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ON THE EQUATIONAL THEORY OF PROJECTION LATTICES OF
FINITE VON-NEUMANN FACTORS

CHRISTIAN HERRMANN

Abstract. For a finite von-Neumann algebra factor M, the projections form a modular
ortholattice L(IM) . We show that the equational theory of L(M) coincides with that of
some resp. all L(C™*™) and is decidable. In contrast, the uniform word problem for the
variety generated by all L(C™*™) is shown to be undecidable.

§1. Introduction. Projection lattices L(M) of finite von-Neumann algebra
factors M are continuous orthocomplemented modular lattices and have been
considered as logics resp. geometries of quantum meachnics cf. [25]. In the finite
dimensional case, the correspondence between irreducible lattices and algebras,
to wit the matrix rings C™*™ has been completely clarified by Birkhoff and
von Neumann [5]. Combining this with Tarski’s [27] decidability result for the
reals and elementary geometry, decidability of the first order theory of L(IM) for
a finite dimensional factor M has been observed by Dunn, Hagge, Moss, and
Wang [7].

The infinite dimensional case has been studied by von Neumann and Murray
in the landmark series of papers on ‘Rings of Operators’ [23], von Neumann’s
lectures on ‘Continuous Geometry’ [28], and in the treatment of traces resp.
transition probabilities in a ring resp. lattice-theoretic framework [20, 29].

The key to an algebraic treatment is the coordinatization of L(M) by a x-
regular ring U (M) derived from M and having the same projections: L(M) is
isomorphic to the lattice of principal right ideals of U(M) (cf. [8] for a thor-
ough discussion of coordinatization theory). For finite factors this has been
achieved in [23], more generally for finite AW*-algebras and certain Baer-*-rings
by Berberian in [2, 3].

In the present note we show that the equational theory of L(M) coincides
with that of L(C™*™) if L(M) is n + 1- but not n-distributive for some n; and
with that of all L(C"*™), n < oo, otherwise - which applies to the type II;
factors. In the latter case, the equational theory is decidable, but the theory of
quasi-identities is not.
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§2. Modular ortholattices: Equations and representations. An alge-
braic structure (L,-,+,",0,1) is an ortholattice (shortly OL) if there is a partial
order < on L such that, for all a,b € L, 0 < a < 1, a-b = ab = inf{a,b},
a+b = sup{a,b}, d’ = a, and a < b iff ¥ < d/. Tt is a modular ortholattice
(shortly: MOL) if, in addition, @ > b implies a(b+ ¢) = b+ ac. One can define
this class by a finite set of equations, easily ([4, 5]).

If V is a unitary space then the subspaces of finite dimensions together with
their orthogonal complements form an MOL L(V') - a sublattice of the lattice
of all subspaces. For V of finite dimension n, we have L(V) = L(C") for C"
endowed with the canonical scalar product. A lattice is n-distributive if and only
if it satsifies

r>u=Ye Y

i=0 i=0  j#i
LEMMA 2.1. L(CF) is n-distributive if and only if k < n.

ProoF. Huhn [18, p. 304] cf. [13]. 4

For a class C of algebraic structures, e.g. ortholattices, let VC denote the
smallest equationally definable class (variety) containing C cf. [6]. By Tarski’s
version of Birkhoff’s Theorem, VC = HSPC where HC, SC, and PC denote the
classes of all homomomorphic images, subalgebras, and direct products, resp.,
of members of C. Define

N =V{L(C*) | k < o0}.

Clearly, L(CF) € SHL(C") for k < n. Within the variety of MOLs, each ortho-
lattice identity is equivalent to an identity ¢t = 0 (namely, a = b if and only if
a(ab)’ +b(ab)’ = 0). If L is an MOL and u € L then the section [0, u] is naturally
an MOL with orthocomplement z — z* = z'u.

LEMMA 2.2. An ortholattice identity t = 0 with m occurences of variables
holds in a given atomic MOL L if any only if it holds in all sections [0,u] of L
with dimu < m.

