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SOCIALLY STRUCTURED GAMES

ABSTRACT. We generalize the concept of a cooperative non-trans-
ferable utility game by introducing a socially structured game. In a
socially structured game every coalition of players can organize them-
selves according to one or more internal organizations to generate pay-
offs. Each admissible internal organization on a coalition yields a set
of payoffs attainable by the members of this coalition. The strengths of
the players within an internal organization depend on the structure of
the internal organization and are represented by an exogenously given
power vector. More powerful players have the power to take away pay-
offs of the less powerful players as long as those latter players are not
able to guarantee their payoffs by forming a different internal organiza-
tion within some coalition in which they have more power.

We introduce the socially stable core as a solution concept that con-
tains those payoffs that are both stable in an economic sense, i.e., belong
to the core of the underlying cooperative game, and stable in a social
sense, i.e., payoffs are sustained by a collection of internal organizations
of coalitions for which power is distributed over all players in a balanced
way. The socially stable core is a subset and therefore a refinement of the
core. We show by means of examples that in many cases the socially sta-
ble core is a very small subset of the core.

We will state conditions for which the socially stable core is
non-empty. In order to derive this result, we formulate a new intersection
theorem that generalizes the KKMS intersection theorem. We also dis-
cuss the relationship between social stability and the wellknown concept
of balancedness for NTU-games, a sufficient condition for non-emptiness
of the core. In particular we give an example of a socially structured
game that satisfies social stability and therefore has a non-empty core,
but whose induced NTU-game does not satisfy balancedness in the gen-
eral sense of Billera.

KEY WORDS: balancedness, core, non-transferable utility game, social
stability.
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1. INTRODUCTION

In this paper, we generalize cooperative non-transferable
utility games (NTU-games) and introduce the concept of a
socially structured game. A cooperative NTU-game summa-
rizes the results of mutual cooperation by members of a coa-
lition by a set of attainable payoffs. It ignores the fact that
coalitions often may organize themselves according to some
internal organization and that the internal organization may
determine both the social strength of its members and the
payoff set. In many economic situations of interest, the play-
ers within a coalition may choose an internal organization
out of a collection of several admissible internal organiza-
tions. For instance, in order to run a firm, a group of workers
may have multiple possibilities to organize itself, for instance
according to different hierarchical graph structures, varying
with respect to the number of levels and the span of control.
In general, the admissible internal organizations of a group of
players depend on the specific application one has in mind.
In case of running a firm it may be appropriate to choose
the internal organization of a hierarchy. In other cases, net-
works, communication structures or permutational structures,
as studied for transferable utility games by Jackson (2005),
Myerson (1977) and Nowak and Radzik (1994), respectively,
or ordered structures as studied for NTU-games in van der
Laan et al. (1998), might fit better.

Different internal organizations of a coalition may lead to
different payoff sets. In this paper, we therefore allow that
the set of payoffs attainable to a group of players not only
depends on the set of players, but also on the chosen inter-
nal organization within the group. A payoff set is associated
to any admissible internal organization of any coalition. We
further assume that to any admissible internal organization
of a coalition a power vector is associated, whose compo-
nents reflect the social strengths of the individual members
of the coalition within the internal organization. In the liter-
ature several measures have been proposed to determine the
strength of an individual in case the internal organization has
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a (directed) graph structure. One example is to determine the
strength of a player as his (out) degree in the graph. However,
we will make no attempt to discuss the pros and cons of the
various ways a power vector can be determined. The model
does not indicate the source of the power. Instead, we will
treat the power vectors as exogenously given, and consider
its derivation as part of the sociological literature. This treat-
ment parallels the exogenous treatment of preferences in eco-
nomics or the exogenous distribution of initial endowments in
an exchange economy. A similar approach has been followed
by Piccione and Rubinstein (2003) who consider an exchange
economy in which the exogenous distribution of initial endow-
ments has been replaced by an exogenous given linear order-
ing of the agents reflecting their strengths: a higher ranked
agent is stronger than a lower ranked agent.

In the usual NTU-game approach, the internal organi-
zation of a coalition is not specified and for every coali-
tion there is only one admissible payoff set. According to
this approach, within a given coalition all members have
the same social strength and the payoff sets of the various
admissible internal organizations are aggregated to one pay-
off set. The concept of a socially structured game exploits
the availability of different internal organizations by allow-
ing for different payoffs for different internal organizations
and by allowing the players to differ in strength by assign-
ing a power vector to any internal organization. Where in the
jungle economy of Piccione and Rubinstein (2003) a player
can appropriate goods belonging to the player he dominates
in the linear order, within our framework a more powerful
player within the chosen internal organization is able to select
the more preferred payoff vectors from the payoff set at the
expense of the less powerful players as far as the less pow-
erful players don’t have the possibility to obtain their pay-
offs within alternative internal organizations in which they are
more powerful.

We propose the socially stable core as a solution concept
for a socially structured game. The socially stable core reflects
the idea that the strengths of the players within the internal
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organization influence the distribution of payoffs among the
players. For a payoff vector to be in the socially stable core,
there should be neither incentives to deviate from an eco-
nomic point of view, nor from a social point of view, i.e., a
payoff vector should be both economically and socially stable.
A payoff vector will be called economically stable if it is an
element of the core of the underlying cooperative game, i.e., it
is feasible for some admissible organization of the grand coa-
lition and there is no subcoalition that can guarantee all its
members a higher payoff by choosing an appropriate internal
organization. A payoff vector satisfies social stability when the
powers of all players are balanced, meaning that there is a
nonnegative weighted combination of the power vectors of all
internal organizations that can obtain the payoff vector, which
gives each player equal power. The socially stable core is the
set of socially stable payoff vectors in the core and is therefore
a subset of the core.

We introduce the concept of social stability for a socially
structured game and refer to games satisfying this property
as socially stable games. A socially structured game is socially
stable if every socially stable payoff vector is feasible. It will
be shown that a socially stable game has a non-empty socially
stable core. To do so, we formulate an intersection theorem
on the unit simplex that generalizes the well-known intersec-
tion theorem used by Shapley (1973) (see also Herings, 1997;
Ichiishi, 1988; van der Laan et al., 1999). Since socially stable
games have a non-empty socially stable core, they also have
a non-empty core. We show that the socially stable core is
typically a small subset of the core. We also demonstrate by
an example that social stability of the socially structured game
does not imply that the induced cooperative NTU-game is
π-balanced in the sense of Billera (1970). Therefore, π-balanc-
edness is a different concept from social stability. Moreover,
π-balancedness of an NTU-game does not refine the core, but
is a sufficient condition for the non-emptiness of the core. A
generalization of π-balancedness that is necessary and suffi-
cient for non-emptiness of the core is given in Predtetchinskii
and Herings (2004).
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The structure of the paper is as follows. To motivate our
approach, in Section 2 we give several examples of games in
graph structure, a subset of the general class of socially struc-
tured games. In Section 3, we give the general framework of
socially structured games and give a formal definition of the
solution concept of the socially stable core. In Section 4, the
new intersection theorem is presented and we show that a
socially stable game has a non-empty socially stable core. In
Section 5, we study the relationship between social stability
and π-balancedness. Section 6 concludes.

