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Abstract. It is well known that the literature on judgment aggregation
inherits the impossibility results from the aggregation of preferences
that it generalises. This is due to the fact that the typical judgment
aggregation problem induces an ultra�lter on the the set of individuals,
as was shown in a model theoretic framework by Herzberg and
Eckert (2009), generalising the Kirman-Sondermann correspondence and
extending the methodology of Lauwers and Van Liedekerke (1995). In the
�nite case, dictatorship then immediately follows from the principality
of an ultra�lter on a �nite set. This is not the case for an in�nite set
of individuals, where there exist free ultra�lters, as Fishburn already
stressed in 1970. The main problem associated with free ultra�lters in the
literature on aggregation problems is however, the arbitrariness of their
selection combined with the limited anonymity they guarantee (which
already led Kirman and Sondermann (1972) to speak about invisible
dictators). Following another line of Lauwers and Van Liedekerke's (1995)
seminal paper, this note explores another source of impossibility results
for free ultra�lters: The domain of an ultraproduct over a free ultra�lter
extends the individual factor domains, such that the preservation of the
truth value of some sentences by the aggregate model � if this is as
usual to be restricted to the original domain � may again require the
exclusion of free ultra�lters, leading to dictatorship once again.
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1 Introduction

In the last decades, the literature on social choice theory has seen important
generalisations of the classical Arrovian problem of preference aggregation,
starting with isolated contributions on abstract and algebraic aggregation theory
by Wilson [14] resp. by Rubinstein and Fishburn [13] and culminating in the new
�eld of judgment aggregation (for a survey see List and Puppe [12]). An essential
feature of these generalisations is the extension of the problem of aggregation
from the aggregation of preferences to the aggregation of arbitrary information.
It thus seems natural to exploit the potential of model theory which, broadly
speaking, studies the relation between abstract structures and statements about
them (for an introduction to model theory see Bell and Slomson [2]) and to
analyse the problem of judgment aggregation as the problem of aggregating the
models that satisfy these judgments. This approach is justi�ed by the fact that
one of the major tools of model theory, namely the ultraproduct construction can
be shown to be equivalent to the construction of an aggregation rule satisfying
properties in the spirit of the conditions of Arrow's impossibility theorem, an
equivalence which is based on the role of ultra�lters in both cases. Thus a
generalisation of the Kirman-Sondermann [10] correspondence between Arrovian
aggregation rules and ultra�lters on the set of individuals was obtained (Herzberg
and Eckert [7]). For the case of a �nite set of individuals, this equivalence
immediately allows to derive a dictatorship result, as ultra�lters on �nite sets are
necessary principal, whence the ultra�lter on a �nite set of individuals always is
the set of all supersets of a singleton � the dictator.

Whilst this dictatorship result does not carry over to the case of an in�nite
set of individuals (where free ultra�lters exist), it is well known since Kirman and
Sondermann's [10] identi�cation of �invisible dictators� that free ultra�lters only
guarantee a limited amount of anonymity (as was also shown by Lauwers and Van
Liedekerke [11] in their model theoretic framework and by Dietrich and Mongin
[5] in the framework of judgment aggregation). On the other hand, the selection
of one of the numerous free ultra�lters entails some striking inherent arbitrariness
as was also pointed out by Lauwers and Van Liedekerke [11]. Perhaps even
more interestingly, the latter also have suggested another source of impossibility
results, viz. the preservation of non-universal formulae (e.g. formulae which
describe the existence of a best alternative or continuity of preferences), leading
to dictatorship results once again.

In this short note, we explore this suggestion by Lauwers and Van Liedekerke
[11] further: In a framework of abstract aggregation theory (which also allows
for the analysis of propositional and modal propositional judgment aggregation),
we prove a theorem about the general impossibility of non-dictatorial Arrovian
aggregators which preserve certain non-universal formulae.



2 A model-theoretic framework for abstract aggregation
theory

In this short note, we shall work within the framework of a previous paper
(Herzberg and Eckert [7]), in which Lauwers' and Van Liedekerke's [11] model-
theoretic approach to preference aggregation (with a recent correction by
Herzberg et al. [8]) is carried over to more abstract aggregation problems.

Let A be an arbitrary set. Let L be a language consisting of at most countably
many predicate symbols Ṗn, n ∈ N, and constant symbols ȧ for all elements a
of A. The arity of Ṗn will be denoted δ(n), for all n ∈ N. (Following common
practice in mathematical logic, we use dots to distinguish symbols of the formal
object language from the symbols of the meta language.)