PROOF. As usual, we write T for sequences (z1,...,2,) with n varying ac-
cording to the context. We show by induction on complexity: if f(T) is a lattice
term with each variable occuring exactly once and if p is an atom of L and a; in
L with p < f(@) in L then there are p; < a; in L which are atoms or 0 such that
p < f(P). Indeed, if f = z; let p; = p. Now, let T = 7Z and @ = b€, accordingly.
If f(Z) = f1(§) - f2(Z) then p < f1(b) and p < f2(¢) and we may choose the
¢; < b; and and r; < ¢; by inductive hypothesis and put p = g7. On the other
hand, consider f(Z) = f1(7) + fa(Z). If f2(¢) = 0 then p < f1(b) and we may
choose g; < b; by induction and 7; = 0. Similarly, if f1(b) = 0. Otherwise, there
are atoms p’ such that p' < f1(b), p? < fo(¢) and p < p' +p? (cf. [1]). Applying
the inductive hypothesis, we may choose ¢; < b; and r; < ¢;, atoms or 0, such
that p! < £1(g) and p? < fo(T) whence p < f(p) where p = gT.
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Now, consider an identity ¢(Z) = 0. By de Morgan’s laws, we may assume that
t is in so called negation normal form, i.e. there is a lattice term f(7z) with each
variable occuring exactly once from which ¢(T) arises substituting the variable
T for y;, the negated variable x%j for z; (with suitable functions « and 3).

Assume t(a) > 0 in L. Since L is atomic, there is an atom p with p < t(a).
With b; = an; and ¢; = aj; one obtains t(a) = f(b%). As shown above, there
are ¢; < b; and r; < ¢; such that p < f(g7). Put

n
Up = Z qi, Vp = Z T3, w:Zuk—l—vk.
ai=k Bi=k k=1
Then ui, < ap < w and v, < a), < w. Thus, a), < uj, and v, < u}’. For the MOL
[0, w] it follows by monotonicity that 0 < p < f(q7) < t(a). =
A unitary representation of an MOL L is a 0-lattice embedding ¢ : L — L(V)
into the lattice of all subspaces of a unitary space such that

e(a') = e(a)* for all a € L.

This means that ¢ is an embedding of the ortholattice L into the orthostable
lattice associated with the unitary space V in the sense of Herbert Gross [10].

COROLLARY 2.3. L € N for any MOL admitting a unitary representation.

PROOF. By [14, Thm.2.1]) L embeds into an atomic MOL L such that the
sections [0, u], dimu < oo are subspace ortholattices of finite dimensional unitary
spaces (namely, if L is represented in V then L consists of all closed subspaces X
such that dim[X Nea, X + ea] < oo for some a € L). By Lemma 2.2, L whence
also L belong to the variety N generated by these. -

COROLLARY 2.4. N = VL(V) for any unitary space of infinite dimension.

§3. Regular rings with positive involution. An associative ring (with or
without unit) R is (von Neumann) regularif for any a € R there is a quasi-inverse
x € R such that axa = a cf. [28, 22, 9]. A x-ring is a ring with an involution *
as additional operation:

(+y)" =" +y" ()" =y'a", 27 ==
A x-ring is x-regular if it is regular and, moreover, positive: xzz* = 0 only for
x = 0. Equivalently, for any a € R there is a (unique) projection e (i.e. e = e* =
€?) such that aR = eR. Particular examples are the rings C"*" of all complex
n x n-matrices with r* the adjoint matrix, i.e. the transpose of the conjugate.

The projections of a #-regular ring with unit form a modular ortholattice
L(R) wheree < f & e=¢cf and ¢ =1 —e. Now, e — eR is an isomorphism
of L(R) onto the ortholattice of principal right ideals of R and we may use the
same notation for both. Observe that L(C™) = L(C™*™), canonically, where a
subspace X corresponds to the set of all matrices with columns in X cf. the
following Proposition.
PROPOSITION 3.1. (Giudici). Let M be a right module over a ring S and let
R be a regular subring of the endomorphism ring End(Mg). Then L(R) embeds
into the lattice of submodules of Mg via e(¢R) = Img¢.
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PROOF. This is (1) in the proof of [8, Thm.4.2.1] in the thesis of Luca Giudici,
cf. [15, Prop.9.1]. 4

COROLLARY 3.2. If R and S are *x-reqular rings, R a *x-subring of S, then
L(R) is a sub-OL of L(S).