2. SOCIAL STABILITY AND MOTIVATING EXAMPLES

Aumann and Peleg (1960) have introduced cooperative non-
transferable utility (NTU) games with a finite number of
agents. In a cooperative NTU-game a set of attainable payoff
vectors is assigned to each coalition. A payoff vector belongs
to the core of a game if it is attainable for the grand coalition
and no coalition can improve upon it (see Aumann, 1961).

In this paper, we extend the concept of a cooperative
NTU-game by allowing for the possibility that any subset of
agents organizes itself according to some internal organiza-
tion. Each admissible internal organization leads to a non-
empty set of attainable payoff vectors. The strengths of the
players within a coalition depend on the chosen internal orga-
nization and are represented by a power vector. Within a hier-
archy a higher ranked player is more powerful than a lower
ranked player. In contrast, all players have equal power when
decisions are made by consensus. To clarify the idea that pay-
off distribution should depend on the powers of the players
and to motivate the solution concept of socially stable core,
in the remaining of this section we consider several examples
in which the internal organizations are represented by directed
graphs (shortly digraphs).

We denote by N = {1, . . . , n} the set of agents and by N
the collection of non-empty subsets of N . A subset of N is
called a coalition and the set N itself is often referred to as
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the grand coalition. In this section an internal organization
of a coalition S ∈ N is represented by a digraph GS = (S,A).
Here A is a finite collection of ordered pairs of elements of S.
Well-known examples of digraph-structures are the complete
graph A={(i, j)|i, j ∈S, i �=j}, hierarchies1 or trees.2 A digraph
GS = (S,A) is admissible for coalition S if S is able to generate
payoffs to its members when being organized according to GS .
We assume that for every coalition S ∈ N a (possibly empty)
collection of admissible internal organizations is given. This
collection is denoted by GS and the collection of all admissi-
ble digraphs, denoted by G, is obtained by taking the union
of GS over all non-empty subsets S of N .

The payoff sets are given by a mapping v from G to the col-
lection of non-empty subsets of IRn satisfying that for every
graph GS ∈GS , the set v(GS)⊂ IRn is cylindric with respect to S,
i.e., for any two vectors x and y in IRn with xi =yi for all i ∈S

it holds that x ∈ v(GS) if and only if y ∈ v(GS). The payoff set
v(GS) associated with graph GS is the set of attainable payoffs
for the players in S when they are organized according to GS ,
independent of what the agents outside S do.

We assume that to each digraph GS ∈GS an n-dimensional
power vector p(GS) is associated with pi(G

S) = 0 when i /∈ S

and pi(G
S) � 0 for i ∈ S. The power vector reflects the social

strength of player i within GS . Although some of the power
functions that have been proposed in the literature to mea-
sure the strength of the nodes in a digraph will be discussed
in Appendix A, we want to stress that throughout the paper it
is assumed that in each internal organization of the coalition
S, the players in S have exogenously given powers, just as
they have exogenously given preferences and initial endow-
ments in an exchange economy, or as the exogenously given
linear ordering reflecting the strength of the agents in Piccione
and Rubinstein (2003). Within structure GS the more powerful
players are able to take away payoffs of less powerful players
in S.

A payoff vector is socially stable if there is collection B of
internal organizations in G such that the payoff vector is fea-
sible for any internal organization in B and the powers of all
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players are balanced, i.e., there are positive weights for the
elements in B such that the weighted sum of the power vec-
tors give equal power to all players. As long as a payoff vec-
tor is not socially stable, some players are more powerful than
others, and are thereby able to extract payoffs from the play-
ers having less strength.

We are interested in payoff vectors that are both socially
stable and economically stable, where a payoff vector is said
to be economically stable if it belongs to the core. The socially
stable core is defined as the set of socially and economically
stable payoff vectors. The formal definition is given in Section
3. In the remaining of this section we provide examples to
explain and to justify the concept of the socially stable core.

EXAMPLE 2.1 (a principal–agent game). We consider a prin-
cipal–agent game with player 1 the principal and player 2
the agent. Without cooperating, the players are not able to
get any positive payoff, i.e., v(Gi) = {x ∈ IR2|xi � 0}, where
Gi denotes the (unique) internal organization of the single
player coalition {i}, i =1,2. Since player 1 is the principal, we
describe the internal organization of the two-player coalition
N = {1,2} by the digraph GN = (N,A) with A = {(1,2)}. Tak-
ing the score index as the power function (see Appendix A),
we obtain p(G1) = p(GN) = (1,0) and p(G2) = (0,1). Suppose
that within the two-player coalition the payoffs depend on the
level θ ∈ IR by which the principal monitors the agent, where
the payoff to the principal is equal to 2θ and the payoff to
the agent 4(1 − θ). Without monitoring (θ = 0) the principal
gets payoff 0 and the agent 4. These payoffs increase to 2
and decrease to 0, respectively, when the level of monitoring
increases from zero to one. We obtain that

v(GN)={x ∈ IR2 |2x1 +x2 �4}.