Let T be a consistent set of universal (i.e. Π1) sentences in L.4 (In the case
of preference aggregation, for example, A would be the set of alternatives, there
would be just one binary predicate symbol, and T would consist of the weak
order axioms.)

The relational structure B = 〈B, {Pn : n ∈ N}〉 with A ⊆ B is called a
realisation of L with domain B or an L-structure if and only if the arities of
the relations Pn correspond to the arities of the predicate symbols Ṗn, that is
if Pn ⊆ Bδ(n) for each n. The interpretation of the constant symbols does not
need to be speci�ed, but will be �xed uniformly for all L-structures: For each
L-structure B, the interpretation of the constant symbol ȧ is, for every a ∈ A,
just ȧB = a. In other words, in this article, all L-structures are understood to
have a domain ⊇ A and to interpret the constant symbols canonically (i.e. ȧ is
always interpreted by a, for all a ∈ A).

An L-structure B is a model of the theory T if B |= ϕ for all ϕ ∈ T , i.e. if
all sentences of the theory hold true in B (with the usual Tarski de�nition of
truth5).

Let B = 〈B, {Pn : n ∈ N}〉 be an L-structure with domain B. (Note that
this entails A ⊆ B by our convention.) According to standard model-theoretic
termininology (cf. e.g. Bell and Slomson [2, p. 73]), the restriction of B to A is
the L-structure

〈
A, {Pn ∩Aδ(n) : n ∈ N}〉 and will be denoted by resAB. (In

other words, the restriction of B to A is the L-structure that is obtained by
restricting the interpretations of the relation symbol to the domain B ⊆ A.)

Suppose now that B = 〈B, {Pn : n ∈ N}〉 is a relational structure
with Pn ⊆ Bδ(n) for each n and such that there exists an injective map
i : A → B. Then, the restriction of B to A under i is the L-structure〈
A, {i−1

[
Pn ∩ i[A]δ(n)

]
: n ∈ N}〉 and will be denoted by resi,AB. If B is the

reduced product of A with respect to some �lter D and i : A→ B, a 7→ [(a)]D,

4 A sentence is universal if it (in its prenex normal form) has the form
(̇∀̇v̇k1 )̇ · · · (̇∀̇v̇km )̇ψ for some formula ψ that does not contain any quanti�ers.

5 For instance, if B = 〈B, {Pn : n ∈ N}〉 is an L-structure, then for all a1, . . . , aδ(n) ∈
A, one has

B |= Ṗn(ȧ1, . . . , ȧδ(n)) ⇔ 〈a1, . . . , aδ(n)〉 ∈ Pn.



is the canonical embedding, then we will drop the subscript i and simply write
resAB instead of resi,AB.6

Let Ω be the collection of models of T with domain A.
Let I be a (�nite or in�nite) set. Elements of I will be called individuals,

elements of ΩI will be called pro�les.
An aggregator is a map f : dom(f) → ran(f) whose domain dom(f) is a

subset of ΩI and whose range ran(f) is a subset of Ω.
As Herzberg and Eckert [7] have pointed out, this framework is su�ciently

general to cover the cases of preference aggregation, propositional judgment
aggregation, and modal aggregation.

Generalising the Kirman-Sondermann [10] correspondence between Arrovian
social welfare functions and ultra�lters of decisive coalitions7 on the set of
individuals, Herzberg and Eckert [7] � following a seminal paper by Lauwers
and Van Liedekerke [11] as well as recent work by Dietrich and Mongin [5] �
have shown that given certain rationality axioms, inspired by Arrow [1], on f
and some assumptions on the expressivity of L, every aggregator is in fact given
by a restricted reduced product construction with respect to the �lter of decisive
coalitions. Under additional assumptions, this �lter will be an ultra�lter.

Hence, in this note we assume that there is some �lter Df on I such that for
all A ∈ dom(f),

f(A) = resA

∏

i∈I

Ai/Df .

6 One could also de�ne the restriction of B to A as follows: Suppose A and B are
L-structures where the domain A of A is a subset of the domain B. If the inclusion
mapping i is an elementary embedding, then A is the restriction of B to A and will
be denoted resAB. This alternative de�nition is more general since it can also be
used where L-structures are allowed to have di�erent, non-canonical interpretations
for the constant symbols ȧ, a ∈ A (which in our framework is excluded by de�nition).