PROOF. R embeds into EndSg via r +— 7 where 7#(x) = ra for x € S. By
Prop.3.1 this yields an embedding of L(R) into L(S) with eR — Imé = eS for
e € L(R). Since ¢/ =1 — e in both OLSs, we have L(R) a sub-OL of L(S). 4

COROLLARY 3.3. For any *-regular ring S,
VL(S) = V{L(R) | R at most countable, reqular x-subring of S}

Proor. ‘O’ follows from Cor.3.2. Conversely, L(S) belongs to the variety
generated by its finitely generated sub-OLs L. Endow S with a unary operation
q such that aq(a)a = a for all a in S. Now, for any such L there is an at most
countable #-subring R of S containing L and also closed under the operation q.
Observe that for e, f € L(R) one has e < f if and only if ef = ¢, i.e. e < f in
L(S). Thus L is also a sublattice of L(R): assume we have join eV f =g in L
and h € L(R) with h > e, f in L(R). Then h > g in L(S) whence h > g which
means eV f = g also in L(R). Similarly for meets. Also, since L is closed under
the orthocomplement e — 1 — e in L(S), the same is true in L(R). It follows,
that L is a sub-OL of L(R). =

Let V be a unitary space. Denote by ¢* the adjoint of ¢ - if it exists. A

unitary representation of a x-ring R is a ring embedding ¢ : R — End(V) such
that «(r*) = ¢(r)* for any r € R.

COROLLARY 3.4. If v : R — End(V) is a unitary representation of the *-
reqular ring R, then

e(eR) = Imu(e)
is a unitary representation of the MOL L(R) in V.

PROOF. The lattice embedding follows from Prop.3.1. Now, observe that
e(eR)* =1Im(id — u(e)) = e((1 — e)R) = £(eR)")

since e and ¢(e) are selfadjoint idempotents. .

§4. Finite von-Neumann algebras. A von-Neumann algebra (cf. [17]) M
is an unital involutive C-subalgebra of the algebra B(H) of all bounded operators
of a separable Hilbert space H with M = M"” where A’ = {¢ € B(H) | ¢3p =
Yo Vo € A} is the commutant of A. M is finite if rr* = 1 implies r*r = 1.
For such, the projections e of M, i.e. the e = €2 = e*, form a (continuous)
modular ortholattice L(M). Here, the order is given by e < f < e = ef and
one has ¢/ = 1 —e. A finite von-Neumann algebra is a factor if its center is
C-1. Particular examples of a finite factors are the algebras C"*" of all complex
n-by-n-matrices.

THEOREM 4.1. (Murray-von-Neumann.) Any finite von-Neumann algebra fac-
tor is either isomorphic to C"*™ for some n < oo (type I,) or contains for any
n < 0o a subalgebra isomorphic to C"*™ (type IIy).
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PROOF. [23, 14.1] and [24, Thm. XITI]. .

For any operator ¢ defined on some linear subspace of H, write ¢nM if
Yo~ = ¢ for all unitary ¢ € M’ (cf [23, Def.4.2.1]). Let U(M) consist of
all closed linear operators ¢ with ¢nM and having dense linear domain. Con-
sider the following operations with domain U (M)

(¢, 9) = [0+ 9], (¢,9) = [pod], ¢ — [¢7]

where [x]| denotes the closure of the linear operator x.

THEOREM 4.2. (Murray-von-Neumann.) For every finite factor M, U(M) is a
x-regular ring having M as x-subring and such that ¢* is adjoint to ¢. Moreover,
M and U(M) have the same projections.

PRrOOF. This is trivial for type I,,. For II; factors this is [23, Thm. XV]
together with [28, Part II, Ch.II, App 2.(VI)] and [29, p.191] for *-regularity.
Now, consider 7 : D — H in U(M) such that 7 = 7* = 7%, Then U = Imm C
D so 7 is a projection of D, i.e. D = U &+ V. By density of D it follows
Ut @+ VIt = H and 7 extends to a projection 7 of H onto UL+, From mnM
it follows anM, whence 7 € U(M) and # = «# € M by [23] Lemmas 16.4.2 and
4.2.1. B

An important concept in the Murray-von-Neumann construction is that of an
essentially dense linear subspace X of H (w.r.t. M). Here, we need only the
following properties:

1. Essentially dense X is dense in H [23, Lemma 16.2.1].

2. The domains of members of U(M) are essentially dense [23, Lemma 16.4.3].

3. For any ¢ € U(M) and essentially dense X, the preimage ¢~1(X) is essen-
tially dense [23, Lemma 16.2.3].

4. Any finite or countable intersection of essentially dense X, is essentially
dense [23, Lemma 16.2.2].

THEOREM 4.3. (Luca Guidici.) Any countable x-subring of U(M) is repre-
sentable.

PROOF. Consider any countable *-subring R of U(M). A representation of R
is constructed from the given Hilbert space H. Let Hy be the intersection of all
domains of operators ¢ € R. By (2), Hy is essentially dense. Define, recursively,
H, 1 as the intersection of H,, and all preimages ¢—'(H,) where ¢ € R. By
(3) and (4), Hyq1 is essentially dense. By (4), the intersection H, =, ., Hn
is essentially dense and, by (1), dense in H. By construction, H, is invariant
under R.