The set of economically stable payoff vectors is given by the
core

C(v)={x ∈ IR2
+ |x2 =4−2x1}.
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For x ∈C(v) with x2 >0 we have that either x1 >0 and x only
belongs to v(GN), or x1 =0 and x only belongs to v(GN) and
v(G1). Since p(GN)=p(G1)= (1,0), in both cases player 1 has
more power than player 2 and thus x is not socially stable.
Therefore, as long as x2 > 0, player 1 can increase his pay-
off at the expense of player 2. The unique socially stable vec-
tor in the core is the payoff vector x = (2,0), lying in both
v(GN) and v(G2), with power vectors (1, 0) and (0, 1), respec-
tively. At this payoff vector the powers of the two players are
in balance in the sense that when taking equal weights the
weighted sum of the two power vectors associated to the two
internal organizations GN and G2, both containing x = (2,0),
gives equal power to both players. So, x = (2,0) is the unique
economically and socially stable payoff vector. At this payoff
vector player 2 is able to match the power of player 1. In par-
ticular, player 2 can leave the coalition and obtain his out-
side option of zero payoff without cooperating with player 1
and therefore also within the internal organization GN player
1 cannot further increase his payoff. �

EXAMPLE 2.2 (a linearly ordered game). As a generaliza-
tion of the previous example, we now consider a firm with
a fixed internal organization on N . Within this internal orga-
nization agents are linearly ordered in such a way that the
internal organization on N is given by the graph GN = (N,A)

where A = {(i, i + 1)|i = 1, . . . , n − 1}. For any subset of N we
assume that it can only generate payoffs for its players when
they are connected in the graph GN and stick to the inter-
nal organization induced by it. So, when S is connected, so
S = {j, j + 1, . . . , k} for some j, k with 1 � j � k � n, then the
collection GS of internal organizations of S contains only one
element, being the graph GS ={(S,A)} with A={(h, h+1)|h=
j, . . . , k − 1}. When S is not connected, then GS = ∅, i.e., the
players of S are not able to generate any payoff. For ease
of notation, in the following we denote a coalition of the
form {j, j + 1, . . . , k} for some j, k with 1 � j � k �n by [j, k].
We further assume that the power function is such that for
any G[j,k] = ([j, k],A) the power vector p(G[j,k]) satisfies
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ph(G
[j,k])>ph+1(G

[j,k]), h= j, . . . , k −1. This is for instance the
case when we take the positional power function (see Appen-
dix A) or when the power of a player is given by the player’s
number of subordinates.

Since G only contains graphs of the form ([j, k],A) and for
every player h∈N such that h> 1 we have that ph−1(G

[j,k])>

ph(G
[j,k]) when h−1, h∈ [j, k] and p1(G

[1,k])>ph(G
[1,k]) for any

h,1 < h � k, we obtain that at a payoff vector x the powers
of the players can only be balanced when for every player h

there exists a coalition of the form ([h, k],A) with k �h, such
that x ∈ v(G[h,k]). Thus at any socially stable payoff vector x,
for every h∈N , it must be that x is in a payoff set v(G[h,k]) for
some k�h, i.e., for every h it must hold that x is in the payoff
set of a coalition not containing any superior of h. Obviously,
economic stability requires that x is not in the interior of any
of these payoff sets, since any payoff vector in the interior of
v(G[h,k]) is dominated by another attainable payoff vector of
coalition [h, k]. It follows that at a socially stable payoff vec-
tor in the core, for any h ∈ N there is a coalition [h, k] such
that x is on the boundary of the payoff set v(G[h,k]).

The set of economically and socially stable payoffs is there-
fore a subset of the core such that, at any payoff vector in
this subset, every player h∈N gets only a share in the payoff
he can realize within some coalition [h, k], being a coalition
containing only some of his subordinates, but none of his
superiors. So, within a firm with a linearly ordered hierarchy,
all socially stable profits that a player can realize in coop-
eration with his superiors is distributed amongst his superi-
ors. All core elements not satisfying this condition cannot be
socially stable. The example shows that by using information
on the internal organization, the framework of a graph-struc-
tured game may provide more precise predictions about the
outcome of socially structured economic situations. �

EXAMPLE 2.3 (a small firm three player game). Consider a
three player game of a small firm owned by player 1 and with
players 2 and 3 as employees. Suppose that on the three player
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coalition two graph structures are admissible, one reflecting the
situation where player 2 is the manager and player 3 the worker
and the other one the situation where player 3 is the man-
ager and player 2 the worker. This can be modeled by the
two trees on N given by GN

1 = (N,A1) with A1 ={(1,2), (2,3)}
and GN

2 = (N,A2) with A2 ={(1,3), (3,2)}, respectively, i.e., the
owner monitors the manager and the manager supervises the
worker. Taking the number of subordinates as the power of
the players, the respective power vectors are p(GN

1 ) = (2,1,0)

and p(GN
2 )= (2,0,1). Further assume that the owner needs both

other players to make profits, that is the two-player coalitions
{1,2} and {1,3} cannot make any profit. However, the coalition
of the two employees has the outside option to leave the firm
and to make profit by cooperating together on basis of consen-
sus decisions. So, the (unique) internal organization on {2,3}
is given by G{2,3} = ({2,3},A) with A={(2,3), (3,2)} and power
vector p(G{2,3})= (0,1,1). Suppose that the outside options of
the single players give them a payoff of at most zero, and that
the other payoff sets are given by

v(GN
1 )={x ∈ IR3|3x1 +2x2 +x3 �8},

v(GN
2 )={x ∈ IR3|3x1 +x2 +2x3 �8},

v(G{2,3})={x ∈ IR3|x2 +x3 �2}.

Taking into account the zero payoff options of the single play-
ers, straightforward observations show that the core is given
by the non-negative payoff vectors in the set

C(v)={x ∈ IR3
+|min[3x1 +2x2 +x3,3x1 +x2 +2x3]

=8, x2 +x3 �2},

being the non-negative payoffs on the upper boundary of the
set v(GN

1 )∪ v(GN
2 ) satisfying x2 +x3 � 2. However, not all core

elements are socially stable. In fact, any x ′ ∈ C(v) with x ′
2 +

x ′
3 > 2 is not socially stable. Clearly, x ′ does not belong to

v(G{2,3}). Moreover, at least one of the players 2 and 3 gets
a positive payoff at x ′, say player 2, so x ′ does not belong
to v(G{2,3}). For any G ∈ G satisfying x ′ ∈ v(G) it holds that
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p1(G) > p2(G), contradicting that x is socially stable. So, at
any socially stable payoff vector in C(v) we must have that
x2 +x3 =2. Further, also

3x1 +2x2 +x3 =3x1 +x2 +2x3,

must hold. Suppose not, for instance the left-hand side is
greater than the right-hand side, thus x2 > x3. Since x is in
the core and thus the minimum of the right-hand side and
the left-hand side is equal to 8, it follows that 3x1 + 2x2 +
x3 > 8, showing that x is not in v(GN

1 ). Clearly, x2 > 0, so x

does not belong to v(G2). Moreover, x2 + x3 = 2 implies that
x1 > 0, so x is also not in v(G1). It follows that x belongs to
both v(GN

2 ) and v(G{2,3}), perhaps also to v(G3), but not to
any of the other sets. To balance the powers we need p(GN