7 In our framework, a subset S ⊆ I of individuals is a decisive coalition if there exists
some L-sentence ψ such that both f(A) |= ψ and

S = {i ∈ I : Ai |= ψ} .

If f satis�es some rationality assumptions inspired by Arrow [1], one can show that
the set of decisive coalitions forms a �lter, i.e. a collection of non-empty subsets
of I which is closed under �nite intersections and supersets, and under additional
conditions even an ultra�lter, i.e. a maximal �lter (cf. Herzberg and Eckert [7],
generalising similar �ndings by Kirman and Sondermann [10], Lauwers and Van
Liedekerke [11], Dietrich and Mongin [5]). Note that under these conditions on f ,
it even makes no di�erence if one replaces the �S =� in the above de�nition of a
decisive coalition by �S ⊆� and �there exists some ψ� by �for all ψ�.

From the ultra�lter property of the set of decisive coalitions, one can immediately
deduce Arrow's theorem by noting that every ultra�lter on a �nite set is principal,
i.e. its intersection equals a singleton (the element of this singleton being the dictator
if the ultra�lter is a set of decisive coalitions). Non-principal ultra�lters are called
free.



Observe that the restriction to A is important since it is a necessary condition
(for f to be an aggregator) that the aggregate model f(A) belongs to Ω and thus
must have A as its domain. Moreover, if Df is an ultra�lter, then, by application
of �os's theorem, for every L-sentence ψ,

∏

i∈I

Ai/Df |= ψ ⇔ {i ∈ I : Ai |= ψ} ∈ Df ,

which guarantees that
∏

i∈I Ai/Df |= T and hence f(A) = resA

∏
i∈I Ai/Df |=

T since T consists only of universal sentences. Therefore, if f is given as the
restriction of an ultraproduct to A, then f(A) ∈ Ω for all pro�les A ∈ ΩI .

3 Impossibility theorems for in�nite populations

In the case of a �nite number of individuals dictatorship results immediately
follow from the principality of any ultra�lter on a �nite set. For the case of
an in�nite set of individuals there exist free ultra�lters and therefore Arrow's
impossibility theorem does not apply (as was already shown by Fishburn [6]).

However, the very construction of an ultraproduct bears another source
of impossibility results as remarked by Lauwers and Van Liedekerke [11]:
Ultraproducts with respect to free ultra�lters have a strictly larger domain than
the factor structures, and thus, witnesses to certain existential statements in the
ultraproduct do not need to belong to the domain of the factor structures (cf.
Hodges [9] for a more comprehensive discussion of the role of ultraproducts for
the construction of extensions of given structures). Therefore, if an aggregator
is the restriction (to the factor-domain) of an ultraproduct8 and is required
to preserve some non-universal statement (for example: existence of a best
alternative; continuity; etc.), it must be the restriction of an ultraproduct with
respect to a principal ultra�lter and will thus be dictatorial.

Indeed, Lauwers and Van Liedekerke [11] have remarked that in the setting
of preference aggregation, the preservation of non-Π1 formulae generically leads
to dictatorial impossiblity results (e.g. Campbell's theorem on the translation
of the Arrovian dictatorship result to in�nite populations when preferences are
assumed to be continuous [3]). The same phenomenon can be observed in the
more general setting of �rst-order predicate aggregation theory.

In order to illustrate this, let us consider the simplest case, viz. preservation
of a Σ1-formula with one existential quanti�er in a restricted ultraproduct
construction. Suppose hence ψ = (̇∃̇v̇)̇φ(v̇) for some L-formula φ(v̇) with one
free variable, assume I is in�nite, let D be an ultra�lter on I, and consider a
family A = 〈Ai〉i∈I of models of T , all with the same domain A. Suppose that
whilst (̇∃̇v̇)̇φ(v̇) is true in all models Ai, there does not exist an almost uniform
witness, i.e. there exists no a ∈ A such that φ[ȧ] would be true in D-almost
8 For instance, Arrovian preference aggregators always map every pro�le to the
restriction � to the set of alternatives � of its ultraproduct with respect to the
ultra�lter of decisive coalitions, cf. Lauwers and Van Liedekerke [11].



all models Ai. Then, �o±'s theorem teaches that φ[ȧ] fails in
∏

i∈I Ai/D for all
a ∈ A, and therefore ψ cannot be true in the restriction of

∏
i∈I Ai/D to A.

