Skip to main content
Log in

Conway–Kochen and the Finite Precision Loophole

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recently Cator and Landsman made a comparison between Bell’s Theorem and Conway and Kochen’s Strong Free Will Theorem. Their overall conclusion was that the latter is stronger in that it uses fewer assumptions, but also that it has two shortcomings. Firstly, no experimental test of the Conway–Kochen Theorem has been performed thus far, and, secondly, because the Conway–Kochen Theorem is strongly connected to the Kochen–Specker Theorem it may be susceptible to the finite precision loophole of Meyer, Kent and Clifton. In this paper I show that the finite precision loophole does not apply to the Conway–Kochen Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This way of introducing hidden variable states is perhaps somewhat cumbersome, but it will be helpful for seeing the analogy with the Conway–Kochen Theorem in the next section.

  2. In three dimensions Conway and Kochen hold the record for the smallest number of vectors (31) [35, p. 114]. The constructions of Peres [35, p. 198] and Bub [11] both use 33 vectors of which the latter requires the least number of frames of all these results. Recently, the number of contexts has been minimized to 7 for the Hilbert space \(\mathbb {C}^6\) [32]. For more discussion on comparing sizes of Kochen–Specker sets see [9, 34] and references therein.

  3. A very incomplete list of examples is [4, 19, 20, 28, 30, 36, 40].

References

  1. Abbott, A.A., Calude, C.S., Svozil, K.: Strong Kochen–Specker theorem and incomputability of quantum randomness. Phys. Rev. A 89(3), 032109 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  2. Abbott, A.A., et al.: Strong Kochen–Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86(6), 062109 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  3. Appleby, D.M.: The Bell–Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 36, 1–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, D.: Bell’s inequalities and Kolmogorov’s axioms. Pramana 56(1–2), 139–152 (2001)

    Article  ADS  Google Scholar 

  5. Barrett, L., Kent, A.: Non-contextuality, finite precision measurement and the Kochen–Specker theorem. Stud. Hist. Philos. Mod. Phys. 35, 151–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  7. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3) (1966), Reprinted in [8], pp. 447–452

  8. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  9. Bengtsson, I.: Gleason, Kochen–Specker, and a competition that never was. AIP Conf. Proc. 1508(1), 125–135 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  10. Brown, H.R., Svetlichny, G.: Nonlocality and Gleason’s lemma. Part 1. Deterministic theories. Found. Phys. 20(11), 1379–1387 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bub, J.: Schütte’s tautology and the Kochen–Specker theorem. Found. Phys. 26(6), 787–806 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  12. Cabello, Adán: Finite-precision measurement does not nullify the Kochen–Specker theorem. Phys. Rev. A 65(5), 052101 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  13. Cator, E., Landsman, N.P.: Constraints on determinism: Bell versus Conway–Kochen. arXiv preprint. quant-ph/1402.1972 (2014)

  14. Clauser, J.F., et al.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  ADS  Google Scholar 

  15. Clifton, R.: Getting contextual and nonlocal elements of reality the easy way. Am. J. Phys. 61(5), 443–447 (1993)

    Article  ADS  Google Scholar 

  16. Clifton, R., Kent, A.: Simulating quantum mechanics by non-contextual hidden variables. Proc. Math. Phys. Eng. Sci. 456(2001), 2101–2114 (2001)

    Article  MathSciNet  Google Scholar 

  17. Conway, J.H., Kochen, S.: The free will theorem. Found. Phys. 36(10), 1441–1473 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Conway, J.H., Kochen, S.: The strong free will theorem. Not. AMS 56(2), 226–232 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–295 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23, 1306–1310 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  21. Goldstein, S., et al.: What does the free will theorem actually prove? Not. AMS 57, 1451–1453 (2010)

    MATH  Google Scholar 

  22. Griffiths, R.B.: Hilbert space quantum mechanics is noncontextual. Stud. Hist. Philos. Sci. B 44(3), 174–181 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Held, C.: The Kochen–Specker Theorem. The Stanford Encyclopedia of Philosophy. Zalta, E. N. (ed). Spring 2013 (2013)

  24. Hermens, R.: Quantum mechanics: from realism to intuitionism. arXiv preprint. quant-ph/1002.1410 (2010)

  25. Hermens, R.: The problem of contextuality and the impossibility of experimental meta-physics thereof. Stud. Hist. Philos. Sci. B 42(4), 214–225 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen–Specker paradox. Found. Phys. 13(5), 481–499 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  27. Hooker, C.A. (ed.): The Logico-Algebraic Approach to Quantum Mechanics Volume I. D. Reidel, Dordrecht (1975)

    Google Scholar 

  28. Jones, R.T., Adelberger, E.G.: Quantum mechanics and Bell’s inequalities. Phys. Rev. Lett. 72(17), 2675–2677 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Kent, A.: Noncontextual hidden variables and physical measurements. Phys. Rev. Lett. 83(19), 3755–3757 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Khrennikov, A.: Nonlocality as well as rejection of realism are only sufficient (but non-necessary!) conditions for violation of Bell’s inequality. Inf. Sci. 179, 492–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kochen, S., Specker, E. P: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–67 (1967). Reprinted in [27], pp. 293–328

  32. Lisoněk, P., et al.: Kochen–Specker set with seven contexts. Phys. Rev. A 89(4), 042101 (2014)

    Article  ADS  Google Scholar 

  33. Meyer, D.A.: Finite precision measurement nullifies the Kochen–Specker theorem. Phys. Rev. Lett. 83(19), 3751–3754 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Pavičić, M., et al.: Kochen–Specker vectors. J. Phys. A 38(7), 1577–1592 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, New York (2002)

    Google Scholar 

  36. Santos, E.: Does quantum mechanics violate the Bell inequalities? Phys. Rev. Lett. 66(11), 1388–1390 (1991)

    Article  ADS  Google Scholar 

  37. Shimony, A.: Contextual hidden variables theories and Bell’s inequalities. Br. J. Philos. Sci. 35(1), 25–45 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Smolin, L.: Three Roads to Quantum Gravity. Weidenfeld & Nicolson, London (2000)

    Google Scholar 

  39. Stairs, A.: Quantum logic, realism, and value definiteness. Philos. Sci. 50, 578–602 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Svetlichny, G., et al.: Do the Bell inequalities require the existence of joint probability distributions? Philos. Sci. 55(3), 387–401 (1988)

    Article  MathSciNet  Google Scholar 

  41. Wigner, E.P.: Die Messung quantenmechanischer Operatoren. Z. Phys. 133, 101–108 (1952)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgments

I would like to thank N. P. Landsman for encouraging comments on an early sketch of this paper. This work was supported by the NWO (Vidi Project nr. 016.114.354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronnie Hermens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermens, R. Conway–Kochen and the Finite Precision Loophole. Found Phys 44, 1038–1048 (2014). https://doi.org/10.1007/s10701-014-9827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9827-8

Keywords

Navigation