2 ),
since p1(G) = 0 in the other two remaining graphs. However,
p3(G) > p2(G) for G = GN

2 and G = G3, and p3(G) = p2(G)

when G=G{2,3}, contradicting that x is socially stable. Hence,
social stability implies x2 =x3 =1 and thus x1 =5/3, and there-
fore x = (5/3,1,1) is the unique element in the core that is
socially stable. We want to stress that the unique element in
the core that is socially stable belongs to v(GN

1 ), v(GN
2 ) and

v(G{2,3}). As standard in NTU-games, although the members
of the coalition {2,3} can guarantee themselves their payoffs
at x, the payoff vector itself can only be guaranteed by the
grand coalition. However, different from standard NTU-the-
ory, the grand coalition can still choose one of their internal
organizations to realise x, say GN

1 . In this organization player
2 has more power than player 3, which may lead to the ques-
tion whether x is still stable as soon as GN

1 has been chosen.
However, suppose player 2 increases his payoff at the expense
of player 3 under the constraint x2 + x3 = 2. Since in GN

1 the
payoffs are bounded by 3x1 + 2x2 + x3, not only x3 decreases
but also x1. So, players 1 and 3 will prevent such an increase
by enforcing a change in the organization from GN

1 to GN
2 .

This possibility of changing the internal organization prevents
that players want to deviate from the socially stable outcome.

�
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3. THE SOCIALLY STABLE CORE

In the previous section, we discussed the concept of socially
stable core for socially structured games in case the internal
organizations are represented by digraphs. We now formalize
the these concepts within a more general setting.

For a given finite set of agents N = {1, . . . , n}, we assume
that for every coalition S ∈N there exists a collection of social
structures according to which the members of the coalition
can organize themselves. Within each such internal organiza-
tion of S certain payoffs can be generated for the members of
S. The number of admissible internal organizations for coa-
lition S is assumed to be finite and is denoted by mS . We
allow the number mS to be zero, in which case there is no way
the members of coalition S are able to organize themselves in
order to generate payoffs for every member of the coalition.
For singleton coalitions S ={i}, i ∈N , we assume that m{i} = 1
and for the grand coalition N we assume that mN � 1. The
collection of admissible internal organizations of coalition S,
S ∈ N , is denoted by IS . The union over S of all internal
organizations for S is denoted by I. To any admissible inter-
nal organization of a coalition a power vector is associated,
measuring the social strength of each player within the cor-
responding social structure by some exogenously given power
function p on the collection of all internal organizations. For
an internal organization I S ∈IS the number pi(I

S) denotes the
power of agent i, i ∈N . We assume that any player outside the
coalition has zero power, i.e., pi(I

S) = 0 for all i ∈ N \ S, that
the power of every agent within the coalition is non-negative,
and that at least one of the agents within the coalition has
positive power, i.e., pi(I

S)�0 for all i ∈S and
∑

i∈S pi(I
S)>0.

Hence, for every I S ∈IS,S ∈N , it holds that p(IS)∈�S , where
�S ={y ∈ IRn

+|yi =0, i ∈N\S,
∑

i∈S yi >0}.
The payoff sets associated with the internal organizations

of the coalitions are represented by a mapping v from I to
the collection of non-empty subsets of IRn. When x ∈v(I S) for
some I S ∈IS , S ∈N , this means that if coalition S is internally
organized according to social structure I S , the members of
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coalition S can attain payoffs (xi)i∈S for themselves, indepen-
dent of what the agents outside S are doing. For any S ⊂N

and I S ∈ IS the set v(I S) is assumed to be cylindric with
respect to S, i.e., for any two vectors x and y in IRn with
xi = yi for all i ∈ S it holds that x ∈ v(I S) if and only if
y ∈ v(I S). We now have the following definition of a socially
structured game (SSG).

DEFINITION 3.1 (Socially structured game). A socially struc-
tured game is given by the quadruple �= (N,I, p, v) where N is
the finite set of players, I is the finite set of admissible internal
organizations, p is a power function assigning to every admis-
sible internal organization a power vector, and v is a mapping
assigning to every admissible internal organization a non-empty
set of payoff vectors.

In a socially structured game the players have to agree on an
internal organization IN of the grand coalition and a feasi-
ble payoff vector x ∈v(IN). Suppose that some x ∈v(IN) does
not belong to any other payoff set and that for some pair of
players i and j it holds that pi(I

N)>pj(I
N). Then we assume

that this means that player i has the power to take away pay-
off from player j . The latter is similar to the approach in
Piccione and Rubinstein (2003). However, player i can never
force the payoff of player j to a level that j can achieve by
himself without any cooperation with other players. Indeed,
when the payoff vector also belongs to the payoff set v(I {j}) of
the unique internal organization on the single player coalition
{j}, then since pj(I

{j})>0 and pi(I
{j})=0, there exist positive

weights such that the sum of the weighted powers of the play-
ers i and j in the internal organizations IN and I {j} are equal
to each other. More generally, at a payoff vector x ∈ v(IN)

player i will not be able to increase his payoff at the expense
of player j when x belongs to payoff sets v(I�), � = 1, . . . , k

such that for positive weights λ1, . . . , λk the weighted sum of
the powers of i and j in the power vectors associated to the
k different internal organizations are equal to each other.
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The discussion above motivates a solution concept select-
ing socially stable payoff vectors. A payoff vector is said to
be socially stable when there is a collection of internal organi-
zations of coalitions that can attain the payoff vector and at
which the powers of all individuals are in balance, so that no
individual has the power to take away payoff from other indi-
viduals. To give a formal definition of social stability of a pay-
off vector in an arbitrary SSG � = (N,I, p, v), we first define
the power cone of a payoff vector x ∈ IRn as the set.

PC(x)=
{

y ∈ IRn|y =
∑

{I |x∈v(I )}
λIp(I), λ1 �0 for all I

}

.

Notice that the power cone of an arbitrary payoff vector in
IRn is a, possibly empty, cone in IRn

+. The power cone of x

is equal to the set of all non-negative linear combinations of
power vectors of all internal organizations of coalitions that
are able to generate x for its members. A payoff vector is
called socially stable if the vector of ones is contained in its
power cone.

DEFINITION 3.2 (Socially stable payoff). For a socially stru-
ctured game � = (N,I, p, v), a payoff vector x ∈ IRn is socially
stable if PC(x) contains the n-vector of ones.