This phenomenon can be used as a source of more general impossibility
theorems in abstract aggregation theory: In this note, we will prove an
impossibility theorem for aggregators which preserves some Π2-formula outside
Π1 (e.g. some Σ1-formula which is not ∆1).

Consider an arbitrary L-sentence which is not Π1. In its prenex normal
form it can be written as ψ ≡ (̇∀̇ẋ1)̇ . . . (̇∀̇ẋ1)̇(̇∃̇ẏ)̇φ (ẋ1, . . . , ẋm; ẏ), wherein m
is a nonnegative integer and φ (ẋ1, . . . , ẋm; ẏ) is an L-formula with m + 1 free
variables. For the rest of this paper, ψ and φ are �xed in this manner.

We say that a pro�le A ∈ ΩI has �nite witness multiplicity with respect to
ψ if and only if Ai |= ψ for all i ∈ I, but for all a1, . . . , am, a

′ ∈ A, the coalition
{i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} is �nite.

An aggregator f is said to preserve an L-sentence ψ if and only if for all
A ∈ dom(f), one has f(A) |= ψ whenever Ai |= ψ for all i ∈ I.

We say that φ is free of negation, disjunction and universal quanti�cation if
and only if its non-abbreviated form does not contain the symbols ¬̇, ∨̇ nor ∀̇, in
other words, if the only logical symbols appearing in it are ∧̇ and ∃̇.

With this terminology, we have the following impossibility theorem:
Theorem 1. Let f be an aggregator that preserves ψ, and assume that there
exists some A ∈ dom(f) with �nite witness multiplicity with respect to ψ.
1. If Df is an ultra�lter, then even principal (whence f is a dictatorship).
2. If Df is merely a �lter, but φ is free of negation, disjunction and universal

quanti�cation, then Df contains a �nite coalition (whence f is an oligarchy).

Proof (Proof of Theorem 1).
1. Since f(A) is just the A-restriction of the ultraproduct of A with respect to

Df , �o±'s theorem readily yields the equivalence

f(A) |= φ(ȧ1, . . . , ȧm; ȧ′)
⇔ {i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} ∈ Df (1)

for all a1, . . . , am, a
′ ∈ A. Since A is assumed to have

�nite witness multiplicity with respect to ψ, we know that
{i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} is �nite for all a1, . . . , am, a

′ ∈ A, and that
Ai |= ψ for all i ∈ I, whence f(A) |= ψ as f preserves ψ. Therefore, for all
a1, . . . , am ∈ A there is some a′ ∈ A such that f(A) |= φ [ȧ1, . . . , ȧm; ȧ′],
hence

{i ∈ I : Ai |= φ [ȧ1, . . . , ȧm; ȧ′]} ∈ Df

by equivalence (1), although

Ca,a′ := {i ∈ I : Ai |= [ȧ1, . . . , ȧm; ȧ′]}
is �nite. Thus, the ultra�lter Df contains a �nite subset of I, viz. Ca,a′ .
But then, Df must already be principal, namely Df = {C ⊆ I : i ∈ C} for
some individual i ∈ Ca,a′ . The individual i is the dictator.



2. By assumption, f(A) is just the A-restriction of the reduced product of
A with respect to Df . If φ is free of negation, disjunction and universal
quanti�cation, an analysis of the proof of �o±'s theorem reveals that we
must have

f(A) |= φ(ȧ1, . . . , ȧm; ȧ′)
⇔ {i ∈ I : Ai |= φ(ȧ1, . . . , ȧm; ȧ′)} ∈ Df (2)

for all a1, . . . , am, a
′ ∈ A. Hence, as before one can show that the �lter Df

contains a �nite subset of I, viz. Ca,a′ . But then, Df = {C ⊆ I : C ′ ⊂ C}
for some C ′ ⊆ Ca,a′ . This C ′, necessarily a �nite set, is the set of oligarchs.

Already Lauwers and Van Liedekerke [11, p. 230, Property 4 (of aggregation
functions)] had obtained a dictatorial impossibility theorem for preference
aggregators that preserve certain non-Π1-formulae. However, their theorem is
based on a syntactic condition which is quite restrictive as it entails that A
is countable and that I is the set of nonnegative integers N. (Lauwers and
Van Liedekerke's [11] proof strategy consisted essentially in constructing an
aggregator based on a free ultra�lter which does not preserve the truth value
of the non-Π1 formula in question, because the element which satis�es it does,
by construction, not belong to A.) Our condition allows uncountable sets of
alternatives and uncountable populations.