Now, for ¢ € R define £(¢) = ¢|H,. Then € : R — Endc(H,) is a *-ring
homomorphism. Indeed, e.g. [¢ + ¢]|H,, is an extension of ¢|H,, + ¢|H, and
equality holds since both are maps with the same domain. Also e(¢*) is the
restriction of the adjoint ¢* in H, whence the adjoint in H,,. If e(¢) = 0, then
H,, is contained in the closed subspace ker¢ and it follows ¢ = 0 by density.
Thus, € is a representation. B

§5. Equational theory of projection lattices.
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THEOREM b5.1. For any class M of finite von-Neumann algebra factors, and
V = V{L(M) | M € M} one has ¥V = VL(C"™) if and only if V satisfies the
n + 1-distributive law but not the n-distributive law. Moreover, ¥V = N if and
only if V satisfies no n-distributive law. In any case, the equational theory of V
is decidable.

PRrROOF. Let M be a finite von-Neumann algebra factor. In view of Thm.4.2
and Cor.3.3, we have to consider countable regular %-subrings R of U(M). By
Thm.4.3, each such R is representable. By Cor.3.4 and Cor.2.3 we have L(R) €
N and it follows L(M) € N.

By Lemma 2.1, Cor.3.2, and Thm.4.1, M contains factors of arbitrarily large
finite dimensions or a type II; factor if and only if V is n-distributive for no n. In
this case, V = N. Otherwise, there is a maximal n such that V is n-distributive,
in particular all members of M are of the form CF*F with k < n and k = n
occurs, so V = VL(C™ ™).

Recall that according to Tarski [27] the (ordered) field R has a decidable first
order theory. This extends to the field C endowed with the unary operation of
conjugation and then (uniformly) to the involutive C-algebras C"*". Encoding
the geometry in Tarski style into C or von-Neumann style into C**"_ it follows,
that there is a uniform decision procedure for the first order theories of the
L(C™) = L(C™*™). This settles the case of ¥V = VL(C™*™). To decide whether
an identity ¢ = 0 holds in N, by Lemma 2.2 it suffices to decide validity in
L(C™*™) m the number of occurences of variables in t. !

86. Von-Neumann frames. Let n > 3 fixed. An n-frame, in the sense of
von-Neumann [28], in a lattice L is a list @ : a;, i, 1 < 4,5 < mn,i # j of elements
of L such that for any 3 distinct j, k,1

ajZai =0= AjQ5k, ZCLi =1
i£] i
aj +ajp = aj +ag, aj = ay = (a; + a)(ajr + ap)-
If L is modular and n > 4 then
R(L,a)={r€ L|raz =0, r+az2=ai +az}
can be turned into a ring, the coordinate ring. For the present purpose it suffices
to know that R(L,a) is a semigroup under the multiplication
s@r=|[(r+as)(a1 +as) + (s + a13)](az + az)](a1 + a2)

cf. [21] where R(L,a) is denoted by Li2 and r = ri2 replaced by the array
of the r;; obtained via the prespectivities provided by the ay;. Thus, for each
multiplicative term ¢(T) = @, - ((... - x2) - £1) there is a lattice polynomial
t@,7) =2, @ ((... ® 12) @ 1)
such that #(a@,7) = t(7) for all substitutions 7 in R(L,a).
In the sequel, orthocomplementation is no longer an issue and we write L(V)
for the lattice of all subspaces of V', L(R) for the lattice of all right ideals of R.

If R™*™ is the n x n-matrix ring of some ring R with unit and L = L(R™*")
with the canonical n-frame @ then R(L,@) is isomorphic to R - here @ consists
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of the E;;R™*™ and (E;; — E;;)R™*™ where the E;; form the canonical basis of
the R-module R™*™. Indeed, one has a 1-1-correspondence between R, R(L,a),
and certain right submodules of R™ given by

7 (B3 —TEy)R™™ < (e1 —re)R

where e, ..., e, is the canonical basis of R"™. Using the notations (rz, sx,tx) =
(e1r + e2s + est)R and 7 = (e; — rez) R we compute
(7:4-@23)(@1 +a3) = (Ji,y —T,’E,—y) N (U,O,U) = (1’,0,—7”‘@)
(3+as)(az+az) = (r—y,—sz,y) N (0,u,0) = (0,-sy,y)
5®T = (z,-sy,y—rz) N (u,0v,0) = (x,—srz,0).