Social stability of a payoff vector x thus means that non-
negative real numbers or weights can be assigned to the inter-
nal organizations that are able to generate x in such a way that
the weighted total power of every agent is equal to one and
therefore the same for every agent. Therefore no player has the
power to seize a higher payoff at the expense of others.

Sometimes it will be useful to define social stability of a
collection of internal organizations without reference to a par-
ticular payoff vector. Let e denote the n-vector of ones.

DEFINITION 3.3 (Socially stable collection of internal orga-
nizations). A collection of internal organizations in I,

{I1, . . . , Ik}, is socially stable if the system of equations
∑k

j=1 λj

p(Ij ) = e has a non-negative solution. A socially stable
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collection of internal organizations in I is minimal if no subset
of it is socially stable.

A socially stable payoff vector is therefore a payoff vector
that can be achieved by every element of a socially stable col-
lection of internal organizations.

The second requirement for a solution concept is that the
players agree on an economically stable payoff vector. A pay-
off vector x is said to be economically stable when it is un-
dominated and can be generated by an internal organization
on the grand coalition.

DEFINITION 3.4 (Economically stable payoff). For a socially
structured game � = (N,I, p, v) a payoff vector x is econom-
ically stable if x ∈ v(IN) for some IN ∈IN and there does not
exist an I ∈ IS for some S ⊂ N and y ∈ v(I ) satisfying yi > xi

for all i ∈S.

Economic stability of a payoff vector x thus means that x

is feasible for the grand coalition and that there is no inter-
nal organization of any coalition that can make all members
of that coalition better off than at x. Economic stability thus
coincides with the concept of core stability. We therefore refer
to the set of all economically stable payoffs of an SSG � as
the core of �.

Socially stable payoff vectors may not be economically sta-
ble and reversely. The set of payoff vectors that are both
socially and economically stable is called the socially stable
core of the game.

DEFINITION 3.5 (Socially stable core). The socially stable
core of a socially structured game � = (N,I, p, v) consists of
the set of socially and economically stable payoff vector of �.

A payoff vector x is an element of the socially stable core if
there is an internal organization of the whole set of agents that
is able to generate x (feasibility), there is no internal organiza-
tion on a coalition that is able to generate more payoff for its
members (undominated), and x can be achieved by a socially
stable collection of internal organizations (social stability).
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4. NON-EMPTINESS OF THE SOCIALLY STABLE CORE

In this section, we give sufficient conditions for the non-
emptiness of the socially stable core of a socially structured
game. The most important condition is that the game itself is
socially stable. A game is called socially stable if every socially
stable payoff vector can be sustained by an internal organiza-
tion on the grand coalition.

DEFINITION 4.1 (Socially stable game). A socially struc-
tured game �= (N,I, p, v) is socially stable if any socially sta-
ble payoff x is feasible for the grand coalition.

Besides social stability of the game the other conditions
for non-emptiness of the socially stable core are standard in
NTU-theory. All admissible payoff sets should be comprehen-
sive, closed and bounded from above. Comprehensiveness of
a payoff set allows the more powerful agents to be able to
take away payoffs from the less powerful agents. The degree
of non-transferability determines how much the payoffs of the
former will increase. Recall that every payoff set of an inter-
nal organization of a coalition S is cylindric with respect to
S and that m{i} = 1 for all i ∈ N . In the sequel, the payoff
set corresponding to the unique internal organization of the
single player coalition {i}, i ∈ N , is denoted by v(i) and the
maximally attainable payoff for agent i is given by the real
number αi .

THEOREM 4.2 (Non-emptiness of the socially stable core). A
socially structured game �= (N,I, p, v) has a non-empty socially
stable core if

(i) for every S ⊂ N , for every I ∈ IS , the set {(xi)i∈S}|x ∈ v(I )

and xi �αi for all i ∈S} is bounded;
(ii) for every I ∈I, the set v(I ) is closed and comprehensive;

(iii) the game is socially stable.

Observe that condition (ii) together with the fact that v(i) is
cylindric with respect to {i} implies that v(i)={x ∈ IRn|xi �αi},
for any i ∈ N . We would like to stress that the theorem
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differs in two ways from the corresponding theorem for NTU-
games, saying that a balanced game has a non-empty core.
First, the theorem above assures that a socially stable game
has not only a non-empty core, but even a non-empty socially
stable core. The examples of Section 2 show that usually the
set of socially stable core elements is a proper (often even
small) subset of the core. In many cases the socially stable
core contains only one element. The socially stable core is a
refinement of the core, obtained by taking into account that a
coalition can be organized according to several internal orga-
nizations with associated payoff sets and power vectors mea-
suring the strengths of the players within these organizations.
Second, the theorem states the existence of a (socially stable)
core vector under the condition of social stability. In the next
section, we will point out that social stability does not always
imply the existence of a system π such that the correspond-
ing induced standard cooperative NTU-game is π-balanced.
The theorem may therefore yield non-emptiness of the core of
NTU-games that are not π-balanced for any system π .

In order to prove the theorem we first give an intersection
result on the (n−1)-dimensional unit simplex � defined by

�=
{

q ∈ IRn
+|

n∑

i=1

qi =1
}

.

This intersection result is interesting in itself and generalizes
the well-known KKMS intersection theorem (Shapley, 1973).
The KKMS lemma says that when � is covered by a collection
of closed sets {CS|S ∈ N }, then there exists (under conditions
similar to (i) and (ii) in the lemma below) a collection of bal-
anced coalitions such that the intersection of the corresponding
sets is non-empty. In the lemma below this is generalized to a
covering by the collection of closed sets {CI |I ∈ I} and social
balancedness for the power vectors associated to the internal
organizations by a power function p on I.

LEMMA 4.3 Let I be a finite collection of internal organiza-
tions with associated power function p : I → IRn

+\{0}, and let
{CI |I ∈I} be a collection of closed subsets of � satisfying



18 P. JEAN-JACQUES HERINGS ET AL.

(i)
⋃

I∈I CI =�.
(ii) for every q in the boundary of � it holds that S ⊂ {i ∈

N |qi >0} when q ∈CI for some I ∈IS .

Then there exists a socially stable collection {I1, . . . , Ik} such
that

⋂k
j=1 CIj �=∅.

Proof. Without loss of generality we may normalize the
power vectors such that

∑n
i=1 pi(I ) = n for every I ∈ I. For

I ∈I, let us define cI = e−p(I). Let the set Y n be defined by

Y n = conv({cI |I ∈I}),
where conv(X) denotes the convex hull of a set X ⊂ IRn.
Observe that

∑n
j=1 cI

j = 0 for all I ∈ I and hence
∑n

j=1 yj = 0
for all y ∈Y n. Next, define the correspondence F :�→Y n by

F(q)= conv({cI |q ∈CI , I ∈I}), q ∈�.