Moreover, even in the special setting of countably many alternatives and
individuals, our condition is at least as general as the one of Lauwers and Van
Liedekerke [11]:

Theorem 2. Let I = N and A = {αi}i∈N. For all n ∈ N, let ψn be the formula

(̇∀̇ẋ1)̇ . . . (̇∀̇ẋm)̇(̇∀̇ẏ)̇(̇φ (ẋ1, . . . , ẋm; α̇n+1) ∧̇(̇φ (ẋ1, . . . , ẋm; ẏ) →
∧̇n

j=0
ẏ ˙6=α̇j )̇)̇.

If T ∪{ψn} is consistent for all n ∈ N, then there exists some A ∈ ΩI with �nite
witness multiplicity with respect to ψ.

Proof (Proof of Theorem 2). Suppose that T ∪ {ψn} is consistent for all n ∈ N.
Then there exists for every n ∈ N some model An of T ∪ {ψn} with domain A.9
Then, for every k ∈ N and arbitrary a1, . . . , am ∈ A, the set

{n ∈ N : An |= φ [ȧ1, . . . , ȧm; α̇k]}
must contain k − 1, but none of the integers ≥ k. It is therefore �nite. Since
A = {αk}k∈N, we conclude that for all a ∈ A and all a1, . . . , am ∈ A, the set

{n ∈ N : An |= φ [ȧ1, . . . , ȧm; ȧ]}
9 For, by completeness, there exists for every n ∈ N some model An of T ∪ {ψn} with
domain An, relational interpretations Rm ⊆ A

δ(m)
n (m ∈ N) and pairwise distinct

constant interpretations cn
a ∈ An (a ∈ A). Since T ∪{ψn} is universal, the restriction

of this relational structure to {can : a ∈ A} will still be a model of T∪{ψn}. Without
loss of generality, one may assume that ca

n = a for all a ∈ A.



is �nite. On the other hand, ψn implies ψ, so each of the An is a model of ψ.
This proves that 〈An〉n∈I has �nite witness multiplicity with respect to ψ.

Let us �nally consider some applications of our impossibility theorem
(Theorem 1):
� In preference aggregation, as already remarked by Lauwers and Van

Liedekerke [11, p. 231], any Arrovian aggregator which preserves either
continuity or the existence of upper bounds or lower bounds must be
dictatorial. The reason is that one can devise pro�les with �nite witness
multiplicity with respect to the formula expressing continuity of preferences,
and there exist also pro�les with �nite witness multiplicity with respect to
the formula describing the existence of an upper/lower bound. In particular,
this yields an alternative proof of Campbell's theorem [3] (which asserts
the impossibility of non-dictatorial, Arrovian and continuity-preserving
aggregators � regardless of the electorate's cardinality).

� In propositional judgment aggregation à la Dietrich and List [4], this result
means that a judgment aggregator which satis�es certain rationality axioms
and preserves some existential conjunctive statement about the elements of
the agenda must be oligarchic, provided usual agenda conditions are met and
there exists a pro�le with �nite witness multiplicity. Under stronger agenda
conditions, we even have a dictatorial impossibility result for aggregators
which preserve some non-Π1 statement.

� In modal propositional judgment aggregation, any rational aggregator
preserves some existential conjunctive statement about possible worlds (in
the Kripke semantics) must be oligarchic, provided there exists a pro�le with
�nite witness multiplicity. Under stronger agenda conditions, we even have a
dictatorial impossibility result for aggregators which preserve some non-Π1

statement about possible worlds.

4 Conclusion
As shown in a companion paper [7], in a model-theoretic framework for the
analysis of aggregation problems the ultraproduct construction allows to derive
the correspondence between abstract aggregation rules in an Arrovian spirit
and ultra�lters of winning coalitions on the set of individuals. Whilst this
construction immediately reveals why dictatorship results do not carry over to
the in�nite case � where free ultra�lters exist �, it opens up another source
of impossibility results, which we have analyzed in this paper: Non-universal
statements are generically not preserved under aggregation. This problem is, of
course, hardly surprising from the vantage point of model theory (given that an
important use of ultraproducts is the enlargement of a given structure). However,
it challenges one of the usual conditions on aggregation rules � viz. that the
aggregate model has exactly the same domain as the individual models (the
factor domains of the ultraproduct) �, as this requirement can only be met for
su�ciently rich theories if the ultra�lter of decisive coalitions is principal, i.e.
the aggregation rule is dictatorial.
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