This translates back into L(R™*™) and shows that r — 7 is an isomorphism
between the semigroups R and R(L,a).

87. Quasivarieties and word problems. A quasi-identity is a sentence
k

vz. N\ (@) =1;(T) = s(T) = t(T)
j=1
where the s;(Z) and so on are terms. A quasivariety is a class of algebraic struc-
tures defined by quasi-identities, equivalently an axiomatic class closed under
substructures and direct products.

A solution of the wuniform word problem for a class C consists in a decision
procedure for quasi-identities (i.e. a solution for all finite presentations). The
restriced word problem is unsolvable for C if for some fixed premise the associated
set of quasi-identities is undecidable within C. In other words, within the quasi-
variety QC generated by C there is a finitely presented member having unsolvable
word problem.

Unsolvability of the restricted word problem has been established by Hutchin-
son [19] and Lipshitz [21] for any class C of modular lattices with L(V) € QC
for some infinite dimensional vector space V. Also, based on analoguous results
of Gurevich [11] for semigroups, Lipshitz has shown unsolvability for classes
{L(F™) | F € F,n < oo}, F any class of fields, and for C the class of finite
(complemented) modular lattices. These results extend to classes having the
appropriate lattice reducts.

For sufficiently large classes of modular ortholattices (e.g. containing all 14-
distributives) unsolvability in 3 generators has been shown by M.S. Roddy [26]
and this has been used in [16] to prove undecidabilty of the equational theory
for the class of all n-distributives for fixed n > 14.

Let S (Syin) denote the class of all (finite) semigroups, and S, the set of
semigroups Fy'*™ (n > 1) where F, is the prime field of characteristic p, prime
or 0. Let M denote the class of all modular lattices, M, the set of lattices
L(F)) = L(F*") (n > 1) . For a class C denote by RsC and RLC the class of
all semigroup resp. lattice reducts of structures in C and by Th,C the set of all
quasi-identities valid in C.

THEOREM 7.1. A quasivariety Q has unsolvable uniform word problem if S, C
SRsQ C S or M, C SRL,Q C M for some p.
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PROOF. Given a finite semigroup S, one may consider the semigroup ring
F,[S] as an Fp-vector space V and thus embed S into Endp, (V') = F"*™ where
n = |S]. It follows Th,S, C ThySyin for all p and equality for p > 0. Since
Q™™ € SP,{F;*" | p prime}, one has

ThyS, = ThySyiy, for all p.

This is contained in Lipshitz [21, Lemma 3.5]. The claim in the semigroup case
follows from the result of Gurevich and Lewis [12] that there is no recursive I'
such that ThyS CTI' C ThoSyin.

According to the preceeding section and again following Lipshitz [21], one
may associate with each quasi-identity ¢ as above in the semigroup language a
quasi-identity ¢E in the lattice language

Vavz a(a) A N\, (ziaa =0 Az + az = a1 + az)

AN, 3(@,7) = t;(@,7) = 3@a,7) = i(a,T)
where «(a) states that @ is a 4-frame. Since R(L, @) is a semigroup for any
modular lattice L, it follows that ngS € TheM for all ¢ € ThyS. On the other
hand, if ¢ holds in L(R**%), substituting the canoncial 4-frame for @, then ¢
holds in R. In particular, for the ring R = F"*"™ we encode equality of products
of n x n-matrices over Fj, into equality of particular lattice elements. Thus,
considering all R = F'*", n > 1, it follows ¢ € Th,S, for ¢ € ThyM,. This
proves that ¢ € Th,S, if and only if ¢ € ThyM,,.

Now, given ThyM C A C ThyM,, define I" as the set of those quasi-identities

¢ in semigroup language with ¢ € A. Then

TheS €T C ThyS,
and if A is recursive then so is I'. -

COROLLARY 7.2. N as well as the class of projection lattices of finite factors
have an undecidable uniform word problem. The quasivariety Q generated by all
ortholattices L(C™ ™) (n < w) has an undecidable restricted word problem and
15 not a variety.

PROOF. The undecidability claim is immediate by Thm.7.1 resp. the quoted
result of Lipshitz [21, Thm.3.6]. By decidability of the L(C™*™), the complement
of ThyQ within the set of quasi-identities is recursively enumerable. If Q were a
variety, then by Thm.5.1 it would coincide with ' and be recursively axiomati-
zable. Thus Th,Q would be recursively enumerable, too, and this would imply
solvability of the uniform word problem. -

PROBLEM 7.3. Is the restricted word problem solvable for (a) N resp. (b) the
class of projection lattices of finite factors ?
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