Since the collection of subsets {CI |I ∈ I} is a covering of �,
the set F(q) is non-empty for all q ∈ �. It is easily verified
that, for every q ∈ �,F(q) is convex and compact and that⋃

q∈� F(q) is bounded. Moreover, since the sets CI , I ∈I, are
closed, the mapping F : � → Y n is an upper hemi-continuous
mapping from the set � to the collection of subsets of the set
Y n. Further, both sets � and Y n are non-empty, convex, and
compact. Next, let H be the mapping from Y n to the collec-
tion of subsets of � defined by

H(y)={q̂ ∈�|q�y � q̂�y for every q ∈�}, y ∈Y n.

Clearly, for every y ∈ Y n the set H(y) is non-empty, convex,
and compact, and H is upper hemi-continuous. Hence, the
mapping D from the non-empty, convex, compact set �×Y n

into the collection of subsets of � × Y n defined by D(q, y) =
H(y) × F(q) is upper hemi-continuous and for every (q, y) ∈
� × Y n, the set D(q, y) is non-empty, convex, and compact.
According to Kakutani’s fixed point theorem, the mapping D

has a fixed point on �×Y n, i.e., there exist q∗ ∈� and y∗ ∈Y n

satisfying y∗ ∈F(q∗) and q∗ ∈H(y∗).
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Let α∗ =q∗�y∗. From q∗ ∈H(y∗) it follows that q�y∗ �α∗ for
every q ∈�. By taking q =e(i), where e(i)∈� denotes the i-th
unit vector, we obtain that y∗

i �α∗, i =1, . . . , n. Hence,

y∗
i =α∗, if q∗

i >0,

y∗
i �α∗, if q∗

i =0.
(1)

Since
∑n

i=1 y∗
i =0, we obtain also that α∗ �0.

On the other hand, y∗ ∈F(q∗) implies that there exist non-
negative numbers λ∗

1, . . . , λ∗
k satisfying

∑k
j=1 λ∗

j = 1 and y∗ =
∑k

j=1 λ∗cIj for a collection {I1, . . . , Ik} of k different internal
organizations in I such that q∗ ∈CIj for every j, j = 1, . . . , k.
Without loss of generality we assume that λ∗

j > 0 for every
j = 1, . . . , k. Let Sj be the set of agents on which Ij is an
internal organization, i.e. Ij ∈ISj for j =1, . . . , k. By condition
(ii) we have that q∗

i =0 implies i /∈Sj for every j =1, . . . , k, and
thus c

Ij

i =1. Hence,

y∗
i =

k∑

j=1

λ∗
j ci

Ij =1>0, if q∗
i =0. (2)

Suppose there exists an index i ∈N such that q∗
i = 0. Then it

follows from the equations (1) and (2) that y∗
i >0 for all i ∈N ,

which contradicts
∑n

i=1 y∗
i = 0. Consequently, for all i ∈N , we

have that q∗
i > 0 and thus y∗

i = α∗. Together with
∑n

i=1 y∗
i = 0

this proves that y∗ =0n. Hence

k∑

j=1

λ∗
jp(Ij )= e−

k∑

j=1

λ∗
j c

Ij = e−y∗ = e

and thus the collection {I1, . . . , Ik} is socially stable. Since
q∗ ∈⋂k

j=1 CIj , this completes the proof. �

The proof of Theorem 4.2 follows by applying Lemma 4.3.

Proof of Theorem 4.2. Without loss of generality we assume
that αi �0 for all i ∈N . To apply Lemma 4.3, we define a col-
lection {CI |I ∈ I} satisfying the conditions of the lemma and
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show that an intersection point of a collection of socially sta-
ble sets induces an element in the socially stable core of the
game. For given M > 0 and for any q ∈�, let the number λq

be given by

λq =max{λ∈ IR|−Mq +λe∈∪I∈Iv(I )}.

Since 0n ∈v(i) and because of conditions (i) and (ii) of the theo-
rem, λq exists and is positive for every M >0 and for any q ∈�.
Moreover, following Shapley (1973), using condition (i) of the
theorem, the number M >0 can be chosen so large that for every
i ∈N and q ∈�,qi =0 implies that i /∈S for any S ⊂N satisfying
−Mq +λqe∈v(I ) for some I ∈IS . Now, for I ∈I, define

CI ={q ∈�|−Mq +λqe∈v(I )}.

Since every v(I ), I ∈I, is closed and comprehensive, the collec-
tion of sets {CI |I ∈I} is a family of closed sets covering � and
satisfies also Condition (ii) of Lemma 4.3. Hence, there is a
socially stable collection {I1, . . . , Ik} of internal organizations
in I such that

⋂k
j=1 CIj �=∅. Let q∗ be a point in this intersec-

tion, so q∗ ∈CIj for j = 1, . . . , k. Then the point x∗ =−Mq∗ +
λq∗e belongs to

⋂k
j=1 v(Ij ), i.e., x∗ is a socially stable payoff

vector supported by the socially stable collection {I1, . . . , Ik}.
Since the game is socially stable we have that x∗ ∈ v(I ∗) for
some I ∗ ∈ IN , i.e. x∗ is feasible. To prove economic stability,
suppose there exist an internal organization I ∈ IS for some
S ⊂ N and a payoff vector y ∈ v(I ) such that yi > x∗

i for all
i ∈ S. Since v(I ) is comprehensive and cylindric with respect
to S, there is a µ> 0 such that x∗ +µe ∈ v(I ). However, then
−Mq∗ + (λq∗ + µ)e ∈ v(I ), which contradicts that −Mq∗ + λe /∈
v(I ) for any λ > λq∗ . Hence, x∗ cannot be improved upon by
any internal organization I ∈ I, i.e. x∗ is also economically
stable. This completes the proof. �

Since the socially stable core of a socially structured game
is a subset of the core of that game, we have the following
corollary.
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COROLLARY 4.4. Let (N,I, p, v) be an SSG satisfying the
conditions of Theorem 4.2. Then the core of the game is
non-empty.

