time: if h′′1 6= h′′2
are different histories in M ′′ then there is n ∈ N such that h′′1(n) 6∼′′ h′′2(n). It suffices
to inspect the above example frame to see that M ′ does not have that property.

The following two observations will be useful later:

• For every −→wn ∈W ′′ there is a unique history h−→wn
such that h−→wn

(n) = −→wn.

• h−→wn
= hNext(−→wn).

From the DLA-model M ′′ to the STIT-model

We are finally going to transform M ′′ into a STIT-model MSTIT for ϕ0. First, given
a world −→vn in W ′′ we note

∼′′(−→vn) = {−→un ∈W ′′ | −→un ∼′′ −→vn}

the ∼′′-equivalence class associated to −→vn. The set of moments Mom of the STIT-
model MSTIT is then nothing but the set of all∼′′-equivalence classes of M ′′-worlds:

• Mom = {∼′′(−→vn) | n ∈ N and −→vn ∈W ′′}

Note that Mom = {∼′′(−→vn) | n ∈ N, −→vn ∈ W ′′ and w1 ∼ ω0}. Then the relation <
over moments in Mom is defined by:

• ∼′′(−→vn) < ∼′′(−→wm) iff

n < m and ∼′′(−→vn) = {−→un | there are un+1, . . . , um such that −→um ∈ ∼′′(−→wm)}

Hence when ∼′′(−→vn) < ∼′′(−→wm) then ∼′′(−→vn) is the set of all prefixes of length n of
the sequences in ∼′′(−→wm).

It remains to prove that < induces a tree-like ordering on Mom as defined in Sec-
tion 3. It is rather straightforward to check that the five conditions Reflexivity, Transi-
tivity, Antisymmetry, No backward branching, Discreteness, Initial moment and
No endpoints are indeed satisfied. First, as we have observed in Section 2.2, reflexiv-
ity is always the case due to the definition of ≤ from <. Antisymmetry holds because
of the condition n < m in the above definition of <. Let us check transitivity of <:
suppose ∼′′(−→ul) < ∼′′(−→vm) and ∼′′(−→vm) < ∼′′(−→wn). Then ∼′′(−→ul) is the set of all
l-prefixes of ∼′′(−→vm), and ∼′′(−→vm) is the set of all m-prefixes of ∼′′(−→wn). Therefore
∼′′(−→ul) must be the set of all l-prefixes of ∼′′(−→wn). No backward branching holds
because there cannot be two different prefix sets of ∼′′(−→wn) having the same length.
Finally, the Initial moment of MSTIT is clearly ∼′′(−→ω0).

Together, Mom and < make up a BT structure as defined in Section 3.1.

30



Remember that a history is a maximal set of linearly ordered moments according to
the tree-like ordering <. Let HistSTIT be the set of all histories in the model MSTIT .
We have:
HistSTIT = {h : N→Mom | h(1) = ∼′′(−→ω0) and

h(n+1) = ∼′′(Next′′(−→wn)) for some −→wn ∈ h(n)}
As histories in M ′′ are separated, to every MSTIT -history h corresponds a unique

M ′′-history h′′ such that h′′(n) ∈ h(n) for all n ∈ N. Formally, there is a bijection g
mapping everyMSTIT -history h to the uniqueM ′′-history g(h) such that (g(h))(n) ∈
h(n) for every n ∈ N.

We are now in the position to define the choice function and the valuation function
of our STIT-model MSTIT . Let us start with the valuation function, noted πSTIT . We
stipulate that

(∼′′(−→wn), h) ∈ πSTIT (p) iff (g(h)∩ ∼′′(−→wn)) ⊆ π′′(p)
(Note that g(h)∩ ∼′′ (−→wn) is a singleton.) Then the choice function is defined as
follows.

• Choice∼
′′(−→wn)

i (h1) = {h2 ∈ HistSTIT | (g(h1))(n) ∼′′i (g(h2))(n)}

(where ∼′′i is defined as in the beginning of the proof).
Having defined all the ingredients of MSTIT = 〈Mom,<,Choice, πSTIT 〉, it

is now a routine task to prove that MSTIT satisfies the four STIT-conditions of Live-
ness, No choice between undivided histories, Independence of agents and Bounded
choice as defined in Section 3. For instance, consider No choice between undivided
histories. Suppose two histories h1, h2 ∈ HistSTIT are undivided at ∼′′ (−→wn), i.e.,
there is ∼′′(−→vm) such that ∼′′(−→wn) <∼′′(−→vm) and ∼′′(−→vm) ∈ h1 ∩ h2. Hence n < m
and (g(h1))(m) ∼′′ (g(h2))(m). As M ′′ satisfies No choice between undivided his-
tories we must have (g(h1))(n) ∼′′i (g(h2))(n). By definition of Choicewe have then
h2 ∈ Choice∼

′′(−→wn)
i (h1).

MSTIT satisfies ϕ0

To conclude the proof we show that MSTIT ,∼′′(−→ω0) |= ϕ0.
We prove by induction on the structure of ϕ that

M ′′,−→wn |= tr(ϕ) iff MSTIT ,∼′′(−→wn)/g−1(h−→wn
) |= ϕ

where h−→wn
is the unique M ′′-history passing through −→wn (as defined above).

The cases of atoms, ⊥, ¬ and ∨ are straightforward.
Consider the case ϕ = Xψ. The following statements are all equivalent.

1. M ′′,−→wn |= tr(Xψ)

2. M ′′,−→wn |= Xtr(ψ)

3. M ′′,Next′′(−→wn) |= tr(ψ)

4. MSTIT ,∼′′(Next′′(−→wn))/g−1(hNext(−→wn)) |= ψ (by induction hypothesis)
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5. MSTIT ,Next(∼′′(−→wn)/h−→wn
)/g−1(h−→wn

) |= ψ
(because hNext′′(−→wn) = h−→wn

and
∼′′(Next′′(−→wn)) = Next(∼′′(−→wn)/h−→wn

)

6. MSTIT ,∼′′(−→wn)/h−→wn
/g−1(h−→wn

) |= Xψ (by the STIT truth condition)

The proof for the case ϕ = [C cstit:ψ] follows the lines of that for Xψ, but is even
more fastidious to write down.

This concludes the proof.

32