We conclude this section by considering some characteristics
of the socially stable core as a subset of the core. For any ele-
ment x in the socially stable core of a game � feasibility of x

implies that x ∈ v(I ) for some I ∈IN . Moreover, there exists a
socially stable collection H⊂I sustaining x. We noticed already
that there does not need to be a socially stable collection of
internal organizations on the whole set of agents. Therefore,
H may contain internal organizations of proper subsets of N .
Moreover, it might be that x is sustained by several socially sta-
ble collections. Now, let I(x) be the ‘supercollection’ contain-
ing all internal organizations that can achieve x. This collection
contains at least one internal organization of the grand coali-
tion N and typically some internal organizations on subsets of
N . Economic stability implies that improvements are not pos-
sible and therefore x cannot be in the interior of any of these
payoff sets. This gives the following corollary.

COROLLARY 4.5 (Boundary property). For a payoff x in the
socially stable core of an SSG � let I(x) be the collection of
all internal organizations I such that x ∈v(I ). Then x is on the
boundary of v(I ) for all I ∈I(x).

The corollary says that the socially stable core typically
selects payoff vectors in the core, which are on the boundary
of several payoff sets. In general, an element x of the socially
stable core belongs to the (relative) interior of the core if I(x)

contains only internal organizations on N , and x belongs to the
boundary of the core if I(x) contains at least one internal orga-
nization on a proper subset of agents (see also Example 2.2).

5. SOCIAL STABILITY AND π -BALANCEDNESS

In this section, we consider the relationship and differences
between social stability of socially structured games and



22 P. JEAN-JACQUES HERINGS ET AL.

π-balancedness of standard cooperative NTU-games, as intro-
duced in Billera (1970). To define π-balancedness, for any
subset S ∈N , let πS ∈IRn

+ be a vector satisfying πS
j =0 for j /∈S

and πS
i > 0 for i ∈ S. Then a collection {S1, . . . , Sk} of sub-

sets of N is called π-balanced if there exist positive numbers
λ1, . . . , λk such that

πN =
k∑

j=1

λjπ
Sj .

Observe that the collection containing only the grand coali-
tion N is balanced. Further, in case for all S ⊂ N we take
πS

i =1 for all i ∈S, π-balancedness reduces to the well-known
balancedness as introduced by Shapley (1973). For generaliza-
tions of π-balancedness, which are necessary and sufficient for
non-emptiness of the core of an NTU-game, we refer to Pred-
tetchinskii and Herings (2004).

A standard cooperative NTU-game on player set N is
defined by a mapping vc assigning to any S ∈N a non-empty
payoff set vc(S)⊂ IRn which is cylindric with respect to S. For a
given π-system {πS|S ∈N }, an NTU-game (N, vc) is π-balanced
when for any π-balanced collection {S1, . . . , Sk} it holds that

k⋂

j=1

vc(Sj )⊂vc(N).

When every set vc(S) satisfies the Conditions (i) and (ii) of
Theorem 4.2, it is well-known that the NTU-game has a non-
empty core when there exists a π-system for which the game
is π-balanced. Any π-balanced coalitional game (N, vc) yields
a socially stable game (N,I, p, v) with, for all S ⊂N , mS =1,
v(I S

1 ) = vc(S), and pi(I
S
1 ) = πS

i /πN
i , i ∈ N . Since {N} is π-bal-

anced, {N} is also socially stable and thus we have that for
this socially structured game obtained from the coalitional
game (N, vc), the socially stable core and the core coincide.

We now reduce a given socially structured game (N,I, p, v)

to a standard cooperative NTU-game (N, vc) by defining the
payoff set mapping function vc on N by
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vc(S)=
⋃

I∈IS

v(I ), ∅ �=S ⊂N,

i.e., the induced NTU-game payoff set vc(S) of coalition S ∈N
is defined to be the union of all payoff sets assigned to the
admissible internal organizations on the coalition S of players.
It is straightforward that the core of this induced NTU-game
(N, vc) coincides with the core of the socially structured game
(N,I, p, v). In the previous section we have seen that the
socially structure game has a non-empty socially stable core,
and thus a non-empty core, when the game is socially stable.
Hence, it follows immediately that the induced NTU-game
has a non-empty core when the underlying socially structured
game is socially stable. The next example shows that social
stability of the socially structured game does not necessarily
imply that the reduced NTU-game satisfies π-balancedness for
some system π .

EXAMPLE 5.1 Let (N,I, p, v) be a socially structured game
with N ={1,2,3},m{1,2} = 2,m{1,3} =m{2,3} = 0 and mS = 1 for all
other S ⊂N . The mapping v is given by

v(i)={x ∈ IR3|xi �0}, i =1,2,3,

v(I
{1,2}
1 )={x ∈ IR3|2x1 +x2 �3},

v(I
{1,2}
2 )={x ∈ IR3|x1 +2x2 �3}

and

v(IN)=v(3)∩v(I
{1,2}
1 )∩v(I

{1,2}
2 ).

The power function p is given by p(I i) = e(i), where I i

denotes the unique internal organization on the singleton coa-
lition {i}, i = 1,2,3, p(I

{1,2}
1 )= (2,1,0)�, p(I

{1,2}
2 )= (1,2,0)�, and

p(IN)= (1,1,1)�. This socially structured game is socially sta-
ble. To show this, it should be observed that there are only five
minimal socially stable collections, {I 1, I 2, I 3}, {I {1,2}

1 , I
{1,2}
2 , I 3},

{I {1,2}
1 , I 2, I 3}, {I {1,2}

2 , I 1, I 3}, and {IN}. For each of these collec-
tions we have that the intersection of the payoff sets of the
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members of the collection is a subset of v(IN). For instance,

v(I
{1,2}
1 )∩v(2)∩v(3)⊂

{

x ∈ IR3|x1 �1
1
2
, x2 �0, x3 �0

}

⊂v(IN).

Because the game is socially stable, the socially stable core is
non-empty. In fact, the payoff vector (1,1,0)� is the unique
element in the socially stable core and is also the unique core
element. This payoff vector belongs to v(IN) and no coali-
tion can improve upon it, so it is in the core. Further, there
are no other core elements, since the agents 1 and 2 can
improve upon each other point in v(IN) through one or both
of their internal organizations I

{1,2}
1 and I

{1,2}
2 . Finally, this

payoff vector is sustained through the socially stable collection
{I {1,2}

1 , I
{1,2}
2 , I 3}.

We now consider the induced NTU-game. The payoff set
mapping vc of this game is given by

vc(i)=v(i), i =1,2,3,

vc({1,2})=v(I
{1,2}
1 )∪v(I

{1,2}
2 ),

vc(N)=v(IN)

and vc(S)=∅ for all other S. Of course, again the payoff vector
(1,1,0)� is the unique element in the core of this reduced game
and thus the core is non-empty. However, there does not exist a
π-system for which the game is π-balanced. To show this, first
let {πS|S ⊂N} be a π-system such that π

{1,2}
1 =π

{1,2}
2 . Then the

collection {{1,2}, {3}} is π-balanced. However, vc({1,2})∩ vc(3)

is not contained in vc(N), for instance x = (1/2,2,0)� is in
vc({1,2}) ∩ vc(3) but not in vc(N). Hence, the game is not
π-balanced for any π-system with π

{1,2}
1 = π

{1,2}
2 . Next, sup-

pose the latter equality does not hold. In that case we assume
without loss of generality that π

{1,2}
1 < π

{1,2}
2 . Then the collec-

tion {{1,2}, {1}, {3}} is π-balanced. However, the payoff vector
x = (0,3,0)� is in vc({1,2})∩ vc(1)∩ vc(3) but not in vc(N) and
again the game is not π-balanced. Hence, there does not exist
a π-system for which the induced NTU-game is π-balanced, so
that the non-emptiness of the core cannot be concluded from
the π-balancedness condition. This concludes the example. �
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6. CONCLUDING REMARKS

In this paper, we have introduced socially structured games.
The concept of socially structured games extends the standard
cooperative NTU-game setting by taking into account that
the players in a coalition may organize themselves according
to several internal organizations. To any internal organization
a set of payoff vectors that the members of the coalition can
achieve is associated. The strengths of the players within a
coalition depends on the internal organization and are given
by an exogenously given power vector. More power means
that payoffs can be taken away from less powerful players.
We would like to stress once more that we allow for more
than one admissible internal organization on the same coali-
tion. Since the class of socially structured games is sufficiently
rich to encompass many economic phenomena of interest, we
believe it to be of high potential for further research.

The members of the grand coalition have to agree on a feasi-
ble payoff vector. We take the point of view that distribution of
the payoffs depends on the strengths of the players within the
different internal organizations. This is captured by the solution
concept of the socially stable core. This solution is a refine-
ment of the core obtained by the additional requirement that a
payoff distribution should be sustained by a collection of inter-
nal organizations such that all players have equal power. As
long as powers are not balanced, a more powerful player is able
to seize a higher payoff at the expense of less powerful players.

We motivated the paper by considering a special class
of socially structured games in more detail, the so-called
digraph games. Similarly we may consider games in which
the social structure is given by an undirected graph. Such a
graph may represent a communication structure or network.
In such a case a possible interpretation of the strengths of
the players is their position within the network, measured by
a so-called centrality measure. In our approach a set of pay-
offs is associated to any admissible network and the allocation
of payoffs depends on the exogenously given powers of the
players within the various admissible networks. This approach
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differs from the network literature as initiated by Jackson and
Wolinsky (1996) (see also Jackson, 2005). In that literature
players can form any network on the set of all players by
adding or deleting links and any network yields a so-called
network value. Within a given network this value is distrib-
uted among the players according to some exogenously given
allocation rule. By imposing some stability requirement with
respect to adding or deleting links, a first question is which
network will be formed by the players under the given allo-
cation rule. Since in that approach the allocation rule plays a
central role, a further question is which axiomatic properties
the allocation rule should satisfy. In Jackson (2005) a fam-
ily of allocation rules is proposed that incorporate informa-
tion about alternative networks when allocating the value of a
given network. Our research can be seen as advocating a (not
necessarily unique) allocation rule in which the powers of the
players within the different networks are taken into account.

APPENDIX A

In the literature several power functions have been proposed
to measure the power of the nodes within a digraph. To give
some examples of such power functions, we define the sets of
predecessors, successors and subordinates of a node i ∈S of a
graph GS = (S,A) by

P i(GS)={j ∈S|(j, i)∈A},
Di(GS)={j ∈S|(i, j)∈A} and
D̂i(GS)={j ∈S| there is a path from i to j},

respectively, i.e., P i(G) is the set of all predecessors of node
i in G, Di(G) is the set of all successors of node i in G and
D̂i(G) is the set of subordinates of player i in G, so for any
player j in D̂i(G) there is a directed path of subsequent arcs
from i to j . A well-known power function to measure the
power of a node in a graph is the score index, see for instance
Behzad et al., 1979; or Rubinstein, 1980. According to the
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score index, the power of a node i ∈ S in the graph GS =
(S,A) is equal to the number of elements in the set Di(GS),
i.e., the number of successors of i in GS . For hierarchies a
straightforward alternative is to take as the power of a player
the number of the elements in the subordinate set D̂i(GS),
i.e., to take the score index of the transitive closure of the
graph.3 Another power function has been introduced by van
den Brink (1994) (see also van den Brink and Gilles, 2000),
according to which the power of a node i ∈S in a graph GS =
(S,A) is given by

∑
j∈Di(GS) |P j(GS)|−1. The interpretation of

this dominance index is as follows. Initially, each node gets one
point. This point is equally distributed amongst all its prede-
cessors, i.e., amongst all the nodes by which a node is domi-
nated. The power of a node is then the sum of all its shares
in the points of its successors.

The third power function we discuss is the positional power
index, introduced in Herings et al. While the score index of a
node only depends on its number of successors and the domi-
nance index of a node on the number of predecessors of each
of its successors, the positional index of a node depends both
on the number of its successors and on how powerful its suc-
cessors are. More precisely, for a digraph GS = (S,A) the posi-
tional indices of the players in S is given by the solution to
the system of linear equations

xi =
∑

j∈Di(GS)

(1+bxj ), i ∈S, (3)

for some given non-negative number b. It means that any node
gets for each successor a power of 1 plus a multiple b of the power
of that successor. The positional index of a node is higher if it its
successors are more powerful. As shown in Herings et al., if A is
non-empty, then the system (3) has a unique non-negative non-
zero solution for any b,0 � b � 1/n. In case the graph is a tree it
can be shown that the system (3) has a solution for any b�0. For
the choice b�1 it follows straightforwardly that a node has always
more power than any of its successors, so a player gets more power
when it is higher in the tree. For b=1 the number of subordinates
in a tree is obtained.
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NOTES

1. A digraph is a hierarchy if it does not contain a cycle.
2. A digraph is a tree if it is a hierarchy and there is a unique node,

called the root, such that there is a unique path from the root to
any other node.

3. The transitive closure of a digraph (S,A) is the graph (S, Â) defined
by (i, j)∈ Â iff (S,A) contains a path from i to j .
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